xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision d2999e1b)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60 
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67 
68 extern unsigned long _get_SP(void);
69 
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76 
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80 	/*
81 	 * If we are saving the current thread's registers, and the
82 	 * thread is in a transactional state, set the TIF_RESTORE_TM
83 	 * bit so that we know to restore the registers before
84 	 * returning to userspace.
85 	 */
86 	if (tsk == current && tsk->thread.regs &&
87 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 	    !test_thread_flag(TIF_RESTORE_TM)) {
89 		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90 		set_thread_flag(TIF_RESTORE_TM);
91 	}
92 
93 	giveup_fpu(tsk);
94 }
95 
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98 	/*
99 	 * If we are saving the current thread's registers, and the
100 	 * thread is in a transactional state, set the TIF_RESTORE_TM
101 	 * bit so that we know to restore the registers before
102 	 * returning to userspace.
103 	 */
104 	if (tsk == current && tsk->thread.regs &&
105 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 	    !test_thread_flag(TIF_RESTORE_TM)) {
107 		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108 		set_thread_flag(TIF_RESTORE_TM);
109 	}
110 
111 	giveup_altivec(tsk);
112 }
113 
114 #else
115 #define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118 
119 #ifdef CONFIG_PPC_FPU
120 /*
121  * Make sure the floating-point register state in the
122  * the thread_struct is up to date for task tsk.
123  */
124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126 	if (tsk->thread.regs) {
127 		/*
128 		 * We need to disable preemption here because if we didn't,
129 		 * another process could get scheduled after the regs->msr
130 		 * test but before we have finished saving the FP registers
131 		 * to the thread_struct.  That process could take over the
132 		 * FPU, and then when we get scheduled again we would store
133 		 * bogus values for the remaining FP registers.
134 		 */
135 		preempt_disable();
136 		if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138 			/*
139 			 * This should only ever be called for current or
140 			 * for a stopped child process.  Since we save away
141 			 * the FP register state on context switch on SMP,
142 			 * there is something wrong if a stopped child appears
143 			 * to still have its FP state in the CPU registers.
144 			 */
145 			BUG_ON(tsk != current);
146 #endif
147 			giveup_fpu_maybe_transactional(tsk);
148 		}
149 		preempt_enable();
150 	}
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154 
155 void enable_kernel_fp(void)
156 {
157 	WARN_ON(preemptible());
158 
159 #ifdef CONFIG_SMP
160 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 		giveup_fpu_maybe_transactional(current);
162 	else
163 		giveup_fpu(NULL);	/* just enables FP for kernel */
164 #else
165 	giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169 
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
172 {
173 	WARN_ON(preemptible());
174 
175 #ifdef CONFIG_SMP
176 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 		giveup_altivec_maybe_transactional(current);
178 	else
179 		giveup_altivec_notask();
180 #else
181 	giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185 
186 /*
187  * Make sure the VMX/Altivec register state in the
188  * the thread_struct is up to date for task tsk.
189  */
190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192 	if (tsk->thread.regs) {
193 		preempt_disable();
194 		if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196 			BUG_ON(tsk != current);
197 #endif
198 			giveup_altivec_maybe_transactional(tsk);
199 		}
200 		preempt_enable();
201 	}
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205 
206 #ifdef CONFIG_VSX
207 #if 0
208 /* not currently used, but some crazy RAID module might want to later */
209 void enable_kernel_vsx(void)
210 {
211 	WARN_ON(preemptible());
212 
213 #ifdef CONFIG_SMP
214 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215 		giveup_vsx(current);
216 	else
217 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
218 #else
219 	giveup_vsx(last_task_used_vsx);
220 #endif /* CONFIG_SMP */
221 }
222 EXPORT_SYMBOL(enable_kernel_vsx);
223 #endif
224 
225 void giveup_vsx(struct task_struct *tsk)
226 {
227 	giveup_fpu_maybe_transactional(tsk);
228 	giveup_altivec_maybe_transactional(tsk);
229 	__giveup_vsx(tsk);
230 }
231 
232 void flush_vsx_to_thread(struct task_struct *tsk)
233 {
234 	if (tsk->thread.regs) {
235 		preempt_disable();
236 		if (tsk->thread.regs->msr & MSR_VSX) {
237 #ifdef CONFIG_SMP
238 			BUG_ON(tsk != current);
239 #endif
240 			giveup_vsx(tsk);
241 		}
242 		preempt_enable();
243 	}
244 }
245 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
246 #endif /* CONFIG_VSX */
247 
248 #ifdef CONFIG_SPE
249 
250 void enable_kernel_spe(void)
251 {
252 	WARN_ON(preemptible());
253 
254 #ifdef CONFIG_SMP
255 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
256 		giveup_spe(current);
257 	else
258 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
259 #else
260 	giveup_spe(last_task_used_spe);
261 #endif /* __SMP __ */
262 }
263 EXPORT_SYMBOL(enable_kernel_spe);
264 
265 void flush_spe_to_thread(struct task_struct *tsk)
266 {
267 	if (tsk->thread.regs) {
268 		preempt_disable();
269 		if (tsk->thread.regs->msr & MSR_SPE) {
270 #ifdef CONFIG_SMP
271 			BUG_ON(tsk != current);
272 #endif
273 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
274 			giveup_spe(tsk);
275 		}
276 		preempt_enable();
277 	}
278 }
279 #endif /* CONFIG_SPE */
280 
281 #ifndef CONFIG_SMP
282 /*
283  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
284  * and the current task has some state, discard it.
