xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/syscalls.h>
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #endif
55 #include <linux/kprobes.h>
56 #include <linux/kdebug.h>
57 
58 extern unsigned long _get_SP(void);
59 
60 #ifndef CONFIG_SMP
61 struct task_struct *last_task_used_math = NULL;
62 struct task_struct *last_task_used_altivec = NULL;
63 struct task_struct *last_task_used_vsx = NULL;
64 struct task_struct *last_task_used_spe = NULL;
65 #endif
66 
67 /*
68  * Make sure the floating-point register state in the
69  * the thread_struct is up to date for task tsk.
70  */
71 void flush_fp_to_thread(struct task_struct *tsk)
72 {
73 	if (tsk->thread.regs) {
74 		/*
75 		 * We need to disable preemption here because if we didn't,
76 		 * another process could get scheduled after the regs->msr
77 		 * test but before we have finished saving the FP registers
78 		 * to the thread_struct.  That process could take over the
79 		 * FPU, and then when we get scheduled again we would store
80 		 * bogus values for the remaining FP registers.
81 		 */
82 		preempt_disable();
83 		if (tsk->thread.regs->msr & MSR_FP) {
84 #ifdef CONFIG_SMP
85 			/*
86 			 * This should only ever be called for current or
87 			 * for a stopped child process.  Since we save away
88 			 * the FP register state on context switch on SMP,
89 			 * there is something wrong if a stopped child appears
90 			 * to still have its FP state in the CPU registers.
91 			 */
92 			BUG_ON(tsk != current);
93 #endif
94 			giveup_fpu(tsk);
95 		}
96 		preempt_enable();
97 	}
98 }
99 
100 void enable_kernel_fp(void)
101 {
102 	WARN_ON(preemptible());
103 
104 #ifdef CONFIG_SMP
105 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
106 		giveup_fpu(current);
107 	else
108 		giveup_fpu(NULL);	/* just enables FP for kernel */
109 #else
110 	giveup_fpu(last_task_used_math);
111 #endif /* CONFIG_SMP */
112 }
113 EXPORT_SYMBOL(enable_kernel_fp);
114 
115 #ifdef CONFIG_ALTIVEC
116 void enable_kernel_altivec(void)
117 {
118 	WARN_ON(preemptible());
119 
120 #ifdef CONFIG_SMP
121 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
122 		giveup_altivec(current);
123 	else
124 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
125 #else
126 	giveup_altivec(last_task_used_altivec);
127 #endif /* CONFIG_SMP */
128 }
129 EXPORT_SYMBOL(enable_kernel_altivec);
130 
131 /*
132  * Make sure the VMX/Altivec register state in the
133  * the thread_struct is up to date for task tsk.
134  */
135 void flush_altivec_to_thread(struct task_struct *tsk)
136 {
137 	if (tsk->thread.regs) {
138 		preempt_disable();
139 		if (tsk->thread.regs->msr & MSR_VEC) {
140 #ifdef CONFIG_SMP
141 			BUG_ON(tsk != current);
142 #endif
143 			giveup_altivec(tsk);
144 		}
145 		preempt_enable();
146 	}
147 }
148 #endif /* CONFIG_ALTIVEC */
149 
150 #ifdef CONFIG_VSX
151 #if 0
152 /* not currently used, but some crazy RAID module might want to later */
153 void enable_kernel_vsx(void)
154 {
155 	WARN_ON(preemptible());
156 
157 #ifdef CONFIG_SMP
158 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
159 		giveup_vsx(current);
160 	else
161 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
162 #else
163 	giveup_vsx(last_task_used_vsx);
164 #endif /* CONFIG_SMP */
165 }
166 EXPORT_SYMBOL(enable_kernel_vsx);
167 #endif
168 
169 void giveup_vsx(struct task_struct *tsk)
170 {
171 	giveup_fpu(tsk);
172 	giveup_altivec(tsk);
173 	__giveup_vsx(tsk);
174 }
175 
176 void flush_vsx_to_thread(struct task_struct *tsk)
177 {
178 	if (tsk->thread.regs) {
179 		preempt_disable();
180 		if (tsk->thread.regs->msr & MSR_VSX) {
181 #ifdef CONFIG_SMP
182 			BUG_ON(tsk != current);
183 #endif
184 			giveup_vsx(tsk);
185 		}
186 		preempt_enable();
187 	}
188 }
189 #endif /* CONFIG_VSX */
190 
191 #ifdef CONFIG_SPE
192 
193 void enable_kernel_spe(void)
194 {
195 	WARN_ON(preemptible());
196 
197 #ifdef CONFIG_SMP
198 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
199 		giveup_spe(current);
200 	else
201 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
202 #else
203 	giveup_spe(last_task_used_spe);
204 #endif /* __SMP __ */
205 }
206 EXPORT_SYMBOL(enable_kernel_spe);
207 
208 void flush_spe_to_thread(struct task_struct *tsk)
209 {
210 	if (tsk->thread.regs) {
211 		preempt_disable();
212 		if (tsk->thread.regs->msr & MSR_SPE) {
213 #ifdef CONFIG_SMP
214 			BUG_ON(tsk != current);
215 #endif
216 			giveup_spe(tsk);
217 		}
218 		preempt_enable();
219 	}
220 }
221 #endif /* CONFIG_SPE */
222 
223 #ifndef CONFIG_SMP
224 /*
225  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
226  * and the current task has some state, discard it.
