1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/pgtable.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #include <asm/time.h> 51 #include <asm/runlatch.h> 52 #include <asm/syscalls.h> 53 #include <asm/switch_to.h> 54 #include <asm/tm.h> 55 #include <asm/debug.h> 56 #ifdef CONFIG_PPC64 57 #include <asm/firmware.h> 58 #include <asm/hw_irq.h> 59 #endif 60 #include <asm/code-patching.h> 61 #include <asm/exec.h> 62 #include <asm/livepatch.h> 63 #include <asm/cpu_has_feature.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/stacktrace.h> 66 #include <asm/hw_breakpoint.h> 67 68 #include <linux/kprobes.h> 69 #include <linux/kdebug.h> 70 71 /* Transactional Memory debug */ 72 #ifdef TM_DEBUG_SW 73 #define TM_DEBUG(x...) printk(KERN_INFO x) 74 #else 75 #define TM_DEBUG(x...) do { } while(0) 76 #endif 77 78 extern unsigned long _get_SP(void); 79 80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 81 /* 82 * Are we running in "Suspend disabled" mode? If so we have to block any 83 * sigreturn that would get us into suspended state, and we also warn in some 84 * other paths that we should never reach with suspend disabled. 85 */ 86 bool tm_suspend_disabled __ro_after_init = false; 87 88 static void check_if_tm_restore_required(struct task_struct *tsk) 89 { 90 /* 91 * If we are saving the current thread's registers, and the 92 * thread is in a transactional state, set the TIF_RESTORE_TM 93 * bit so that we know to restore the registers before 94 * returning to userspace. 95 */ 96 if (tsk == current && tsk->thread.regs && 97 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 98 !test_thread_flag(TIF_RESTORE_TM)) { 99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 100 set_thread_flag(TIF_RESTORE_TM); 101 } 102 } 103 104 #else 105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 107 108 bool strict_msr_control; 109 EXPORT_SYMBOL(strict_msr_control); 110 111 static int __init enable_strict_msr_control(char *str) 112 { 113 strict_msr_control = true; 114 pr_info("Enabling strict facility control\n"); 115 116 return 0; 117 } 118 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 119 120 /* notrace because it's called by restore_math */ 121 unsigned long notrace msr_check_and_set(unsigned long bits) 122 { 123 unsigned long oldmsr = mfmsr(); 124 unsigned long newmsr; 125 126 newmsr = oldmsr | bits; 127 128 #ifdef CONFIG_VSX 129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 130 newmsr |= MSR_VSX; 131 #endif 132 133 if (oldmsr != newmsr) 134 mtmsr_isync(newmsr); 135 136 return newmsr; 137 } 138 EXPORT_SYMBOL_GPL(msr_check_and_set); 139 140 /* notrace because it's called by restore_math */ 141 void notrace __msr_check_and_clear(unsigned long bits) 142 { 143 unsigned long oldmsr = mfmsr(); 144 unsigned long newmsr; 145 146 newmsr = oldmsr & ~bits; 147 148 #ifdef CONFIG_VSX 149 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 150 newmsr &= ~MSR_VSX; 151 #endif 152 153 if (oldmsr != newmsr) 154 mtmsr_isync(newmsr); 155 } 156 EXPORT_SYMBOL(__msr_check_and_clear); 157 158 #ifdef CONFIG_PPC_FPU 159 static void __giveup_fpu(struct task_struct *tsk) 160 { 161 unsigned long msr; 162 163 save_fpu(tsk); 164 msr = tsk->thread.regs->msr; 165 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 166 #ifdef CONFIG_VSX 167 if (cpu_has_feature(CPU_FTR_VSX)) 168 msr &= ~MSR_VSX; 169 #endif 170 tsk->thread.regs->msr = msr; 171 } 172 173 void giveup_fpu(struct task_struct *tsk) 174 { 175 check_if_tm_restore_required(tsk); 176 177 msr_check_and_set(MSR_FP); 178 __giveup_fpu(tsk); 179 msr_check_and_clear(MSR_FP); 180 } 181 EXPORT_SYMBOL(giveup_fpu); 182 183 /* 184 * Make sure the floating-point register state in the 185 * the thread_struct is up to date for task tsk. 186 */ 187 void flush_fp_to_thread(struct task_struct *tsk) 188 { 189 if (tsk->thread.regs) { 190 /* 191 * We need to disable preemption here because if we didn't, 192 * another process could get scheduled after the regs->msr 193 * test but before we have finished saving the FP registers 194 * to the thread_struct. That process could take over the 195 * FPU, and then when we get scheduled again we would store 196 * bogus values for the remaining FP registers. 197 */ 198 preempt_disable(); 199 if (tsk->thread.regs->msr & MSR_FP) { 200 /* 201 * This should only ever be called for current or 202 * for a stopped child process. Since we save away 203 * the FP register state on context switch, 204 * there is something wrong if a stopped child appears 205 * to still have its FP state in the CPU registers. 206 */ 207 BUG_ON(tsk != current); 208 giveup_fpu(tsk); 209 } 210 preempt_enable(); 211 } 212 } 213 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 214 215 void enable_kernel_fp(void) 216 { 217 unsigned long cpumsr; 218 219 WARN_ON(preemptible()); 220 221 cpumsr = msr_check_and_set(MSR_FP); 222 223 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 224 check_if_tm_restore_required(current); 225 /* 226 * If a thread has already been reclaimed then the 227 * checkpointed registers are on the CPU but have definitely 228 * been saved by the reclaim code. Don't need to and *cannot* 229 * giveup as this would save to the 'live' structure not the 230 * checkpointed structure. 231 */ 232 if (!MSR_TM_ACTIVE(cpumsr) && 233 MSR_TM_ACTIVE(current->thread.regs->msr)) 234 return; 235 __giveup_fpu(current); 236 } 237 } 238 EXPORT_SYMBOL(enable_kernel_fp); 239 240 static int restore_fp(struct task_struct *tsk) 241 { 242 if (tsk->thread.load_fp) { 243 load_fp_state(¤t->thread.fp_state); 244 current->thread.load_fp++; 245 return 1; 246 } 247 return 0; 248 } 249 #else 250 static int restore_fp(struct task_struct *tsk) { return 0; } 251 #endif /* CONFIG_PPC_FPU */ 252 253 #ifdef CONFIG_ALTIVEC 254 #define loadvec(thr) ((thr).load_vec) 255 256 static void __giveup_altivec(struct task_struct *tsk) 257 { 258 unsigned long msr; 259 260 save_altivec(tsk); 261 msr = tsk->thread.regs->msr; 262 msr &= ~MSR_VEC; 263 #ifdef CONFIG_VSX 264 if (cpu_has_feature(CPU_FTR_VSX)) 265 msr &= ~MSR_VSX; 266 #endif 267 tsk->thread.regs->msr = msr; 268 } 269 270 void giveup_altivec(struct task_struct *tsk) 271 { 272 check_if_tm_restore_required(tsk); 273 274 msr_check_and_set(MSR_VEC); 275 __giveup_altivec(tsk); 276 msr_check_and_clear(MSR_VEC); 277 } 278 EXPORT_SYMBOL(giveup_altivec); 279 280 void enable_kernel_altivec(void) 281 { 282 unsigned long cpumsr; 283 284 WARN_ON(preemptible()); 285 286 cpumsr = msr_check_and_set(MSR_VEC); 287 288 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 289 check_if_tm_restore_required(current); 290 /* 291 * If a thread has already been reclaimed then the 292 * checkpointed registers are on the CPU but have definitely 293 * been saved by the reclaim code. Don't need to and *cannot* 294 * giveup as this would save to the 'live' structure not the 295 * checkpointed structure. 