285  */
286 void discard_lazy_cpu_state(void)
287 {
288 	preempt_disable();
289 	if (last_task_used_math == current)
290 		last_task_used_math = NULL;
291 #ifdef CONFIG_ALTIVEC
292 	if (last_task_used_altivec == current)
293 		last_task_used_altivec = NULL;
294 #endif /* CONFIG_ALTIVEC */
295 #ifdef CONFIG_VSX
296 	if (last_task_used_vsx == current)
297 		last_task_used_vsx = NULL;
298 #endif /* CONFIG_VSX */
299 #ifdef CONFIG_SPE
300 	if (last_task_used_spe == current)
301 		last_task_used_spe = NULL;
302 #endif
303 	preempt_enable();
304 }
305 #endif /* CONFIG_SMP */
306 
307 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
308 void do_send_trap(struct pt_regs *regs, unsigned long address,
309 		  unsigned long error_code, int signal_code, int breakpt)
310 {
311 	siginfo_t info;
312 
313 	current->thread.trap_nr = signal_code;
314 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
315 			11, SIGSEGV) == NOTIFY_STOP)
316 		return;
317 
318 	/* Deliver the signal to userspace */
319 	info.si_signo = SIGTRAP;
320 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
321 	info.si_code = signal_code;
322 	info.si_addr = (void __user *)address;
323 	force_sig_info(SIGTRAP, &info, current);
324 }
325 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
326 void do_break (struct pt_regs *regs, unsigned long address,
327 		    unsigned long error_code)
328 {
329 	siginfo_t info;
330 
331 	current->thread.trap_nr = TRAP_HWBKPT;
332 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
333 			11, SIGSEGV) == NOTIFY_STOP)
334 		return;
335 
336 	if (debugger_break_match(regs))
337 		return;
338 
339 	/* Clear the breakpoint */
340 	hw_breakpoint_disable();
341 
342 	/* Deliver the signal to userspace */
343 	info.si_signo = SIGTRAP;
344 	info.si_errno = 0;
345 	info.si_code = TRAP_HWBKPT;
346 	info.si_addr = (void __user *)address;
347 	force_sig_info(SIGTRAP, &info, current);
348 }
349 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
350 
351 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
352 
353 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
354 /*
355  * Set the debug registers back to their default "safe" values.
356  */
357 static void set_debug_reg_defaults(struct thread_struct *thread)
358 {
359 	thread->debug.iac1 = thread->debug.iac2 = 0;
360 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
361 	thread->debug.iac3 = thread->debug.iac4 = 0;
362 #endif
363 	thread->debug.dac1 = thread->debug.dac2 = 0;
364 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
365 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
366 #endif
367 	thread->debug.dbcr0 = 0;
368 #ifdef CONFIG_BOOKE
369 	/*
370 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
371 	 */
372 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
373 			DBCR1_IAC3US | DBCR1_IAC4US;
374 	/*
375 	 * Force Data Address Compare User/Supervisor bits to be User-only
376 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
377 	 */
378 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
379 #else
380 	thread->debug.dbcr1 = 0;
381 #endif
382 }
383 
384 static void prime_debug_regs(struct debug_reg *debug)
385 {
386 	/*
387 	 * We could have inherited MSR_DE from userspace, since
388 	 * it doesn't get cleared on exception entry.  Make sure
389 	 * MSR_DE is clear before we enable any debug events.
390 	 */
391 	mtmsr(mfmsr() & ~MSR_DE);
392 
393 	mtspr(SPRN_IAC1, debug->iac1);
394 	mtspr(SPRN_IAC2, debug->iac2);
395 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
396 	mtspr(SPRN_IAC3, debug->iac3);
397 	mtspr(SPRN_IAC4, debug->iac4);
398 #endif
399 	mtspr(SPRN_DAC1, debug->dac1);
400 	mtspr(SPRN_DAC2, debug->dac2);
401 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
402 	mtspr(SPRN_DVC1, debug->dvc1);
403 	mtspr(SPRN_DVC2, debug->dvc2);
404 #endif
405 	mtspr(SPRN_DBCR0, debug->dbcr0);
406 	mtspr(SPRN_DBCR1, debug->dbcr1);
407 #ifdef CONFIG_BOOKE
408 	mtspr(SPRN_DBCR2, debug->dbcr2);
409 #endif
410 }
411 /*
412  * Unless neither the old or new thread are making use of the
413  * debug registers, set the debug registers from the values
414  * stored in the new thread.
415  */
416 void switch_booke_debug_regs(struct debug_reg *new_debug)
417 {
418 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
419 		|| (new_debug->dbcr0 & DBCR0_IDM))
420 			prime_debug_regs(new_debug);
421 }
422 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
423 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
424 #ifndef CONFIG_HAVE_HW_BREAKPOINT
425 static void set_debug_reg_defaults(struct thread_struct *thread)
426 {
427 	thread->hw_brk.address = 0;
428 	thread->hw_brk.type = 0;
429 	set_breakpoint(&thread->hw_brk);
430 }
431 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
432 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
433 
434 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
435 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
436 {
437 	mtspr(SPRN_DAC1, dabr);
438 #ifdef CONFIG_PPC_47x
439 	isync();
440 #endif
441 	return 0;
442 }
443 #elif defined(CONFIG_PPC_BOOK3S)
444 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
445 {
446 	mtspr(SPRN_DABR, dabr);
447 	if (cpu_has_feature(CPU_FTR_DABRX))
448 		mtspr(SPRN_DABRX, dabrx);
449 	return 0;
450 }
451 #else
452 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
453 {
454 	return -EINVAL;
455 }
456 #endif
457 
458 static inline int set_dabr(struct arch_hw_breakpoint *brk)
459 {
460 	unsigned long dabr, dabrx;
461 
462 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
463 	dabrx = ((brk->type >> 3) & 0x7);
464 
465 	if (ppc_md.set_dabr)
466 		return ppc_md.set_dabr(dabr, dabrx);
467 
468 	return __set_dabr(dabr, dabrx);
469 }
470 
471 static inline int set_dawr(struct arch_hw_breakpoint *brk)
472 {
473 	unsigned long dawr, dawrx, mrd;
474 
475 	dawr = brk->address;
476 
477 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
478 		                   << (63 - 58); //* read/write bits */
479 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
480 		                   << (63 - 59); //* translate */
481 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
482 		                   >> 3; //* PRIM bits */
483 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
484 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
485 	   0b111111=64DW.
486 	   brk->len is in bytes.
