xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision c8dbaa22)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66 
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69 
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76 
77 extern unsigned long _get_SP(void);
78 
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82 	/*
83 	 * If we are saving the current thread's registers, and the
84 	 * thread is in a transactional state, set the TIF_RESTORE_TM
85 	 * bit so that we know to restore the registers before
86 	 * returning to userspace.
87 	 */
88 	if (tsk == current && tsk->thread.regs &&
89 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 	    !test_thread_flag(TIF_RESTORE_TM)) {
91 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 		set_thread_flag(TIF_RESTORE_TM);
93 	}
94 }
95 
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98 	return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104 
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107 
108 static int __init enable_strict_msr_control(char *str)
109 {
110 	strict_msr_control = true;
111 	pr_info("Enabling strict facility control\n");
112 
113 	return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116 
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119 	unsigned long oldmsr = mfmsr();
120 	unsigned long newmsr;
121 
122 	newmsr = oldmsr | bits;
123 
124 #ifdef CONFIG_VSX
125 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 		newmsr |= MSR_VSX;
127 #endif
128 
129 	if (oldmsr != newmsr)
130 		mtmsr_isync(newmsr);
131 
132 	return newmsr;
133 }
134 
135 void __msr_check_and_clear(unsigned long bits)
136 {
137 	unsigned long oldmsr = mfmsr();
138 	unsigned long newmsr;
139 
140 	newmsr = oldmsr & ~bits;
141 
142 #ifdef CONFIG_VSX
143 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 		newmsr &= ~MSR_VSX;
145 #endif
146 
147 	if (oldmsr != newmsr)
148 		mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151 
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155 	unsigned long msr;
156 
157 	save_fpu(tsk);
158 	msr = tsk->thread.regs->msr;
159 	msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161 	if (cpu_has_feature(CPU_FTR_VSX))
162 		msr &= ~MSR_VSX;
163 #endif
164 	tsk->thread.regs->msr = msr;
165 }
166 
167 void giveup_fpu(struct task_struct *tsk)
168 {
169 	check_if_tm_restore_required(tsk);
170 
171 	msr_check_and_set(MSR_FP);
172 	__giveup_fpu(tsk);
173 	msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176 
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183 	if (tsk->thread.regs) {
184 		/*
185 		 * We need to disable preemption here because if we didn't,
186 		 * another process could get scheduled after the regs->msr
187 		 * test but before we have finished saving the FP registers
188 		 * to the thread_struct.  That process could take over the
189 		 * FPU, and then when we get scheduled again we would store
190 		 * bogus values for the remaining FP registers.
191 		 */
192 		preempt_disable();
193 		if (tsk->thread.regs->msr & MSR_FP) {
194 			/*
195 			 * This should only ever be called for current or
196 			 * for a stopped child process.  Since we save away
197 			 * the FP register state on context switch,
198 			 * there is something wrong if a stopped child appears
199 			 * to still have its FP state in the CPU registers.
200 			 */
201 			BUG_ON(tsk != current);
202 			giveup_fpu(tsk);
203 		}
204 		preempt_enable();
205 	}
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 
209 void enable_kernel_fp(void)
210 {
211 	unsigned long cpumsr;
212 
213 	WARN_ON(preemptible());
214 
215 	cpumsr = msr_check_and_set(MSR_FP);
216 
217 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 		check_if_tm_restore_required(current);
219 		/*
220 		 * If a thread has already been reclaimed then the
221 		 * checkpointed registers are on the CPU but have definitely
222 		 * been saved by the reclaim code. Don't need to and *cannot*
223 		 * giveup as this would save  to the 'live' structure not the
224 		 * checkpointed structure.
225 		 */
226 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 			return;
228 		__giveup_fpu(current);
229 	}
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232 
233 static int restore_fp(struct task_struct *tsk) {
234 	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235 		load_fp_state(&current->thread.fp_state);
236 		current->thread.load_fp++;
237 		return 1;
238 	}
239 	return 0;
240 }
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
244 
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
247 
248 static void __giveup_altivec(struct task_struct *tsk)
249 {
250 	unsigned long msr;
251 
252 	save_altivec(tsk);
253 	msr = tsk->thread.regs->msr;
254 	msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256 	if (cpu_has_feature(CPU_FTR_VSX))
257 		msr &= ~MSR_VSX;
258 #endif
259 	tsk->thread.regs->msr = msr;
260 }
261 
262 void giveup_altivec(struct task_struct *tsk)
263 {
264 	check_if_tm_restore_required(tsk);
265 
266 	msr_check_and_set(MSR_VEC);
267 	__giveup_altivec(tsk);
268 	msr_check_and_clear(MSR_VEC);
269 }
270 EXPORT_SYMBOL(giveup_altivec);
271 
272 void enable_kernel_altivec(void)
273 {
274 	unsigned long cpumsr;
275 
276 	WARN_ON(preemptible());
277 
278 	cpumsr = msr_check_and_set(MSR_VEC);
279 
280 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281 		check_if_tm_restore_required(current);
282 		/*
283 		 * If a thread has already been reclaimed then the
284 		 * checkpointed registers are on the CPU but have definitely
285 		 * been saved by the reclaim code. Don't need to and *cannot*
286 		 * giveup as this would save  to the 'live' structure not the
287 		 * checkpointed structure.
288 		 */
289 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290 			return;
291 		__giveup_altivec(current);
292 	}
293 }
294 EXPORT_SYMBOL(enable_kernel_altivec);
295 
296 /*
297  * Make sure the VMX/Altivec register state in the
298  * the thread_struct is up to date for task tsk.
299  */
300 void flush_altivec_to_thread(struct task_struct *tsk)
301 {
302 	if (tsk->thread.regs) {
303 		preempt_disable();
304 		if (tsk->thread.regs->msr & MSR_VEC) {
305 			BUG_ON(tsk != current);
306 			giveup_altivec(tsk);
307 		}
308 		preempt_enable();
309 	}
310 }
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312 
313 static int restore_altivec(struct task_struct *tsk)
314 {
315 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316 		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317 		load_vr_state(&tsk->thread.vr_state);
318 		tsk->thread.used_vr = 1;
319 		tsk->thread.load_vec++;
320 
321 		return 1;
322 	}
323 	return 0;
324 }
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
329 
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
332 {
333 	if (tsk->thread.regs->msr & MSR_FP)
334 		__giveup_fpu(tsk);
335 	if (tsk->thread.regs->msr & MSR_VEC)
336 		__giveup_altivec(tsk);
337 	tsk->thread.regs->msr &= ~MSR_VSX;
338 }
339 
340 static void giveup_vsx(struct task_struct *tsk)
341 {
342 	check_if_tm_restore_required(tsk);
343 
344 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345 	__giveup_vsx(tsk);
346 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347 }
348 
349 static void save_vsx(struct task_struct *tsk)
350 {
351 	if (tsk->thread.regs->msr & MSR_FP)
352 		save_fpu(tsk);
353 	if (tsk->thread.regs->msr & MSR_VEC)
354 		save_altivec(tsk);
355 }
356 
357 void enable_kernel_vsx(void)
358 {
359 	unsigned long cpumsr;
360 
361 	WARN_ON(preemptible());
362 
363 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
364 
365 	if (current->thread.regs &&
366 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
367 		check_if_tm_restore_required(current);
368 		/*
369 		 * If a thread has already been reclaimed then the
370 		 * checkpointed registers are on the CPU but have definitely
371 		 * been saved by the reclaim code. Don't need to and *cannot*
372 		 * giveup as this would save  to the 'live' structure not the
373 		 * checkpointed structure.
