xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision c8ed9fc9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43 
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66 
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69 
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76 
77 extern unsigned long _get_SP(void);
78 
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86 
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89 	/*
90 	 * If we are saving the current thread's registers, and the
91 	 * thread is in a transactional state, set the TIF_RESTORE_TM
92 	 * bit so that we know to restore the registers before
93 	 * returning to userspace.
94 	 */
95 	if (tsk == current && tsk->thread.regs &&
96 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 	    !test_thread_flag(TIF_RESTORE_TM)) {
98 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 		set_thread_flag(TIF_RESTORE_TM);
100 	}
101 }
102 
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106 
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109 
110 static int __init enable_strict_msr_control(char *str)
111 {
112 	strict_msr_control = true;
113 	pr_info("Enabling strict facility control\n");
114 
115 	return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118 
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122 	unsigned long oldmsr = mfmsr();
123 	unsigned long newmsr;
124 
125 	newmsr = oldmsr | bits;
126 
127 #ifdef CONFIG_VSX
128 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 		newmsr |= MSR_VSX;
130 #endif
131 
132 	if (oldmsr != newmsr)
133 		mtmsr_isync(newmsr);
134 
135 	return newmsr;
136 }
137 EXPORT_SYMBOL_GPL(msr_check_and_set);
138 
139 /* notrace because it's called by restore_math */
140 void notrace __msr_check_and_clear(unsigned long bits)
141 {
142 	unsigned long oldmsr = mfmsr();
143 	unsigned long newmsr;
144 
145 	newmsr = oldmsr & ~bits;
146 
147 #ifdef CONFIG_VSX
148 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 		newmsr &= ~MSR_VSX;
150 #endif
151 
152 	if (oldmsr != newmsr)
153 		mtmsr_isync(newmsr);
154 }
155 EXPORT_SYMBOL(__msr_check_and_clear);
156 
157 #ifdef CONFIG_PPC_FPU
158 static void __giveup_fpu(struct task_struct *tsk)
159 {
160 	unsigned long msr;
161 
162 	save_fpu(tsk);
163 	msr = tsk->thread.regs->msr;
164 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
165 #ifdef CONFIG_VSX
166 	if (cpu_has_feature(CPU_FTR_VSX))
167 		msr &= ~MSR_VSX;
168 #endif
169 	tsk->thread.regs->msr = msr;
170 }
171 
172 void giveup_fpu(struct task_struct *tsk)
173 {
174 	check_if_tm_restore_required(tsk);
175 
176 	msr_check_and_set(MSR_FP);
177 	__giveup_fpu(tsk);
178 	msr_check_and_clear(MSR_FP);
179 }
180 EXPORT_SYMBOL(giveup_fpu);
181 
182 /*
183  * Make sure the floating-point register state in the
184  * the thread_struct is up to date for task tsk.
185  */
186 void flush_fp_to_thread(struct task_struct *tsk)
187 {
188 	if (tsk->thread.regs) {
189 		/*
190 		 * We need to disable preemption here because if we didn't,
191 		 * another process could get scheduled after the regs->msr
192 		 * test but before we have finished saving the FP registers
193 		 * to the thread_struct.  That process could take over the
194 		 * FPU, and then when we get scheduled again we would store
195 		 * bogus values for the remaining FP registers.
196 		 */
197 		preempt_disable();
198 		if (tsk->thread.regs->msr & MSR_FP) {
199 			/*
200 			 * This should only ever be called for current or
201 			 * for a stopped child process.  Since we save away
202 			 * the FP register state on context switch,
203 			 * there is something wrong if a stopped child appears
204 			 * to still have its FP state in the CPU registers.
205 			 */
206 			BUG_ON(tsk != current);
207 			giveup_fpu(tsk);
208 		}
209 		preempt_enable();
210 	}
211 }
212 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
213 
214 void enable_kernel_fp(void)
215 {
216 	unsigned long cpumsr;
217 
218 	WARN_ON(preemptible());
219 
220 	cpumsr = msr_check_and_set(MSR_FP);
221 
222 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
223 		check_if_tm_restore_required(current);
224 		/*
225 		 * If a thread has already been reclaimed then the
226 		 * checkpointed registers are on the CPU but have definitely
227 		 * been saved by the reclaim code. Don't need to and *cannot*
228 		 * giveup as this would save  to the 'live' structure not the
229 		 * checkpointed structure.
230 		 */
231 		if (!MSR_TM_ACTIVE(cpumsr) &&
232 		     MSR_TM_ACTIVE(current->thread.regs->msr))
233 			return;
234 		__giveup_fpu(current);
235 	}
236 }
237 EXPORT_SYMBOL(enable_kernel_fp);
238 #endif /* CONFIG_PPC_FPU */
239 
240 #ifdef CONFIG_ALTIVEC
241 static void __giveup_altivec(struct task_struct *tsk)
242 {
243 	unsigned long msr;
244 
245 	save_altivec(tsk);
246 	msr = tsk->thread.regs->msr;
247 	msr &= ~MSR_VEC;
248 #ifdef CONFIG_VSX
249 	if (cpu_has_feature(CPU_FTR_VSX))
250 		msr &= ~MSR_VSX;
251 #endif
252 	tsk->thread.regs->msr = msr;
253 }
254 
255 void giveup_altivec(struct task_struct *tsk)
256 {
257 	check_if_tm_restore_required(tsk);
258 
259 	msr_check_and_set(MSR_VEC);
260 	__giveup_altivec(tsk);
261 	msr_check_and_clear(MSR_VEC);
262 }
263 EXPORT_SYMBOL(giveup_altivec);
264 
265 void enable_kernel_altivec(void)
266 {
267 	unsigned long cpumsr;
268 
269 	WARN_ON(preemptible());
270 
271 	cpumsr = msr_check_and_set(MSR_VEC);
272 
273 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
274 		check_if_tm_restore_required(current);
275 		/*
276 		 * If a thread has already been reclaimed then the
277 		 * checkpointed registers are on the CPU but have definitely
278 		 * been saved by the reclaim code. Don't need to and *cannot*
279 		 * giveup as this would save  to the 'live' structure not the
280 		 * checkpointed structure.
281 		 */
282 		if (!MSR_TM_ACTIVE(cpumsr) &&
283 		     MSR_TM_ACTIVE(current->thread.regs->msr))
284 			return;
285 		__giveup_altivec(current);
286 	}
287 }
288 EXPORT_SYMBOL(enable_kernel_altivec);
289 
290 /*
291  * Make sure the VMX/Altivec register state in the
292  * the thread_struct is up to date for task tsk.
293  */
294 void flush_altivec_to_thread(struct task_struct *tsk)
295 {
296 	if (tsk->thread.regs) {
297 		preempt_disable();
298 		if (tsk->thread.regs->msr & MSR_VEC) {
299 			BUG_ON(tsk != current);
300 			giveup_altivec(tsk);
301 		}
302 		preempt_enable();
303 	}
304 }
305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
306 #endif /* CONFIG_ALTIVEC */
307 
308 #ifdef CONFIG_VSX
309 static void __giveup_vsx(struct task_struct *tsk)
310 {
311 	unsigned long msr = tsk->thread.regs->msr;
312 
313 	/*
314 	 * We should never be ssetting MSR_VSX without also setting
315 	 * MSR_FP and MSR_VEC
316 	 */
317 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
318 
319 	/* __giveup_fpu will clear MSR_VSX */
320 	if (msr & MSR_FP)
321 		__giveup_fpu(tsk);
322 	if (msr & MSR_VEC)
323 		__giveup_altivec(tsk);
324 }
325 
326 static void giveup_vsx(struct task_struct *tsk)
327 {
328 	check_if_tm_restore_required(tsk);
329 
330 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
331 	__giveup_vsx(tsk);
332 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
333 }
334 
335 void enable_kernel_vsx(void)
336 {
337 	unsigned long cpumsr;
338 
339 	WARN_ON(preemptible());
340 
341 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342 
343 	if (current->thread.regs &&
344 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
345 		check_if_tm_restore_required(current);
346 		/*
347 		 * If a thread has already been reclaimed then the
348 		 * checkpointed registers are on the CPU but have definitely
349 		 * been saved by the reclaim code. Don't need to and *cannot*
350 		 * giveup as this would save  to the 'live' structure not the
351 		 * checkpointed structure.