487 	   This aligns up to double word size, shifts and does the bias.
488 	*/
489 	mrd = ((brk->len + 7) >> 3) - 1;
490 	dawrx |= (mrd & 0x3f) << (63 - 53);
491 
492 	if (ppc_md.set_dawr)
493 		return ppc_md.set_dawr(dawr, dawrx);
494 	mtspr(SPRN_DAWR, dawr);
495 	mtspr(SPRN_DAWRX, dawrx);
496 	return 0;
497 }
498 
499 void __set_breakpoint(struct arch_hw_breakpoint *brk)
500 {
501 	__get_cpu_var(current_brk) = *brk;
502 
503 	if (cpu_has_feature(CPU_FTR_DAWR))
504 		set_dawr(brk);
505 	else
506 		set_dabr(brk);
507 }
508 
509 void set_breakpoint(struct arch_hw_breakpoint *brk)
510 {
511 	preempt_disable();
512 	__set_breakpoint(brk);
513 	preempt_enable();
514 }
515 
516 #ifdef CONFIG_PPC64
517 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
518 #endif
519 
520 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
521 			      struct arch_hw_breakpoint *b)
522 {
523 	if (a->address != b->address)
524 		return false;
525 	if (a->type != b->type)
526 		return false;
527 	if (a->len != b->len)
528 		return false;
529 	return true;
530 }
531 
532 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
533 static void tm_reclaim_thread(struct thread_struct *thr,
534 			      struct thread_info *ti, uint8_t cause)
535 {
536 	unsigned long msr_diff = 0;
537 
538 	/*
539 	 * If FP/VSX registers have been already saved to the
540 	 * thread_struct, move them to the transact_fp array.
541 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
542 	 * the thread will no longer be transactional.
543 	 */
544 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
545 		msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
546 		if (msr_diff & MSR_FP)
547 			memcpy(&thr->transact_fp, &thr->fp_state,
548 			       sizeof(struct thread_fp_state));
549 		if (msr_diff & MSR_VEC)
550 			memcpy(&thr->transact_vr, &thr->vr_state,
551 			       sizeof(struct thread_vr_state));
552 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
553 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
554 	}
555 
556 	tm_reclaim(thr, thr->regs->msr, cause);
557 
558 	/* Having done the reclaim, we now have the checkpointed
559 	 * FP/VSX values in the registers.  These might be valid
560 	 * even if we have previously called enable_kernel_fp() or
561 	 * flush_fp_to_thread(), so update thr->regs->msr to
562 	 * indicate their current validity.
563 	 */
564 	thr->regs->msr |= msr_diff;
565 }
566 
567 void tm_reclaim_current(uint8_t cause)
568 {
569 	tm_enable();
570 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
571 }
572 
573 static inline void tm_reclaim_task(struct task_struct *tsk)
574 {
575 	/* We have to work out if we're switching from/to a task that's in the
576 	 * middle of a transaction.
577 	 *
578 	 * In switching we need to maintain a 2nd register state as
579 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
580 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
581 	 * (current) FPRs into oldtask->thread.transact_fpr[].
582 	 *
583 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
584 	 */
585 	struct thread_struct *thr = &tsk->thread;
586 
587 	if (!thr->regs)
588 		return;
589 
590 	if (!MSR_TM_ACTIVE(thr->regs->msr))
591 		goto out_and_saveregs;
592 
593 	/* Stash the original thread MSR, as giveup_fpu et al will
594 	 * modify it.  We hold onto it to see whether the task used
595 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
596 	 * tm_orig_msr is already set.
597 	 */
598 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
599 		thr->tm_orig_msr = thr->regs->msr;
600 
601 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
602 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
603 		 tsk->pid, thr->regs->nip,
604 		 thr->regs->ccr, thr->regs->msr,
605 		 thr->regs->trap);
606 
607 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
608 
609 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
610 		 tsk->pid);
611 
612 out_and_saveregs:
613 	/* Always save the regs here, even if a transaction's not active.
614 	 * This context-switches a thread's TM info SPRs.  We do it here to
615 	 * be consistent with the restore path (in recheckpoint) which
616 	 * cannot happen later in _switch().
617 	 */
618 	tm_save_sprs(thr);
619 }
620 
621 extern void __tm_recheckpoint(struct thread_struct *thread,
622 			      unsigned long orig_msr);
623 
624 void tm_recheckpoint(struct thread_struct *thread,
625 		     unsigned long orig_msr)
626 {
627 	unsigned long flags;
628 
629 	/* We really can't be interrupted here as the TEXASR registers can't
630 	 * change and later in the trecheckpoint code, we have a userspace R1.
631 	 * So let's hard disable over this region.
632 	 */
633 	local_irq_save(flags);
634 	hard_irq_disable();
635 
636 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
637 	 * before the trecheckpoint and no explosion occurs.
638 	 */
639 	tm_restore_sprs(thread);
640 
641 	__tm_recheckpoint(thread, orig_msr);
642 
643 	local_irq_restore(flags);
644 }
645 
646 static inline void tm_recheckpoint_new_task(struct task_struct *new)
647 {
648 	unsigned long msr;
649 
650 	if (!cpu_has_feature(CPU_FTR_TM))
651 		return;
652 
653 	/* Recheckpoint the registers of the thread we're about to switch to.
654 	 *
655 	 * If the task was using FP, we non-lazily reload both the original and
656 	 * the speculative FP register states.  This is because the kernel
657 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
658 	 * unavoidable later, we are unable to determine which set of FP regs
659 	 * need to be restored.
660 	 */
661 	if (!new->thread.regs)
662 		return;
663 
664 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
665 		tm_restore_sprs(&new->thread);
666 		return;
667 	}
668 	msr = new->thread.tm_orig_msr;
669 	/* Recheckpoint to restore original checkpointed register state. */
670 	TM_DEBUG("*** tm_recheckpoint of pid %d "
671 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
672 		 new->pid, new->thread.regs->msr, msr);
673 
674 	/* This loads the checkpointed FP/VEC state, if used */
675 	tm_recheckpoint(&new->thread, msr);
676 
677 	/* This loads the speculative FP/VEC state, if used */
678 	if (msr & MSR_FP) {
679 		do_load_up_transact_fpu(&new->thread);
680 		new->thread.regs->msr |=
681 			(MSR_FP | new->thread.fpexc_mode);
682 	}
683 #ifdef CONFIG_ALTIVEC
684 	if (msr & MSR_VEC) {
685 		do_load_up_transact_altivec(&new->thread);
686 		new->thread.regs->msr |= MSR_VEC;
687 	}
688 #endif
689 	/* We may as well turn on VSX too since all the state is restored now */
690 	if (msr & MSR_VSX)
691 		new->thread.regs->msr |= MSR_VSX;
692 
693 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
694 		 "(kernel msr 0x%lx)\n",
695 		 new->pid, mfmsr());
696 }
697 
698 static inline void __switch_to_tm(struct task_struct *prev)
699 {
700 	if (cpu_has_feature(CPU_FTR_TM)) {
701 		tm_enable();
702 		tm_reclaim_task(prev);
703 	}
704 }
705 
706 /*
707  * This is called if we are on the way out to userspace and the
708  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
709  * FP and/or vector state and does so if necessary.