227  */
228 void discard_lazy_cpu_state(void)
229 {
230 	preempt_disable();
231 	if (last_task_used_math == current)
232 		last_task_used_math = NULL;
233 #ifdef CONFIG_ALTIVEC
234 	if (last_task_used_altivec == current)
235 		last_task_used_altivec = NULL;
236 #endif /* CONFIG_ALTIVEC */
237 #ifdef CONFIG_VSX
238 	if (last_task_used_vsx == current)
239 		last_task_used_vsx = NULL;
240 #endif /* CONFIG_VSX */
241 #ifdef CONFIG_SPE
242 	if (last_task_used_spe == current)
243 		last_task_used_spe = NULL;
244 #endif
245 	preempt_enable();
246 }
247 #endif /* CONFIG_SMP */
248 
249 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
250 void do_send_trap(struct pt_regs *regs, unsigned long address,
251 		  unsigned long error_code, int signal_code, int breakpt)
252 {
253 	siginfo_t info;
254 
255 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
256 			11, SIGSEGV) == NOTIFY_STOP)
257 		return;
258 
259 	/* Deliver the signal to userspace */
260 	info.si_signo = SIGTRAP;
261 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
262 	info.si_code = signal_code;
263 	info.si_addr = (void __user *)address;
264 	force_sig_info(SIGTRAP, &info, current);
265 }
266 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
267 void do_dabr(struct pt_regs *regs, unsigned long address,
268 		    unsigned long error_code)
269 {
270 	siginfo_t info;
271 
272 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273 			11, SIGSEGV) == NOTIFY_STOP)
274 		return;
275 
276 	if (debugger_dabr_match(regs))
277 		return;
278 
279 	/* Clear the DABR */
280 	set_dabr(0);
281 
282 	/* Deliver the signal to userspace */
283 	info.si_signo = SIGTRAP;
284 	info.si_errno = 0;
285 	info.si_code = TRAP_HWBKPT;
286 	info.si_addr = (void __user *)address;
287 	force_sig_info(SIGTRAP, &info, current);
288 }
289 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
290 
291 static DEFINE_PER_CPU(unsigned long, current_dabr);
292 
293 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
294 /*
295  * Set the debug registers back to their default "safe" values.
296  */
297 static void set_debug_reg_defaults(struct thread_struct *thread)
298 {
299 	thread->iac1 = thread->iac2 = 0;
300 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
301 	thread->iac3 = thread->iac4 = 0;
302 #endif
303 	thread->dac1 = thread->dac2 = 0;
304 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
305 	thread->dvc1 = thread->dvc2 = 0;
306 #endif
307 	thread->dbcr0 = 0;
308 #ifdef CONFIG_BOOKE
309 	/*
310 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
311 	 */
312 	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
313 			DBCR1_IAC3US | DBCR1_IAC4US;
314 	/*
315 	 * Force Data Address Compare User/Supervisor bits to be User-only
316 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
317 	 */
318 	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
319 #else
320 	thread->dbcr1 = 0;
321 #endif
322 }
323 
324 static void prime_debug_regs(struct thread_struct *thread)
325 {
326 	mtspr(SPRN_IAC1, thread->iac1);
327 	mtspr(SPRN_IAC2, thread->iac2);
328 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
329 	mtspr(SPRN_IAC3, thread->iac3);
330 	mtspr(SPRN_IAC4, thread->iac4);
331 #endif
332 	mtspr(SPRN_DAC1, thread->dac1);
333 	mtspr(SPRN_DAC2, thread->dac2);
334 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
335 	mtspr(SPRN_DVC1, thread->dvc1);
336 	mtspr(SPRN_DVC2, thread->dvc2);
337 #endif
338 	mtspr(SPRN_DBCR0, thread->dbcr0);
339 	mtspr(SPRN_DBCR1, thread->dbcr1);
340 #ifdef CONFIG_BOOKE
341 	mtspr(SPRN_DBCR2, thread->dbcr2);
342 #endif
343 }
344 /*
345  * Unless neither the old or new thread are making use of the
346  * debug registers, set the debug registers from the values
347  * stored in the new thread.