352 		 */
353 		if (!MSR_TM_ACTIVE(cpumsr) &&
354 		     MSR_TM_ACTIVE(current->thread.regs->msr))
355 			return;
356 		__giveup_vsx(current);
357 	}
358 }
359 EXPORT_SYMBOL(enable_kernel_vsx);
360 
361 void flush_vsx_to_thread(struct task_struct *tsk)
362 {
363 	if (tsk->thread.regs) {
364 		preempt_disable();
365 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
366 			BUG_ON(tsk != current);
367 			giveup_vsx(tsk);
368 		}
369 		preempt_enable();
370 	}
371 }
372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
373 #endif /* CONFIG_VSX */
374 
375 #ifdef CONFIG_SPE
376 void giveup_spe(struct task_struct *tsk)
377 {
378 	check_if_tm_restore_required(tsk);
379 
380 	msr_check_and_set(MSR_SPE);
381 	__giveup_spe(tsk);
382 	msr_check_and_clear(MSR_SPE);
383 }
384 EXPORT_SYMBOL(giveup_spe);
385 
386 void enable_kernel_spe(void)
387 {
388 	WARN_ON(preemptible());
389 
390 	msr_check_and_set(MSR_SPE);
391 
392 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
393 		check_if_tm_restore_required(current);
394 		__giveup_spe(current);
395 	}
396 }
397 EXPORT_SYMBOL(enable_kernel_spe);
398 
399 void flush_spe_to_thread(struct task_struct *tsk)
400 {
401 	if (tsk->thread.regs) {
402 		preempt_disable();
403 		if (tsk->thread.regs->msr & MSR_SPE) {
404 			BUG_ON(tsk != current);
405 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
406 			giveup_spe(tsk);
407 		}
408 		preempt_enable();
409 	}
410 }
411 #endif /* CONFIG_SPE */
412 
413 static unsigned long msr_all_available;
414 
415 static int __init init_msr_all_available(void)
416 {
417 #ifdef CONFIG_PPC_FPU
418 	msr_all_available |= MSR_FP;
419 #endif
420 #ifdef CONFIG_ALTIVEC
421 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
422 		msr_all_available |= MSR_VEC;
423 #endif
424 #ifdef CONFIG_VSX
425 	if (cpu_has_feature(CPU_FTR_VSX))
426 		msr_all_available |= MSR_VSX;
427 #endif
428 #ifdef CONFIG_SPE
429 	if (cpu_has_feature(CPU_FTR_SPE))
430 		msr_all_available |= MSR_SPE;
431 #endif
432 
433 	return 0;
434 }
435 early_initcall(init_msr_all_available);
436 
437 void giveup_all(struct task_struct *tsk)
438 {
439 	unsigned long usermsr;
440 
441 	if (!tsk->thread.regs)
442 		return;
443 
444 	check_if_tm_restore_required(tsk);
445 
446 	usermsr = tsk->thread.regs->msr;
447 
448 	if ((usermsr & msr_all_available) == 0)
449 		return;
450 
451 	msr_check_and_set(msr_all_available);
452 
453 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
454 
455 #ifdef CONFIG_PPC_FPU
456 	if (usermsr & MSR_FP)
457 		__giveup_fpu(tsk);
458 #endif
459 #ifdef CONFIG_ALTIVEC
460 	if (usermsr & MSR_VEC)
461 		__giveup_altivec(tsk);
462 #endif
463 #ifdef CONFIG_SPE
464 	if (usermsr & MSR_SPE)
465 		__giveup_spe(tsk);
466 #endif
467 
468 	msr_check_and_clear(msr_all_available);
469 }
470 EXPORT_SYMBOL(giveup_all);
471 
472 #ifdef CONFIG_PPC_BOOK3S_64
473 #ifdef CONFIG_PPC_FPU
474 static bool should_restore_fp(void)
475 {
476 	if (current->thread.load_fp) {
477 		current->thread.load_fp++;
478 		return true;
479 	}
480 	return false;
481 }
482 
483 static void do_restore_fp(void)
484 {
485 	load_fp_state(&current->thread.fp_state);
486 }
487 #else
488 static bool should_restore_fp(void) { return false; }
489 static void do_restore_fp(void) { }
490 #endif /* CONFIG_PPC_FPU */
491 
492 #ifdef CONFIG_ALTIVEC
493 static bool should_restore_altivec(void)
494 {
495 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
496 		current->thread.load_vec++;
497 		return true;
498 	}
499 	return false;
500 }
501 
502 static void do_restore_altivec(void)
503 {
504 	load_vr_state(&current->thread.vr_state);
505 	current->thread.used_vr = 1;
506 }
507 #else
508 static bool should_restore_altivec(void) { return false; }
509 static void do_restore_altivec(void) { }
510 #endif /* CONFIG_ALTIVEC */
511 
512 #ifdef CONFIG_VSX
513 static bool should_restore_vsx(void)
514 {
515 	if (cpu_has_feature(CPU_FTR_VSX))
516 		return true;
517 	return false;
518 }
519 static void do_restore_vsx(void)
520 {
521 	current->thread.used_vsr = 1;
522 }
523 #else
524 static bool should_restore_vsx(void) { return false; }
525 static void do_restore_vsx(void) { }
526 #endif /* CONFIG_VSX */
527 
528 /*
529  * The exception exit path calls restore_math() with interrupts hard disabled
530  * but the soft irq state not "reconciled". ftrace code that calls
531  * local_irq_save/restore causes warnings.
532  *
533  * Rather than complicate the exit path, just don't trace restore_math. This
534  * could be done by having ftrace entry code check for this un-reconciled
535  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
536  * temporarily fix it up for the duration of the ftrace call.
537  */
538 void notrace restore_math(struct pt_regs *regs)
539 {
540 	unsigned long msr;
541 	unsigned long new_msr = 0;
542 
543 	msr = regs->msr;
544 
545 	/*
546 	 * new_msr tracks the facilities that are to be restored. Only reload
547 	 * if the bit is not set in the user MSR (if it is set, the registers
548 	 * are live for the user thread).
549 	 */
550 	if ((!(msr & MSR_FP)) && should_restore_fp())
551 		new_msr |= MSR_FP | current->thread.fpexc_mode;
552 
553 	if ((!(msr & MSR_VEC)) && should_restore_altivec())
554 		new_msr |= MSR_VEC;
555 
556 	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
557 		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
558 			new_msr |= MSR_VSX;
559 	}
560 
561 	if (new_msr) {
562 		msr_check_and_set(new_msr);
563 
564 		if (new_msr & MSR_FP)
565 			do_restore_fp();
566 
567 		if (new_msr & MSR_VEC)
568 			do_restore_altivec();
569 
570 		if (new_msr & MSR_VSX)
571 			do_restore_vsx();
572 
573 		msr_check_and_clear(new_msr);
574 
575 		regs->msr |= new_msr;
576 	}
577 }
578 #endif
579 
580 static void save_all(struct task_struct *tsk)
581 {
582 	unsigned long usermsr;
583 
584 	if (!tsk->thread.regs)
585 		return;
586 
587 	usermsr = tsk->thread.regs->msr;
588 
589 	if ((usermsr & msr_all_available) == 0)
590 		return;
591 
592 	msr_check_and_set(msr_all_available);
593 
594 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
595 
596 	if (usermsr & MSR_FP)
597 		save_fpu(tsk);
598 
599 	if (usermsr & MSR_VEC)
600 		save_altivec(tsk);
601 
602 	if (usermsr & MSR_SPE)
603 		__giveup_spe(tsk);
604 
605 	msr_check_and_clear(msr_all_available);
606 	thread_pkey_regs_save(&tsk->thread);
607 }
608 
609 void flush_all_to_thread(struct task_struct *tsk)
610 {
611 	if (tsk->thread.regs) {
612 		preempt_disable();
613 		BUG_ON(tsk != current);
614 #ifdef CONFIG_SPE
615 		if (tsk->thread.regs->msr & MSR_SPE)
616 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
617 #endif
618 		save_all(tsk);
619 
620 		preempt_enable();
621 	}
622 }
623 EXPORT_SYMBOL(flush_all_to_thread);
624 
625 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
626 void do_send_trap(struct pt_regs *regs, unsigned long address,
627 		  unsigned long error_code, int breakpt)
628 {
629 	current->thread.trap_nr = TRAP_HWBKPT;
630 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
631 			11, SIGSEGV) == NOTIFY_STOP)
632 		return;
633 
634 	/* Deliver the signal to userspace */
635 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
636 				    (void __user *)address);
637 }
638 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
639 void do_break (struct pt_regs *regs, unsigned long address,
640 		    unsigned long error_code)
641 {
642 	current->thread.trap_nr = TRAP_HWBKPT;
643 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
644 			11, SIGSEGV) == NOTIFY_STOP)
645 		return;
646 
647 	if (debugger_break_match(regs))
648 		return;
649 
650 	/* Deliver the signal to userspace */
651 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
652 }
653 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
654 
655 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
656 
657 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
658 /*
659  * Set the debug registers back to their default "safe" values.