710  * If userspace is inside a transaction (whether active or
711  * suspended) and FP/VMX/VSX instructions have ever been enabled
712  * inside that transaction, then we have to keep them enabled
713  * and keep the FP/VMX/VSX state loaded while ever the transaction
714  * continues.  The reason is that if we didn't, and subsequently
715  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
716  * we don't know whether it's the same transaction, and thus we
717  * don't know which of the checkpointed state and the transactional
718  * state to use.
719  */
720 void restore_tm_state(struct pt_regs *regs)
721 {
722 	unsigned long msr_diff;
723 
724 	clear_thread_flag(TIF_RESTORE_TM);
725 	if (!MSR_TM_ACTIVE(regs->msr))
726 		return;
727 
728 	msr_diff = current->thread.tm_orig_msr & ~regs->msr;
729 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
730 	if (msr_diff & MSR_FP) {
731 		fp_enable();
732 		load_fp_state(&current->thread.fp_state);
733 		regs->msr |= current->thread.fpexc_mode;
734 	}
735 	if (msr_diff & MSR_VEC) {
736 		vec_enable();
737 		load_vr_state(&current->thread.vr_state);
738 	}
739 	regs->msr |= msr_diff;
740 }
741 
742 #else
743 #define tm_recheckpoint_new_task(new)
744 #define __switch_to_tm(prev)
745 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
746 
747 struct task_struct *__switch_to(struct task_struct *prev,
748 	struct task_struct *new)
749 {
750 	struct thread_struct *new_thread, *old_thread;
751 	struct task_struct *last;
752 #ifdef CONFIG_PPC_BOOK3S_64
753 	struct ppc64_tlb_batch *batch;
754 #endif
755 
756 	WARN_ON(!irqs_disabled());
757 
758 	/* Back up the TAR and DSCR across context switches.
759 	 * Note that the TAR is not available for use in the kernel.  (To
760 	 * provide this, the TAR should be backed up/restored on exception
761 	 * entry/exit instead, and be in pt_regs.  FIXME, this should be in
762 	 * pt_regs anyway (for debug).)
763 	 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
764 	 * these will change them.
765 	 */
766 	save_early_sprs(&prev->thread);
767 
768 	__switch_to_tm(prev);
769 
770 #ifdef CONFIG_SMP
771 	/* avoid complexity of lazy save/restore of fpu
772 	 * by just saving it every time we switch out if
773 	 * this task used the fpu during the last quantum.
774 	 *
775 	 * If it tries to use the fpu again, it'll trap and
776 	 * reload its fp regs.  So we don't have to do a restore
777 	 * every switch, just a save.
778 	 *  -- Cort
779 	 */
780 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
781 		giveup_fpu(prev);
782 #ifdef CONFIG_ALTIVEC
783 	/*
784 	 * If the previous thread used altivec in the last quantum
785 	 * (thus changing altivec regs) then save them.
786 	 * We used to check the VRSAVE register but not all apps
787 	 * set it, so we don't rely on it now (and in fact we need
788 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
789 	 *
790 	 * On SMP we always save/restore altivec regs just to avoid the
791 	 * complexity of changing processors.
792 	 *  -- Cort
793 	 */
794 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
795 		giveup_altivec(prev);
796 #endif /* CONFIG_ALTIVEC */
797 #ifdef CONFIG_VSX
798 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
799 		/* VMX and FPU registers are already save here */
800 		__giveup_vsx(prev);
801 #endif /* CONFIG_VSX */
802 #ifdef CONFIG_SPE
803 	/*
804 	 * If the previous thread used spe in the last quantum
805 	 * (thus changing spe regs) then save them.
806 	 *
807 	 * On SMP we always save/restore spe regs just to avoid the
808 	 * complexity of changing processors.
809 	 */
810 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
811 		giveup_spe(prev);
812 #endif /* CONFIG_SPE */
813 
814 #else  /* CONFIG_SMP */
815 #ifdef CONFIG_ALTIVEC
816 	/* Avoid the trap.  On smp this this never happens since
817 	 * we don't set last_task_used_altivec -- Cort
818 	 */
819 	if (new->thread.regs && last_task_used_altivec == new)
820 		new->thread.regs->msr |= MSR_VEC;
821 #endif /* CONFIG_ALTIVEC */
822 #ifdef CONFIG_VSX
823 	if (new->thread.regs && last_task_used_vsx == new)
824 		new->thread.regs->msr |= MSR_VSX;
825 #endif /* CONFIG_VSX */
826 #ifdef CONFIG_SPE
827 	/* Avoid the trap.  On smp this this never happens since
828 	 * we don't set last_task_used_spe
829 	 */
830 	if (new->thread.regs && last_task_used_spe == new)
831 		new->thread.regs->msr |= MSR_SPE;
832 #endif /* CONFIG_SPE */
833 
834 #endif /* CONFIG_SMP */
835 
836 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
837 	switch_booke_debug_regs(&new->thread.debug);
838 #else
839 /*
840  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
841  * schedule DABR
842  */
843 #ifndef CONFIG_HAVE_HW_BREAKPOINT
844 	if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
845 		__set_breakpoint(&new->thread.hw_brk);
846 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
847 #endif
848 
849 
850 	new_thread = &new->thread;
851 	old_thread = &current->thread;
852 
853 #ifdef CONFIG_PPC64
854 	/*
855 	 * Collect processor utilization data per process
856 	 */
857 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
858 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
859 		long unsigned start_tb, current_tb;
860 		start_tb = old_thread->start_tb;
861 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
862 		old_thread->accum_tb += (current_tb - start_tb);
863 		new_thread->start_tb = current_tb;
864 	}
865 #endif /* CONFIG_PPC64 */
866 
867 #ifdef CONFIG_PPC_BOOK3S_64
868 	batch = &__get_cpu_var(ppc64_tlb_batch);
869 	if (batch->active) {
870 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
871 		if (batch->index)
872 			__flush_tlb_pending(batch);
873 		batch->active = 0;
874 	}
875 #endif /* CONFIG_PPC_BOOK3S_64 */
876 
877 	/*
878 	 * We can't take a PMU exception inside _switch() since there is a
879 	 * window where the kernel stack SLB and the kernel stack are out
880 	 * of sync. Hard disable here.