296 */ 297 if (!MSR_TM_ACTIVE(cpumsr) && 298 MSR_TM_ACTIVE(current->thread.regs->msr)) 299 return; 300 __giveup_altivec(current); 301 } 302 } 303 EXPORT_SYMBOL(enable_kernel_altivec); 304 305 /* 306 * Make sure the VMX/Altivec register state in the 307 * the thread_struct is up to date for task tsk. 308 */ 309 void flush_altivec_to_thread(struct task_struct *tsk) 310 { 311 if (tsk->thread.regs) { 312 preempt_disable(); 313 if (tsk->thread.regs->msr & MSR_VEC) { 314 BUG_ON(tsk != current); 315 giveup_altivec(tsk); 316 } 317 preempt_enable(); 318 } 319 } 320 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 321 322 static int restore_altivec(struct task_struct *tsk) 323 { 324 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) { 325 load_vr_state(&tsk->thread.vr_state); 326 tsk->thread.used_vr = 1; 327 tsk->thread.load_vec++; 328 329 return 1; 330 } 331 return 0; 332 } 333 #else 334 #define loadvec(thr) 0 335 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 336 #endif /* CONFIG_ALTIVEC */ 337 338 #ifdef CONFIG_VSX 339 static void __giveup_vsx(struct task_struct *tsk) 340 { 341 unsigned long msr = tsk->thread.regs->msr; 342 343 /* 344 * We should never be ssetting MSR_VSX without also setting 345 * MSR_FP and MSR_VEC 346 */ 347 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 348 349 /* __giveup_fpu will clear MSR_VSX */ 350 if (msr & MSR_FP) 351 __giveup_fpu(tsk); 352 if (msr & MSR_VEC) 353 __giveup_altivec(tsk); 354 } 355 356 static void giveup_vsx(struct task_struct *tsk) 357 { 358 check_if_tm_restore_required(tsk); 359 360 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 361 __giveup_vsx(tsk); 362 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 363 } 364 365 void enable_kernel_vsx(void) 366 { 367 unsigned long cpumsr; 368 369 WARN_ON(preemptible()); 370 371 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 372 373 if (current->thread.regs && 374 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 375 check_if_tm_restore_required(current); 376 /* 377 * If a thread has already been reclaimed then the 378 * checkpointed registers are on the CPU but have definitely 379 * been saved by the reclaim code. Don't need to and *cannot* 380 * giveup as this would save to the 'live' structure not the 381 * checkpointed structure. 382 */ 383 if (!MSR_TM_ACTIVE(cpumsr) && 384 MSR_TM_ACTIVE(current->thread.regs->msr)) 385 return; 386 __giveup_vsx(current); 387 } 388 } 389 EXPORT_SYMBOL(enable_kernel_vsx); 390 391 void flush_vsx_to_thread(struct task_struct *tsk) 392 { 393 if (tsk->thread.regs) { 394 preempt_disable(); 395 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 396 BUG_ON(tsk != current); 397 giveup_vsx(tsk); 398 } 399 preempt_enable(); 400 } 401 } 402 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 403 404 static int restore_vsx(struct task_struct *tsk) 405 { 406 if (cpu_has_feature(CPU_FTR_VSX)) { 407 tsk->thread.used_vsr = 1; 408 return 1; 409 } 410 411 return 0; 412 } 413 #else 414 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 415 #endif /* CONFIG_VSX */ 416 417 #ifdef CONFIG_SPE 418 void giveup_spe(struct task_struct *tsk) 419 { 420 check_if_tm_restore_required(tsk); 421 422 msr_check_and_set(MSR_SPE); 423 __giveup_spe(tsk); 424 msr_check_and_clear(MSR_SPE); 425 } 426 EXPORT_SYMBOL(giveup_spe); 427 428 void enable_kernel_spe(void) 429 { 430 WARN_ON(preemptible()); 431 432 msr_check_and_set(MSR_SPE); 433 434 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 435 check_if_tm_restore_required(current); 436 __giveup_spe(current); 437 } 438 } 439 EXPORT_SYMBOL(enable_kernel_spe); 440 441 void flush_spe_to_thread(struct task_struct *tsk) 442 { 443 if (tsk->thread.regs) { 444 preempt_disable(); 445 if (tsk->thread.regs->msr & MSR_SPE) { 446 BUG_ON(tsk != current); 447 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 448 giveup_spe(tsk); 449 } 450 preempt_enable(); 451 } 452 } 453 #endif /* CONFIG_SPE */ 454 455 static unsigned long msr_all_available; 456 457 static int __init init_msr_all_available(void) 458 { 459 #ifdef CONFIG_PPC_FPU 460 msr_all_available |= MSR_FP; 461 #endif 462 #ifdef CONFIG_ALTIVEC 463 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 464 msr_all_available |= MSR_VEC; 465 #endif 466 #ifdef CONFIG_VSX 467 if (cpu_has_feature(CPU_FTR_VSX)) 468 msr_all_available |= MSR_VSX; 469 #endif 470 #ifdef CONFIG_SPE 471 if (cpu_has_feature(CPU_FTR_SPE)) 472 msr_all_available |= MSR_SPE; 473 #endif 474 475 return 0; 476 } 477 early_initcall(init_msr_all_available); 478 479 void giveup_all(struct task_struct *tsk) 480 { 481 unsigned long usermsr; 482 483 if (!tsk->thread.regs) 484 return; 485 486 check_if_tm_restore_required(tsk); 487 488 usermsr = tsk->thread.regs->msr; 489 490 if ((usermsr & msr_all_available) == 0) 491 return; 492 493 msr_check_and_set(msr_all_available); 494 495 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 496 497 #ifdef CONFIG_PPC_FPU 498 if (usermsr & MSR_FP) 499 __giveup_fpu(tsk); 500 #endif 501 #ifdef CONFIG_ALTIVEC 502 if (usermsr & MSR_VEC) 503 __giveup_altivec(tsk); 504 #endif 505 #ifdef CONFIG_SPE 506 if (usermsr & MSR_SPE) 507 __giveup_spe(tsk); 508 #endif 509 510 msr_check_and_clear(msr_all_available); 511 } 512 EXPORT_SYMBOL(giveup_all); 513 514 /* 515 * The exception exit path calls restore_math() with interrupts hard disabled 516 * but the soft irq state not "reconciled". ftrace code that calls 517 * local_irq_save/restore causes warnings. 518 * 519 * Rather than complicate the exit path, just don't trace restore_math. This 520 * could be done by having ftrace entry code check for this un-reconciled 521 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 522 * temporarily fix it up for the duration of the ftrace call. 523 */ 524 void notrace restore_math(struct pt_regs *regs) 525 { 526 unsigned long msr; 527 528 if (!MSR_TM_ACTIVE(regs->msr) && 529 !current->thread.load_fp && !loadvec(current->thread)) 530 return; 531 532 msr = regs->msr; 533 msr_check_and_set(msr_all_available); 534 535 /* 536 * Only reload if the bit is not set in the user MSR, the bit BEING set 537 * indicates that the registers are hot 538 */ 539 if ((!(msr & MSR_FP)) && restore_fp(current)) 540 msr |= MSR_FP | current->thread.fpexc_mode; 541 542 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 543 msr |= MSR_VEC; 544 545 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 546 restore_vsx(current)) { 547 msr |= MSR_VSX; 548 } 549 550 msr_check_and_clear(msr_all_available); 551 552 regs->msr = msr; 553 } 554 555 static void save_all(struct task_struct *tsk) 556 { 557 unsigned long usermsr; 558 559 if (!tsk->thread.regs) 560 return; 561 562 usermsr = tsk->thread.regs->msr; 563 564 if ((usermsr & msr_all_available) == 0) 565 return; 566 567 msr_check_and_set(msr_all_available); 568 569 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 570 571 if (usermsr & MSR_FP) 572 save_fpu(tsk); 573 574 if (usermsr & MSR_VEC) 575 save_altivec(tsk); 576 577 if (usermsr & MSR_SPE) 578 __giveup_spe(tsk); 579 580 msr_check_and_clear(msr_all_available); 581 thread_pkey_regs_save(&tsk->thread); 582 } 583 584 void flush_all_to_thread(struct task_struct *tsk) 585 { 586 if (tsk->thread.regs) { 587 preempt_disable(); 588 BUG_ON(tsk != current); 589 #ifdef CONFIG_SPE 590 if (tsk->thread.regs->msr & MSR_SPE) 591 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 592 #endif 593 save_all(tsk); 594 595 preempt_enable(); 596 } 597 } 598 EXPORT_SYMBOL(flush_all_to_thread); 599 600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 601 void do_send_trap(struct pt_regs *regs, unsigned long address, 602 unsigned long error_code, int breakpt) 603 { 604 current->thread.trap_nr = TRAP_HWBKPT; 605 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 606 11, SIGSEGV) == NOTIFY_STOP) 607 return; 608 609 /* Deliver the signal to userspace */ 610 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 611 (void __user *)address); 612 } 613 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 614 void do_break (struct pt_regs *regs, unsigned long address, 615 unsigned long error_code) 616 { 617 current->thread.trap_nr = TRAP_HWBKPT; 618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 619 11, SIGSEGV) == NOTIFY_STOP) 620 return; 621 622 if (debugger_break_match(regs)) 623 return; 624 625 /* Clear the breakpoint */ 626 hw_breakpoint_disable(); 627 628 /* Deliver the signal to userspace */ 629 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 630 } 631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 632 633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 634 635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 636 /* 637 * Set the debug registers back to their default "safe" values. 