348  */
349 static void switch_booke_debug_regs(struct thread_struct *new_thread)
350 {
351 	if ((current->thread.dbcr0 & DBCR0_IDM)
352 		|| (new_thread->dbcr0 & DBCR0_IDM))
353 			prime_debug_regs(new_thread);
354 }
355 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
356 static void set_debug_reg_defaults(struct thread_struct *thread)
357 {
358 	if (thread->dabr) {
359 		thread->dabr = 0;
360 		set_dabr(0);
361 	}
362 }
363 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
364 
365 int set_dabr(unsigned long dabr)
366 {
367 	__get_cpu_var(current_dabr) = dabr;
368 
369 	if (ppc_md.set_dabr)
370 		return ppc_md.set_dabr(dabr);
371 
372 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
373 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
374 	mtspr(SPRN_DAC1, dabr);
375 #ifdef CONFIG_PPC_47x
376 	isync();
377 #endif
378 #elif defined(CONFIG_PPC_BOOK3S)
379 	mtspr(SPRN_DABR, dabr);
380 #endif
381 
382 
383 	return 0;
384 }
385 
386 #ifdef CONFIG_PPC64
387 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
388 #endif
389 
390 struct task_struct *__switch_to(struct task_struct *prev,
391 	struct task_struct *new)
392 {
393 	struct thread_struct *new_thread, *old_thread;
394 	unsigned long flags;
395 	struct task_struct *last;
396 
397 #ifdef CONFIG_SMP
398 	/* avoid complexity of lazy save/restore of fpu
399 	 * by just saving it every time we switch out if
400 	 * this task used the fpu during the last quantum.
401 	 *
402 	 * If it tries to use the fpu again, it'll trap and
403 	 * reload its fp regs.  So we don't have to do a restore
404 	 * every switch, just a save.
405 	 *  -- Cort
406 	 */
407 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
408 		giveup_fpu(prev);
409 #ifdef CONFIG_ALTIVEC
410 	/*
411 	 * If the previous thread used altivec in the last quantum
412 	 * (thus changing altivec regs) then save them.
413 	 * We used to check the VRSAVE register but not all apps
414 	 * set it, so we don't rely on it now (and in fact we need
415 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
416 	 *
417 	 * On SMP we always save/restore altivec regs just to avoid the
418 	 * complexity of changing processors.
419 	 *  -- Cort
420 	 */
421 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
422 		giveup_altivec(prev);
423 #endif /* CONFIG_ALTIVEC */
424 #ifdef CONFIG_VSX
425 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
426 		/* VMX and FPU registers are already save here */
427 		__giveup_vsx(prev);
428 #endif /* CONFIG_VSX */
429 #ifdef CONFIG_SPE
430 	/*
431 	 * If the previous thread used spe in the last quantum
432 	 * (thus changing spe regs) then save them.
433 	 *
434 	 * On SMP we always save/restore spe regs just to avoid the
435 	 * complexity of changing processors.
436 	 */
437 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
438 		giveup_spe(prev);
439 #endif /* CONFIG_SPE */
440 
441 #else  /* CONFIG_SMP */
442 #ifdef CONFIG_ALTIVEC
443 	/* Avoid the trap.  On smp this this never happens since
444 	 * we don't set last_task_used_altivec -- Cort
445 	 */
446 	if (new->thread.regs && last_task_used_altivec == new)
447 		new->thread.regs->msr |= MSR_VEC;
448 #endif /* CONFIG_ALTIVEC */
449 #ifdef CONFIG_VSX
450 	if (new->thread.regs && last_task_used_vsx == new)
451 		new->thread.regs->msr |= MSR_VSX;
452 #endif /* CONFIG_VSX */
453 #ifdef CONFIG_SPE
454 	/* Avoid the trap.  On smp this this never happens since
455 	 * we don't set last_task_used_spe
456 	 */
457 	if (new->thread.regs && last_task_used_spe == new)
458 		new->thread.regs->msr |= MSR_SPE;
459 #endif /* CONFIG_SPE */
460 
461 #endif /* CONFIG_SMP */
462 
463 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
464 	switch_booke_debug_regs(&new->thread);
465 #else
466 /*
467  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
468  * schedule DABR
469  */
470 #ifndef CONFIG_HAVE_HW_BREAKPOINT
471 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
472 		set_dabr(new->thread.dabr);
473 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
474 #endif
475 
476 
477 	new_thread = &new->thread;
478 	old_thread = &current->thread;
479 
480 #if defined(CONFIG_PPC_BOOK3E_64)
481 	/* XXX Current Book3E code doesn't deal with kernel side DBCR0,
482 	 * we always hold the user values, so we set it now.
483 	 *
484 	 * However, we ensure the kernel MSR:DE is appropriately cleared too
485 	 * to avoid spurrious single step exceptions in the kernel.