374 		 */
375 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
376 			return;
377 		if (current->thread.regs->msr & MSR_FP)
378 			__giveup_fpu(current);
379 		if (current->thread.regs->msr & MSR_VEC)
380 			__giveup_altivec(current);
381 		__giveup_vsx(current);
382 	}
383 }
384 EXPORT_SYMBOL(enable_kernel_vsx);
385 
386 void flush_vsx_to_thread(struct task_struct *tsk)
387 {
388 	if (tsk->thread.regs) {
389 		preempt_disable();
390 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
391 			BUG_ON(tsk != current);
392 			giveup_vsx(tsk);
393 		}
394 		preempt_enable();
395 	}
396 }
397 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
398 
399 static int restore_vsx(struct task_struct *tsk)
400 {
401 	if (cpu_has_feature(CPU_FTR_VSX)) {
402 		tsk->thread.used_vsr = 1;
403 		return 1;
404 	}
405 
406 	return 0;
407 }
408 #else
409 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
410 static inline void save_vsx(struct task_struct *tsk) { }
411 #endif /* CONFIG_VSX */
412 
413 #ifdef CONFIG_SPE
414 void giveup_spe(struct task_struct *tsk)
415 {
416 	check_if_tm_restore_required(tsk);
417 
418 	msr_check_and_set(MSR_SPE);
419 	__giveup_spe(tsk);
420 	msr_check_and_clear(MSR_SPE);
421 }
422 EXPORT_SYMBOL(giveup_spe);
423 
424 void enable_kernel_spe(void)
425 {
426 	WARN_ON(preemptible());
427 
428 	msr_check_and_set(MSR_SPE);
429 
430 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
431 		check_if_tm_restore_required(current);
432 		__giveup_spe(current);
433 	}
434 }
435 EXPORT_SYMBOL(enable_kernel_spe);
436 
437 void flush_spe_to_thread(struct task_struct *tsk)
438 {
439 	if (tsk->thread.regs) {
440 		preempt_disable();
441 		if (tsk->thread.regs->msr & MSR_SPE) {
442 			BUG_ON(tsk != current);
443 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
444 			giveup_spe(tsk);
445 		}
446 		preempt_enable();
447 	}
448 }
449 #endif /* CONFIG_SPE */
450 
451 static unsigned long msr_all_available;
452 
453 static int __init init_msr_all_available(void)
454 {
455 #ifdef CONFIG_PPC_FPU
456 	msr_all_available |= MSR_FP;
457 #endif
458 #ifdef CONFIG_ALTIVEC
459 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
460 		msr_all_available |= MSR_VEC;
461 #endif
462 #ifdef CONFIG_VSX
463 	if (cpu_has_feature(CPU_FTR_VSX))
464 		msr_all_available |= MSR_VSX;
465 #endif
466 #ifdef CONFIG_SPE
467 	if (cpu_has_feature(CPU_FTR_SPE))
468 		msr_all_available |= MSR_SPE;
469 #endif
470 
471 	return 0;
472 }
473 early_initcall(init_msr_all_available);
474 
475 void giveup_all(struct task_struct *tsk)
476 {
477 	unsigned long usermsr;
478 
479 	if (!tsk->thread.regs)
480 		return;
481 
482 	usermsr = tsk->thread.regs->msr;
483 
484 	if ((usermsr & msr_all_available) == 0)
485 		return;
486 
487 	msr_check_and_set(msr_all_available);
488 	check_if_tm_restore_required(tsk);
489 
490 #ifdef CONFIG_PPC_FPU
491 	if (usermsr & MSR_FP)
492 		__giveup_fpu(tsk);
493 #endif
494 #ifdef CONFIG_ALTIVEC
495 	if (usermsr & MSR_VEC)
496 		__giveup_altivec(tsk);
497 #endif
498 #ifdef CONFIG_VSX
499 	if (usermsr & MSR_VSX)
500 		__giveup_vsx(tsk);
501 #endif
502 #ifdef CONFIG_SPE
503 	if (usermsr & MSR_SPE)
504 		__giveup_spe(tsk);
505 #endif
506 
507 	msr_check_and_clear(msr_all_available);
508 }
509 EXPORT_SYMBOL(giveup_all);
510 
511 void restore_math(struct pt_regs *regs)
512 {
513 	unsigned long msr;
514 
515 	if (!msr_tm_active(regs->msr) &&
516 		!current->thread.load_fp && !loadvec(current->thread))
517 		return;
518 
519 	msr = regs->msr;
520 	msr_check_and_set(msr_all_available);
521 
522 	/*
523 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
524 	 * indicates that the registers are hot
525 	 */
526 	if ((!(msr & MSR_FP)) && restore_fp(current))
527 		msr |= MSR_FP | current->thread.fpexc_mode;
528 
529 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
530 		msr |= MSR_VEC;
531 
532 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
533 			restore_vsx(current)) {
534 		msr |= MSR_VSX;
535 	}
536 
537 	msr_check_and_clear(msr_all_available);
538 
539 	regs->msr = msr;
540 }
541 
542 void save_all(struct task_struct *tsk)
543 {
544 	unsigned long usermsr;
545 
546 	if (!tsk->thread.regs)
547 		return;
548 
549 	usermsr = tsk->thread.regs->msr;
550 
551 	if ((usermsr & msr_all_available) == 0)
552 		return;
553 
554 	msr_check_and_set(msr_all_available);
555 
556 	/*
557 	 * Saving the way the register space is in hardware, save_vsx boils
558 	 * down to a save_fpu() and save_altivec()
559 	 */
560 	if (usermsr & MSR_VSX) {
561 		save_vsx(tsk);
562 	} else {
563 		if (usermsr & MSR_FP)
564 			save_fpu(tsk);
565 
566 		if (usermsr & MSR_VEC)
567 			save_altivec(tsk);
568 	}
569 
570 	if (usermsr & MSR_SPE)
571 		__giveup_spe(tsk);
572 
573 	msr_check_and_clear(msr_all_available);
574 }
575 
576 void flush_all_to_thread(struct task_struct *tsk)
577 {
578 	if (tsk->thread.regs) {
579 		preempt_disable();
580 		BUG_ON(tsk != current);
581 		save_all(tsk);
582 
583 #ifdef CONFIG_SPE
584 		if (tsk->thread.regs->msr & MSR_SPE)
585 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
586 #endif
587 
588 		preempt_enable();
589 	}
590 }
591 EXPORT_SYMBOL(flush_all_to_thread);
592 
593 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
594 void do_send_trap(struct pt_regs *regs, unsigned long address,
595 		  unsigned long error_code, int signal_code, int breakpt)
596 {
597 	siginfo_t info;
598 
599 	current->thread.trap_nr = signal_code;
600 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
601 			11, SIGSEGV) == NOTIFY_STOP)
602 		return;
603 
604 	/* Deliver the signal to userspace */
605 	info.si_signo = SIGTRAP;
606 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
607 	info.si_code = signal_code;
608 	info.si_addr = (void __user *)address;
609 	force_sig_info(SIGTRAP, &info, current);
610 }
611 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
612 void do_break (struct pt_regs *regs, unsigned long address,
613 		    unsigned long error_code)
614 {
615 	siginfo_t info;
616 
617 	current->thread.trap_nr = TRAP_HWBKPT;
618 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 			11, SIGSEGV) == NOTIFY_STOP)
620 		return;
621 
622 	if (debugger_break_match(regs))
623 		return;
624 
625 	/* Clear the breakpoint */
626 	hw_breakpoint_disable();
627 
628 	/* Deliver the signal to userspace */
629 	info.si_signo = SIGTRAP;
630 	info.si_errno = 0;
631 	info.si_code = TRAP_HWBKPT;
632 	info.si_addr = (void __user *)address;
633 	force_sig_info(SIGTRAP, &info, current);
634 }
635 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
636 
637 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
638 
639 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
640 /*
641  * Set the debug registers back to their default "safe" values.