638 */ 639 static void set_debug_reg_defaults(struct thread_struct *thread) 640 { 641 thread->debug.iac1 = thread->debug.iac2 = 0; 642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 643 thread->debug.iac3 = thread->debug.iac4 = 0; 644 #endif 645 thread->debug.dac1 = thread->debug.dac2 = 0; 646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 647 thread->debug.dvc1 = thread->debug.dvc2 = 0; 648 #endif 649 thread->debug.dbcr0 = 0; 650 #ifdef CONFIG_BOOKE 651 /* 652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 653 */ 654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 655 DBCR1_IAC3US | DBCR1_IAC4US; 656 /* 657 * Force Data Address Compare User/Supervisor bits to be User-only 658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 659 */ 660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 661 #else 662 thread->debug.dbcr1 = 0; 663 #endif 664 } 665 666 static void prime_debug_regs(struct debug_reg *debug) 667 { 668 /* 669 * We could have inherited MSR_DE from userspace, since 670 * it doesn't get cleared on exception entry. Make sure 671 * MSR_DE is clear before we enable any debug events. 672 */ 673 mtmsr(mfmsr() & ~MSR_DE); 674 675 mtspr(SPRN_IAC1, debug->iac1); 676 mtspr(SPRN_IAC2, debug->iac2); 677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 678 mtspr(SPRN_IAC3, debug->iac3); 679 mtspr(SPRN_IAC4, debug->iac4); 680 #endif 681 mtspr(SPRN_DAC1, debug->dac1); 682 mtspr(SPRN_DAC2, debug->dac2); 683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 684 mtspr(SPRN_DVC1, debug->dvc1); 685 mtspr(SPRN_DVC2, debug->dvc2); 686 #endif 687 mtspr(SPRN_DBCR0, debug->dbcr0); 688 mtspr(SPRN_DBCR1, debug->dbcr1); 689 #ifdef CONFIG_BOOKE 690 mtspr(SPRN_DBCR2, debug->dbcr2); 691 #endif 692 } 693 /* 694 * Unless neither the old or new thread are making use of the 695 * debug registers, set the debug registers from the values 696 * stored in the new thread. 697 */ 698 void switch_booke_debug_regs(struct debug_reg *new_debug) 699 { 700 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 701 || (new_debug->dbcr0 & DBCR0_IDM)) 702 prime_debug_regs(new_debug); 703 } 704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 706 #ifndef CONFIG_HAVE_HW_BREAKPOINT 707 static void set_breakpoint(struct arch_hw_breakpoint *brk) 708 { 709 preempt_disable(); 710 __set_breakpoint(brk); 711 preempt_enable(); 712 } 713 714 static void set_debug_reg_defaults(struct thread_struct *thread) 715 { 716 thread->hw_brk.address = 0; 717 thread->hw_brk.type = 0; 718 thread->hw_brk.len = 0; 719 thread->hw_brk.hw_len = 0; 720 if (ppc_breakpoint_available()) 721 set_breakpoint(&thread->hw_brk); 722 } 723 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 724 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 725 726 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 727 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 728 { 729 mtspr(SPRN_DAC1, dabr); 730 #ifdef CONFIG_PPC_47x 731 isync(); 732 #endif 733 return 0; 734 } 735 #elif defined(CONFIG_PPC_BOOK3S) 736 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 737 { 738 mtspr(SPRN_DABR, dabr); 739 if (cpu_has_feature(CPU_FTR_DABRX)) 740 mtspr(SPRN_DABRX, dabrx); 741 return 0; 742 } 743 #else 744 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 745 { 746 return -EINVAL; 747 } 748 #endif 749 750 static inline int set_dabr(struct arch_hw_breakpoint *brk) 751 { 752 unsigned long dabr, dabrx; 753 754 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 755 dabrx = ((brk->type >> 3) & 0x7); 756 757 if (ppc_md.set_dabr) 758 return ppc_md.set_dabr(dabr, dabrx); 759 760 return __set_dabr(dabr, dabrx); 761 } 762 763 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 764 { 765 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 766 LCTRL1_CRWF_RW; 767 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 768 unsigned long start_addr = brk->address & ~HW_BREAKPOINT_ALIGN; 769 unsigned long end_addr = (brk->address + brk->len - 1) | HW_BREAKPOINT_ALIGN; 770 771 if (start_addr == 0) 772 lctrl2 |= LCTRL2_LW0LA_F; 773 else if (end_addr == ~0U) 774 lctrl2 |= LCTRL2_LW0LA_E; 775 else 776 lctrl2 |= LCTRL2_LW0LA_EandF; 777 778 mtspr(SPRN_LCTRL2, 0); 779 780 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 781 return 0; 782 783 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 784 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 785 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 786 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 787 788 mtspr(SPRN_CMPE, start_addr - 1); 789 mtspr(SPRN_CMPF, end_addr + 1); 790 mtspr(SPRN_LCTRL1, lctrl1); 791 mtspr(SPRN_LCTRL2, lctrl2); 792 793 return 0; 794 } 795 796 void __set_breakpoint(struct arch_hw_breakpoint *brk) 797 { 798 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 799 800 if (dawr_enabled()) 801 // Power8 or later 802 set_dawr(brk); 803 else if (IS_ENABLED(CONFIG_PPC_8xx)) 804 set_breakpoint_8xx(brk); 805 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 806 // Power7 or earlier 807 set_dabr(brk); 808 else 809 // Shouldn't happen due to higher level checks 810 WARN_ON_ONCE(1); 811 } 812 813 /* Check if we have DAWR or DABR hardware */ 814 bool ppc_breakpoint_available(void) 815 { 816 if (dawr_enabled()) 817 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 818 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 819 return false; /* POWER9 with DAWR disabled */ 820 /* DABR: Everything but POWER8 and POWER9 */ 821 return true; 822 } 823 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 824 825 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 826 struct arch_hw_breakpoint *b) 827 { 828 if (a->address != b->address) 829 return false; 830 if (a->type != b->type) 831 return false; 832 if (a->len != b->len) 833 return false; 834 /* no need to check hw_len. it's calculated from address and len */ 835 return true; 836 } 837 838 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 839 840 static inline bool tm_enabled(struct task_struct *tsk) 841 { 842 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 843 } 844 845 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 846 { 847 /* 848 * Use the current MSR TM suspended bit to track if we have 849 * checkpointed state outstanding. 850 * On signal delivery, we'd normally reclaim the checkpointed 851 * state to obtain stack pointer (see:get_tm_stackpointer()). 852 * This will then directly return to userspace without going 853 * through __switch_to(). However, if the stack frame is bad, 854 * we need to exit this thread which calls __switch_to() which 855 * will again attempt to reclaim the already saved tm state. 856 * Hence we need to check that we've not already reclaimed 857 * this state. 858 * We do this using the current MSR, rather tracking it in 859 * some specific thread_struct bit, as it has the additional 860 * benefit of checking for a potential TM bad thing exception. 861 */ 862 if (!MSR_TM_SUSPENDED(mfmsr())) 863 return; 864 865 giveup_all(container_of(thr, struct task_struct, thread)); 866 867 tm_reclaim(thr, cause); 868 869 /* 870 * If we are in a transaction and FP is off then we can't have 871 * used FP inside that transaction. Hence the checkpointed 872 * state is the same as the live state. We need to copy the 873 * live state to the checkpointed state so that when the 874 * transaction is restored, the checkpointed state is correct 875 * and the aborted transaction sees the correct state. We use 876 * ckpt_regs.msr here as that's what tm_reclaim will use to 877 * determine if it's going to write the checkpointed state or 878 * not. So either this will write the checkpointed registers, 879 * or reclaim will. Similarly for VMX. 880 */ 881 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 882 memcpy(&thr->ckfp_state, &thr->fp_state, 883 sizeof(struct thread_fp_state)); 884 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 885 memcpy(&thr->ckvr_state, &thr->vr_state, 886 sizeof(struct thread_vr_state)); 887 } 888 889 void tm_reclaim_current(uint8_t cause) 890 { 891 tm_enable(); 892 tm_reclaim_thread(¤t->thread, cause); 893 } 894 895 static inline void tm_reclaim_task(struct task_struct *tsk) 896 { 897 /* We have to work out if we're switching from/to a task that's in the 898 * middle of a transaction. 