486 	 *
487 	 * This will have to change to merge with the ppc32 code at some point,
488 	 * but I don't like much what ppc32 is doing today so there's some
489 	 * thinking needed there
490 	 */
491 	if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) {
492 		u32 dbcr0;
493 
494 		mtmsr(mfmsr() & ~MSR_DE);
495 		isync();
496 		dbcr0 = mfspr(SPRN_DBCR0);
497 		dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0;
498 		mtspr(SPRN_DBCR0, dbcr0);
499 	}
500 #endif /* CONFIG_PPC64_BOOK3E */
501 
502 #ifdef CONFIG_PPC64
503 	/*
504 	 * Collect processor utilization data per process
505 	 */
506 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
507 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
508 		long unsigned start_tb, current_tb;
509 		start_tb = old_thread->start_tb;
510 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
511 		old_thread->accum_tb += (current_tb - start_tb);
512 		new_thread->start_tb = current_tb;
513 	}
514 #endif
515 
516 	local_irq_save(flags);
517 
518 	account_system_vtime(current);
519 	account_process_vtime(current);
520 
521 	/*
522 	 * We can't take a PMU exception inside _switch() since there is a
523 	 * window where the kernel stack SLB and the kernel stack are out
524 	 * of sync. Hard disable here.
525 	 */
526 	hard_irq_disable();
527 	last = _switch(old_thread, new_thread);
528 
529 	local_irq_restore(flags);
530 
531 	return last;
532 }
533 
534 static int instructions_to_print = 16;
535 
536 static void show_instructions(struct pt_regs *regs)
537 {
538 	int i;
539 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
540 			sizeof(int));
541 
542 	printk("Instruction dump:");
543 
544 	for (i = 0; i < instructions_to_print; i++) {
545 		int instr;
546 
547 		if (!(i % 8))
548 			printk("\n");
549 
550 #if !defined(CONFIG_BOOKE)
551 		/* If executing with the IMMU off, adjust pc rather
552 		 * than print XXXXXXXX.
553 		 */
554 		if (!(regs->msr & MSR_IR))
555 			pc = (unsigned long)phys_to_virt(pc);
556 #endif
557 
558 		/* We use __get_user here *only* to avoid an OOPS on a
559 		 * bad address because the pc *should* only be a
560 		 * kernel address.
561 		 */
562 		if (!__kernel_text_address(pc) ||
563 		     __get_user(instr, (unsigned int __user *)pc)) {
564 			printk("XXXXXXXX ");
565 		} else {
566 			if (regs->nip == pc)
567 				printk("<%08x> ", instr);
568 			else
569 				printk("%08x ", instr);
570 		}
571 
572 		pc += sizeof(int);
573 	}
574 
575 	printk("\n");
576 }
577 
578 static struct regbit {
579 	unsigned long bit;
580 	const char *name;
581 } msr_bits[] = {
582 	{MSR_EE,	"EE"},
583 	{MSR_PR,	"PR"},
584 	{MSR_FP,	"FP"},
585 	{MSR_VEC,	"VEC"},
586 	{MSR_VSX,	"VSX"},
587 	{MSR_ME,	"ME"},
588 	{MSR_CE,	"CE"},
589 	{MSR_DE,	"DE"},
590 	{MSR_IR,	"IR"},
591 	{MSR_DR,	"DR"},
592 	{0,		NULL}
593 };
594 
595 static void printbits(unsigned long val, struct regbit *bits)
596 {
597 	const char *sep = "";
598 
599 	printk("<");
600 	for (; bits->bit; ++bits)
601 		if (val & bits->bit) {
602 			printk("%s%s", sep, bits->name);
603 			sep = ",";
604 		}
605 	printk(">");
606 }
607 
608 #ifdef CONFIG_PPC64
609 #define REG		"%016lx"
610 #define REGS_PER_LINE	4
611 #define LAST_VOLATILE	13
612 #else
613 #define REG		"%08lx"
614 #define REGS_PER_LINE	8
615 #define LAST_VOLATILE	12
616 #endif
617 
618 void show_regs(struct pt_regs * regs)
619 {
620 	int i, trap;
621 
622 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
623 	       regs->nip, regs->link, regs->ctr);
624 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
625 	       regs, regs->trap, print_tainted(), init_utsname()->release);
626 	printk("MSR: "REG" ", regs->msr);
627 	printbits(regs->msr, msr_bits);
628 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
629 	trap = TRAP(regs);
630 	if (trap == 0x300 || trap == 0x600)
631 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
632 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
633 #else
634 		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
635 #endif
636 	printk("TASK = %p[%d] '%s' THREAD: %p",
637 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
638 
639 #ifdef CONFIG_SMP
640 	printk(" CPU: %d", raw_smp_processor_id());
641 #endif /* CONFIG_SMP */
642 
643 	for (i = 0;  i < 32;  i++) {
644 		if ((i % REGS_PER_LINE) == 0)
645 			printk("\nGPR%02d: ", i);
646 		printk(REG " ", regs->gpr[i]);
647 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
648 			break;
649 	}
650 	printk("\n");
651 #ifdef CONFIG_KALLSYMS
652 	/*
653 	 * Lookup NIP late so we have the best change of getting the
654 	 * above info out without failing
655 	 */
656 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
657 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
658 #endif
659 	show_stack(current, (unsigned long *) regs->gpr[1]);
660 	if (!user_mode(regs))
661 		show_instructions(regs);
662 }
663 
664 void exit_thread(void)
665 {
666 	discard_lazy_cpu_state();
667 }
668 
669 void flush_thread(void)
670 {
671 	discard_lazy_cpu_state();
672 
673 #ifdef CONFIG_HAVE_HW_BREAKPOINTS
674 	flush_ptrace_hw_breakpoint(current);
675 #else /* CONFIG_HAVE_HW_BREAKPOINTS */
676 	set_debug_reg_defaults(&current->thread);
677 #endif /* CONFIG_HAVE_HW_BREAKPOINTS */
678 }
679 
680 void
681 release_thread(struct task_struct *t)
682 {
683 }
684 
685 /*
686  * This gets called before we allocate a new thread and copy
687  * the current task into it.