660  */
661 static void set_debug_reg_defaults(struct thread_struct *thread)
662 {
663 	thread->debug.iac1 = thread->debug.iac2 = 0;
664 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
665 	thread->debug.iac3 = thread->debug.iac4 = 0;
666 #endif
667 	thread->debug.dac1 = thread->debug.dac2 = 0;
668 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
669 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
670 #endif
671 	thread->debug.dbcr0 = 0;
672 #ifdef CONFIG_BOOKE
673 	/*
674 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
675 	 */
676 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
677 			DBCR1_IAC3US | DBCR1_IAC4US;
678 	/*
679 	 * Force Data Address Compare User/Supervisor bits to be User-only
680 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
681 	 */
682 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
683 #else
684 	thread->debug.dbcr1 = 0;
685 #endif
686 }
687 
688 static void prime_debug_regs(struct debug_reg *debug)
689 {
690 	/*
691 	 * We could have inherited MSR_DE from userspace, since
692 	 * it doesn't get cleared on exception entry.  Make sure
693 	 * MSR_DE is clear before we enable any debug events.
694 	 */
695 	mtmsr(mfmsr() & ~MSR_DE);
696 
697 	mtspr(SPRN_IAC1, debug->iac1);
698 	mtspr(SPRN_IAC2, debug->iac2);
699 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
700 	mtspr(SPRN_IAC3, debug->iac3);
701 	mtspr(SPRN_IAC4, debug->iac4);
702 #endif
703 	mtspr(SPRN_DAC1, debug->dac1);
704 	mtspr(SPRN_DAC2, debug->dac2);
705 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
706 	mtspr(SPRN_DVC1, debug->dvc1);
707 	mtspr(SPRN_DVC2, debug->dvc2);
708 #endif
709 	mtspr(SPRN_DBCR0, debug->dbcr0);
710 	mtspr(SPRN_DBCR1, debug->dbcr1);
711 #ifdef CONFIG_BOOKE
712 	mtspr(SPRN_DBCR2, debug->dbcr2);
713 #endif
714 }
715 /*
716  * Unless neither the old or new thread are making use of the
717  * debug registers, set the debug registers from the values
718  * stored in the new thread.
719  */
720 void switch_booke_debug_regs(struct debug_reg *new_debug)
721 {
722 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
723 		|| (new_debug->dbcr0 & DBCR0_IDM))
724 			prime_debug_regs(new_debug);
725 }
726 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
727 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
728 #ifndef CONFIG_HAVE_HW_BREAKPOINT
729 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
730 {
731 	preempt_disable();
732 	__set_breakpoint(i, brk);
733 	preempt_enable();
734 }
735 
736 static void set_debug_reg_defaults(struct thread_struct *thread)
737 {
738 	int i;
739 	struct arch_hw_breakpoint null_brk = {0};
740 
741 	for (i = 0; i < nr_wp_slots(); i++) {
742 		thread->hw_brk[i] = null_brk;
743 		if (ppc_breakpoint_available())
744 			set_breakpoint(i, &thread->hw_brk[i]);
745 	}
746 }
747 
748 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
749 				struct arch_hw_breakpoint *b)
750 {
751 	if (a->address != b->address)
752 		return false;
753 	if (a->type != b->type)
754 		return false;
755 	if (a->len != b->len)
756 		return false;
757 	/* no need to check hw_len. it's calculated from address and len */
758 	return true;
759 }
760 
761 static void switch_hw_breakpoint(struct task_struct *new)
762 {
763 	int i;
764 
765 	for (i = 0; i < nr_wp_slots(); i++) {
766 		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
767 					&new->thread.hw_brk[i])))
768 			continue;
769 
770 		__set_breakpoint(i, &new->thread.hw_brk[i]);
771 	}
772 }
773 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
774 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
775 
776 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779 	mtspr(SPRN_DAC1, dabr);
780 #ifdef CONFIG_PPC_47x
781 	isync();
782 #endif
783 	return 0;
784 }
785 #elif defined(CONFIG_PPC_BOOK3S)
786 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
787 {
788 	mtspr(SPRN_DABR, dabr);
789 	if (cpu_has_feature(CPU_FTR_DABRX))
790 		mtspr(SPRN_DABRX, dabrx);
791 	return 0;
792 }
793 #else
794 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
795 {
796 	return -EINVAL;
797 }
798 #endif
799 
800 static inline int set_dabr(struct arch_hw_breakpoint *brk)
801 {
802 	unsigned long dabr, dabrx;
803 
804 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
805 	dabrx = ((brk->type >> 3) & 0x7);
806 
807 	if (ppc_md.set_dabr)
808 		return ppc_md.set_dabr(dabr, dabrx);
809 
810 	return __set_dabr(dabr, dabrx);
811 }
812 
813 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
814 {
815 	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
816 			       LCTRL1_CRWF_RW;
817 	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
818 	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
819 	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
820 
821 	if (start_addr == 0)
822 		lctrl2 |= LCTRL2_LW0LA_F;
823 	else if (end_addr == 0)
824 		lctrl2 |= LCTRL2_LW0LA_E;
825 	else
826 		lctrl2 |= LCTRL2_LW0LA_EandF;
827 
828 	mtspr(SPRN_LCTRL2, 0);
829 
830 	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
831 		return 0;
832 
833 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
834 		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
835 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
836 		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
837 
838 	mtspr(SPRN_CMPE, start_addr - 1);
839 	mtspr(SPRN_CMPF, end_addr);
840 	mtspr(SPRN_LCTRL1, lctrl1);
841 	mtspr(SPRN_LCTRL2, lctrl2);
842 
843 	return 0;
844 }
845 
846 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
847 {
848 	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
849 
850 	if (dawr_enabled())
851 		// Power8 or later
852 		set_dawr(nr, brk);
853 	else if (IS_ENABLED(CONFIG_PPC_8xx))
854 		set_breakpoint_8xx(brk);
855 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
856 		// Power7 or earlier
857 		set_dabr(brk);
858 	else
859 		// Shouldn't happen due to higher level checks
860 		WARN_ON_ONCE(1);
861 }
862 
863 /* Check if we have DAWR or DABR hardware */
864 bool ppc_breakpoint_available(void)
865 {
866 	if (dawr_enabled())
867 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
868 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
869 		return false; /* POWER9 with DAWR disabled */
870 	/* DABR: Everything but POWER8 and POWER9 */
871 	return true;
872 }
873 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
874 
875 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
876 
877 static inline bool tm_enabled(struct task_struct *tsk)
878 {
879 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
880 }
881 
882 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
883 {
884 	/*
885 	 * Use the current MSR TM suspended bit to track if we have
886 	 * checkpointed state outstanding.
887 	 * On signal delivery, we'd normally reclaim the checkpointed
888 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
889 	 * This will then directly return to userspace without going
890 	 * through __switch_to(). However, if the stack frame is bad,
891 	 * we need to exit this thread which calls __switch_to() which
892 	 * will again attempt to reclaim the already saved tm state.
893 	 * Hence we need to check that we've not already reclaimed
894 	 * this state.
895 	 * We do this using the current MSR, rather tracking it in
896 	 * some specific thread_struct bit, as it has the additional
897 	 * benefit of checking for a potential TM bad thing exception.
898 	 */
899 	if (!MSR_TM_SUSPENDED(mfmsr()))
900 		return;
901 
902 	giveup_all(container_of(thr, struct task_struct, thread));
903 
904 	tm_reclaim(thr, cause);
905 
906 	/*
907 	 * If we are in a transaction and FP is off then we can't have
908 	 * used FP inside that transaction. Hence the checkpointed
909 	 * state is the same as the live state. We need to copy the
910 	 * live state to the checkpointed state so that when the
911 	 * transaction is restored, the checkpointed state is correct
912 	 * and the aborted transaction sees the correct state. We use
913 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
914 	 * determine if it's going to write the checkpointed state or
915 	 * not. So either this will write the checkpointed registers,
916 	 * or reclaim will. Similarly for VMX.