899 * 900 * In switching we need to maintain a 2nd register state as 901 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 902 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 903 * ckvr_state 904 * 905 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 906 */ 907 struct thread_struct *thr = &tsk->thread; 908 909 if (!thr->regs) 910 return; 911 912 if (!MSR_TM_ACTIVE(thr->regs->msr)) 913 goto out_and_saveregs; 914 915 WARN_ON(tm_suspend_disabled); 916 917 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 918 "ccr=%lx, msr=%lx, trap=%lx)\n", 919 tsk->pid, thr->regs->nip, 920 thr->regs->ccr, thr->regs->msr, 921 thr->regs->trap); 922 923 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 924 925 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 926 tsk->pid); 927 928 out_and_saveregs: 929 /* Always save the regs here, even if a transaction's not active. 930 * This context-switches a thread's TM info SPRs. We do it here to 931 * be consistent with the restore path (in recheckpoint) which 932 * cannot happen later in _switch(). 933 */ 934 tm_save_sprs(thr); 935 } 936 937 extern void __tm_recheckpoint(struct thread_struct *thread); 938 939 void tm_recheckpoint(struct thread_struct *thread) 940 { 941 unsigned long flags; 942 943 if (!(thread->regs->msr & MSR_TM)) 944 return; 945 946 /* We really can't be interrupted here as the TEXASR registers can't 947 * change and later in the trecheckpoint code, we have a userspace R1. 948 * So let's hard disable over this region. 949 */ 950 local_irq_save(flags); 951 hard_irq_disable(); 952 953 /* The TM SPRs are restored here, so that TEXASR.FS can be set 954 * before the trecheckpoint and no explosion occurs. 955 */ 956 tm_restore_sprs(thread); 957 958 __tm_recheckpoint(thread); 959 960 local_irq_restore(flags); 961 } 962 963 static inline void tm_recheckpoint_new_task(struct task_struct *new) 964 { 965 if (!cpu_has_feature(CPU_FTR_TM)) 966 return; 967 968 /* Recheckpoint the registers of the thread we're about to switch to. 969 * 970 * If the task was using FP, we non-lazily reload both the original and 971 * the speculative FP register states. This is because the kernel 972 * doesn't see if/when a TM rollback occurs, so if we take an FP 973 * unavailable later, we are unable to determine which set of FP regs 974 * need to be restored. 975 */ 976 if (!tm_enabled(new)) 977 return; 978 979 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 980 tm_restore_sprs(&new->thread); 981 return; 982 } 983 /* Recheckpoint to restore original checkpointed register state. */ 984 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 985 new->pid, new->thread.regs->msr); 986 987 tm_recheckpoint(&new->thread); 988 989 /* 990 * The checkpointed state has been restored but the live state has 991 * not, ensure all the math functionality is turned off to trigger 992 * restore_math() to reload. 993 */ 994 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 995 996 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 997 "(kernel msr 0x%lx)\n", 998 new->pid, mfmsr()); 999 } 1000 1001 static inline void __switch_to_tm(struct task_struct *prev, 1002 struct task_struct *new) 1003 { 1004 if (cpu_has_feature(CPU_FTR_TM)) { 1005 if (tm_enabled(prev) || tm_enabled(new)) 1006 tm_enable(); 1007 1008 if (tm_enabled(prev)) { 1009 prev->thread.load_tm++; 1010 tm_reclaim_task(prev); 1011 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1012 prev->thread.regs->msr &= ~MSR_TM; 1013 } 1014 1015 tm_recheckpoint_new_task(new); 1016 } 1017 } 1018 1019 /* 1020 * This is called if we are on the way out to userspace and the 1021 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1022 * FP and/or vector state and does so if necessary. 1023 * If userspace is inside a transaction (whether active or 1024 * suspended) and FP/VMX/VSX instructions have ever been enabled 1025 * inside that transaction, then we have to keep them enabled 1026 * and keep the FP/VMX/VSX state loaded while ever the transaction 1027 * continues. The reason is that if we didn't, and subsequently 1028 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1029 * we don't know whether it's the same transaction, and thus we 1030 * don't know which of the checkpointed state and the transactional 1031 * state to use. 1032 */ 1033 void restore_tm_state(struct pt_regs *regs) 1034 { 1035 unsigned long msr_diff; 1036 1037 /* 1038 * This is the only moment we should clear TIF_RESTORE_TM as 1039 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1040 * again, anything else could lead to an incorrect ckpt_msr being 1041 * saved and therefore incorrect signal contexts. 1042 */ 1043 clear_thread_flag(TIF_RESTORE_TM); 1044 if (!MSR_TM_ACTIVE(regs->msr)) 1045 return; 1046 1047 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1048 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1049 1050 /* Ensure that restore_math() will restore */ 1051 if (msr_diff & MSR_FP) 1052 current->thread.load_fp = 1; 1053 #ifdef CONFIG_ALTIVEC 1054 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1055 current->thread.load_vec = 1; 1056 #endif 1057 restore_math(regs); 1058 1059 regs->msr |= msr_diff; 1060 } 1061 1062 #else 1063 #define tm_recheckpoint_new_task(new) 1064 #define __switch_to_tm(prev, new) 1065 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1066 1067 static inline void save_sprs(struct thread_struct *t) 1068 { 1069 #ifdef CONFIG_ALTIVEC 1070 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1071 t->vrsave = mfspr(SPRN_VRSAVE); 1072 #endif 1073 #ifdef CONFIG_PPC_BOOK3S_64 1074 if (cpu_has_feature(CPU_FTR_DSCR)) 1075 t->dscr = mfspr(SPRN_DSCR); 1076 1077 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1078 t->bescr = mfspr(SPRN_BESCR); 1079 t->ebbhr = mfspr(SPRN_EBBHR); 1080 t->ebbrr = mfspr(SPRN_EBBRR); 1081 1082 t->fscr = mfspr(SPRN_FSCR); 1083 1084 /* 1085 * Note that the TAR is not available for use in the kernel. 1086 * (To provide this, the TAR should be backed up/restored on 1087 * exception entry/exit instead, and be in pt_regs. FIXME, 1088 * this should be in pt_regs anyway (for debug).) 