688  */
689 void prepare_to_copy(struct task_struct *tsk)
690 {
691 	flush_fp_to_thread(current);
692 	flush_altivec_to_thread(current);
693 	flush_vsx_to_thread(current);
694 	flush_spe_to_thread(current);
695 #ifdef CONFIG_HAVE_HW_BREAKPOINT
696 	flush_ptrace_hw_breakpoint(tsk);
697 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
698 }
699 
700 /*
701  * Copy a thread..
702  */
703 int copy_thread(unsigned long clone_flags, unsigned long usp,
704 		unsigned long unused, struct task_struct *p,
705 		struct pt_regs *regs)
706 {
707 	struct pt_regs *childregs, *kregs;
708 	extern void ret_from_fork(void);
709 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
710 
711 	CHECK_FULL_REGS(regs);
712 	/* Copy registers */
713 	sp -= sizeof(struct pt_regs);
714 	childregs = (struct pt_regs *) sp;
715 	*childregs = *regs;
716 	if ((childregs->msr & MSR_PR) == 0) {
717 		/* for kernel thread, set `current' and stackptr in new task */
718 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
719 #ifdef CONFIG_PPC32
720 		childregs->gpr[2] = (unsigned long) p;
721 #else
722 		clear_tsk_thread_flag(p, TIF_32BIT);
723 #endif
724 		p->thread.regs = NULL;	/* no user register state */
725 	} else {
726 		childregs->gpr[1] = usp;
727 		p->thread.regs = childregs;
728 		if (clone_flags & CLONE_SETTLS) {
729 #ifdef CONFIG_PPC64
730 			if (!is_32bit_task())
731 				childregs->gpr[13] = childregs->gpr[6];
732 			else
733 #endif
734 				childregs->gpr[2] = childregs->gpr[6];
735 		}
736 	}
737 	childregs->gpr[3] = 0;  /* Result from fork() */
738 	sp -= STACK_FRAME_OVERHEAD;
739 
740 	/*
741 	 * The way this works is that at some point in the future
742 	 * some task will call _switch to switch to the new task.
743 	 * That will pop off the stack frame created below and start
744 	 * the new task running at ret_from_fork.  The new task will
745 	 * do some house keeping and then return from the fork or clone
746 	 * system call, using the stack frame created above.
747 	 */
748 	sp -= sizeof(struct pt_regs);
749 	kregs = (struct pt_regs *) sp;
750 	sp -= STACK_FRAME_OVERHEAD;
751 	p->thread.ksp = sp;
752 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
753 				_ALIGN_UP(sizeof(struct thread_info), 16);
754 
755 #ifdef CONFIG_PPC_STD_MMU_64
756 	if (cpu_has_feature(CPU_FTR_SLB)) {
757 		unsigned long sp_vsid;
758 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
759 
760 		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
761 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
762 				<< SLB_VSID_SHIFT_1T;
763 		else
764 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
765 				<< SLB_VSID_SHIFT;
766 		sp_vsid |= SLB_VSID_KERNEL | llp;
767 		p->thread.ksp_vsid = sp_vsid;
768 	}
769 #endif /* CONFIG_PPC_STD_MMU_64 */
770 
771 	/*
772 	 * The PPC64 ABI makes use of a TOC to contain function
773 	 * pointers.  The function (ret_from_except) is actually a pointer
774 	 * to the TOC entry.  The first entry is a pointer to the actual
775 	 * function.
776  	 */
777 #ifdef CONFIG_PPC64
778 	kregs->nip = *((unsigned long *)ret_from_fork);
779 #else
780 	kregs->nip = (unsigned long)ret_from_fork;
781 #endif
782 
783 	return 0;
784 }
785 
786 /*
787  * Set up a thread for executing a new program
788  */
789 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
790 {
791 #ifdef CONFIG_PPC64
792 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
793 #endif
794 
795 	set_fs(USER_DS);
796 
797 	/*
798 	 * If we exec out of a kernel thread then thread.regs will not be
799 	 * set.  Do it now.
800 	 */
801 	if (!current->thread.regs) {
802 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
803 		current->thread.regs = regs - 1;
804 	}
805 
806 	memset(regs->gpr, 0, sizeof(regs->gpr));
807 	regs->ctr = 0;
808 	regs->link = 0;
809 	regs->xer = 0;
810 	regs->ccr = 0;
811 	regs->gpr[1] = sp;
812 
813 	/*
814 	 * We have just cleared all the nonvolatile GPRs, so make
815 	 * FULL_REGS(regs) return true.  This is necessary to allow
816 	 * ptrace to examine the thread immediately after exec.