642  */
643 static void set_debug_reg_defaults(struct thread_struct *thread)
644 {
645 	thread->debug.iac1 = thread->debug.iac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
647 	thread->debug.iac3 = thread->debug.iac4 = 0;
648 #endif
649 	thread->debug.dac1 = thread->debug.dac2 = 0;
650 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
651 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
652 #endif
653 	thread->debug.dbcr0 = 0;
654 #ifdef CONFIG_BOOKE
655 	/*
656 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
657 	 */
658 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
659 			DBCR1_IAC3US | DBCR1_IAC4US;
660 	/*
661 	 * Force Data Address Compare User/Supervisor bits to be User-only
662 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
663 	 */
664 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
665 #else
666 	thread->debug.dbcr1 = 0;
667 #endif
668 }
669 
670 static void prime_debug_regs(struct debug_reg *debug)
671 {
672 	/*
673 	 * We could have inherited MSR_DE from userspace, since
674 	 * it doesn't get cleared on exception entry.  Make sure
675 	 * MSR_DE is clear before we enable any debug events.
676 	 */
677 	mtmsr(mfmsr() & ~MSR_DE);
678 
679 	mtspr(SPRN_IAC1, debug->iac1);
680 	mtspr(SPRN_IAC2, debug->iac2);
681 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
682 	mtspr(SPRN_IAC3, debug->iac3);
683 	mtspr(SPRN_IAC4, debug->iac4);
684 #endif
685 	mtspr(SPRN_DAC1, debug->dac1);
686 	mtspr(SPRN_DAC2, debug->dac2);
687 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
688 	mtspr(SPRN_DVC1, debug->dvc1);
689 	mtspr(SPRN_DVC2, debug->dvc2);
690 #endif
691 	mtspr(SPRN_DBCR0, debug->dbcr0);
692 	mtspr(SPRN_DBCR1, debug->dbcr1);
693 #ifdef CONFIG_BOOKE
694 	mtspr(SPRN_DBCR2, debug->dbcr2);
695 #endif
696 }
697 /*
698  * Unless neither the old or new thread are making use of the
699  * debug registers, set the debug registers from the values
700  * stored in the new thread.
701  */
702 void switch_booke_debug_regs(struct debug_reg *new_debug)
703 {
704 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
705 		|| (new_debug->dbcr0 & DBCR0_IDM))
706 			prime_debug_regs(new_debug);
707 }
708 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
709 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
710 #ifndef CONFIG_HAVE_HW_BREAKPOINT
711 static void set_debug_reg_defaults(struct thread_struct *thread)
712 {
713 	thread->hw_brk.address = 0;
714 	thread->hw_brk.type = 0;
715 	set_breakpoint(&thread->hw_brk);
716 }
717 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
718 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
719 
720 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
721 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
722 {
723 	mtspr(SPRN_DAC1, dabr);
724 #ifdef CONFIG_PPC_47x
725 	isync();
726 #endif
727 	return 0;
728 }
729 #elif defined(CONFIG_PPC_BOOK3S)
730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
731 {
732 	mtspr(SPRN_DABR, dabr);
733 	if (cpu_has_feature(CPU_FTR_DABRX))
734 		mtspr(SPRN_DABRX, dabrx);
735 	return 0;
736 }
737 #elif defined(CONFIG_PPC_8xx)
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
741 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
742 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
743 
744 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
745 		lctrl1 |= 0xa0000;
746 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
747 		lctrl1 |= 0xf0000;
748 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
749 		lctrl2 = 0;
750 
751 	mtspr(SPRN_LCTRL2, 0);
752 	mtspr(SPRN_CMPE, addr);
753 	mtspr(SPRN_CMPF, addr + 4);
754 	mtspr(SPRN_LCTRL1, lctrl1);
755 	mtspr(SPRN_LCTRL2, lctrl2);
756 
757 	return 0;
758 }
759 #else
760 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
761 {
762 	return -EINVAL;
763 }
764 #endif
765 
766 static inline int set_dabr(struct arch_hw_breakpoint *brk)
767 {
768 	unsigned long dabr, dabrx;
769 
770 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
771 	dabrx = ((brk->type >> 3) & 0x7);
772 
773 	if (ppc_md.set_dabr)
774 		return ppc_md.set_dabr(dabr, dabrx);
775 
776 	return __set_dabr(dabr, dabrx);
777 }
778 
779 static inline int set_dawr(struct arch_hw_breakpoint *brk)
780 {
781 	unsigned long dawr, dawrx, mrd;
782 
783 	dawr = brk->address;
784 
785 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
786 		                   << (63 - 58); //* read/write bits */
787 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
788 		                   << (63 - 59); //* translate */
789 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
790 		                   >> 3; //* PRIM bits */
791 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
792 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
793 	   0b111111=64DW.
794 	   brk->len is in bytes.
795 	   This aligns up to double word size, shifts and does the bias.
796 	*/
797 	mrd = ((brk->len + 7) >> 3) - 1;
798 	dawrx |= (mrd & 0x3f) << (63 - 53);
799 
800 	if (ppc_md.set_dawr)
801 		return ppc_md.set_dawr(dawr, dawrx);
802 	mtspr(SPRN_DAWR, dawr);
803 	mtspr(SPRN_DAWRX, dawrx);
804 	return 0;
805 }
806 
807 void __set_breakpoint(struct arch_hw_breakpoint *brk)
808 {
809 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
810 
811 	if (cpu_has_feature(CPU_FTR_DAWR))
812 		set_dawr(brk);
813 	else
814 		set_dabr(brk);
815 }
816 
817 void set_breakpoint(struct arch_hw_breakpoint *brk)
818 {
819 	preempt_disable();
820 	__set_breakpoint(brk);
821 	preempt_enable();
822 }
823 
824 #ifdef CONFIG_PPC64
825 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
826 #endif
827 
828 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
829 			      struct arch_hw_breakpoint *b)
830 {
831 	if (a->address != b->address)
832 		return false;
833 	if (a->type != b->type)
834 		return false;
835 	if (a->len != b->len)
836 		return false;
837 	return true;
838 }
839 
840 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
841 
842 static inline bool tm_enabled(struct task_struct *tsk)
843 {
844 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
845 }
846 
847 static void tm_reclaim_thread(struct thread_struct *thr,
848 			      struct thread_info *ti, uint8_t cause)
849 {
850 	/*
851 	 * Use the current MSR TM suspended bit to track if we have
852 	 * checkpointed state outstanding.
853 	 * On signal delivery, we'd normally reclaim the checkpointed
854 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
855 	 * This will then directly return to userspace without going
856 	 * through __switch_to(). However, if the stack frame is bad,
857 	 * we need to exit this thread which calls __switch_to() which
858 	 * will again attempt to reclaim the already saved tm state.
859 	 * Hence we need to check that we've not already reclaimed
860 	 * this state.
861 	 * We do this using the current MSR, rather tracking it in
862 	 * some specific thread_struct bit, as it has the additional
863 	 * benefit of checking for a potential TM bad thing exception.
864 	 */
865 	if (!MSR_TM_SUSPENDED(mfmsr()))
866 		return;
867 
868 	/*
869 	 * If we are in a transaction and FP is off then we can't have
870 	 * used FP inside that transaction. Hence the checkpointed
871 	 * state is the same as the live state. We need to copy the
872 	 * live state to the checkpointed state so that when the
873 	 * transaction is restored, the checkpointed state is correct
874 	 * and the aborted transaction sees the correct state. We use
875 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
876 	 * determine if it's going to write the checkpointed state or
877 	 * not. So either this will write the checkpointed registers,
878 	 * or reclaim will. Similarly for VMX.