1089 */ 1090 t->tar = mfspr(SPRN_TAR); 1091 } 1092 #endif 1093 1094 thread_pkey_regs_save(t); 1095 } 1096 1097 static inline void restore_sprs(struct thread_struct *old_thread, 1098 struct thread_struct *new_thread) 1099 { 1100 #ifdef CONFIG_ALTIVEC 1101 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1102 old_thread->vrsave != new_thread->vrsave) 1103 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1104 #endif 1105 #ifdef CONFIG_PPC_BOOK3S_64 1106 if (cpu_has_feature(CPU_FTR_DSCR)) { 1107 u64 dscr = get_paca()->dscr_default; 1108 if (new_thread->dscr_inherit) 1109 dscr = new_thread->dscr; 1110 1111 if (old_thread->dscr != dscr) 1112 mtspr(SPRN_DSCR, dscr); 1113 } 1114 1115 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1116 if (old_thread->bescr != new_thread->bescr) 1117 mtspr(SPRN_BESCR, new_thread->bescr); 1118 if (old_thread->ebbhr != new_thread->ebbhr) 1119 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1120 if (old_thread->ebbrr != new_thread->ebbrr) 1121 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1122 1123 if (old_thread->fscr != new_thread->fscr) 1124 mtspr(SPRN_FSCR, new_thread->fscr); 1125 1126 if (old_thread->tar != new_thread->tar) 1127 mtspr(SPRN_TAR, new_thread->tar); 1128 } 1129 1130 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1131 old_thread->tidr != new_thread->tidr) 1132 mtspr(SPRN_TIDR, new_thread->tidr); 1133 #endif 1134 1135 thread_pkey_regs_restore(new_thread, old_thread); 1136 } 1137 1138 struct task_struct *__switch_to(struct task_struct *prev, 1139 struct task_struct *new) 1140 { 1141 struct thread_struct *new_thread, *old_thread; 1142 struct task_struct *last; 1143 #ifdef CONFIG_PPC_BOOK3S_64 1144 struct ppc64_tlb_batch *batch; 1145 #endif 1146 1147 new_thread = &new->thread; 1148 old_thread = ¤t->thread; 1149 1150 WARN_ON(!irqs_disabled()); 1151 1152 #ifdef CONFIG_PPC_BOOK3S_64 1153 batch = this_cpu_ptr(&ppc64_tlb_batch); 1154 if (batch->active) { 1155 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1156 if (batch->index) 1157 __flush_tlb_pending(batch); 1158 batch->active = 0; 1159 } 1160 #endif /* CONFIG_PPC_BOOK3S_64 */ 1161 1162 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1163 switch_booke_debug_regs(&new->thread.debug); 1164 #else 1165 /* 1166 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1167 * schedule DABR 1168 */ 1169 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1170 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1171 __set_breakpoint(&new->thread.hw_brk); 1172 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1173 #endif 1174 1175 /* 1176 * We need to save SPRs before treclaim/trecheckpoint as these will 1177 * change a number of them. 1178 */ 1179 save_sprs(&prev->thread); 1180 1181 /* Save FPU, Altivec, VSX and SPE state */ 1182 giveup_all(prev); 1183 1184 __switch_to_tm(prev, new); 1185 1186 if (!radix_enabled()) { 1187 /* 1188 * We can't take a PMU exception inside _switch() since there 1189 * is a window where the kernel stack SLB and the kernel stack 1190 * are out of sync. Hard disable here. 1191 */ 1192 hard_irq_disable(); 1193 } 1194 1195 /* 1196 * Call restore_sprs() before calling _switch(). If we move it after 1197 * _switch() then we miss out on calling it for new tasks. The reason 1198 * for this is we manually create a stack frame for new tasks that 1199 * directly returns through ret_from_fork() or 1200 * ret_from_kernel_thread(). See copy_thread() for details. 1201 */ 1202 restore_sprs(old_thread, new_thread); 1203 1204 last = _switch(old_thread, new_thread); 1205 1206 #ifdef CONFIG_PPC_BOOK3S_64 1207 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1208 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1209 batch = this_cpu_ptr(&ppc64_tlb_batch); 1210 batch->active = 1; 1211 } 1212 1213 if (current->thread.regs) { 1214 restore_math(current->thread.regs); 1215 1216 /* 1217 * The copy-paste buffer can only store into foreign real 1218 * addresses, so unprivileged processes can not see the 1219 * data or use it in any way unless they have foreign real 1220 * mappings. If the new process has the foreign real address 1221 * mappings, we must issue a cp_abort to clear any state and 1222 * prevent snooping, corruption or a covert channel. 1223 */ 1224 if (current->thread.used_vas) 1225 asm volatile(PPC_CP_ABORT); 1226 } 1227 #endif /* CONFIG_PPC_BOOK3S_64 */ 1228 1229 return last; 1230 } 1231 1232 #define NR_INSN_TO_PRINT 16 1233 1234 static void show_instructions(struct pt_regs *regs) 1235 { 1236 int i; 1237 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1238 1239 printk("Instruction dump:"); 1240 1241 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1242 int instr; 1243 1244 if (!(i % 8)) 1245 pr_cont("\n"); 1246 1247 #if !defined(CONFIG_BOOKE) 1248 /* If executing with the IMMU off, adjust pc rather 1249 * than print XXXXXXXX. 1250 */ 1251 if (!(regs->msr & MSR_IR)) 1252 pc = (unsigned long)phys_to_virt(pc); 1253 #endif 1254 1255 if (!__kernel_text_address(pc) || 1256 probe_kernel_address((const void *)pc, instr)) { 1257 pr_cont("XXXXXXXX "); 1258 } else { 1259 if (regs->nip == pc) 1260 pr_cont("<%08x> ", instr); 1261 else 1262 pr_cont("%08x ", instr); 1263 } 1264 1265 pc += sizeof(int); 1266 } 1267 1268 pr_cont("\n"); 1269 } 1270 1271 void show_user_instructions(struct pt_regs *regs) 1272 { 1273 unsigned long pc; 1274 int n = NR_INSN_TO_PRINT; 1275 struct seq_buf s; 1276 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1277 1278 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1279 1280 seq_buf_init(&s, buf, sizeof(buf)); 1281 1282 while (n) { 1283 int i; 1284 1285 seq_buf_clear(&s); 1286 1287 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1288 int instr; 1289 1290 if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) { 1291 seq_buf_printf(&s, "XXXXXXXX "); 1292 continue; 1293 } 1294 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1295 } 1296 1297 if (!seq_buf_has_overflowed(&s)) 1298 pr_info("%s[%d]: code: %s\n", current->comm, 1299 current->pid, s.buffer); 1300 } 1301 } 1302 1303 struct regbit { 1304 unsigned long bit; 1305 const char *name; 1306 }; 1307 1308 static struct regbit msr_bits[] = { 1309 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1310 {MSR_SF, "SF"}, 1311 {MSR_HV, "HV"}, 1312 #endif 1313 {MSR_VEC, "VEC"}, 1314 {MSR_VSX, "VSX"}, 1315 #ifdef CONFIG_BOOKE 1316 {MSR_CE, "CE"}, 1317 #endif 1318 {MSR_EE, "EE"}, 1319 {MSR_PR, "PR"}, 1320 {MSR_FP, "FP"}, 1321 {MSR_ME, "ME"}, 1322 #ifdef CONFIG_BOOKE 1323 {MSR_DE, "DE"}, 1324 #else 1325 {MSR_SE, "SE"}, 1326 {MSR_BE, "BE"}, 1327 #endif 1328 {MSR_IR, "IR"}, 1329 {MSR_DR, "DR"}, 1330 {MSR_PMM, "PMM"}, 1331 #ifndef CONFIG_BOOKE 1332 {MSR_RI, "RI"}, 1333 {MSR_LE, "LE"}, 1334 #endif 1335 {0, NULL} 1336 }; 1337 1338 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1339 { 1340 const char *s = ""; 1341 1342 for (; bits->bit; ++bits) 1343 if (val & bits->bit) { 1344 pr_cont("%s%s", s, bits->name); 1345 s = sep; 1346 } 1347 } 1348 1349 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1350 static struct regbit msr_tm_bits[] = { 1351 {MSR_TS_T, "T"}, 1352 {MSR_TS_S, "S"}, 1353 {MSR_TM, "E"}, 1354 {0, NULL} 1355 }; 1356 1357 static void print_tm_bits(unsigned long val) 1358 { 1359 /* 1360 * This only prints something if at least one of the TM bit is set. 1361 * Inside the TM[], the output means: 1362 * E: Enabled (bit 32) 1363 * S: Suspended (bit 33) 1364 * T: Transactional (bit 34) 1365 */ 1366 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1367 pr_cont(",TM["); 1368 print_bits(val, msr_tm_bits, ""); 1369 pr_cont("]"); 1370 } 1371 } 1372 #else 1373 static void print_tm_bits(unsigned long val) {} 1374 #endif 1375 1376 static void print_msr_bits(unsigned long val) 1377 { 1378 pr_cont("<"); 1379 print_bits(val, msr_bits, ","); 1380 print_tm_bits(val); 1381 pr_cont(">"); 1382 } 1383 1384 #ifdef CONFIG_PPC64 1385 #define REG "%016lx" 1386 #define REGS_PER_LINE 4 1387 #define LAST_VOLATILE 13 1388 #else 1389 #define REG "%08lx" 1390 #define REGS_PER_LINE 8 1391 #define LAST_VOLATILE 12 1392 #endif 1393 1394 void show_regs(struct pt_regs * regs) 1395 { 1396 int i, trap; 1397 1398 show_regs_print_info(KERN_DEFAULT); 1399 1400 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1401 regs->nip, regs->link, regs->ctr); 1402 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1403 regs, regs->trap, print_tainted(), init_utsname()->release); 1404 printk("MSR: "REG" ", regs->msr); 1405 print_msr_bits(regs->msr); 1406 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1407 trap = TRAP(regs); 1408 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1409 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1410 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1411 