817 	 */
818 	regs->trap &= ~1UL;
819 
820 #ifdef CONFIG_PPC32
821 	regs->mq = 0;
822 	regs->nip = start;
823 	regs->msr = MSR_USER;
824 #else
825 	if (!is_32bit_task()) {
826 		unsigned long entry, toc;
827 
828 		/* start is a relocated pointer to the function descriptor for
829 		 * the elf _start routine.  The first entry in the function
830 		 * descriptor is the entry address of _start and the second
831 		 * entry is the TOC value we need to use.
832 		 */
833 		__get_user(entry, (unsigned long __user *)start);
834 		__get_user(toc, (unsigned long __user *)start+1);
835 
836 		/* Check whether the e_entry function descriptor entries
837 		 * need to be relocated before we can use them.
838 		 */
839 		if (load_addr != 0) {
840 			entry += load_addr;
841 			toc   += load_addr;
842 		}
843 		regs->nip = entry;
844 		regs->gpr[2] = toc;
845 		regs->msr = MSR_USER64;
846 	} else {
847 		regs->nip = start;
848 		regs->gpr[2] = 0;
849 		regs->msr = MSR_USER32;
850 	}
851 #endif
852 
853 	discard_lazy_cpu_state();
854 #ifdef CONFIG_VSX
855 	current->thread.used_vsr = 0;
856 #endif
857 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
858 	current->thread.fpscr.val = 0;
859 #ifdef CONFIG_ALTIVEC
860 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
861 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
862 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
863 	current->thread.vrsave = 0;
864 	current->thread.used_vr = 0;
865 #endif /* CONFIG_ALTIVEC */
866 #ifdef CONFIG_SPE
867 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
868 	current->thread.acc = 0;
869 	current->thread.spefscr = 0;
870 	current->thread.used_spe = 0;
871 #endif /* CONFIG_SPE */
872 }
873 
874 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
875 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
876 
877 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
878 {
879 	struct pt_regs *regs = tsk->thread.regs;
880 
881 	/* This is a bit hairy.  If we are an SPE enabled  processor
882 	 * (have embedded fp) we store the IEEE exception enable flags in
883 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
884 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
885 	if (val & PR_FP_EXC_SW_ENABLE) {
886 #ifdef CONFIG_SPE
887 		if (cpu_has_feature(CPU_FTR_SPE)) {
888 			tsk->thread.fpexc_mode = val &
889 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
890 			return 0;
891 		} else {
892 			return -EINVAL;
893 		}
894 #else
895 		return -EINVAL;
896 #endif
897 	}
898 
899 	/* on a CONFIG_SPE this does not hurt us.  The bits that
900 	 * __pack_fe01 use do not overlap with bits used for
901 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
902 	 * on CONFIG_SPE implementations are reserved so writing to
903 	 * them does not change anything */
904 	if (val > PR_FP_EXC_PRECISE)
905 		return -EINVAL;
906 	tsk->thread.fpexc_mode = __pack_fe01(val);
907 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
908 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
909 			| tsk->thread.fpexc_mode;
910 	return 0;
911 }
912 
913 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
914 {
915 	unsigned int val;
916 
917 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
918 #ifdef CONFIG_SPE
919 		if (cpu_has_feature(CPU_FTR_SPE))
920 			val = tsk->thread.fpexc_mode;
921 		else
922 			return -EINVAL;
923 #else
924 		return -EINVAL;
925 #endif
926 	else
927 		val = __unpack_fe01(tsk->thread.fpexc_mode);
928 	return put_user(val, (unsigned int __user *) adr);
929 }
930 
931 int set_endian(struct task_struct *tsk, unsigned int val)
932 {
933 	struct pt_regs *regs = tsk->thread.regs;
934 
935 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
936 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
937 		return -EINVAL;
938 
939 	if (regs == NULL)
940 		return -EINVAL;
941 
942 	if (val == PR_ENDIAN_BIG)
943 		regs->msr &= ~MSR_LE;
944 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
945 		regs->msr |= MSR_LE;
946 	else
947 		return -EINVAL;
948 
949 	return 0;
950 }
951 
952 int get_endian(struct task_struct *tsk, unsigned long adr)
953 {
954 	struct pt_regs *regs = tsk->thread.regs;
955 	unsigned int val;
956 
957 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
958 	    !cpu_has_feature(CPU_FTR_REAL_LE))
959 		return -EINVAL;
960 
961 	if (regs == NULL)
962 		return -EINVAL;
963 
964 	if (regs->msr & MSR_LE) {
965 		if (cpu_has_feature(CPU_FTR_REAL_LE))
966 			val = PR_ENDIAN_LITTLE;
967 		else
968 			val = PR_ENDIAN_PPC_LITTLE;
969 	} else
970 		val = PR_ENDIAN_BIG;
971 
972 	return put_user(val, (unsigned int __user *)adr);
973 }
974 
975 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
976 {
977 	tsk->thread.align_ctl = val;
978 	return 0;
979 }
980 
981 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
982 {
983 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
984 }
985 
986 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
987 
988 int sys_clone(unsigned long clone_flags, unsigned long usp,
989 	      int __user *parent_tidp, void __user *child_threadptr,
990 	      int __user *child_tidp, int p6,