917 	 */
918 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
919 		memcpy(&thr->ckfp_state, &thr->fp_state,
920 		       sizeof(struct thread_fp_state));
921 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
922 		memcpy(&thr->ckvr_state, &thr->vr_state,
923 		       sizeof(struct thread_vr_state));
924 }
925 
926 void tm_reclaim_current(uint8_t cause)
927 {
928 	tm_enable();
929 	tm_reclaim_thread(&current->thread, cause);
930 }
931 
932 static inline void tm_reclaim_task(struct task_struct *tsk)
933 {
934 	/* We have to work out if we're switching from/to a task that's in the
935 	 * middle of a transaction.
936 	 *
937 	 * In switching we need to maintain a 2nd register state as
938 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
939 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
940 	 * ckvr_state
941 	 *
942 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
943 	 */
944 	struct thread_struct *thr = &tsk->thread;
945 
946 	if (!thr->regs)
947 		return;
948 
949 	if (!MSR_TM_ACTIVE(thr->regs->msr))
950 		goto out_and_saveregs;
951 
952 	WARN_ON(tm_suspend_disabled);
953 
954 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
955 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
956 		 tsk->pid, thr->regs->nip,
957 		 thr->regs->ccr, thr->regs->msr,
958 		 thr->regs->trap);
959 
960 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
961 
962 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
963 		 tsk->pid);
964 
965 out_and_saveregs:
966 	/* Always save the regs here, even if a transaction's not active.
967 	 * This context-switches a thread's TM info SPRs.  We do it here to
968 	 * be consistent with the restore path (in recheckpoint) which
969 	 * cannot happen later in _switch().
970 	 */
971 	tm_save_sprs(thr);
972 }
973 
974 extern void __tm_recheckpoint(struct thread_struct *thread);
975 
976 void tm_recheckpoint(struct thread_struct *thread)
977 {
978 	unsigned long flags;
979 
980 	if (!(thread->regs->msr & MSR_TM))
981 		return;
982 
983 	/* We really can't be interrupted here as the TEXASR registers can't
984 	 * change and later in the trecheckpoint code, we have a userspace R1.
985 	 * So let's hard disable over this region.
986 	 */
987 	local_irq_save(flags);
988 	hard_irq_disable();
989 
990 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
991 	 * before the trecheckpoint and no explosion occurs.
992 	 */
993 	tm_restore_sprs(thread);
994 
995 	__tm_recheckpoint(thread);
996 
997 	local_irq_restore(flags);
998 }
999 
1000 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1001 {
1002 	if (!cpu_has_feature(CPU_FTR_TM))
1003 		return;
1004 
1005 	/* Recheckpoint the registers of the thread we're about to switch to.
1006 	 *
1007 	 * If the task was using FP, we non-lazily reload both the original and
1008 	 * the speculative FP register states.  This is because the kernel
1009 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1010 	 * unavailable later, we are unable to determine which set of FP regs
1011 	 * need to be restored.
1012 	 */
1013 	if (!tm_enabled(new))
1014 		return;
1015 
1016 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1017 		tm_restore_sprs(&new->thread);
1018 		return;
1019 	}
1020 	/* Recheckpoint to restore original checkpointed register state. */
1021 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1022 		 new->pid, new->thread.regs->msr);
1023 
1024 	tm_recheckpoint(&new->thread);
1025 
1026 	/*
1027 	 * The checkpointed state has been restored but the live state has
1028 	 * not, ensure all the math functionality is turned off to trigger
1029 	 * restore_math() to reload.
1030 	 */
1031 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1032 
1033 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1034 		 "(kernel msr 0x%lx)\n",
1035 		 new->pid, mfmsr());
1036 }
1037 
1038 static inline void __switch_to_tm(struct task_struct *prev,
1039 		struct task_struct *new)
1040 {
1041 	if (cpu_has_feature(CPU_FTR_TM)) {
1042 		if (tm_enabled(prev) || tm_enabled(new))
1043 			tm_enable();
1044 
1045 		if (tm_enabled(prev)) {
1046 			prev->thread.load_tm++;
1047 			tm_reclaim_task(prev);
1048 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1049 				prev->thread.regs->msr &= ~MSR_TM;
1050 		}
1051 
1052 		tm_recheckpoint_new_task(new);
1053 	}
1054 }
1055 
1056 /*
1057  * This is called if we are on the way out to userspace and the
1058  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1059  * FP and/or vector state and does so if necessary.
1060  * If userspace is inside a transaction (whether active or
1061  * suspended) and FP/VMX/VSX instructions have ever been enabled
1062  * inside that transaction, then we have to keep them enabled
1063  * and keep the FP/VMX/VSX state loaded while ever the transaction
1064  * continues.  The reason is that if we didn't, and subsequently
1065  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1066  * we don't know whether it's the same transaction, and thus we
1067  * don't know which of the checkpointed state and the transactional
1068  * state to use.
1069  */
1070 void restore_tm_state(struct pt_regs *regs)
1071 {
1072 	unsigned long msr_diff;
1073 
1074 	/*
1075 	 * This is the only moment we should clear TIF_RESTORE_TM as
1076 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1077 	 * again, anything else could lead to an incorrect ckpt_msr being
1078 	 * saved and therefore incorrect signal contexts.
1079 	 */
1080 	clear_thread_flag(TIF_RESTORE_TM);
1081 	if (!MSR_TM_ACTIVE(regs->msr))
1082 		return;
1083 
1084 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1085 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1086 
1087 	/* Ensure that restore_math() will restore */
1088 	if (msr_diff & MSR_FP)
1089 		current->thread.load_fp = 1;
1090 #ifdef CONFIG_ALTIVEC
1091 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1092 		current->thread.load_vec = 1;
1093 #endif
1094 	restore_math(regs);
1095 
1096 	regs->msr |= msr_diff;
1097 }
1098 
1099 #else
1100 #define tm_recheckpoint_new_task(new)
1101 #define __switch_to_tm(prev, new)
1102 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1103 
1104 static inline void save_sprs(struct thread_struct *t)
1105 {
1106 #ifdef CONFIG_ALTIVEC
1107 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1108 		t->vrsave = mfspr(SPRN_VRSAVE);
1109 #endif
1110 #ifdef CONFIG_PPC_BOOK3S_64
1111 	if (cpu_has_feature(CPU_FTR_DSCR))
1112 		t->dscr = mfspr(SPRN_DSCR);
1113 
1114 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1115 		t->bescr = mfspr(SPRN_BESCR);
1116 		t->ebbhr = mfspr(SPRN_EBBHR);
1117 		t->ebbrr = mfspr(SPRN_EBBRR);
1118 
1119 		t->fscr = mfspr(SPRN_FSCR);
1120 
1121 		/*
1122 		 * Note that the TAR is not available for use in the kernel.
1123 		 * (To provide this, the TAR should be backed up/restored on
1124 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1125 		 * this should be in pt_regs anyway (for debug).)
1126 		 */
1127 		t->tar = mfspr(SPRN_TAR);
1128 	}
1129 #endif
1130 
1131 	thread_pkey_regs_save(t);
1132 }
1133 
1134 static inline void restore_sprs(struct thread_struct *old_thread,
1135 				struct thread_struct *new_thread)
1136 {
1137 #ifdef CONFIG_ALTIVEC
1138 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1139 	    old_thread->vrsave != new_thread->vrsave)
1140 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1141 #endif
1142 #ifdef CONFIG_PPC_BOOK3S_64
1143 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1144 		u64 dscr = get_paca()->dscr_default;
1145 		if (new_thread->dscr_inherit)
1146 			dscr = new_thread->dscr;
1147 
1148 		if (old_thread->dscr != dscr)
1149 			mtspr(SPRN_DSCR, dscr);
1150 	}
1151 
1152 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1153 		if (old_thread->bescr != new_thread->bescr)
1154 			mtspr(SPRN_BESCR, new_thread->bescr);
1155 		if (old_thread->ebbhr != new_thread->ebbhr)
1156 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1157 		if (old_thread->ebbrr != new_thread->ebbrr)
1158 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1159 
1160 		if (old_thread->fscr != new_thread->fscr)
1161 			mtspr(SPRN_FSCR, new_thread->fscr);
1162 
1163 		if (old_thread->tar != new_thread->tar)
1164 			mtspr(SPRN_TAR, new_thread->tar);
1165 	}
1166 
1167 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1168 	    old_thread->tidr != new_thread->tidr)
1169 		mtspr(SPRN_TIDR, new_thread->tidr);
1170 #endif
1171 
1172 	thread_pkey_regs_restore(new_thread, old_thread);
1173 }
1174 
1175 struct task_struct *__switch_to(struct task_struct *prev,
1176 	struct task_struct *new)
1177 {
1178 	struct thread_struct *new_thread, *old_thread;
1179 	struct task_struct *last;
1180 #ifdef CONFIG_PPC_BOOK3S_64
1181 	struct ppc64_tlb_batch *batch;
1182 #endif
1183 
1184 	new_thread = &new->thread;
1185 	old_thread = &current->thread;
1186 
1187 	WARN_ON(!irqs_disabled());
1188 
1189 #ifdef CONFIG_PPC_BOOK3S_64
1190 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1191 	if (batch->active) {
1192 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1193 		if (batch->index)
1194 			__flush_tlb_pending(batch);
1195 		batch->active = 0;
1196 	}
1197 #endif /* CONFIG_PPC_BOOK3S_64 */
1198 
1199 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1200 	switch_booke_debug_regs(&new->thread.debug);
1201 #else
1202 /*
1203  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1204  * schedule DABR
1205  */
1206 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1207 	switch_hw_breakpoint(new);
1208 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1209 #endif
1210 
1211 	/*
1212 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1213 	 * change a number of them.
