1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 46 #include <asm/pgtable.h> 47 #include <asm/io.h> 48 #include <asm/processor.h> 49 #include <asm/mmu.h> 50 #include <asm/prom.h> 51 #include <asm/machdep.h> 52 #include <asm/time.h> 53 #include <asm/runlatch.h> 54 #include <asm/syscalls.h> 55 #include <asm/switch_to.h> 56 #include <asm/tm.h> 57 #include <asm/debug.h> 58 #ifdef CONFIG_PPC64 59 #include <asm/firmware.h> 60 #endif 61 #include <asm/code-patching.h> 62 #include <asm/exec.h> 63 #include <asm/livepatch.h> 64 #include <asm/cpu_has_feature.h> 65 #include <asm/asm-prototypes.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 static void check_if_tm_restore_required(struct task_struct *tsk) 81 { 82 /* 83 * If we are saving the current thread's registers, and the 84 * thread is in a transactional state, set the TIF_RESTORE_TM 85 * bit so that we know to restore the registers before 86 * returning to userspace. 87 */ 88 if (tsk == current && tsk->thread.regs && 89 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 90 !test_thread_flag(TIF_RESTORE_TM)) { 91 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 92 set_thread_flag(TIF_RESTORE_TM); 93 } 94 } 95 96 static inline bool msr_tm_active(unsigned long msr) 97 { 98 return MSR_TM_ACTIVE(msr); 99 } 100 #else 101 static inline bool msr_tm_active(unsigned long msr) { return false; } 102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 104 105 bool strict_msr_control; 106 EXPORT_SYMBOL(strict_msr_control); 107 108 static int __init enable_strict_msr_control(char *str) 109 { 110 strict_msr_control = true; 111 pr_info("Enabling strict facility control\n"); 112 113 return 0; 114 } 115 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 116 117 unsigned long msr_check_and_set(unsigned long bits) 118 { 119 unsigned long oldmsr = mfmsr(); 120 unsigned long newmsr; 121 122 newmsr = oldmsr | bits; 123 124 #ifdef CONFIG_VSX 125 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 126 newmsr |= MSR_VSX; 127 #endif 128 129 if (oldmsr != newmsr) 130 mtmsr_isync(newmsr); 131 132 return newmsr; 133 } 134 135 void __msr_check_and_clear(unsigned long bits) 136 { 137 unsigned long oldmsr = mfmsr(); 138 unsigned long newmsr; 139 140 newmsr = oldmsr & ~bits; 141 142 #ifdef CONFIG_VSX 143 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 144 newmsr &= ~MSR_VSX; 145 #endif 146 147 if (oldmsr != newmsr) 148 mtmsr_isync(newmsr); 149 } 150 EXPORT_SYMBOL(__msr_check_and_clear); 151 152 #ifdef CONFIG_PPC_FPU 153 void __giveup_fpu(struct task_struct *tsk) 154 { 155 unsigned long msr; 156 157 save_fpu(tsk); 158 msr = tsk->thread.regs->msr; 159 msr &= ~MSR_FP; 160 #ifdef CONFIG_VSX 161 if (cpu_has_feature(CPU_FTR_VSX)) 162 msr &= ~MSR_VSX; 163 #endif 164 tsk->thread.regs->msr = msr; 165 } 166 167 void giveup_fpu(struct task_struct *tsk) 168 { 169 check_if_tm_restore_required(tsk); 170 171 msr_check_and_set(MSR_FP); 172 __giveup_fpu(tsk); 173 msr_check_and_clear(MSR_FP); 174 } 175 EXPORT_SYMBOL(giveup_fpu); 176 177 /* 178 * Make sure the floating-point register state in the 179 * the thread_struct is up to date for task tsk. 180 */ 181 void flush_fp_to_thread(struct task_struct *tsk) 182 { 183 if (tsk->thread.regs) { 184 /* 185 * We need to disable preemption here because if we didn't, 186 * another process could get scheduled after the regs->msr 187 * test but before we have finished saving the FP registers 188 * to the thread_struct. That process could take over the 189 * FPU, and then when we get scheduled again we would store 190 * bogus values for the remaining FP registers. 191 */ 192 preempt_disable(); 193 if (tsk->thread.regs->msr & MSR_FP) { 194 /* 195 * This should only ever be called for current or 196 * for a stopped child process. Since we save away 197 * the FP register state on context switch, 198 * there is something wrong if a stopped child appears 199 * to still have its FP state in the CPU registers. 