879 	 */
880 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
881 		memcpy(&thr->ckfp_state, &thr->fp_state,
882 		       sizeof(struct thread_fp_state));
883 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
884 		memcpy(&thr->ckvr_state, &thr->vr_state,
885 		       sizeof(struct thread_vr_state));
886 
887 	giveup_all(container_of(thr, struct task_struct, thread));
888 
889 	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
890 }
891 
892 void tm_reclaim_current(uint8_t cause)
893 {
894 	tm_enable();
895 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
896 }
897 
898 static inline void tm_reclaim_task(struct task_struct *tsk)
899 {
900 	/* We have to work out if we're switching from/to a task that's in the
901 	 * middle of a transaction.
902 	 *
903 	 * In switching we need to maintain a 2nd register state as
904 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
905 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
906 	 * ckvr_state
907 	 *
908 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
909 	 */
910 	struct thread_struct *thr = &tsk->thread;
911 
912 	if (!thr->regs)
913 		return;
914 
915 	if (!MSR_TM_ACTIVE(thr->regs->msr))
916 		goto out_and_saveregs;
917 
918 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
919 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
920 		 tsk->pid, thr->regs->nip,
921 		 thr->regs->ccr, thr->regs->msr,
922 		 thr->regs->trap);
923 
924 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
925 
926 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
927 		 tsk->pid);
928 
929 out_and_saveregs:
930 	/* Always save the regs here, even if a transaction's not active.
931 	 * This context-switches a thread's TM info SPRs.  We do it here to
932 	 * be consistent with the restore path (in recheckpoint) which
933 	 * cannot happen later in _switch().
934 	 */
935 	tm_save_sprs(thr);
936 }
937 
938 extern void __tm_recheckpoint(struct thread_struct *thread,
939 			      unsigned long orig_msr);
940 
941 void tm_recheckpoint(struct thread_struct *thread,
942 		     unsigned long orig_msr)
943 {
944 	unsigned long flags;
945 
946 	if (!(thread->regs->msr & MSR_TM))
947 		return;
948 
949 	/* We really can't be interrupted here as the TEXASR registers can't
950 	 * change and later in the trecheckpoint code, we have a userspace R1.
951 	 * So let's hard disable over this region.
952 	 */
953 	local_irq_save(flags);
954 	hard_irq_disable();
955 
956 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
957 	 * before the trecheckpoint and no explosion occurs.
958 	 */
959 	tm_restore_sprs(thread);
960 
961 	__tm_recheckpoint(thread, orig_msr);
962 
963 	local_irq_restore(flags);
964 }
965 
966 static inline void tm_recheckpoint_new_task(struct task_struct *new)
967 {
968 	unsigned long msr;
969 
970 	if (!cpu_has_feature(CPU_FTR_TM))
971 		return;
972 
973 	/* Recheckpoint the registers of the thread we're about to switch to.
974 	 *
975 	 * If the task was using FP, we non-lazily reload both the original and
976 	 * the speculative FP register states.  This is because the kernel
977 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
978 	 * unavailable later, we are unable to determine which set of FP regs
979 	 * need to be restored.
980 	 */
981 	if (!tm_enabled(new))
982 		return;
983 
984 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
985 		tm_restore_sprs(&new->thread);
986 		return;
987 	}
988 	msr = new->thread.ckpt_regs.msr;
989 	/* Recheckpoint to restore original checkpointed register state. */
990 	TM_DEBUG("*** tm_recheckpoint of pid %d "
991 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
992 		 new->pid, new->thread.regs->msr, msr);
993 
994 	tm_recheckpoint(&new->thread, msr);
995 
996 	/*
997 	 * The checkpointed state has been restored but the live state has
998 	 * not, ensure all the math functionality is turned off to trigger
999 	 * restore_math() to reload.
1000 	 */
1001 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1002 
1003 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1004 		 "(kernel msr 0x%lx)\n",
1005 		 new->pid, mfmsr());
1006 }
1007 
1008 static inline void __switch_to_tm(struct task_struct *prev,
1009 		struct task_struct *new)
1010 {
1011 	if (cpu_has_feature(CPU_FTR_TM)) {
1012 		if (tm_enabled(prev) || tm_enabled(new))
1013 			tm_enable();
1014 
1015 		if (tm_enabled(prev)) {
1016 			prev->thread.load_tm++;
1017 			tm_reclaim_task(prev);
1018 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1019 				prev->thread.regs->msr &= ~MSR_TM;
1020 		}
1021 
1022 		tm_recheckpoint_new_task(new);
1023 	}
1024 }
1025 
1026 /*
1027  * This is called if we are on the way out to userspace and the
1028  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1029  * FP and/or vector state and does so if necessary.
1030  * If userspace is inside a transaction (whether active or
1031  * suspended) and FP/VMX/VSX instructions have ever been enabled
1032  * inside that transaction, then we have to keep them enabled
1033  * and keep the FP/VMX/VSX state loaded while ever the transaction
1034  * continues.  The reason is that if we didn't, and subsequently
1035  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1036  * we don't know whether it's the same transaction, and thus we
1037  * don't know which of the checkpointed state and the transactional
1038  * state to use.
1039  */
1040 void restore_tm_state(struct pt_regs *regs)
1041 {
1042 	unsigned long msr_diff;
1043 
1044 	/*
1045 	 * This is the only moment we should clear TIF_RESTORE_TM as
1046 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1047 	 * again, anything else could lead to an incorrect ckpt_msr being
1048 	 * saved and therefore incorrect signal contexts.
1049 	 */
1050 	clear_thread_flag(TIF_RESTORE_TM);
1051 	if (!MSR_TM_ACTIVE(regs->msr))
1052 		return;
1053 
1054 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1055 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1056 
1057 	/* Ensure that restore_math() will restore */
1058 	if (msr_diff & MSR_FP)
1059 		current->thread.load_fp = 1;
1060 #ifdef CONFIG_ALTIVEC
1061 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1062 		current->thread.load_vec = 1;
1063 #endif
1064 	restore_math(regs);
1065 
1066 	regs->msr |= msr_diff;
1067 }
1068 
1069 #else
1070 #define tm_recheckpoint_new_task(new)
1071 #define __switch_to_tm(prev, new)
1072 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1073 
1074 static inline void save_sprs(struct thread_struct *t)
1075 {
1076 #ifdef CONFIG_ALTIVEC
1077 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1078 		t->vrsave = mfspr(SPRN_VRSAVE);
1079 #endif
1080 #ifdef CONFIG_PPC_BOOK3S_64
1081 	if (cpu_has_feature(CPU_FTR_DSCR))
1082 		t->dscr = mfspr(SPRN_DSCR);
1083 
1084 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1085 		t->bescr = mfspr(SPRN_BESCR);
1086 		t->ebbhr = mfspr(SPRN_EBBHR);
1087 		t->ebbrr = mfspr(SPRN_EBBRR);
1088 
1089 		t->fscr = mfspr(SPRN_FSCR);
1090 
1091 		/*
1092 		 * Note that the TAR is not available for use in the kernel.
1093 		 * (To provide this, the TAR should be backed up/restored on
1094 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1095 		 * this should be in pt_regs anyway (for debug).)