881 	 */
882 	hard_irq_disable();
883 
884 	tm_recheckpoint_new_task(new);
885 
886 	last = _switch(old_thread, new_thread);
887 
888 #ifdef CONFIG_PPC_BOOK3S_64
889 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
890 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
891 		batch = &__get_cpu_var(ppc64_tlb_batch);
892 		batch->active = 1;
893 	}
894 #endif /* CONFIG_PPC_BOOK3S_64 */
895 
896 	return last;
897 }
898 
899 static int instructions_to_print = 16;
900 
901 static void show_instructions(struct pt_regs *regs)
902 {
903 	int i;
904 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
905 			sizeof(int));
906 
907 	printk("Instruction dump:");
908 
909 	for (i = 0; i < instructions_to_print; i++) {
910 		int instr;
911 
912 		if (!(i % 8))
913 			printk("\n");
914 
915 #if !defined(CONFIG_BOOKE)
916 		/* If executing with the IMMU off, adjust pc rather
917 		 * than print XXXXXXXX.
918 		 */
919 		if (!(regs->msr & MSR_IR))
920 			pc = (unsigned long)phys_to_virt(pc);
921 #endif
922 
923 		/* We use __get_user here *only* to avoid an OOPS on a
924 		 * bad address because the pc *should* only be a
925 		 * kernel address.
926 		 */
927 		if (!__kernel_text_address(pc) ||
928 		     __get_user(instr, (unsigned int __user *)pc)) {
929 			printk(KERN_CONT "XXXXXXXX ");
930 		} else {
931 			if (regs->nip == pc)
932 				printk(KERN_CONT "<%08x> ", instr);
933 			else
934 				printk(KERN_CONT "%08x ", instr);
935 		}
936 
937 		pc += sizeof(int);
938 	}
939 
940 	printk("\n");
941 }
942 
943 static struct regbit {
944 	unsigned long bit;
945 	const char *name;
946 } msr_bits[] = {
947 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
948 	{MSR_SF,	"SF"},
949 	{MSR_HV,	"HV"},
950 #endif
951 	{MSR_VEC,	"VEC"},
952 	{MSR_VSX,	"VSX"},
953 #ifdef CONFIG_BOOKE
954 	{MSR_CE,	"CE"},
955 #endif
956 	{MSR_EE,	"EE"},
957 	{MSR_PR,	"PR"},
958 	{MSR_FP,	"FP"},
959 	{MSR_ME,	"ME"},
960 #ifdef CONFIG_BOOKE
961 	{MSR_DE,	"DE"},
962 #else
963 	{MSR_SE,	"SE"},
964 	{MSR_BE,	"BE"},
965 #endif
966 	{MSR_IR,	"IR"},
967 	{MSR_DR,	"DR"},
968 	{MSR_PMM,	"PMM"},
969 #ifndef CONFIG_BOOKE
970 	{MSR_RI,	"RI"},
971 	{MSR_LE,	"LE"},
972 #endif
973 	{0,		NULL}
974 };
975 
976 static void printbits(unsigned long val, struct regbit *bits)
977 {
978 	const char *sep = "";
979 
980 	printk("<");
981 	for (; bits->bit; ++bits)
982 		if (val & bits->bit) {
983 			printk("%s%s", sep, bits->name);
984 			sep = ",";
985 		}
986 	printk(">");
987 }
988 
989 #ifdef CONFIG_PPC64
990 #define REG		"%016lx"
991 #define REGS_PER_LINE	4
992 #define LAST_VOLATILE	13
993 #else
994 #define REG		"%08lx"
995 #define REGS_PER_LINE	8
996 #define LAST_VOLATILE	12
997 #endif
998 
999 void show_regs(struct pt_regs * regs)
1000 {
1001 	int i, trap;
1002 
1003 	show_regs_print_info(KERN_DEFAULT);
1004 
1005 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1006 	       regs->nip, regs->link, regs->ctr);
1007 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1008 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1009 	printk("MSR: "REG" ", regs->msr);
1010 	printbits(regs->msr, msr_bits);
1011 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1012 	trap = TRAP(regs);
1013 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1014 		printk("CFAR: "REG" ", regs->orig_gpr3);
1015 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1016 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1017 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1018 #else
1019 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1020 #endif
1021 #ifdef CONFIG_PPC64
1022 	printk("SOFTE: %ld ", regs->softe);
1023 #endif
1024 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1025 	if (MSR_TM_ACTIVE(regs->msr))
1026 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1027 #endif
1028 
1029 	for (i = 0;  i < 32;  i++) {
1030 		if ((i % REGS_PER_LINE) == 0)
1031 			printk("\nGPR%02d: ", i);
1032 		printk(REG " ", regs->gpr[i]);
1033 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1034 			break;
1035 	}
1036 	printk("\n");
1037 #ifdef CONFIG_KALLSYMS
1038 	/*
1039 	 * Lookup NIP late so we have the best change of getting the
1040 	 * above info out without failing
1041 	 */
1042 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1043 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1044 #endif
1045 	show_stack(current, (unsigned long *) regs->gpr[1]);
1046 	if (!user_mode(regs))
1047 		show_instructions(regs);
1048 }
1049 
1050 void exit_thread(void)
1051 {
1052 	discard_lazy_cpu_state();
1053 }
1054 
1055 void flush_thread(void)
1056 {
1057 	discard_lazy_cpu_state();
1058 
1059 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1060 	flush_ptrace_hw_breakpoint(current);
1061 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1062 	set_debug_reg_defaults(&current->thread);
1063 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1064 }
1065 
1066 void
1067 release_thread(struct task_struct *t)
1068 {
1069 }
1070 
1071 /*
1072  * this gets called so that we can store coprocessor state into memory and
1073  * copy the current task into the new thread.
1074  */
1075 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1076 {
1077 	flush_fp_to_thread(src);
1078 	flush_altivec_to_thread(src);
1079 	flush_vsx_to_thread(src);
1080 	flush_spe_to_thread(src);
1081 	/*
1082 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1083 	 * flush but it removes the checkpointed state from the current CPU and
1084 	 * transitions the CPU out of TM mode.  Hence we need to call
1085 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1086 	 * checkpointed state back and the TM mode.