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1412 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1413 #else 1414 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1415 #endif 1416 #ifdef CONFIG_PPC64 1417 pr_cont("IRQMASK: %lx ", regs->softe); 1418 #endif 1419 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1420 if (MSR_TM_ACTIVE(regs->msr)) 1421 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1422 #endif 1423 1424 for (i = 0; i < 32; i++) { 1425 if ((i % REGS_PER_LINE) == 0) 1426 pr_cont("\nGPR%02d: ", i); 1427 pr_cont(REG " ", regs->gpr[i]); 1428 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1429 break; 1430 } 1431 pr_cont("\n"); 1432 #ifdef CONFIG_KALLSYMS 1433 /* 1434 * Lookup NIP late so we have the best change of getting the 1435 * above info out without failing 1436 */ 1437 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1438 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1439 #endif 1440 show_stack(current, (unsigned long *) regs->gpr[1]); 1441 if (!user_mode(regs)) 1442 show_instructions(regs); 1443 } 1444 1445 void flush_thread(void) 1446 { 1447 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1448 flush_ptrace_hw_breakpoint(current); 1449 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1450 set_debug_reg_defaults(¤t->thread); 1451 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1452 } 1453 1454 #ifdef CONFIG_PPC_BOOK3S_64 1455 void arch_setup_new_exec(void) 1456 { 1457 if (radix_enabled()) 1458 return; 1459 hash__setup_new_exec(); 1460 } 1461 #endif 1462 1463 int set_thread_uses_vas(void) 1464 { 1465 #ifdef CONFIG_PPC_BOOK3S_64 1466 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1467 return -EINVAL; 1468 1469 current->thread.used_vas = 1; 1470 1471 /* 1472 * Even a process that has no foreign real address mapping can use 1473 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1474 * to clear any pending COPY and prevent a covert channel. 1475 * 1476 * __switch_to() will issue CP_ABORT on future context switches. 1477 */ 1478 asm volatile(PPC_CP_ABORT); 1479 1480 #endif /* CONFIG_PPC_BOOK3S_64 */ 1481 return 0; 1482 } 1483 1484 #ifdef CONFIG_PPC64 1485 /** 1486 * Assign a TIDR (thread ID) for task @t and set it in the thread 1487 * structure. For now, we only support setting TIDR for 'current' task. 1488 * 1489 * Since the TID value is a truncated form of it PID, it is possible 1490 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1491 * that 2 threads share the same TID and are waiting, one of the following 1492 * cases will happen: 1493 * 1494 * 1. The correct thread is running, the wrong thread is not 1495 * In this situation, the correct thread is woken and proceeds to pass it's 1496 * condition check. 1497 * 1498 * 2. Neither threads are running 1499 * In this situation, neither thread will be woken. When scheduled, the waiting 1500 * threads will execute either a wait, which will return immediately, followed 1501 * by a condition check, which will pass for the correct thread and fail 1502 * for the wrong thread, or they will execute the condition check immediately. 1503 * 1504 * 3. The wrong thread is running, the correct thread is not 1505 * The wrong thread will be woken, but will fail it's condition check and 1506 * re-execute wait. The correct thread, when scheduled, will execute either 1507 * it's condition check (which will pass), or wait, which returns immediately 1508 * when called the first time after the thread is scheduled, followed by it's 1509 * condition check (which will pass). 1510 * 1511 * 4. Both threads are running 1512 * Both threads will be woken. The wrong thread will fail it's condition check 1513 * and execute another wait, while the correct thread will pass it's condition 1514 * check. 1515 * 1516 * @t: the task to set the thread ID for 1517 */ 1518 int set_thread_tidr(struct task_struct *t) 1519 { 1520 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1521 return -EINVAL; 1522 1523 if (t != current) 1524 return -EINVAL; 1525 1526 if (t->thread.tidr) 1527 return 0; 1528 1529 t->thread.tidr = (u16)task_pid_nr(t); 1530 mtspr(SPRN_TIDR, t->thread.tidr); 1531 1532 return 0; 1533 } 1534 EXPORT_SYMBOL_GPL(set_thread_tidr); 1535 1536 #endif /* CONFIG_PPC64 */ 1537 1538 void 1539 release_thread(struct task_struct *t) 1540 { 1541 } 1542 1543 /* 1544 * this gets called so that we can store coprocessor state into memory and 1545 * copy the current task into the new thread. 1546 */ 1547 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1548 { 1549 flush_all_to_thread(src); 1550 /* 1551 * Flush TM state out so we can copy it. __switch_to_tm() does this 1552 * flush but it removes the checkpointed state from the current CPU and 1553 * transitions the CPU out of TM mode. Hence we need to call 1554 * tm_recheckpoint_new_task() (on the same task) to restore the 1555 * checkpointed state back and the TM mode. 1556 * 1557 * Can't pass dst because it isn't ready. Doesn't matter, passing 1558 * dst is only important for __switch_to() 1559 */ 1560 __switch_to_tm(src, src); 1561 1562 *dst = *src; 1563 1564 clear_task_ebb(dst); 1565 1566 return 0; 1567 } 1568 1569 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1570 { 1571 #ifdef CONFIG_PPC_BOOK3S_64 1572 unsigned long sp_vsid; 1573 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1574 1575 if (radix_enabled()) 1576 return; 1577 1578 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1579 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1580 << SLB_VSID_SHIFT_1T; 1581 else 1582 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1583 << SLB_VSID_SHIFT; 1584 sp_vsid |= SLB_VSID_KERNEL | llp; 1585 p->thread.ksp_vsid = sp_vsid; 1586 #endif 1587 } 1588 1589 /* 1590 * Copy a thread.. 1591 */ 1592 1593 /* 1594 * Copy architecture-specific thread state 1595 */ 1596 int copy_thread_tls(unsigned long clone_flags, unsigned long usp, 1597 unsigned long kthread_arg, struct task_struct *p, 1598 unsigned long tls) 1599 { 1600 struct pt_regs *childregs, *kregs; 1601 extern void ret_from_fork(void); 1602 extern void ret_from_kernel_thread(void); 1603 void (*f)(void); 1604 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1605 struct thread_info *ti = task_thread_info(p); 1606 1607 klp_init_thread_info(p); 1608 1609 /* Copy registers */ 1610 sp -= sizeof(struct pt_regs); 1611 childregs = (struct pt_regs *) sp; 1612 if (unlikely(p->flags & PF_KTHREAD)) { 1613 /* kernel thread */ 1614 memset(childregs, 0, sizeof(struct pt_regs)); 1615 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1616 /* function */ 1617 if (usp) 1618 childregs->gpr[14] = ppc_function_entry((void *)usp); 1619 #ifdef CONFIG_PPC64 1620 clear_tsk_thread_flag(p, TIF_32BIT); 1621 childregs->softe = IRQS_ENABLED; 1622 #endif 1623 childregs->gpr[15] = kthread_arg; 1624 p->thread.regs = NULL; /* no user register state */ 1625 ti->flags |= _TIF_RESTOREALL; 1626 f = ret_from_kernel_thread; 1627 } else { 1628 /* user thread */ 1629 struct pt_regs *regs = current_pt_regs(); 1630 CHECK_FULL_REGS(regs); 1631 *childregs = *regs; 1632 if (usp) 1633 childregs->gpr[1] = usp; 1634 p->thread.regs = childregs; 1635 childregs->gpr[3] = 0; /* Result from fork() */ 1636 if (clone_flags & CLONE_SETTLS) { 1637 #ifdef CONFIG_PPC64 1638 if (!is_32bit_task()) 1639 childregs->gpr[13] = tls; 1640 else 1641 #endif 1642 childregs->gpr[2] = tls; 1643 } 1644 1645 f = ret_from_fork; 1646 } 1647 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1648 sp -= STACK_FRAME_OVERHEAD; 1649 1650 /* 1651 * The way this works is that at some point in the future 1652 * some task will call _switch to switch to the new task. 1653 * That will pop off the stack frame created below and start 1654 * the new task running at ret_from_fork. The new task will 1655 * do some house keeping and then return from the fork or clone 1656 * system call, using the stack frame created above. 