1096 		 */
1097 		t->tar = mfspr(SPRN_TAR);
1098 	}
1099 #endif
1100 }
1101 
1102 static inline void restore_sprs(struct thread_struct *old_thread,
1103 				struct thread_struct *new_thread)
1104 {
1105 #ifdef CONFIG_ALTIVEC
1106 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1107 	    old_thread->vrsave != new_thread->vrsave)
1108 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1109 #endif
1110 #ifdef CONFIG_PPC_BOOK3S_64
1111 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1112 		u64 dscr = get_paca()->dscr_default;
1113 		if (new_thread->dscr_inherit)
1114 			dscr = new_thread->dscr;
1115 
1116 		if (old_thread->dscr != dscr)
1117 			mtspr(SPRN_DSCR, dscr);
1118 	}
1119 
1120 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1121 		if (old_thread->bescr != new_thread->bescr)
1122 			mtspr(SPRN_BESCR, new_thread->bescr);
1123 		if (old_thread->ebbhr != new_thread->ebbhr)
1124 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1125 		if (old_thread->ebbrr != new_thread->ebbrr)
1126 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1127 
1128 		if (old_thread->fscr != new_thread->fscr)
1129 			mtspr(SPRN_FSCR, new_thread->fscr);
1130 
1131 		if (old_thread->tar != new_thread->tar)
1132 			mtspr(SPRN_TAR, new_thread->tar);
1133 	}
1134 #endif
1135 }
1136 
1137 #ifdef CONFIG_PPC_BOOK3S_64
1138 #define CP_SIZE 128
1139 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1140 #endif
1141 
1142 struct task_struct *__switch_to(struct task_struct *prev,
1143 	struct task_struct *new)
1144 {
1145 	struct thread_struct *new_thread, *old_thread;
1146 	struct task_struct *last;
1147 #ifdef CONFIG_PPC_BOOK3S_64
1148 	struct ppc64_tlb_batch *batch;
1149 #endif
1150 
1151 	new_thread = &new->thread;
1152 	old_thread = &current->thread;
1153 
1154 	WARN_ON(!irqs_disabled());
1155 
1156 #ifdef CONFIG_PPC64
1157 	/*
1158 	 * Collect processor utilization data per process
1159 	 */
1160 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1161 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1162 		long unsigned start_tb, current_tb;
1163 		start_tb = old_thread->start_tb;
1164 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1165 		old_thread->accum_tb += (current_tb - start_tb);
1166 		new_thread->start_tb = current_tb;
1167 	}
1168 #endif /* CONFIG_PPC64 */
1169 
1170 #ifdef CONFIG_PPC_STD_MMU_64
1171 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1172 	if (batch->active) {
1173 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1174 		if (batch->index)
1175 			__flush_tlb_pending(batch);
1176 		batch->active = 0;
1177 	}
1178 #endif /* CONFIG_PPC_STD_MMU_64 */
1179 
1180 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1181 	switch_booke_debug_regs(&new->thread.debug);
1182 #else
1183 /*
1184  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1185  * schedule DABR
1186  */
1187 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1188 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1189 		__set_breakpoint(&new->thread.hw_brk);
1190 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1191 #endif
1192 
1193 	/*
1194 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1195 	 * change a number of them.
1196 	 */
1197 	save_sprs(&prev->thread);
1198 
1199 	/* Save FPU, Altivec, VSX and SPE state */
1200 	giveup_all(prev);
1201 
1202 	__switch_to_tm(prev, new);
1203 
1204 	if (!radix_enabled()) {
1205 		/*
1206 		 * We can't take a PMU exception inside _switch() since there
1207 		 * is a window where the kernel stack SLB and the kernel stack
1208 		 * are out of sync. Hard disable here.
1209 		 */
1210 		hard_irq_disable();
1211 	}
1212 
1213 	/*
1214 	 * Call restore_sprs() before calling _switch(). If we move it after
1215 	 * _switch() then we miss out on calling it for new tasks. The reason
1216 	 * for this is we manually create a stack frame for new tasks that
1217 	 * directly returns through ret_from_fork() or
1218 	 * ret_from_kernel_thread(). See copy_thread() for details.
1219 	 */
1220 	restore_sprs(old_thread, new_thread);
1221 
1222 	last = _switch(old_thread, new_thread);
1223 
1224 #ifdef CONFIG_PPC_STD_MMU_64
1225 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1226 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1227 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1228 		batch->active = 1;
1229 	}
1230 
1231 	if (current_thread_info()->task->thread.regs) {
1232 		restore_math(current_thread_info()->task->thread.regs);
1233 
1234 		/*
1235 		 * The copy-paste buffer can only store into foreign real
1236 		 * addresses, so unprivileged processes can not see the
1237 		 * data or use it in any way unless they have foreign real
1238 		 * mappings. We don't have a VAS driver that allocates those
1239 		 * yet, so no cpabort is required.
1240 		 */
1241 		if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1242 			/*
1243 			 * DD1 allows paste into normal system memory, so we
1244 			 * do an unpaired copy here to clear the buffer and
1245 			 * prevent a covert channel being set up.
1246 			 *
1247 			 * cpabort is not used because it is quite expensive.
1248 			 */
1249 			asm volatile(PPC_COPY(%0, %1)
1250 					: : "r"(dummy_copy_buffer), "r"(0));
1251 		}
1252 	}
1253 #endif /* CONFIG_PPC_STD_MMU_64 */
1254 
1255 	return last;
1256 }
1257 
1258 static int instructions_to_print = 16;
1259 
1260 static void show_instructions(struct pt_regs *regs)
1261 {
1262 	int i;
1263 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1264 			sizeof(int));
1265 
1266 	printk("Instruction dump:");
1267 
1268 	for (i = 0; i < instructions_to_print; i++) {
1269 		int instr;
1270 
1271 		if (!(i % 8))
1272 			pr_cont("\n");
1273 
1274 #if !defined(CONFIG_BOOKE)
1275 		/* If executing with the IMMU off, adjust pc rather
1276 		 * than print XXXXXXXX.
1277 		 */
1278 		if (!(regs->msr & MSR_IR))
1279 			pc = (unsigned long)phys_to_virt(pc);
1280 #endif
1281 
1282 		if (!__kernel_text_address(pc) ||
1283 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1284 			pr_cont("XXXXXXXX ");
1285 		} else {
1286 			if (regs->nip == pc)
1287 				pr_cont("<%08x> ", instr);
1288 			else
1289 				pr_cont("%08x ", instr);
1290 		}
1291 
1292 		pc += sizeof(int);
1293 	}
1294 
1295 	pr_cont("\n");
1296 }
1297 
1298 struct regbit {
1299 	unsigned long bit;
1300 	const char *name;
1301 };
1302 
1303 static struct regbit msr_bits[] = {
1304 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1305 	{MSR_SF,	"SF"},
1306 	{MSR_HV,	"HV"},
1307 #endif
1308 	{MSR_VEC,	"VEC"},
1309 	{MSR_VSX,	"VSX"},
1310 #ifdef CONFIG_BOOKE
1311 	{MSR_CE,	"CE"},
1312 #endif
1313 	{MSR_EE,	"EE"},
1314 	{MSR_PR,	"PR"},
1315 	{MSR_FP,	"FP"},
1316 	{MSR_ME,	"ME"},
1317 #ifdef CONFIG_BOOKE
1318 	{MSR_DE,	"DE"},
1319 #else
1320 	{MSR_SE,	"SE"},
1321 	{MSR_BE,	"BE"},
1322 #endif
1323 	{MSR_IR,	"IR"},
1324 	{MSR_DR,	"DR"},
1325 	{MSR_PMM,	"PMM"},
1326 #ifndef CONFIG_BOOKE
1327 	{MSR_RI,	"RI"},
1328 	{MSR_LE,	"LE"},
1329 #endif
1330 	{0,		NULL}
1331 };
1332 
1333 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1334 {
1335 	const char *s = "";
1336 
1337 	for (; bits->bit; ++bits)
1338 		if (val & bits->bit) {
1339 			pr_cont("%s%s", s, bits->name);
1340 			s = sep;
1341 		}
1342 }
1343 
1344 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1345 static struct regbit msr_tm_bits[] = {
1346 	{MSR_TS_T,	"T"},
1347 	{MSR_TS_S,	"S"},
1348 	{MSR_TM,	"E"},
1349 	{0,		NULL}
1350 };
1351 
1352 static void print_tm_bits(unsigned long val)
1353 {
1354 /*
1355  * This only prints something if at least one of the TM bit is set.