1087 	 */
1088 	__switch_to_tm(src);
1089 	tm_recheckpoint_new_task(src);
1090 
1091 	*dst = *src;
1092 
1093 	clear_task_ebb(dst);
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Copy a thread..
1100  */
1101 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1102 
1103 int copy_thread(unsigned long clone_flags, unsigned long usp,
1104 		unsigned long arg, struct task_struct *p)
1105 {
1106 	struct pt_regs *childregs, *kregs;
1107 	extern void ret_from_fork(void);
1108 	extern void ret_from_kernel_thread(void);
1109 	void (*f)(void);
1110 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1111 
1112 	/* Copy registers */
1113 	sp -= sizeof(struct pt_regs);
1114 	childregs = (struct pt_regs *) sp;
1115 	if (unlikely(p->flags & PF_KTHREAD)) {
1116 		struct thread_info *ti = (void *)task_stack_page(p);
1117 		memset(childregs, 0, sizeof(struct pt_regs));
1118 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1119 		/* function */
1120 		if (usp)
1121 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1122 #ifdef CONFIG_PPC64
1123 		clear_tsk_thread_flag(p, TIF_32BIT);
1124 		childregs->softe = 1;
1125 #endif
1126 		childregs->gpr[15] = arg;
1127 		p->thread.regs = NULL;	/* no user register state */
1128 		ti->flags |= _TIF_RESTOREALL;
1129 		f = ret_from_kernel_thread;
1130 	} else {
1131 		struct pt_regs *regs = current_pt_regs();
1132 		CHECK_FULL_REGS(regs);
1133 		*childregs = *regs;
1134 		if (usp)
1135 			childregs->gpr[1] = usp;
1136 		p->thread.regs = childregs;
1137 		childregs->gpr[3] = 0;  /* Result from fork() */
1138 		if (clone_flags & CLONE_SETTLS) {
1139 #ifdef CONFIG_PPC64
1140 			if (!is_32bit_task())
1141 				childregs->gpr[13] = childregs->gpr[6];
1142 			else
1143 #endif
1144 				childregs->gpr[2] = childregs->gpr[6];
1145 		}
1146 
1147 		f = ret_from_fork;
1148 	}
1149 	sp -= STACK_FRAME_OVERHEAD;
1150 
1151 	/*
1152 	 * The way this works is that at some point in the future
1153 	 * some task will call _switch to switch to the new task.
1154 	 * That will pop off the stack frame created below and start
1155 	 * the new task running at ret_from_fork.  The new task will
1156 	 * do some house keeping and then return from the fork or clone
1157 	 * system call, using the stack frame created above.
1158 	 */
1159 	((unsigned long *)sp)[0] = 0;
1160 	sp -= sizeof(struct pt_regs);
1161 	kregs = (struct pt_regs *) sp;
1162 	sp -= STACK_FRAME_OVERHEAD;
1163 	p->thread.ksp = sp;
1164 #ifdef CONFIG_PPC32
1165 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1166 				_ALIGN_UP(sizeof(struct thread_info), 16);
1167 #endif
1168 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1169 	p->thread.ptrace_bps[0] = NULL;
1170 #endif
1171 
1172 	p->thread.fp_save_area = NULL;
1173 #ifdef CONFIG_ALTIVEC
1174 	p->thread.vr_save_area = NULL;
1175 #endif
1176 
1177 #ifdef CONFIG_PPC_STD_MMU_64
1178 	if (mmu_has_feature(MMU_FTR_SLB)) {
1179 		unsigned long sp_vsid;
1180 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1181 
1182 		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1183 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1184 				<< SLB_VSID_SHIFT_1T;
1185 		else
1186 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1187 				<< SLB_VSID_SHIFT;
1188 		sp_vsid |= SLB_VSID_KERNEL | llp;
1189 		p->thread.ksp_vsid = sp_vsid;
1190 	}
1191 #endif /* CONFIG_PPC_STD_MMU_64 */
1192 #ifdef CONFIG_PPC64
1193 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1194 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1195 		p->thread.dscr = current->thread.dscr;
1196 	}
1197 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1198 		p->thread.ppr = INIT_PPR;
1199 #endif
1200 	kregs->nip = ppc_function_entry(f);
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Set up a thread for executing a new program
1206  */
1207 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1208 {
1209 #ifdef CONFIG_PPC64
1210 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1211 #endif
1212 
1213 	/*
1214 	 * If we exec out of a kernel thread then thread.regs will not be
1215 	 * set.  Do it now.
1216 	 */
1217 	if (!current->thread.regs) {
1218 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1219 		current->thread.regs = regs - 1;
1220 	}
1221 
1222 	memset(regs->gpr, 0, sizeof(regs->gpr));
1223 	regs->ctr = 0;
1224 	regs->link = 0;
1225 	regs->xer = 0;
1226 	regs->ccr = 0;
1227 	regs->gpr[1] = sp;
1228 
1229 	/*
1230 	 * We have just cleared all the nonvolatile GPRs, so make
1231 	 * FULL_REGS(regs) return true.  This is necessary to allow
1232 	 * ptrace to examine the thread immediately after exec.
1233 	 */
1234 	regs->trap &= ~1UL;
1235 
1236 #ifdef CONFIG_PPC32
1237 	regs->mq = 0;
1238 	regs->nip = start;
1239 	regs->msr = MSR_USER;
1240 #else
1241 	if (!is_32bit_task()) {
1242 		unsigned long entry;
1243 
1244 		if (is_elf2_task()) {
1245 			/* Look ma, no function descriptors! */
1246 			entry = start;
1247 
1248 			/*
1249 			 * Ulrich says:
1250 			 *   The latest iteration of the ABI requires that when
1251 			 *   calling a function (at its global entry point),
1252 			 *   the caller must ensure r12 holds the entry point
1253 			 *   address (so that the function can quickly
1254 			 *   establish addressability).
1255 			 */
1256 			regs->gpr[12] = start;
1257 			/* Make sure that's restored on entry to userspace. */
1258 			set_thread_flag(TIF_RESTOREALL);
1259 		} else {
1260 			unsigned long toc;
1261 
1262 			/* start is a relocated pointer to the function
1263 			 * descriptor for the elf _start routine.  The first
1264 			 * entry in the function descriptor is the entry
1265 			 * address of _start and the second entry is the TOC
1266 			 * value we need to use.