991 	      struct pt_regs *regs)
992 {
993 	CHECK_FULL_REGS(regs);
994 	if (usp == 0)
995 		usp = regs->gpr[1];	/* stack pointer for child */
996 #ifdef CONFIG_PPC64
997 	if (is_32bit_task()) {
998 		parent_tidp = TRUNC_PTR(parent_tidp);
999 		child_tidp = TRUNC_PTR(child_tidp);
1000 	}
1001 #endif
1002  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1003 }
1004 
1005 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1006 	     unsigned long p4, unsigned long p5, unsigned long p6,
1007 	     struct pt_regs *regs)
1008 {
1009 	CHECK_FULL_REGS(regs);
1010 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1011 }
1012 
1013 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1014 	      unsigned long p4, unsigned long p5, unsigned long p6,
1015 	      struct pt_regs *regs)
1016 {
1017 	CHECK_FULL_REGS(regs);
1018 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1019 			regs, 0, NULL, NULL);
1020 }
1021 
1022 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1023 	       unsigned long a3, unsigned long a4, unsigned long a5,
1024 	       struct pt_regs *regs)
1025 {
1026 	int error;
1027 	char *filename;
1028 
1029 	filename = getname((const char __user *) a0);
1030 	error = PTR_ERR(filename);
1031 	if (IS_ERR(filename))
1032 		goto out;
1033 	flush_fp_to_thread(current);
1034 	flush_altivec_to_thread(current);
1035 	flush_spe_to_thread(current);
1036 	error = do_execve(filename,
1037 			  (const char __user *const __user *) a1,
1038 			  (const char __user *const __user *) a2, regs);
1039 	putname(filename);
1040 out:
1041 	return error;
1042 }
1043 
1044 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1045 				  unsigned long nbytes)
1046 {
1047 	unsigned long stack_page;
1048 	unsigned long cpu = task_cpu(p);
1049 
1050 	/*
1051 	 * Avoid crashing if the stack has overflowed and corrupted
1052 	 * task_cpu(p), which is in the thread_info struct.
1053 	 */
1054 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1055 		stack_page = (unsigned long) hardirq_ctx[cpu];
1056 		if (sp >= stack_page + sizeof(struct thread_struct)
1057 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1058 			return 1;
1059 
1060 		stack_page = (unsigned long) softirq_ctx[cpu];
1061 		if (sp >= stack_page + sizeof(struct thread_struct)
1062 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1063 			return 1;
1064 	}
1065 	return 0;
1066 }
1067 
1068 int validate_sp(unsigned long sp, struct task_struct *p,
1069 		       unsigned long nbytes)
1070 {
1071 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1072 
1073 	if (sp >= stack_page + sizeof(struct thread_struct)
1074 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1075 		return 1;
1076 
1077 	return valid_irq_stack(sp, p, nbytes);
1078 }
1079 
1080 EXPORT_SYMBOL(validate_sp);
1081 
1082 unsigned long get_wchan(struct task_struct *p)
1083 {
1084 	unsigned long ip, sp;
1085 	int count = 0;
1086 
1087 	if (!p || p == current || p->state == TASK_RUNNING)
1088 		return 0;
1089 
1090 	sp = p->thread.ksp;
1091 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1092 		return 0;
1093 
1094 	do {
1095 		sp = *(unsigned long *)sp;
1096 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1097 			return 0;
1098 		if (count > 0) {
1099 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1100 			if (!in_sched_functions(ip))
1101 				return ip;
1102 		}
1103 	} while (count++ < 16);
1104 	return 0;
1105 }
1106 
1107 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1108 
1109 void show_stack(struct task_struct *tsk, unsigned long *stack)
1110 {
1111 	unsigned long sp, ip, lr, newsp;
1112 	int count = 0;
1113 	int firstframe = 1;
1114 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1115 	int curr_frame = current->curr_ret_stack;
1116 	extern void return_to_handler(void);
1117 	unsigned long rth = (unsigned long)return_to_handler;
1118 	unsigned long mrth = -1;
1119 #ifdef CONFIG_PPC64
1120 	extern void mod_return_to_handler(void);
1121 	rth = *(unsigned long *)rth;
1122 	mrth = (unsigned long)mod_return_to_handler;
1123 	mrth = *(unsigned long *)mrth;
1124 #endif
1125 #endif
1126 
1127 	sp = (unsigned long) stack;
1128 	if (tsk == NULL)
1129 		tsk = current;
1130 	if (sp == 0) {
1131 		if (tsk == current)
1132 			asm("mr %0,1" : "=r" (sp));
1133 		else
1134 			sp = tsk->thread.ksp;
1135 	}
1136 
1137 	lr = 0;
1138 	printk("Call Trace:\n");
1139 	do {
1140 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1141 			return;
1142 
1143 		stack = (unsigned long *) sp;
1144 		newsp = stack[0];
1145 		ip = stack[STACK_FRAME_LR_SAVE];
1146 		if (!firstframe || ip != lr) {
1147 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1148 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1149 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1150 				printk(" (%pS)",
1151 				       (void *)current->ret_stack[curr_frame].ret);
1152 				curr_frame--;
1153 			}
1154 #endif
1155 			if (firstframe)
1156 				printk(" (unreliable)");
1157 			printk("\n");
1158 		}
1159 		firstframe = 0;
1160 
1161 		/*
1162 		 * See if this is an exception frame.