1356  * Inside the TM[], the output means:
1357  *   E: Enabled		(bit 32)
1358  *   S: Suspended	(bit 33)
1359  *   T: Transactional	(bit 34)
1360  */
1361 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1362 		pr_cont(",TM[");
1363 		print_bits(val, msr_tm_bits, "");
1364 		pr_cont("]");
1365 	}
1366 }
1367 #else
1368 static void print_tm_bits(unsigned long val) {}
1369 #endif
1370 
1371 static void print_msr_bits(unsigned long val)
1372 {
1373 	pr_cont("<");
1374 	print_bits(val, msr_bits, ",");
1375 	print_tm_bits(val);
1376 	pr_cont(">");
1377 }
1378 
1379 #ifdef CONFIG_PPC64
1380 #define REG		"%016lx"
1381 #define REGS_PER_LINE	4
1382 #define LAST_VOLATILE	13
1383 #else
1384 #define REG		"%08lx"
1385 #define REGS_PER_LINE	8
1386 #define LAST_VOLATILE	12
1387 #endif
1388 
1389 void show_regs(struct pt_regs * regs)
1390 {
1391 	int i, trap;
1392 
1393 	show_regs_print_info(KERN_DEFAULT);
1394 
1395 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1396 	       regs->nip, regs->link, regs->ctr);
1397 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1398 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1399 	printk("MSR: "REG" ", regs->msr);
1400 	print_msr_bits(regs->msr);
1401 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1402 	trap = TRAP(regs);
1403 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1404 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1405 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1406 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1407 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1408 #else
1409 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1410 #endif
1411 #ifdef CONFIG_PPC64
1412 	pr_cont("SOFTE: %ld ", regs->softe);
1413 #endif
1414 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1415 	if (MSR_TM_ACTIVE(regs->msr))
1416 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1417 #endif
1418 
1419 	for (i = 0;  i < 32;  i++) {
1420 		if ((i % REGS_PER_LINE) == 0)
1421 			pr_cont("\nGPR%02d: ", i);
1422 		pr_cont(REG " ", regs->gpr[i]);
1423 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1424 			break;
1425 	}
1426 	pr_cont("\n");
1427 #ifdef CONFIG_KALLSYMS
1428 	/*
1429 	 * Lookup NIP late so we have the best change of getting the
1430 	 * above info out without failing
1431 	 */
1432 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1433 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1434 #endif
1435 	show_stack(current, (unsigned long *) regs->gpr[1]);
1436 	if (!user_mode(regs))
1437 		show_instructions(regs);
1438 }
1439 
1440 void flush_thread(void)
1441 {
1442 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1443 	flush_ptrace_hw_breakpoint(current);
1444 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1445 	set_debug_reg_defaults(&current->thread);
1446 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1447 }
1448 
1449 void
1450 release_thread(struct task_struct *t)
1451 {
1452 }
1453 
1454 /*
1455  * this gets called so that we can store coprocessor state into memory and
1456  * copy the current task into the new thread.
1457  */
1458 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1459 {
1460 	flush_all_to_thread(src);
1461 	/*
1462 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1463 	 * flush but it removes the checkpointed state from the current CPU and
1464 	 * transitions the CPU out of TM mode.  Hence we need to call
1465 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1466 	 * checkpointed state back and the TM mode.
1467 	 *
1468 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1469 	 * dst is only important for __switch_to()
1470 	 */
1471 	__switch_to_tm(src, src);
1472 
1473 	*dst = *src;
1474 
1475 	clear_task_ebb(dst);
1476 
1477 	return 0;
1478 }
1479 
1480 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1481 {
1482 #ifdef CONFIG_PPC_STD_MMU_64
1483 	unsigned long sp_vsid;
1484 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1485 
1486 	if (radix_enabled())
1487 		return;
1488 
1489 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1490 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1491 			<< SLB_VSID_SHIFT_1T;
1492 	else
1493 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1494 			<< SLB_VSID_SHIFT;
1495 	sp_vsid |= SLB_VSID_KERNEL | llp;
1496 	p->thread.ksp_vsid = sp_vsid;
1497 #endif
1498 }
1499 
1500 /*
1501  * Copy a thread..
1502  */
1503 
1504 /*
1505  * Copy architecture-specific thread state
1506  */
1507 int copy_thread(unsigned long clone_flags, unsigned long usp,
1508 		unsigned long kthread_arg, struct task_struct *p)
1509 {
1510 	struct pt_regs *childregs, *kregs;
1511 	extern void ret_from_fork(void);
1512 	extern void ret_from_kernel_thread(void);
1513 	void (*f)(void);
1514 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1515 	struct thread_info *ti = task_thread_info(p);
1516 
1517 	klp_init_thread_info(ti);
1518 
1519 	/* Copy registers */
1520 	sp -= sizeof(struct pt_regs);
1521 	childregs = (struct pt_regs *) sp;
1522 	if (unlikely(p->flags & PF_KTHREAD)) {
1523 		/* kernel thread */
1524 		memset(childregs, 0, sizeof(struct pt_regs));
1525 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1526 		/* function */
1527 		if (usp)
1528 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1529 #ifdef CONFIG_PPC64
1530 		clear_tsk_thread_flag(p, TIF_32BIT);
1531 		childregs->softe = 1;
1532 #endif
1533 		childregs->gpr[15] = kthread_arg;
1534 		p->thread.regs = NULL;	/* no user register state */
1535 		ti->flags |= _TIF_RESTOREALL;
1536 		f = ret_from_kernel_thread;
1537 	} else {
1538 		/* user thread */
1539 		struct pt_regs *regs = current_pt_regs();
1540 		CHECK_FULL_REGS(regs);
1541 		*childregs = *regs;
1542 		if (usp)
1543 			childregs->gpr[1] = usp;
1544 		p->thread.regs = childregs;
1545 		childregs->gpr[3] = 0;  /* Result from fork() */
1546 		if (clone_flags & CLONE_SETTLS) {
1547 #ifdef CONFIG_PPC64
1548 			if (!is_32bit_task())
1549 				childregs->gpr[13] = childregs->gpr[6];
1550 			else
1551 #endif
1552 				childregs->gpr[2] = childregs->gpr[6];
1553 		}
1554 
1555 		f = ret_from_fork;
1556 	}
1557 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1558 	sp -= STACK_FRAME_OVERHEAD;
1559 
1560 	/*
1561 	 * The way this works is that at some point in the future
1562 	 * some task will call _switch to switch to the new task.
1563 	 * That will pop off the stack frame created below and start
1564 	 * the new task running at ret_from_fork.  The new task will
1565 	 * do some house keeping and then return from the fork or clone
1566 	 * system call, using the stack frame created above.