1214 	 */
1215 	save_sprs(&prev->thread);
1216 
1217 	/* Save FPU, Altivec, VSX and SPE state */
1218 	giveup_all(prev);
1219 
1220 	__switch_to_tm(prev, new);
1221 
1222 	if (!radix_enabled()) {
1223 		/*
1224 		 * We can't take a PMU exception inside _switch() since there
1225 		 * is a window where the kernel stack SLB and the kernel stack
1226 		 * are out of sync. Hard disable here.
1227 		 */
1228 		hard_irq_disable();
1229 	}
1230 
1231 	/*
1232 	 * Call restore_sprs() before calling _switch(). If we move it after
1233 	 * _switch() then we miss out on calling it for new tasks. The reason
1234 	 * for this is we manually create a stack frame for new tasks that
1235 	 * directly returns through ret_from_fork() or
1236 	 * ret_from_kernel_thread(). See copy_thread() for details.
1237 	 */
1238 	restore_sprs(old_thread, new_thread);
1239 
1240 	last = _switch(old_thread, new_thread);
1241 
1242 #ifdef CONFIG_PPC_BOOK3S_64
1243 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1244 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1245 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1246 		batch->active = 1;
1247 	}
1248 
1249 	if (current->thread.regs) {
1250 		restore_math(current->thread.regs);
1251 
1252 		/*
1253 		 * The copy-paste buffer can only store into foreign real
1254 		 * addresses, so unprivileged processes can not see the
1255 		 * data or use it in any way unless they have foreign real
1256 		 * mappings. If the new process has the foreign real address
1257 		 * mappings, we must issue a cp_abort to clear any state and
1258 		 * prevent snooping, corruption or a covert channel.
1259 		 */
1260 		if (current->mm &&
1261 			atomic_read(&current->mm->context.vas_windows))
1262 			asm volatile(PPC_CP_ABORT);
1263 	}
1264 #endif /* CONFIG_PPC_BOOK3S_64 */
1265 
1266 	return last;
1267 }
1268 
1269 #define NR_INSN_TO_PRINT	16
1270 
1271 static void show_instructions(struct pt_regs *regs)
1272 {
1273 	int i;
1274 	unsigned long nip = regs->nip;
1275 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1276 
1277 	printk("Instruction dump:");
1278 
1279 	/*
1280 	 * If we were executing with the MMU off for instructions, adjust pc
1281 	 * rather than printing XXXXXXXX.
1282 	 */
1283 	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1284 		pc = (unsigned long)phys_to_virt(pc);
1285 		nip = (unsigned long)phys_to_virt(regs->nip);
1286 	}
1287 
1288 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1289 		int instr;
1290 
1291 		if (!(i % 8))
1292 			pr_cont("\n");
1293 
1294 		if (!__kernel_text_address(pc) ||
1295 		    get_kernel_nofault(instr, (const void *)pc)) {
1296 			pr_cont("XXXXXXXX ");
1297 		} else {
1298 			if (nip == pc)
1299 				pr_cont("<%08x> ", instr);
1300 			else
1301 				pr_cont("%08x ", instr);
1302 		}
1303 
1304 		pc += sizeof(int);
1305 	}
1306 
1307 	pr_cont("\n");
1308 }
1309 
1310 void show_user_instructions(struct pt_regs *regs)
1311 {
1312 	unsigned long pc;
1313 	int n = NR_INSN_TO_PRINT;
1314 	struct seq_buf s;
1315 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1316 
1317 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1318 
1319 	seq_buf_init(&s, buf, sizeof(buf));
1320 
1321 	while (n) {
1322 		int i;
1323 
1324 		seq_buf_clear(&s);
1325 
1326 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1327 			int instr;
1328 
1329 			if (copy_from_user_nofault(&instr, (void __user *)pc,
1330 					sizeof(instr))) {
1331 				seq_buf_printf(&s, "XXXXXXXX ");
1332 				continue;
1333 			}
1334 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1335 		}
1336 
1337 		if (!seq_buf_has_overflowed(&s))
1338 			pr_info("%s[%d]: code: %s\n", current->comm,
1339 				current->pid, s.buffer);
1340 	}
1341 }
1342 
1343 struct regbit {
1344 	unsigned long bit;
1345 	const char *name;
1346 };
1347 
1348 static struct regbit msr_bits[] = {
1349 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1350 	{MSR_SF,	"SF"},
1351 	{MSR_HV,	"HV"},
1352 #endif
1353 	{MSR_VEC,	"VEC"},
1354 	{MSR_VSX,	"VSX"},
1355 #ifdef CONFIG_BOOKE
1356 	{MSR_CE,	"CE"},
1357 #endif
1358 	{MSR_EE,	"EE"},
1359 	{MSR_PR,	"PR"},
1360 	{MSR_FP,	"FP"},
1361 	{MSR_ME,	"ME"},
1362 #ifdef CONFIG_BOOKE
1363 	{MSR_DE,	"DE"},
1364 #else
1365 	{MSR_SE,	"SE"},
1366 	{MSR_BE,	"BE"},
1367 #endif
1368 	{MSR_IR,	"IR"},
1369 	{MSR_DR,	"DR"},
1370 	{MSR_PMM,	"PMM"},
1371 #ifndef CONFIG_BOOKE
1372 	{MSR_RI,	"RI"},
1373 	{MSR_LE,	"LE"},
1374 #endif
1375 	{0,		NULL}
1376 };
1377 
1378 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1379 {
1380 	const char *s = "";
1381 
1382 	for (; bits->bit; ++bits)
1383 		if (val & bits->bit) {
1384 			pr_cont("%s%s", s, bits->name);
1385 			s = sep;
1386 		}
1387 }
1388 
1389 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1390 static struct regbit msr_tm_bits[] = {
1391 	{MSR_TS_T,	"T"},
1392 	{MSR_TS_S,	"S"},
1393 	{MSR_TM,	"E"},
1394 	{0,		NULL}
1395 };
1396 
1397 static void print_tm_bits(unsigned long val)
1398 {
1399 /*
1400  * This only prints something if at least one of the TM bit is set.