200 */ 201 BUG_ON(tsk != current); 202 giveup_fpu(tsk); 203 } 204 preempt_enable(); 205 } 206 } 207 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 208 209 void enable_kernel_fp(void) 210 { 211 unsigned long cpumsr; 212 213 WARN_ON(preemptible()); 214 215 cpumsr = msr_check_and_set(MSR_FP); 216 217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 218 check_if_tm_restore_required(current); 219 /* 220 * If a thread has already been reclaimed then the 221 * checkpointed registers are on the CPU but have definitely 222 * been saved by the reclaim code. Don't need to and *cannot* 223 * giveup as this would save to the 'live' structure not the 224 * checkpointed structure. 225 */ 226 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 227 return; 228 __giveup_fpu(current); 229 } 230 } 231 EXPORT_SYMBOL(enable_kernel_fp); 232 233 static int restore_fp(struct task_struct *tsk) { 234 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) { 235 load_fp_state(¤t->thread.fp_state); 236 current->thread.load_fp++; 237 return 1; 238 } 239 return 0; 240 } 241 #else 242 static int restore_fp(struct task_struct *tsk) { return 0; } 243 #endif /* CONFIG_PPC_FPU */ 244 245 #ifdef CONFIG_ALTIVEC 246 #define loadvec(thr) ((thr).load_vec) 247 248 static void __giveup_altivec(struct task_struct *tsk) 249 { 250 unsigned long msr; 251 252 save_altivec(tsk); 253 msr = tsk->thread.regs->msr; 254 msr &= ~MSR_VEC; 255 #ifdef CONFIG_VSX 256 if (cpu_has_feature(CPU_FTR_VSX)) 257 msr &= ~MSR_VSX; 258 #endif 259 tsk->thread.regs->msr = msr; 260 } 261 262 void giveup_altivec(struct task_struct *tsk) 263 { 264 check_if_tm_restore_required(tsk); 265 266 msr_check_and_set(MSR_VEC); 267 __giveup_altivec(tsk); 268 msr_check_and_clear(MSR_VEC); 269 } 270 EXPORT_SYMBOL(giveup_altivec); 271 272 void enable_kernel_altivec(void) 273 { 274 unsigned long cpumsr; 275 276 WARN_ON(preemptible()); 277 278 cpumsr = msr_check_and_set(MSR_VEC); 279 280 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 281 check_if_tm_restore_required(current); 282 /* 283 * If a thread has already been reclaimed then the 284 * checkpointed registers are on the CPU but have definitely 285 * been saved by the reclaim code. Don't need to and *cannot* 286 * giveup as this would save to the 'live' structure not the 287 * checkpointed structure. 288 */ 289 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 290 return; 291 __giveup_altivec(current); 292 } 293 } 294 EXPORT_SYMBOL(enable_kernel_altivec); 295 296 /* 297 * Make sure the VMX/Altivec register state in the 298 * the thread_struct is up to date for task tsk. 299 */ 300 void flush_altivec_to_thread(struct task_struct *tsk) 301 { 302 if (tsk->thread.regs) { 303 preempt_disable(); 304 if (tsk->thread.regs->msr & MSR_VEC) { 305 BUG_ON(tsk != current); 306 giveup_altivec(tsk); 307 } 308 preempt_enable(); 309 } 310 } 311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 312 313 static int restore_altivec(struct task_struct *tsk) 314 { 315 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 316 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) { 317 load_vr_state(&tsk->thread.vr_state); 318 tsk->thread.used_vr = 1; 319 tsk->thread.load_vec++; 320 321 return 1; 322 } 323 return 0; 324 } 325 #else 326 #define loadvec(thr) 0 327 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 328 #endif /* CONFIG_ALTIVEC */ 329 330 #ifdef CONFIG_VSX 331 static void __giveup_vsx(struct task_struct *tsk) 332 { 333 if (tsk->thread.regs->msr & MSR_FP) 334 __giveup_fpu(tsk); 335 if (tsk->thread.regs->msr & MSR_VEC) 336 __giveup_altivec(tsk); 337 tsk->thread.regs->msr &= ~MSR_VSX; 338 } 339 340 static void giveup_vsx(struct task_struct *tsk) 341 { 342 check_if_tm_restore_required(tsk); 343 344 