1567 	 */
1568 	((unsigned long *)sp)[0] = 0;
1569 	sp -= sizeof(struct pt_regs);
1570 	kregs = (struct pt_regs *) sp;
1571 	sp -= STACK_FRAME_OVERHEAD;
1572 	p->thread.ksp = sp;
1573 #ifdef CONFIG_PPC32
1574 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1575 				_ALIGN_UP(sizeof(struct thread_info), 16);
1576 #endif
1577 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1578 	p->thread.ptrace_bps[0] = NULL;
1579 #endif
1580 
1581 	p->thread.fp_save_area = NULL;
1582 #ifdef CONFIG_ALTIVEC
1583 	p->thread.vr_save_area = NULL;
1584 #endif
1585 
1586 	setup_ksp_vsid(p, sp);
1587 
1588 #ifdef CONFIG_PPC64
1589 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1590 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1591 		p->thread.dscr = mfspr(SPRN_DSCR);
1592 	}
1593 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1594 		p->thread.ppr = INIT_PPR;
1595 #endif
1596 	kregs->nip = ppc_function_entry(f);
1597 	return 0;
1598 }
1599 
1600 /*
1601  * Set up a thread for executing a new program
1602  */
1603 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1604 {
1605 #ifdef CONFIG_PPC64
1606 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1607 #endif
1608 
1609 	/*
1610 	 * If we exec out of a kernel thread then thread.regs will not be
1611 	 * set.  Do it now.
1612 	 */
1613 	if (!current->thread.regs) {
1614 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1615 		current->thread.regs = regs - 1;
1616 	}
1617 
1618 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1619 	/*
1620 	 * Clear any transactional state, we're exec()ing. The cause is
1621 	 * not important as there will never be a recheckpoint so it's not
1622 	 * user visible.
1623 	 */
1624 	if (MSR_TM_SUSPENDED(mfmsr()))
1625 		tm_reclaim_current(0);
1626 #endif
1627 
1628 	memset(regs->gpr, 0, sizeof(regs->gpr));
1629 	regs->ctr = 0;
1630 	regs->link = 0;
1631 	regs->xer = 0;
1632 	regs->ccr = 0;
1633 	regs->gpr[1] = sp;
1634 
1635 	/*
1636 	 * We have just cleared all the nonvolatile GPRs, so make
1637 	 * FULL_REGS(regs) return true.  This is necessary to allow
1638 	 * ptrace to examine the thread immediately after exec.
1639 	 */
1640 	regs->trap &= ~1UL;
1641 
1642 #ifdef CONFIG_PPC32
1643 	regs->mq = 0;
1644 	regs->nip = start;
1645 	regs->msr = MSR_USER;
1646 #else
1647 	if (!is_32bit_task()) {
1648 		unsigned long entry;
1649 
1650 		if (is_elf2_task()) {
1651 			/* Look ma, no function descriptors! */
1652 			entry = start;
1653 
1654 			/*
1655 			 * Ulrich says:
1656 			 *   The latest iteration of the ABI requires that when
1657 			 *   calling a function (at its global entry point),
1658 			 *   the caller must ensure r12 holds the entry point
1659 			 *   address (so that the function can quickly
1660 			 *   establish addressability).
1661 			 */
1662 			regs->gpr[12] = start;
1663 			/* Make sure that's restored on entry to userspace. */
1664 			set_thread_flag(TIF_RESTOREALL);
1665 		} else {
1666 			unsigned long toc;
1667 
1668 			/* start is a relocated pointer to the function
1669 			 * descriptor for the elf _start routine.  The first
1670 			 * entry in the function descriptor is the entry
1671 			 * address of _start and the second entry is the TOC
1672 			 * value we need to use.
1673 			 */
1674 			__get_user(entry, (unsigned long __user *)start);
1675 			__get_user(toc, (unsigned long __user *)start+1);
1676 
1677 			/* Check whether the e_entry function descriptor entries
1678 			 * need to be relocated before we can use them.
1679 			 */
1680 			if (load_addr != 0) {
1681 				entry += load_addr;
1682 				toc   += load_addr;
1683 			}
1684 			regs->gpr[2] = toc;
1685 		}
1686 		regs->nip = entry;
1687 		regs->msr = MSR_USER64;
1688 	} else {
1689 		regs->nip = start;
1690 		regs->gpr[2] = 0;
1691 		regs->msr = MSR_USER32;
1692 	}
1693 #endif
1694 #ifdef CONFIG_VSX
1695 	current->thread.used_vsr = 0;
1696 #endif
1697 	current->thread.load_fp = 0;
1698 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1699 	current->thread.fp_save_area = NULL;
1700 #ifdef CONFIG_ALTIVEC
1701 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1702 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1703 	current->thread.vr_save_area = NULL;
1704 	current->thread.vrsave = 0;
1705 	current->thread.used_vr = 0;
1706 	current->thread.load_vec = 0;
1707 #endif /* CONFIG_ALTIVEC */
1708 #ifdef CONFIG_SPE
1709 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1710 	current->thread.acc = 0;
1711 	current->thread.spefscr = 0;
1712 	current->thread.used_spe = 0;
1713 #endif /* CONFIG_SPE */
1714 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1715 	current->thread.tm_tfhar = 0;
1716 	current->thread.tm_texasr = 0;
1717 	current->thread.tm_tfiar = 0;
1718 	current->thread.load_tm = 0;
1719 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1720 }
1721 EXPORT_SYMBOL(start_thread);
1722 
1723 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1724 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1725 
1726 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1727 {
1728 	struct pt_regs *regs = tsk->thread.regs;
1729 
1730 	/* This is a bit hairy.  If we are an SPE enabled  processor
1731 	 * (have embedded fp) we store the IEEE exception enable flags in
1732 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1733 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1734 	if (val & PR_FP_EXC_SW_ENABLE) {
1735 #ifdef CONFIG_SPE
1736 		if (cpu_has_feature(CPU_FTR_SPE)) {
1737 			/*
1738 			 * When the sticky exception bits are set
1739 			 * directly by userspace, it must call prctl
1740 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1741 			 * in the existing prctl settings) or
1742 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1743 			 * the bits being set).  <fenv.h> functions
1744 			 * saving and restoring the whole
1745 			 * floating-point environment need to do so
1746 			 * anyway to restore the prctl settings from
1747 			 * the saved environment.
1748 			 */
1749 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1750 			tsk->thread.fpexc_mode = val &
1751 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1752 			return 0;
1753 		} else {
1754 			return -EINVAL;
1755 		}
1756 #else
1757 		return -EINVAL;
1758 #endif
1759 	}
1760 
1761 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1762 	 * __pack_fe01 use do not overlap with bits used for
1763 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1764 	 * on CONFIG_SPE implementations are reserved so writing to
1765 	 * them does not change anything */
1766 	if (val > PR_FP_EXC_PRECISE)
1767 		return -EINVAL;
1768 	tsk->thread.fpexc_mode = __pack_fe01(val);
1769 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1770 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1771 			| tsk->thread.fpexc_mode;
1772 	return 0;
1773 }
1774 
1775 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1776 {
1777 	unsigned int val;
1778 
1779 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1780 #ifdef CONFIG_SPE
1781 		if (cpu_has_feature(CPU_FTR_SPE)) {
1782 			/*
1783 			 * When the sticky exception bits are set
1784 			 * directly by userspace, it must call prctl
1785 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1786 			 * in the existing prctl settings) or
1787 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1788 			 * the bits being set).  <fenv.h> functions
1789 			 * saving and restoring the whole
1790 			 * floating-point environment need to do so
1791 			 * anyway to restore the prctl settings from
1792 			 * the saved environment.