1267 			 */
1268 			__get_user(entry, (unsigned long __user *)start);
1269 			__get_user(toc, (unsigned long __user *)start+1);
1270 
1271 			/* Check whether the e_entry function descriptor entries
1272 			 * need to be relocated before we can use them.
1273 			 */
1274 			if (load_addr != 0) {
1275 				entry += load_addr;
1276 				toc   += load_addr;
1277 			}
1278 			regs->gpr[2] = toc;
1279 		}
1280 		regs->nip = entry;
1281 		regs->msr = MSR_USER64;
1282 	} else {
1283 		regs->nip = start;
1284 		regs->gpr[2] = 0;
1285 		regs->msr = MSR_USER32;
1286 	}
1287 #endif
1288 	discard_lazy_cpu_state();
1289 #ifdef CONFIG_VSX
1290 	current->thread.used_vsr = 0;
1291 #endif
1292 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1293 	current->thread.fp_save_area = NULL;
1294 #ifdef CONFIG_ALTIVEC
1295 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1296 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1297 	current->thread.vr_save_area = NULL;
1298 	current->thread.vrsave = 0;
1299 	current->thread.used_vr = 0;
1300 #endif /* CONFIG_ALTIVEC */
1301 #ifdef CONFIG_SPE
1302 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1303 	current->thread.acc = 0;
1304 	current->thread.spefscr = 0;
1305 	current->thread.used_spe = 0;
1306 #endif /* CONFIG_SPE */
1307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1308 	if (cpu_has_feature(CPU_FTR_TM))
1309 		regs->msr |= MSR_TM;
1310 	current->thread.tm_tfhar = 0;
1311 	current->thread.tm_texasr = 0;
1312 	current->thread.tm_tfiar = 0;
1313 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1314 }
1315 
1316 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1317 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1318 
1319 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1320 {
1321 	struct pt_regs *regs = tsk->thread.regs;
1322 
1323 	/* This is a bit hairy.  If we are an SPE enabled  processor
1324 	 * (have embedded fp) we store the IEEE exception enable flags in
1325 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1326 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1327 	if (val & PR_FP_EXC_SW_ENABLE) {
1328 #ifdef CONFIG_SPE
1329 		if (cpu_has_feature(CPU_FTR_SPE)) {
1330 			/*
1331 			 * When the sticky exception bits are set
1332 			 * directly by userspace, it must call prctl
1333 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1334 			 * in the existing prctl settings) or
1335 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1336 			 * the bits being set).  <fenv.h> functions
1337 			 * saving and restoring the whole
1338 			 * floating-point environment need to do so
1339 			 * anyway to restore the prctl settings from
1340 			 * the saved environment.
1341 			 */
1342 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1343 			tsk->thread.fpexc_mode = val &
1344 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1345 			return 0;
1346 		} else {
1347 			return -EINVAL;
1348 		}
1349 #else
1350 		return -EINVAL;
1351 #endif
1352 	}
1353 
1354 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1355 	 * __pack_fe01 use do not overlap with bits used for
1356 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1357 	 * on CONFIG_SPE implementations are reserved so writing to
1358 	 * them does not change anything */
1359 	if (val > PR_FP_EXC_PRECISE)
1360 		return -EINVAL;
1361 	tsk->thread.fpexc_mode = __pack_fe01(val);
1362 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1363 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1364 			| tsk->thread.fpexc_mode;
1365 	return 0;
1366 }
1367 
1368 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1369 {
1370 	unsigned int val;
1371 
1372 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1373 #ifdef CONFIG_SPE
1374 		if (cpu_has_feature(CPU_FTR_SPE)) {
1375 			/*
1376 			 * When the sticky exception bits are set
1377 			 * directly by userspace, it must call prctl
1378 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1379 			 * in the existing prctl settings) or
1380 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1381 			 * the bits being set).  <fenv.h> functions
1382 			 * saving and restoring the whole
1383 			 * floating-point environment need to do so
1384 			 * anyway to restore the prctl settings from
1385 			 * the saved environment.
1386 			 */
1387 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1388 			val = tsk->thread.fpexc_mode;
1389 		} else
1390 			return -EINVAL;
1391 #else
1392 		return -EINVAL;
1393 #endif
1394 	else
1395 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1396 	return put_user(val, (unsigned int __user *) adr);
1397 }
1398 
1399 int set_endian(struct task_struct *tsk, unsigned int val)
1400 {
1401 	struct pt_regs *regs = tsk->thread.regs;
1402 
1403 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1404 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1405 		return -EINVAL;
1406 
1407 	if (regs == NULL)
1408 		return -EINVAL;
1409 
1410 	if (val == PR_ENDIAN_BIG)
1411 		regs->msr &= ~MSR_LE;
1412 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1413 		regs->msr |= MSR_LE;
1414 	else
1415 		return -EINVAL;
1416 
1417 	return 0;
1418 }
1419 
1420 int get_endian(struct task_struct *tsk, unsigned long adr)
1421 {
1422 	struct pt_regs *regs = tsk->thread.regs;
1423 	unsigned int val;
1424 
1425 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1426 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1427 		return -EINVAL;
1428 
1429 	if (regs == NULL)
1430 		return -EINVAL;
1431 
1432 	if (regs->msr & MSR_LE) {
1433 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1434 			val = PR_ENDIAN_LITTLE;
1435 		else
1436 			val = PR_ENDIAN_PPC_LITTLE;
1437 	} else
1438 		val = PR_ENDIAN_BIG;
1439 
1440 	return put_user(val, (unsigned int __user *)adr);
1441 }
1442 
1443 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1444 {
1445 	tsk->thread.align_ctl = val;
1446 	return 0;
1447 }
1448 
1449 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1450 {
1451 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1452 }
1453 
1454 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1455 				  unsigned long nbytes)
1456 {
1457 	unsigned long stack_page;
1458 	unsigned long cpu = task_cpu(p);
1459 
1460 	/*
1461 	 * Avoid crashing if the stack has overflowed and corrupted
1462 	 * task_cpu(p), which is in the thread_info struct.