1401  * Inside the TM[], the output means:
1402  *   E: Enabled		(bit 32)
1403  *   S: Suspended	(bit 33)
1404  *   T: Transactional	(bit 34)
1405  */
1406 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1407 		pr_cont(",TM[");
1408 		print_bits(val, msr_tm_bits, "");
1409 		pr_cont("]");
1410 	}
1411 }
1412 #else
1413 static void print_tm_bits(unsigned long val) {}
1414 #endif
1415 
1416 static void print_msr_bits(unsigned long val)
1417 {
1418 	pr_cont("<");
1419 	print_bits(val, msr_bits, ",");
1420 	print_tm_bits(val);
1421 	pr_cont(">");
1422 }
1423 
1424 #ifdef CONFIG_PPC64
1425 #define REG		"%016lx"
1426 #define REGS_PER_LINE	4
1427 #define LAST_VOLATILE	13
1428 #else
1429 #define REG		"%08lx"
1430 #define REGS_PER_LINE	8
1431 #define LAST_VOLATILE	12
1432 #endif
1433 
1434 void show_regs(struct pt_regs * regs)
1435 {
1436 	int i, trap;
1437 
1438 	show_regs_print_info(KERN_DEFAULT);
1439 
1440 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1441 	       regs->nip, regs->link, regs->ctr);
1442 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1443 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1444 	printk("MSR:  "REG" ", regs->msr);
1445 	print_msr_bits(regs->msr);
1446 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1447 	trap = TRAP(regs);
1448 	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1449 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1450 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1451 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1452 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1453 #else
1454 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1455 #endif
1456 #ifdef CONFIG_PPC64
1457 	pr_cont("IRQMASK: %lx ", regs->softe);
1458 #endif
1459 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1460 	if (MSR_TM_ACTIVE(regs->msr))
1461 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1462 #endif
1463 
1464 	for (i = 0;  i < 32;  i++) {
1465 		if ((i % REGS_PER_LINE) == 0)
1466 			pr_cont("\nGPR%02d: ", i);
1467 		pr_cont(REG " ", regs->gpr[i]);
1468 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1469 			break;
1470 	}
1471 	pr_cont("\n");
1472 #ifdef CONFIG_KALLSYMS
1473 	/*
1474 	 * Lookup NIP late so we have the best change of getting the
1475 	 * above info out without failing
1476 	 */
1477 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1478 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1479 #endif
1480 	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1481 	if (!user_mode(regs))
1482 		show_instructions(regs);
1483 }
1484 
1485 void flush_thread(void)
1486 {
1487 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1488 	flush_ptrace_hw_breakpoint(current);
1489 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1490 	set_debug_reg_defaults(&current->thread);
1491 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1492 }
1493 
1494 #ifdef CONFIG_PPC_BOOK3S_64
1495 void arch_setup_new_exec(void)
1496 {
1497 	if (radix_enabled())
1498 		return;
1499 	hash__setup_new_exec();
1500 }
1501 #endif
1502 
1503 #ifdef CONFIG_PPC64
1504 /**
1505  * Assign a TIDR (thread ID) for task @t and set it in the thread
1506  * structure. For now, we only support setting TIDR for 'current' task.
1507  *
1508  * Since the TID value is a truncated form of it PID, it is possible
1509  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1510  * that 2 threads share the same TID and are waiting, one of the following
1511  * cases will happen:
1512  *
1513  * 1. The correct thread is running, the wrong thread is not
1514  * In this situation, the correct thread is woken and proceeds to pass it's
1515  * condition check.
1516  *
1517  * 2. Neither threads are running
1518  * In this situation, neither thread will be woken. When scheduled, the waiting
1519  * threads will execute either a wait, which will return immediately, followed
1520  * by a condition check, which will pass for the correct thread and fail
1521  * for the wrong thread, or they will execute the condition check immediately.
1522  *
1523  * 3. The wrong thread is running, the correct thread is not
1524  * The wrong thread will be woken, but will fail it's condition check and
1525  * re-execute wait. The correct thread, when scheduled, will execute either
1526  * it's condition check (which will pass), or wait, which returns immediately
1527  * when called the first time after the thread is scheduled, followed by it's
1528  * condition check (which will pass).
1529  *
1530  * 4. Both threads are running
1531  * Both threads will be woken. The wrong thread will fail it's condition check
1532  * and execute another wait, while the correct thread will pass it's condition
1533  * check.
1534  *
1535  * @t: the task to set the thread ID for
1536  */
1537 int set_thread_tidr(struct task_struct *t)
1538 {
1539 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1540 		return -EINVAL;
1541 
1542 	if (t != current)
1543 		return -EINVAL;
1544 
1545 	if (t->thread.tidr)
1546 		return 0;
1547 
1548 	t->thread.tidr = (u16)task_pid_nr(t);
1549 	mtspr(SPRN_TIDR, t->thread.tidr);
1550 
1551 	return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(set_thread_tidr);
1554 
1555 #endif /* CONFIG_PPC64 */
1556 
1557 void
1558 release_thread(struct task_struct *t)
1559 {
1560 }
1561 
1562 /*
1563  * this gets called so that we can store coprocessor state into memory and
1564  * copy the current task into the new thread.
1565  */
1566 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1567 {
1568 	flush_all_to_thread(src);
1569 	/*
1570 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1571 	 * flush but it removes the checkpointed state from the current CPU and
1572 	 * transitions the CPU out of TM mode.  Hence we need to call
1573 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1574 	 * checkpointed state back and the TM mode.
1575 	 *
1576 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1577 	 * dst is only important for __switch_to()
1578 	 */
1579 	__switch_to_tm(src, src);
1580 
1581 	*dst = *src;
1582 
1583 	clear_task_ebb(dst);
1584 
1585 	return 0;
1586 }
1587 
1588 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1589 {
1590 #ifdef CONFIG_PPC_BOOK3S_64
1591 	unsigned long sp_vsid;
1592 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1593 
1594 	if (radix_enabled())
1595 		return;
1596 
1597 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1598 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1599 			<< SLB_VSID_SHIFT_1T;
1600 	else
1601 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1602 			<< SLB_VSID_SHIFT;
1603 	sp_vsid |= SLB_VSID_KERNEL | llp;
1604 	p->thread.ksp_vsid = sp_vsid;
1605 #endif
1606 }
1607 
1608 /*
1609  * Copy a thread..
1610  */
1611 
1612 /*
1613  * Copy architecture-specific thread state
1614  */
1615 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1616 		unsigned long kthread_arg, struct task_struct *p,
1617 		unsigned long tls)
1618 {
1619 	struct pt_regs *childregs, *kregs;
1620 	extern void ret_from_fork(void);
1621 	extern void ret_from_kernel_thread(void);
1622 	void (*f)(void);
1623 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1624 	struct thread_info *ti = task_thread_info(p);
1625 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1626 	int i;
1627 #endif
1628 
1629 	klp_init_thread_info(p);
1630 
1631 	/* Copy registers */
1632 	sp -= sizeof(struct pt_regs);
1633 	childregs = (struct pt_regs *) sp;
1634 	if (unlikely(p->flags & PF_KTHREAD)) {
1635 		/* kernel thread */
1636 		memset(childregs, 0, sizeof(struct pt_regs));
1637 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1638 		/* function */
1639 		if (usp)
1640 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1641 #ifdef CONFIG_PPC64
1642 		clear_tsk_thread_flag(p, TIF_32BIT);
1643 		childregs->softe = IRQS_ENABLED;
1644 #endif
1645 		childregs->gpr[15] = kthread_arg;
1646 		p->thread.regs = NULL;	/* no user register state */
1647 		ti->flags |= _TIF_RESTOREALL;
1648 		f = ret_from_kernel_thread;
1649 	} else {
1650 		/* user thread */
1651 		struct pt_regs *regs = current_pt_regs();
1652 		CHECK_FULL_REGS(regs);
1653 		*childregs = *regs;
1654 		if (usp)
1655 			childregs->gpr[1] = usp;
1656 		p->thread.regs = childregs;
1657 		childregs->gpr[3] = 0;  /* Result from fork() */
1658 		if (clone_flags & CLONE_SETTLS) {
1659 			if (!is_32bit_task())
1660 				childregs->gpr[13] = tls;
1661 			else
1662 				childregs->gpr[2] = tls;
1663 		}
1664 
1665 		f = ret_from_fork;
1666 	}
1667 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1668 	sp -= STACK_FRAME_OVERHEAD;
1669 
1670 	/*
1671 	 * The way this works is that at some point in the future
1672 	 * some task will call _switch to switch to the new task.
1673 	 * That will pop off the stack frame created below and start
1674 	 * the new task running at ret_from_fork.  The new task will
1675 	 * do some house keeping and then return from the fork or clone
1676 	 * system call, using the stack frame created above.