1163 		 * We look for the "regshere" marker in the current frame.
1164 		 */
1165 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1166 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1167 			struct pt_regs *regs = (struct pt_regs *)
1168 				(sp + STACK_FRAME_OVERHEAD);
1169 			lr = regs->link;
1170 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1171 			       regs->trap, (void *)regs->nip, (void *)lr);
1172 			firstframe = 1;
1173 		}
1174 
1175 		sp = newsp;
1176 	} while (count++ < kstack_depth_to_print);
1177 }
1178 
1179 void dump_stack(void)
1180 {
1181 	show_stack(current, NULL);
1182 }
1183 EXPORT_SYMBOL(dump_stack);
1184 
1185 #ifdef CONFIG_PPC64
1186 void ppc64_runlatch_on(void)
1187 {
1188 	unsigned long ctrl;
1189 
1190 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1191 		HMT_medium();
1192 
1193 		ctrl = mfspr(SPRN_CTRLF);
1194 		ctrl |= CTRL_RUNLATCH;
1195 		mtspr(SPRN_CTRLT, ctrl);
1196 
1197 		set_thread_flag(TIF_RUNLATCH);
1198 	}
1199 }
1200 
1201 void __ppc64_runlatch_off(void)
1202 {
1203 	unsigned long ctrl;
1204 
1205 	HMT_medium();
1206 
1207 	clear_thread_flag(TIF_RUNLATCH);
1208 
1209 	ctrl = mfspr(SPRN_CTRLF);
1210 	ctrl &= ~CTRL_RUNLATCH;
1211 	mtspr(SPRN_CTRLT, ctrl);
1212 }
1213 #endif
1214 
1215 #if THREAD_SHIFT < PAGE_SHIFT
1216 
1217 static struct kmem_cache *thread_info_cache;
1218 
1219 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1220 {
1221 	struct thread_info *ti;
1222 
1223 	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1224 	if (unlikely(ti == NULL))
1225 		return NULL;
1226 #ifdef CONFIG_DEBUG_STACK_USAGE
1227 	memset(ti, 0, THREAD_SIZE);
1228 #endif
1229 	return ti;
1230 }
1231 
1232 void free_thread_info(struct thread_info *ti)
1233 {
1234 	kmem_cache_free(thread_info_cache, ti);
1235 }
1236 
1237 void thread_info_cache_init(void)
1238 {
1239 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1240 					      THREAD_SIZE, 0, NULL);
1241 	BUG_ON(thread_info_cache == NULL);
1242 }
1243 
1244 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1245 
1246 unsigned long arch_align_stack(unsigned long sp)
1247 {
1248 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1249 		sp -= get_random_int() & ~PAGE_MASK;
1250 	return sp & ~0xf;
1251 }
1252 
1253 static inline unsigned long brk_rnd(void)
1254 {
1255         unsigned long rnd = 0;
1256 
1257 	/* 8MB for 32bit, 1GB for 64bit */
1258 	if (is_32bit_task())
1259 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1260 	else
1261 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1262 
1263 	return rnd << PAGE_SHIFT;
1264 }
1265 
1266 unsigned long arch_randomize_brk(struct mm_struct *mm)
1267 {
1268 	unsigned long base = mm->brk;
1269 	unsigned long ret;
1270 
1271 #ifdef CONFIG_PPC_STD_MMU_64
1272 	/*
1273 	 * If we are using 1TB segments and we are allowed to randomise
1274 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1275 	 * segment. Otherwise the heap will be in the bottom 1TB
1276 	 * which always uses 256MB segments and this may result in a
1277 	 * performance penalty.
1278 	 */
1279 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1280 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1281 #endif
1282 
1283 	ret = PAGE_ALIGN(base + brk_rnd());
1284 
1285 	if (ret < mm->brk)
1286 		return mm->brk;
1287 
1288 	return ret;
1289 }
1290 
1291 unsigned long randomize_et_dyn(unsigned long base)
1292 {
1293 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1294 
1295 	if (ret < base)
1296 		return base;
1297 
1298 	return ret;
1299 }
1300