1463 	 */
1464 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1465 		stack_page = (unsigned long) hardirq_ctx[cpu];
1466 		if (sp >= stack_page + sizeof(struct thread_struct)
1467 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1468 			return 1;
1469 
1470 		stack_page = (unsigned long) softirq_ctx[cpu];
1471 		if (sp >= stack_page + sizeof(struct thread_struct)
1472 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1473 			return 1;
1474 	}
1475 	return 0;
1476 }
1477 
1478 int validate_sp(unsigned long sp, struct task_struct *p,
1479 		       unsigned long nbytes)
1480 {
1481 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1482 
1483 	if (sp >= stack_page + sizeof(struct thread_struct)
1484 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1485 		return 1;
1486 
1487 	return valid_irq_stack(sp, p, nbytes);
1488 }
1489 
1490 EXPORT_SYMBOL(validate_sp);
1491 
1492 unsigned long get_wchan(struct task_struct *p)
1493 {
1494 	unsigned long ip, sp;
1495 	int count = 0;
1496 
1497 	if (!p || p == current || p->state == TASK_RUNNING)
1498 		return 0;
1499 
1500 	sp = p->thread.ksp;
1501 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1502 		return 0;
1503 
1504 	do {
1505 		sp = *(unsigned long *)sp;
1506 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1507 			return 0;
1508 		if (count > 0) {
1509 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1510 			if (!in_sched_functions(ip))
1511 				return ip;
1512 		}
1513 	} while (count++ < 16);
1514 	return 0;
1515 }
1516 
1517 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1518 
1519 void show_stack(struct task_struct *tsk, unsigned long *stack)
1520 {
1521 	unsigned long sp, ip, lr, newsp;
1522 	int count = 0;
1523 	int firstframe = 1;
1524 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1525 	int curr_frame = current->curr_ret_stack;
1526 	extern void return_to_handler(void);
1527 	unsigned long rth = (unsigned long)return_to_handler;
1528 	unsigned long mrth = -1;
1529 #ifdef CONFIG_PPC64
1530 	extern void mod_return_to_handler(void);
1531 	rth = *(unsigned long *)rth;
1532 	mrth = (unsigned long)mod_return_to_handler;
1533 	mrth = *(unsigned long *)mrth;
1534 #endif
1535 #endif
1536 
1537 	sp = (unsigned long) stack;
1538 	if (tsk == NULL)
1539 		tsk = current;
1540 	if (sp == 0) {
1541 		if (tsk == current)
1542 			asm("mr %0,1" : "=r" (sp));
1543 		else
1544 			sp = tsk->thread.ksp;
1545 	}
1546 
1547 	lr = 0;
1548 	printk("Call Trace:\n");
1549 	do {
1550 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1551 			return;
1552 
1553 		stack = (unsigned long *) sp;
1554 		newsp = stack[0];
1555 		ip = stack[STACK_FRAME_LR_SAVE];
1556 		if (!firstframe || ip != lr) {
1557 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1558 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1559 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1560 				printk(" (%pS)",
1561 				       (void *)current->ret_stack[curr_frame].ret);
1562 				curr_frame--;
1563 			}
1564 #endif
1565 			if (firstframe)
1566 				printk(" (unreliable)");
1567 			printk("\n");
1568 		}
1569 		firstframe = 0;
1570 
1571 		/*
1572 		 * See if this is an exception frame.
1573 		 * We look for the "regshere" marker in the current frame.
1574 		 */
1575 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1576 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1577 			struct pt_regs *regs = (struct pt_regs *)
1578 				(sp + STACK_FRAME_OVERHEAD);
1579 			lr = regs->link;
1580 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1581 			       regs->trap, (void *)regs->nip, (void *)lr);
1582 			firstframe = 1;
1583 		}
1584 
1585 		sp = newsp;
1586 	} while (count++ < kstack_depth_to_print);
1587 }
1588 
1589 #ifdef CONFIG_PPC64
1590 /* Called with hard IRQs off */
1591 void notrace __ppc64_runlatch_on(void)
1592 {
1593 	struct thread_info *ti = current_thread_info();
1594 	unsigned long ctrl;
1595 
1596 	ctrl = mfspr(SPRN_CTRLF);
1597 	ctrl |= CTRL_RUNLATCH;
1598 	mtspr(SPRN_CTRLT, ctrl);
1599 
1600 	ti->local_flags |= _TLF_RUNLATCH;
1601 }
1602 
1603 /* Called with hard IRQs off */
1604 void notrace __ppc64_runlatch_off(void)
1605 {
1606 	struct thread_info *ti = current_thread_info();
1607 	unsigned long ctrl;
1608 
1609 	ti->local_flags &= ~_TLF_RUNLATCH;
1610 
1611 	ctrl = mfspr(SPRN_CTRLF);
1612 	ctrl &= ~CTRL_RUNLATCH;
1613 	mtspr(SPRN_CTRLT, ctrl);
1614 }
1615 #endif /* CONFIG_PPC64 */
1616 
1617 unsigned long arch_align_stack(unsigned long sp)
1618 {
1619 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1620 		sp -= get_random_int() & ~PAGE_MASK;
1621 	return sp & ~0xf;
1622 }
1623 
1624 static inline unsigned long brk_rnd(void)
1625 {
1626         unsigned long rnd = 0;
1627 
1628 	/* 8MB for 32bit, 1GB for 64bit */
1629 	if (is_32bit_task())
1630 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1631 	else
1632 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1633 
1634 	return rnd << PAGE_SHIFT;
1635 }
1636 
1637 unsigned long arch_randomize_brk(struct mm_struct *mm)
1638 {
1639 	unsigned long base = mm->brk;
1640 	unsigned long ret;
1641 
1642 #ifdef CONFIG_PPC_STD_MMU_64
1643 	/*
1644 	 * If we are using 1TB segments and we are allowed to randomise
1645 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1646 	 * segment. Otherwise the heap will be in the bottom 1TB
1647 	 * which always uses 256MB segments and this may result in a
1648 	 * performance penalty.
1649 	 */
1650 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1651 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1652 #endif
1653 
1654 	ret = PAGE_ALIGN(base + brk_rnd());
1655 
1656 	if (ret < mm->brk)
1657 		return mm->brk;
1658 
1659 	return ret;
1660 }
1661 
1662 unsigned long randomize_et_dyn(unsigned long base)
1663 {
1664 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1665 
1666 	if (ret < base)
1667 		return base;
1668 
1669 	return ret;
1670 }
1671