1677 	 */
1678 	((unsigned long *)sp)[0] = 0;
1679 	sp -= sizeof(struct pt_regs);
1680 	kregs = (struct pt_regs *) sp;
1681 	sp -= STACK_FRAME_OVERHEAD;
1682 	p->thread.ksp = sp;
1683 #ifdef CONFIG_PPC32
1684 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1685 #endif
1686 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1687 	for (i = 0; i < nr_wp_slots(); i++)
1688 		p->thread.ptrace_bps[i] = NULL;
1689 #endif
1690 
1691 	p->thread.fp_save_area = NULL;
1692 #ifdef CONFIG_ALTIVEC
1693 	p->thread.vr_save_area = NULL;
1694 #endif
1695 
1696 	setup_ksp_vsid(p, sp);
1697 
1698 #ifdef CONFIG_PPC64
1699 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1700 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1701 		p->thread.dscr = mfspr(SPRN_DSCR);
1702 	}
1703 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1704 		childregs->ppr = DEFAULT_PPR;
1705 
1706 	p->thread.tidr = 0;
1707 #endif
1708 	kregs->nip = ppc_function_entry(f);
1709 	return 0;
1710 }
1711 
1712 void preload_new_slb_context(unsigned long start, unsigned long sp);
1713 
1714 /*
1715  * Set up a thread for executing a new program
1716  */
1717 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1718 {
1719 #ifdef CONFIG_PPC64
1720 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1721 
1722 #ifdef CONFIG_PPC_BOOK3S_64
1723 	if (!radix_enabled())
1724 		preload_new_slb_context(start, sp);
1725 #endif
1726 #endif
1727 
1728 	/*
1729 	 * If we exec out of a kernel thread then thread.regs will not be
1730 	 * set.  Do it now.
1731 	 */
1732 	if (!current->thread.regs) {
1733 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1734 		current->thread.regs = regs - 1;
1735 	}
1736 
1737 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1738 	/*
1739 	 * Clear any transactional state, we're exec()ing. The cause is
1740 	 * not important as there will never be a recheckpoint so it's not
1741 	 * user visible.
1742 	 */
1743 	if (MSR_TM_SUSPENDED(mfmsr()))
1744 		tm_reclaim_current(0);
1745 #endif
1746 
1747 	memset(regs->gpr, 0, sizeof(regs->gpr));
1748 	regs->ctr = 0;
1749 	regs->link = 0;
1750 	regs->xer = 0;
1751 	regs->ccr = 0;
1752 	regs->gpr[1] = sp;
1753 
1754 	/*
1755 	 * We have just cleared all the nonvolatile GPRs, so make
1756 	 * FULL_REGS(regs) return true.  This is necessary to allow
1757 	 * ptrace to examine the thread immediately after exec.
1758 	 */
1759 	SET_FULL_REGS(regs);
1760 
1761 #ifdef CONFIG_PPC32
1762 	regs->mq = 0;
1763 	regs->nip = start;
1764 	regs->msr = MSR_USER;
1765 #else
1766 	if (!is_32bit_task()) {
1767 		unsigned long entry;
1768 
1769 		if (is_elf2_task()) {
1770 			/* Look ma, no function descriptors! */
1771 			entry = start;
1772 
1773 			/*
1774 			 * Ulrich says:
1775 			 *   The latest iteration of the ABI requires that when
1776 			 *   calling a function (at its global entry point),
1777 			 *   the caller must ensure r12 holds the entry point
1778 			 *   address (so that the function can quickly
1779 			 *   establish addressability).
1780 			 */
1781 			regs->gpr[12] = start;
1782 			/* Make sure that's restored on entry to userspace. */
1783 			set_thread_flag(TIF_RESTOREALL);
1784 		} else {
1785 			unsigned long toc;
1786 
1787 			/* start is a relocated pointer to the function
1788 			 * descriptor for the elf _start routine.  The first
1789 			 * entry in the function descriptor is the entry
1790 			 * address of _start and the second entry is the TOC
1791 			 * value we need to use.
1792 			 */
1793 			__get_user(entry, (unsigned long __user *)start);
1794 			__get_user(toc, (unsigned long __user *)start+1);
1795 
1796 			/* Check whether the e_entry function descriptor entries
1797 			 * need to be relocated before we can use them.
1798 			 */
1799 			if (load_addr != 0) {
1800 				entry += load_addr;
1801 				toc   += load_addr;
1802 			}
1803 			regs->gpr[2] = toc;
1804 		}
1805 		regs->nip = entry;
1806 		regs->msr = MSR_USER64;
1807 	} else {
1808 		regs->nip = start;
1809 		regs->gpr[2] = 0;
1810 		regs->msr = MSR_USER32;
1811 	}
1812 #endif
1813 #ifdef CONFIG_VSX
1814 	current->thread.used_vsr = 0;
1815 #endif
1816 	current->thread.load_slb = 0;
1817 	current->thread.load_fp = 0;
1818 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1819 	current->thread.fp_save_area = NULL;
1820 #ifdef CONFIG_ALTIVEC
1821 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1822 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1823 	current->thread.vr_save_area = NULL;
1824 	current->thread.vrsave = 0;
1825 	current->thread.used_vr = 0;
1826 	current->thread.load_vec = 0;
1827 #endif /* CONFIG_ALTIVEC */
1828 #ifdef CONFIG_SPE
1829 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1830 	current->thread.acc = 0;
1831 	current->thread.spefscr = 0;
1832 	current->thread.used_spe = 0;
1833 #endif /* CONFIG_SPE */
1834 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1835 	current->thread.tm_tfhar = 0;
1836 	current->thread.tm_texasr = 0;
1837 	current->thread.tm_tfiar = 0;
1838 	current->thread.load_tm = 0;
1839 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1840 
1841 	thread_pkey_regs_init(&current->thread);
1842 }
1843 EXPORT_SYMBOL(start_thread);
1844 
1845 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1846 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1847 
1848 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1849 {
1850 	struct pt_regs *regs = tsk->thread.regs;
1851 
1852 	/* This is a bit hairy.  If we are an SPE enabled  processor
1853 	 * (have embedded fp) we store the IEEE exception enable flags in
1854 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1855 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1856 	if (val & PR_FP_EXC_SW_ENABLE) {
1857 #ifdef CONFIG_SPE
1858 		if (cpu_has_feature(CPU_FTR_SPE)) {
1859 			/*
1860 			 * When the sticky exception bits are set
1861 			 * directly by userspace, it must call prctl
1862 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1863 			 * in the existing prctl settings) or
1864 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1865 			 * the bits being set).  <fenv.h> functions
1866 			 * saving and restoring the whole
1867 			 * floating-point environment need to do so
1868 			 * anyway to restore the prctl settings from
1869 			 * the saved environment.
1870 			 */
1871 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1872 			tsk->thread.fpexc_mode = val &
1873 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1874 			return 0;
1875 		} else {
1876 			return -EINVAL;
1877 		}
1878 #else
1879 		return -EINVAL;
1880 #endif
1881 	}
1882 
1883 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1884 	 * __pack_fe01 use do not overlap with bits used for
1885 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1886 	 * on CONFIG_SPE implementations are reserved so writing to
1887 	 * them does not change anything */
1888 	if (val > PR_FP_EXC_PRECISE)
1889 		return -EINVAL;
1890 	tsk->thread.fpexc_mode = __pack_fe01(val);
1891 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1892 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1893 			| tsk->thread.fpexc_mode;
1894 	return 0;
1895 }
1896 
1897 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1898 {
1899 	unsigned int val;
1900 
1901 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1902 #ifdef CONFIG_SPE
1903 		if (cpu_has_feature(CPU_FTR_SPE)) {
1904 			/*
1905 			 * When the sticky exception bits are set
1906 			 * directly by userspace, it must call prctl
1907 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1908 			 * in the existing prctl settings) or
1909 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1910 			 * the bits being set).  <fenv.h> functions
1911 			 * saving and restoring the whole
1912 			 * floating-point environment need to do so
1913 			 * anyway to restore the prctl settings from
1914 			 * the saved environment.