1657 */ 1658 ((unsigned long *)sp)[0] = 0; 1659 sp -= sizeof(struct pt_regs); 1660 kregs = (struct pt_regs *) sp; 1661 sp -= STACK_FRAME_OVERHEAD; 1662 p->thread.ksp = sp; 1663 #ifdef CONFIG_PPC32 1664 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1665 #endif 1666 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1667 p->thread.ptrace_bps[0] = NULL; 1668 #endif 1669 1670 p->thread.fp_save_area = NULL; 1671 #ifdef CONFIG_ALTIVEC 1672 p->thread.vr_save_area = NULL; 1673 #endif 1674 1675 setup_ksp_vsid(p, sp); 1676 1677 #ifdef CONFIG_PPC64 1678 if (cpu_has_feature(CPU_FTR_DSCR)) { 1679 p->thread.dscr_inherit = current->thread.dscr_inherit; 1680 p->thread.dscr = mfspr(SPRN_DSCR); 1681 } 1682 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1683 childregs->ppr = DEFAULT_PPR; 1684 1685 p->thread.tidr = 0; 1686 #endif 1687 kregs->nip = ppc_function_entry(f); 1688 return 0; 1689 } 1690 1691 void preload_new_slb_context(unsigned long start, unsigned long sp); 1692 1693 /* 1694 * Set up a thread for executing a new program 1695 */ 1696 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1697 { 1698 #ifdef CONFIG_PPC64 1699 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1700 1701 #ifdef CONFIG_PPC_BOOK3S_64 1702 if (!radix_enabled()) 1703 preload_new_slb_context(start, sp); 1704 #endif 1705 #endif 1706 1707 /* 1708 * If we exec out of a kernel thread then thread.regs will not be 1709 * set. Do it now. 1710 */ 1711 if (!current->thread.regs) { 1712 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1713 current->thread.regs = regs - 1; 1714 } 1715 1716 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1717 /* 1718 * Clear any transactional state, we're exec()ing. The cause is 1719 * not important as there will never be a recheckpoint so it's not 1720 * user visible. 1721 */ 1722 if (MSR_TM_SUSPENDED(mfmsr())) 1723 tm_reclaim_current(0); 1724 #endif 1725 1726 memset(regs->gpr, 0, sizeof(regs->gpr)); 1727 regs->ctr = 0; 1728 regs->link = 0; 1729 regs->xer = 0; 1730 regs->ccr = 0; 1731 regs->gpr[1] = sp; 1732 1733 /* 1734 * We have just cleared all the nonvolatile GPRs, so make 1735 * FULL_REGS(regs) return true. This is necessary to allow 1736 * ptrace to examine the thread immediately after exec. 1737 */ 1738 regs->trap &= ~1UL; 1739 1740 #ifdef CONFIG_PPC32 1741 regs->mq = 0; 1742 regs->nip = start; 1743 regs->msr = MSR_USER; 1744 #else 1745 if (!is_32bit_task()) { 1746 unsigned long entry; 1747 1748 if (is_elf2_task()) { 1749 /* Look ma, no function descriptors! */ 1750 entry = start; 1751 1752 /* 1753 * Ulrich says: 1754 * The latest iteration of the ABI requires that when 1755 * calling a function (at its global entry point), 1756 * the caller must ensure r12 holds the entry point 1757 * address (so that the function can quickly 1758 * establish addressability). 1759 */ 1760 regs->gpr[12] = start; 1761 /* Make sure that's restored on entry to userspace. */ 1762 set_thread_flag(TIF_RESTOREALL); 1763 } else { 1764 unsigned long toc; 1765 1766 /* start is a relocated pointer to the function 1767 * descriptor for the elf _start routine. The first 1768 * entry in the function descriptor is the entry 1769 * address of _start and the second entry is the TOC 1770 * value we need to use. 1771 */ 1772 __get_user(entry, (unsigned long __user *)start); 1773 __get_user(toc, (unsigned long __user *)start+1); 1774 1775 /* Check whether the e_entry function descriptor entries 1776 * need to be relocated before we can use them. 1777 */ 1778 if (load_addr != 0) { 1779 entry += load_addr; 1780 toc += load_addr; 1781 } 1782 regs->gpr[2] = toc; 1783 } 1784 regs->nip = entry; 1785 regs->msr = MSR_USER64; 1786 } else { 1787 regs->nip = start; 1788 regs->gpr[2] = 0; 1789 regs->msr = MSR_USER32; 1790 } 1791 #endif 1792 #ifdef CONFIG_VSX 1793 current->thread.used_vsr = 0; 1794 #endif 1795 current->thread.load_slb = 0; 1796 current->thread.load_fp = 0; 1797 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1798 current->thread.fp_save_area = NULL; 1799 #ifdef CONFIG_ALTIVEC 1800 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1801 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1802 current->thread.vr_save_area = NULL; 1803 current->thread.vrsave = 0; 1804 current->thread.used_vr = 0; 1805 current->thread.load_vec = 0; 1806 #endif /* CONFIG_ALTIVEC */ 1807 #ifdef CONFIG_SPE 1808 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1809 current->thread.acc = 0; 1810 current->thread.spefscr = 0; 1811 current->thread.used_spe = 0; 1812 #endif /* CONFIG_SPE */ 1813 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1814 current->thread.tm_tfhar = 0; 1815 current->thread.tm_texasr = 0; 1816 current->thread.tm_tfiar = 0; 1817 current->thread.load_tm = 0; 1818 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1819 1820 thread_pkey_regs_init(¤t->thread); 1821 } 1822 EXPORT_SYMBOL(start_thread); 1823 1824 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1825 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1826 1827 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1828 { 1829 struct pt_regs *regs = tsk->thread.regs; 1830 1831 /* This is a bit hairy. If we are an SPE enabled processor 1832 * (have embedded fp) we store the IEEE exception enable flags in 1833 * fpexc_mode. fpexc_mode is also used for setting FP exception 1834 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1835 if (val & PR_FP_EXC_SW_ENABLE) { 1836 #ifdef CONFIG_SPE 1837 if (cpu_has_feature(CPU_FTR_SPE)) { 1838 /* 1839 * When the sticky exception bits are set 1840 * directly by userspace, it must call prctl 1841 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1842 * in the existing prctl settings) or 1843 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1844 * the bits being set). <fenv.h> functions 1845 * saving and restoring the whole 1846 * floating-point environment need to do so 1847 * anyway to restore the prctl settings from 1848 * the saved environment. 1849 */ 1850 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1851 tsk->thread.fpexc_mode = val & 1852 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1853 return 0; 1854 } else { 1855 return -EINVAL; 1856 } 1857 #else 1858 return -EINVAL; 1859 #endif 1860 } 1861 1862 /* on a CONFIG_SPE this does not hurt us. The bits that 1863 * __pack_fe01 use do not overlap with bits used for 1864 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1865 * on CONFIG_SPE implementations are reserved so writing to 1866 * them does not change anything */ 1867 if (val > PR_FP_EXC_PRECISE) 1868 return -EINVAL; 1869 tsk->thread.fpexc_mode = __pack_fe01(val); 1870 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1871 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1872 | tsk->thread.fpexc_mode; 1873 return 0; 1874 } 1875 1876 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1877 { 1878 unsigned int val; 1879 1880 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1881 #ifdef CONFIG_SPE 1882 if (cpu_has_feature(CPU_FTR_SPE)) { 1883 /* 1884 * When the sticky exception bits are set 1885 * directly by userspace, it must call prctl 1886 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1887 * in the existing prctl settings) or 1888 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1889 * the bits being set). <fenv.h> functions 1890 * saving and restoring the whole 1891 * floating-point environment need to do so 1892 * anyway to restore the prctl settings from 1893 * the saved environment. 