1793 			 */
1794 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1795 			val = tsk->thread.fpexc_mode;
1796 		} else
1797 			return -EINVAL;
1798 #else
1799 		return -EINVAL;
1800 #endif
1801 	else
1802 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1803 	return put_user(val, (unsigned int __user *) adr);
1804 }
1805 
1806 int set_endian(struct task_struct *tsk, unsigned int val)
1807 {
1808 	struct pt_regs *regs = tsk->thread.regs;
1809 
1810 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1811 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1812 		return -EINVAL;
1813 
1814 	if (regs == NULL)
1815 		return -EINVAL;
1816 
1817 	if (val == PR_ENDIAN_BIG)
1818 		regs->msr &= ~MSR_LE;
1819 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1820 		regs->msr |= MSR_LE;
1821 	else
1822 		return -EINVAL;
1823 
1824 	return 0;
1825 }
1826 
1827 int get_endian(struct task_struct *tsk, unsigned long adr)
1828 {
1829 	struct pt_regs *regs = tsk->thread.regs;
1830 	unsigned int val;
1831 
1832 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1833 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1834 		return -EINVAL;
1835 
1836 	if (regs == NULL)
1837 		return -EINVAL;
1838 
1839 	if (regs->msr & MSR_LE) {
1840 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1841 			val = PR_ENDIAN_LITTLE;
1842 		else
1843 			val = PR_ENDIAN_PPC_LITTLE;
1844 	} else
1845 		val = PR_ENDIAN_BIG;
1846 
1847 	return put_user(val, (unsigned int __user *)adr);
1848 }
1849 
1850 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1851 {
1852 	tsk->thread.align_ctl = val;
1853 	return 0;
1854 }
1855 
1856 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1857 {
1858 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1859 }
1860 
1861 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1862 				  unsigned long nbytes)
1863 {
1864 	unsigned long stack_page;
1865 	unsigned long cpu = task_cpu(p);
1866 
1867 	/*
1868 	 * Avoid crashing if the stack has overflowed and corrupted
1869 	 * task_cpu(p), which is in the thread_info struct.
1870 	 */
1871 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1872 		stack_page = (unsigned long) hardirq_ctx[cpu];
1873 		if (sp >= stack_page + sizeof(struct thread_struct)
1874 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1875 			return 1;
1876 
1877 		stack_page = (unsigned long) softirq_ctx[cpu];
1878 		if (sp >= stack_page + sizeof(struct thread_struct)
1879 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1880 			return 1;
1881 	}
1882 	return 0;
1883 }
1884 
1885 int validate_sp(unsigned long sp, struct task_struct *p,
1886 		       unsigned long nbytes)
1887 {
1888 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1889 
1890 	if (sp >= stack_page + sizeof(struct thread_struct)
1891 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1892 		return 1;
1893 
1894 	return valid_irq_stack(sp, p, nbytes);
1895 }
1896 
1897 EXPORT_SYMBOL(validate_sp);
1898 
1899 unsigned long get_wchan(struct task_struct *p)
1900 {
1901 	unsigned long ip, sp;
1902 	int count = 0;
1903 
1904 	if (!p || p == current || p->state == TASK_RUNNING)
1905 		return 0;
1906 
1907 	sp = p->thread.ksp;
1908 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1909 		return 0;
1910 
1911 	do {
1912 		sp = *(unsigned long *)sp;
1913 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1914 			return 0;
1915 		if (count > 0) {
1916 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1917 			if (!in_sched_functions(ip))
1918 				return ip;
1919 		}
1920 	} while (count++ < 16);
1921 	return 0;
1922 }
1923 
1924 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1925 
1926 void show_stack(struct task_struct *tsk, unsigned long *stack)
1927 {
1928 	unsigned long sp, ip, lr, newsp;
1929 	int count = 0;
1930 	int firstframe = 1;
1931 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1932 	int curr_frame = current->curr_ret_stack;
1933 	extern void return_to_handler(void);
1934 	unsigned long rth = (unsigned long)return_to_handler;
1935 #endif
1936 
1937 	sp = (unsigned long) stack;
1938 	if (tsk == NULL)
1939 		tsk = current;
1940 	if (sp == 0) {
1941 		if (tsk == current)
1942 			sp = current_stack_pointer();
1943 		else
1944 			sp = tsk->thread.ksp;
1945 	}
1946 
1947 	lr = 0;
1948 	printk("Call Trace:\n");
1949 	do {
1950 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1951 			return;
1952 
1953 		stack = (unsigned long *) sp;
1954 		newsp = stack[0];
1955 		ip = stack[STACK_FRAME_LR_SAVE];
1956 		if (!firstframe || ip != lr) {
1957 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1958 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1959 			if ((ip == rth) && curr_frame >= 0) {
1960 				pr_cont(" (%pS)",
1961 				       (void *)current->ret_stack[curr_frame].ret);
1962 				curr_frame--;
1963 			}
1964 #endif
1965 			if (firstframe)
1966 				pr_cont(" (unreliable)");
1967 			pr_cont("\n");
1968 		}
1969 		firstframe = 0;
1970 
1971 		/*
1972 		 * See if this is an exception frame.
1973 		 * We look for the "regshere" marker in the current frame.
1974 		 */
1975 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1976 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1977 			struct pt_regs *regs = (struct pt_regs *)
1978 				(sp + STACK_FRAME_OVERHEAD);
1979 			lr = regs->link;
1980 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1981 			       regs->trap, (void *)regs->nip, (void *)lr);
1982 			firstframe = 1;
1983 		}
1984 
1985 		sp = newsp;
1986 	} while (count++ < kstack_depth_to_print);
1987 }
1988 
1989 #ifdef CONFIG_PPC64
1990 /* Called with hard IRQs off */
1991 void notrace __ppc64_runlatch_on(void)
1992 {
1993 	struct thread_info *ti = current_thread_info();
1994 	unsigned long ctrl;
1995 
1996 	ctrl = mfspr(SPRN_CTRLF);
1997 	ctrl |= CTRL_RUNLATCH;
1998 	mtspr(SPRN_CTRLT, ctrl);
1999 
2000 	ti->local_flags |= _TLF_RUNLATCH;
2001 }
2002 
2003 /* Called with hard IRQs off */
2004 void notrace __ppc64_runlatch_off(void)
2005 {
2006 	struct thread_info *ti = current_thread_info();
2007 	unsigned long ctrl;
2008 
2009 	ti->local_flags &= ~_TLF_RUNLATCH;
2010 
2011 	ctrl = mfspr(SPRN_CTRLF);
2012 	ctrl &= ~CTRL_RUNLATCH;
2013 	mtspr(SPRN_CTRLT, ctrl);
2014 }
2015 #endif /* CONFIG_PPC64 */
2016 
2017 unsigned long arch_align_stack(unsigned long sp)
2018 {
2019 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2020 		sp -= get_random_int() & ~PAGE_MASK;
2021 	return sp & ~0xf;
2022 }
2023 
2024 static inline unsigned long brk_rnd(void)
2025 {
2026         unsigned long rnd = 0;
2027 
2028 	/* 8MB for 32bit, 1GB for 64bit */
2029 	if (is_32bit_task())
2030 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2031 	else
2032 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2033 
2034 	return rnd << PAGE_SHIFT;
2035 }
2036 
2037 unsigned long arch_randomize_brk(struct mm_struct *mm)
2038 {
2039 	unsigned long base = mm->brk;
2040 	unsigned long ret;
2041 
2042 #ifdef CONFIG_PPC_STD_MMU_64
2043 	/*
2044 	 * If we are using 1TB segments and we are allowed to randomise
2045 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2046 	 * segment. Otherwise the heap will be in the bottom 1TB
2047 	 * which always uses 256MB segments and this may result in a
2048 	 * performance penalty. We don't need to worry about radix. For
2049 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2050 	 */
2051 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2052 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2053 #endif
2054 
2055 	ret = PAGE_ALIGN(base + brk_rnd());
2056 
2057 	if (ret < mm->brk)
2058 		return mm->brk;
2059 
2060 	return ret;
2061 }
2062 
2063