1915 			 */
1916 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1917 			val = tsk->thread.fpexc_mode;
1918 		} else
1919 			return -EINVAL;
1920 #else
1921 		return -EINVAL;
1922 #endif
1923 	else
1924 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1925 	return put_user(val, (unsigned int __user *) adr);
1926 }
1927 
1928 int set_endian(struct task_struct *tsk, unsigned int val)
1929 {
1930 	struct pt_regs *regs = tsk->thread.regs;
1931 
1932 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1933 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1934 		return -EINVAL;
1935 
1936 	if (regs == NULL)
1937 		return -EINVAL;
1938 
1939 	if (val == PR_ENDIAN_BIG)
1940 		regs->msr &= ~MSR_LE;
1941 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1942 		regs->msr |= MSR_LE;
1943 	else
1944 		return -EINVAL;
1945 
1946 	return 0;
1947 }
1948 
1949 int get_endian(struct task_struct *tsk, unsigned long adr)
1950 {
1951 	struct pt_regs *regs = tsk->thread.regs;
1952 	unsigned int val;
1953 
1954 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1955 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1956 		return -EINVAL;
1957 
1958 	if (regs == NULL)
1959 		return -EINVAL;
1960 
1961 	if (regs->msr & MSR_LE) {
1962 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1963 			val = PR_ENDIAN_LITTLE;
1964 		else
1965 			val = PR_ENDIAN_PPC_LITTLE;
1966 	} else
1967 		val = PR_ENDIAN_BIG;
1968 
1969 	return put_user(val, (unsigned int __user *)adr);
1970 }
1971 
1972 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1973 {
1974 	tsk->thread.align_ctl = val;
1975 	return 0;
1976 }
1977 
1978 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1979 {
1980 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1981 }
1982 
1983 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1984 				  unsigned long nbytes)
1985 {
1986 	unsigned long stack_page;
1987 	unsigned long cpu = task_cpu(p);
1988 
1989 	stack_page = (unsigned long)hardirq_ctx[cpu];
1990 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1991 		return 1;
1992 
1993 	stack_page = (unsigned long)softirq_ctx[cpu];
1994 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1995 		return 1;
1996 
1997 	return 0;
1998 }
1999 
2000 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2001 					unsigned long nbytes)
2002 {
2003 #ifdef CONFIG_PPC64
2004 	unsigned long stack_page;
2005 	unsigned long cpu = task_cpu(p);
2006 
2007 	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2008 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2009 		return 1;
2010 
2011 # ifdef CONFIG_PPC_BOOK3S_64
2012 	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2013 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2014 		return 1;
2015 
2016 	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2017 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2018 		return 1;
2019 # endif
2020 #endif
2021 
2022 	return 0;
2023 }
2024 
2025 
2026 int validate_sp(unsigned long sp, struct task_struct *p,
2027 		       unsigned long nbytes)
2028 {
2029 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2030 
2031 	if (sp < THREAD_SIZE)
2032 		return 0;
2033 
2034 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2035 		return 1;
2036 
2037 	if (valid_irq_stack(sp, p, nbytes))
2038 		return 1;
2039 
2040 	return valid_emergency_stack(sp, p, nbytes);
2041 }
2042 
2043 EXPORT_SYMBOL(validate_sp);
2044 
2045 static unsigned long __get_wchan(struct task_struct *p)
2046 {
2047 	unsigned long ip, sp;
2048 	int count = 0;
2049 
2050 	if (!p || p == current || p->state == TASK_RUNNING)
2051 		return 0;
2052 
2053 	sp = p->thread.ksp;
2054 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2055 		return 0;
2056 
2057 	do {
2058 		sp = *(unsigned long *)sp;
2059 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2060 		    p->state == TASK_RUNNING)
2061 			return 0;
2062 		if (count > 0) {
2063 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2064 			if (!in_sched_functions(ip))
2065 				return ip;
2066 		}
2067 	} while (count++ < 16);
2068 	return 0;
2069 }
2070 
2071 unsigned long get_wchan(struct task_struct *p)
2072 {
2073 	unsigned long ret;
2074 
2075 	if (!try_get_task_stack(p))
2076 		return 0;
2077 
2078 	ret = __get_wchan(p);
2079 
2080 	put_task_stack(p);
2081 
2082 	return ret;
2083 }
2084 
2085 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2086 
2087 void show_stack(struct task_struct *tsk, unsigned long *stack,
2088 		const char *loglvl)
2089 {
2090 	unsigned long sp, ip, lr, newsp;
2091 	int count = 0;
2092 	int firstframe = 1;
2093 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2094 	unsigned long ret_addr;
2095 	int ftrace_idx = 0;
2096 #endif
2097 
2098 	if (tsk == NULL)
2099 		tsk = current;
2100 
2101 	if (!try_get_task_stack(tsk))
2102 		return;
2103 
2104 	sp = (unsigned long) stack;
2105 	if (sp == 0) {
2106 		if (tsk == current)
2107 			sp = current_stack_frame();
2108 		else
2109 			sp = tsk->thread.ksp;
2110 	}
2111 
2112 	lr = 0;
2113 	printk("%sCall Trace:\n", loglvl);
2114 	do {
2115 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2116 			break;
2117 
2118 		stack = (unsigned long *) sp;
2119 		newsp = stack[0];
2120 		ip = stack[STACK_FRAME_LR_SAVE];
2121 		if (!firstframe || ip != lr) {
2122 			printk("%s["REG"] ["REG"] %pS",
2123 				loglvl, sp, ip, (void *)ip);
2124 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2125 			ret_addr = ftrace_graph_ret_addr(current,
2126 						&ftrace_idx, ip, stack);
2127 			if (ret_addr != ip)
2128 				pr_cont(" (%pS)", (void *)ret_addr);
2129 #endif
2130 			if (firstframe)
2131 				pr_cont(" (unreliable)");
2132 			pr_cont("\n");
2133 		}
2134 		firstframe = 0;
2135 
2136 		/*
2137 		 * See if this is an exception frame.
2138 		 * We look for the "regshere" marker in the current frame.
2139 		 */
2140 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2141 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2142 			struct pt_regs *regs = (struct pt_regs *)
2143 				(sp + STACK_FRAME_OVERHEAD);
2144 			lr = regs->link;
2145 			printk("%s--- interrupt: %lx at %pS\n    LR = %pS\n",
2146 			       loglvl, regs->trap,
2147 			       (void *)regs->nip, (void *)lr);
2148 			firstframe = 1;
2149 		}
2150 
2151 		sp = newsp;
2152 	} while (count++ < kstack_depth_to_print);
2153 
2154 	put_task_stack(tsk);
2155 }
2156 
2157 #ifdef CONFIG_PPC64
2158 /* Called with hard IRQs off */
2159 void notrace __ppc64_runlatch_on(void)
2160 {
2161 	struct thread_info *ti = current_thread_info();
2162 
2163 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2164 		/*
2165 		 * Least significant bit (RUN) is the only writable bit of
2166 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2167 		 * earliest ISA where this is the case, but it's convenient.
2168 		 */
2169 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2170 	} else {
2171 		unsigned long ctrl;
2172 
2173 		/*
2174 		 * Some architectures (e.g., Cell) have writable fields other
2175 		 * than RUN, so do the read-modify-write.
2176 		 */
2177 		ctrl = mfspr(SPRN_CTRLF);
2178 		ctrl |= CTRL_RUNLATCH;
2179 		mtspr(SPRN_CTRLT, ctrl);
2180 	}
2181 
2182 	ti->local_flags |= _TLF_RUNLATCH;
2183 }
2184 
2185 /* Called with hard IRQs off */
2186 void notrace __ppc64_runlatch_off(void)
2187 {
2188 	struct thread_info *ti = current_thread_info();
2189 
2190 	ti->local_flags &= ~_TLF_RUNLATCH;
2191 
2192 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2193 		mtspr(SPRN_CTRLT, 0);
2194 	} else {
2195 		unsigned long ctrl;
2196 
2197 		ctrl = mfspr(SPRN_CTRLF);
2198 		ctrl &= ~CTRL_RUNLATCH;
2199 		mtspr(SPRN_CTRLT, ctrl);
2200 	}
2201 }
2202 #endif /* CONFIG_PPC64 */
2203 
2204 unsigned long arch_align_stack(unsigned long sp)
2205 {
2206 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2207 		sp -= get_random_int() & ~PAGE_MASK;
2208 	return sp & ~0xf;
2209 }
2210 
2211 static inline unsigned long brk_rnd(void)
2212 {
2213         unsigned long rnd = 0;
2214 
2215 	/* 8MB for 32bit, 1GB for 64bit */
2216 	if (is_32bit_task())
2217 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2218 	else
2219 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2220 
2221 	return rnd << PAGE_SHIFT;
2222 }
2223 
2224 unsigned long arch_randomize_brk(struct mm_struct *mm)
2225 {
2226 	unsigned long base = mm->brk;
2227 	unsigned long ret;
2228 
2229 #ifdef CONFIG_PPC_BOOK3S_64
2230 	/*
2231 	 * If we are using 1TB segments and we are allowed to randomise
2232 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2233 	 * segment. Otherwise the heap will be in the bottom 1TB
2234 	 * which always uses 256MB segments and this may result in a
2235 	 * performance penalty. We don't need to worry about radix. For
2236 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2237 	 */
2238 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2239 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2240 #endif
2241 
2242 	ret = PAGE_ALIGN(base + brk_rnd());
2243 
2244 	if (ret < mm->brk)
2245 		return mm->brk;
2246 
2247 	return ret;
2248 }
2249 
2250