1894 */ 1895 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1896 val = tsk->thread.fpexc_mode; 1897 } else 1898 return -EINVAL; 1899 #else 1900 return -EINVAL; 1901 #endif 1902 else 1903 val = __unpack_fe01(tsk->thread.fpexc_mode); 1904 return put_user(val, (unsigned int __user *) adr); 1905 } 1906 1907 int set_endian(struct task_struct *tsk, unsigned int val) 1908 { 1909 struct pt_regs *regs = tsk->thread.regs; 1910 1911 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1912 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1913 return -EINVAL; 1914 1915 if (regs == NULL) 1916 return -EINVAL; 1917 1918 if (val == PR_ENDIAN_BIG) 1919 regs->msr &= ~MSR_LE; 1920 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1921 regs->msr |= MSR_LE; 1922 else 1923 return -EINVAL; 1924 1925 return 0; 1926 } 1927 1928 int get_endian(struct task_struct *tsk, unsigned long adr) 1929 { 1930 struct pt_regs *regs = tsk->thread.regs; 1931 unsigned int val; 1932 1933 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1934 !cpu_has_feature(CPU_FTR_REAL_LE)) 1935 return -EINVAL; 1936 1937 if (regs == NULL) 1938 return -EINVAL; 1939 1940 if (regs->msr & MSR_LE) { 1941 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1942 val = PR_ENDIAN_LITTLE; 1943 else 1944 val = PR_ENDIAN_PPC_LITTLE; 1945 } else 1946 val = PR_ENDIAN_BIG; 1947 1948 return put_user(val, (unsigned int __user *)adr); 1949 } 1950 1951 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1952 { 1953 tsk->thread.align_ctl = val; 1954 return 0; 1955 } 1956 1957 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1958 { 1959 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1960 } 1961 1962 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1963 unsigned long nbytes) 1964 { 1965 unsigned long stack_page; 1966 unsigned long cpu = task_cpu(p); 1967 1968 stack_page = (unsigned long)hardirq_ctx[cpu]; 1969 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1970 return 1; 1971 1972 stack_page = (unsigned long)softirq_ctx[cpu]; 1973 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1974 return 1; 1975 1976 return 0; 1977 } 1978 1979 int validate_sp(unsigned long sp, struct task_struct *p, 1980 unsigned long nbytes) 1981 { 1982 unsigned long stack_page = (unsigned long)task_stack_page(p); 1983 1984 if (sp < THREAD_SIZE) 1985 return 0; 1986 1987 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1988 return 1; 1989 1990 return valid_irq_stack(sp, p, nbytes); 1991 } 1992 1993 EXPORT_SYMBOL(validate_sp); 1994 1995 static unsigned long __get_wchan(struct task_struct *p) 1996 { 1997 unsigned long ip, sp; 1998 int count = 0; 1999 2000 if (!p || p == current || p->state == TASK_RUNNING) 2001 return 0; 2002 2003 sp = p->thread.ksp; 2004 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2005 return 0; 2006 2007 do { 2008 sp = *(unsigned long *)sp; 2009 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2010 p->state == TASK_RUNNING) 2011 return 0; 2012 if (count > 0) { 2013 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2014 if (!in_sched_functions(ip)) 2015 return ip; 2016 } 2017 } while (count++ < 16); 2018 return 0; 2019 } 2020 2021 unsigned long get_wchan(struct task_struct *p) 2022 { 2023 unsigned long ret; 2024 2025 if (!try_get_task_stack(p)) 2026 return 0; 2027 2028 ret = __get_wchan(p); 2029 2030 put_task_stack(p); 2031 2032 return ret; 2033 } 2034 2035 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2036 2037 void show_stack(struct task_struct *tsk, unsigned long *stack) 2038 { 2039 unsigned long sp, ip, lr, newsp; 2040 int count = 0; 2041 int firstframe = 1; 2042 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2043 unsigned long ret_addr; 2044 int ftrace_idx = 0; 2045 #endif 2046 2047 if (tsk == NULL) 2048 tsk = current; 2049 2050 if (!try_get_task_stack(tsk)) 2051 return; 2052 2053 sp = (unsigned long) stack; 2054 if (sp == 0) { 2055 if (tsk == current) 2056 sp = current_stack_pointer(); 2057 else 2058 sp = tsk->thread.ksp; 2059 } 2060 2061 lr = 0; 2062 printk("Call Trace:\n"); 2063 do { 2064 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2065 break; 2066 2067 stack = (unsigned long *) sp; 2068 newsp = stack[0]; 2069 ip = stack[STACK_FRAME_LR_SAVE]; 2070 if (!firstframe || ip != lr) { 2071 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2072 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2073 ret_addr = ftrace_graph_ret_addr(current, 2074 &ftrace_idx, ip, stack); 2075 if (ret_addr != ip) 2076 pr_cont(" (%pS)", (void *)ret_addr); 2077 #endif 2078 if (firstframe) 2079 pr_cont(" (unreliable)"); 2080 pr_cont("\n"); 2081 } 2082 firstframe = 0; 2083 2084 /* 2085 * See if this is an exception frame. 2086 * We look for the "regshere" marker in the current frame. 2087 */ 2088 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2089 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2090 struct pt_regs *regs = (struct pt_regs *) 2091 (sp + STACK_FRAME_OVERHEAD); 2092 lr = regs->link; 2093 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2094 regs->trap, (void *)regs->nip, (void *)lr); 2095 firstframe = 1; 2096 } 2097 2098 sp = newsp; 2099 } while (count++ < kstack_depth_to_print); 2100 2101 put_task_stack(tsk); 2102 } 2103 2104 #ifdef CONFIG_PPC64 2105 /* Called with hard IRQs off */ 2106 void notrace __ppc64_runlatch_on(void) 2107 { 2108 struct thread_info *ti = current_thread_info(); 2109 2110 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2111 /* 2112 * Least significant bit (RUN) is the only writable bit of 2113 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2114 * earliest ISA where this is the case, but it's convenient. 2115 */ 2116 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2117 } else { 2118 unsigned long ctrl; 2119 2120 /* 2121 * Some architectures (e.g., Cell) have writable fields other 2122 * than RUN, so do the read-modify-write. 2123 */ 2124 ctrl = mfspr(SPRN_CTRLF); 2125 ctrl |= CTRL_RUNLATCH; 2126 mtspr(SPRN_CTRLT, ctrl); 2127 } 2128 2129 ti->local_flags |= _TLF_RUNLATCH; 2130 } 2131 2132 /* Called with hard IRQs off */ 2133 void notrace __ppc64_runlatch_off(void) 2134 { 2135 struct thread_info *ti = current_thread_info(); 2136 2137 ti->local_flags &= ~_TLF_RUNLATCH; 2138 2139 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2140 mtspr(SPRN_CTRLT, 0); 2141 } else { 2142 unsigned long ctrl; 2143 2144 ctrl = mfspr(SPRN_CTRLF); 2145 ctrl &= ~CTRL_RUNLATCH; 2146 mtspr(SPRN_CTRLT, ctrl); 2147 } 2148 } 2149 #endif /* CONFIG_PPC64 */ 2150 2151 unsigned long arch_align_stack(unsigned long sp) 2152 { 2153 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2154 sp -= get_random_int() & ~PAGE_MASK; 2155 return sp & ~0xf; 2156 } 2157 2158 static inline unsigned long brk_rnd(void) 2159 { 2160 unsigned long rnd = 0; 2161 2162 /* 8MB for 32bit, 1GB for 64bit */ 2163 if (is_32bit_task()) 2164 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2165 else 2166 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2167 2168 return rnd << PAGE_SHIFT; 2169 } 2170 2171 unsigned long arch_randomize_brk(struct mm_struct *mm) 2172 { 2173 unsigned long base = mm->brk; 2174 unsigned long ret; 2175 2176 #ifdef CONFIG_PPC_BOOK3S_64 2177 /* 2178 * If we are using 1TB segments and we are allowed to randomise 2179 * the heap, we can put it above 1TB so it is backed by a 1TB 2180 * segment. Otherwise the heap will be in the bottom 1TB 2181 * which always uses 256MB segments and this may result in a 2182 * performance penalty. We don't need to worry about radix. For 2183 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2184 */ 2185 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2186 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2187 #endif 2188 2189 ret = PAGE_ALIGN(base + brk_rnd()); 2190 2191 if (ret < mm->brk) 2192 return mm->brk; 2193 2194 return ret; 2195 } 2196 2197