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 345 __giveup_vsx(tsk); 346 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 347 } 348 349 static void save_vsx(struct task_struct *tsk) 350 { 351 if (tsk->thread.regs->msr & MSR_FP) 352 save_fpu(tsk); 353 if (tsk->thread.regs->msr & MSR_VEC) 354 save_altivec(tsk); 355 } 356 357 void enable_kernel_vsx(void) 358 { 359 unsigned long cpumsr; 360 361 WARN_ON(preemptible()); 362 363 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 364 365 if (current->thread.regs && 366 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 367 check_if_tm_restore_required(current); 368 /* 369 * If a thread has already been reclaimed then the 370 * checkpointed registers are on the CPU but have definitely 371 * been saved by the reclaim code. Don't need to and *cannot* 372 * giveup as this would save to the 'live' structure not the 373 * checkpointed structure. 374 */ 375 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 376 return; 377 if (current->thread.regs->msr & MSR_FP) 378 __giveup_fpu(current); 379 if (current->thread.regs->msr & MSR_VEC) 380 __giveup_altivec(current); 381 __giveup_vsx(current); 382 } 383 } 384 EXPORT_SYMBOL(enable_kernel_vsx); 385 386 void flush_vsx_to_thread(struct task_struct *tsk) 387 { 388 if (tsk->thread.regs) { 389 preempt_disable(); 390 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 391 BUG_ON(tsk != current); 392 giveup_vsx(tsk); 393 } 394 preempt_enable(); 395 } 396 } 397 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 398 399 static int restore_vsx(struct task_struct *tsk) 400 { 401 if (cpu_has_feature(CPU_FTR_VSX)) { 402 tsk->thread.used_vsr = 1; 403 return 1; 404 } 405 406 return 0; 407 } 408 #else 409 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 410 static inline void save_vsx(struct task_struct *tsk) { } 411 #endif /* CONFIG_VSX */ 412 413 #ifdef CONFIG_SPE 414 void giveup_spe(struct task_struct *tsk) 415 { 416 check_if_tm_restore_required(tsk); 417 418 msr_check_and_set(MSR_SPE); 419 __giveup_spe(tsk); 420 msr_check_and_clear(MSR_SPE); 421 } 422 EXPORT_SYMBOL(giveup_spe); 423 424 void enable_kernel_spe(void) 425 { 426 WARN_ON(preemptible()); 427 428 msr_check_and_set(MSR_SPE); 429 430 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 431 check_if_tm_restore_required(current); 432 __giveup_spe(current); 433 } 434 } 435 EXPORT_SYMBOL(enable_kernel_spe); 436 437 void flush_spe_to_thread(struct task_struct *tsk) 438 { 439 if (tsk->thread.regs) { 440 preempt_disable(); 441 if (tsk->thread.regs->msr & MSR_SPE) { 442 BUG_ON(tsk != current); 443 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 444 giveup_spe(tsk); 445 } 446 preempt_enable(); 447 } 448 } 449 #endif /* CONFIG_SPE */ 450 451 static unsigned long msr_all_available; 452 453 static int __init init_msr_all_available(void) 454 { 455 #ifdef CONFIG_PPC_FPU 456 msr_all_available |= MSR_FP; 457 #endif 458 #ifdef CONFIG_ALTIVEC 459 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 460 msr_all_available |= MSR_VEC; 461 #endif 462 #ifdef CONFIG_VSX 463 if (cpu_has_feature(CPU_FTR_VSX)) 464 msr_all_available |= MSR_VSX; 465 #endif 466 #ifdef CONFIG_SPE 467 if (cpu_has_feature(CPU_FTR_SPE)) 468 msr_all_available |= MSR_SPE; 469 #endif 470 471 return 0; 472 } 473 early_initcall(init_msr_all_available); 474 475 void giveup_all(struct task_struct *tsk) 476 { 477 unsigned long usermsr; 478 479 if (!tsk->thread.regs) 480 return; 481 482 usermsr = tsk->thread.regs->msr; 483 484 if ((usermsr & msr_all_available) == 0) 485 return; 486 487 msr_check_and_set(msr_all_available); 488 check_if_tm_restore_required(tsk); 489 490 #ifdef CONFIG_PPC_FPU 491 if (usermsr & MSR_FP) 492 __giveup_fpu(tsk); 493 #endif 494 #ifdef CONFIG_ALTIVEC 495 if (usermsr & MSR_VEC) 496 __giveup_altivec(tsk); 497 #endif 498 #ifdef CONFIG_VSX 499 if (usermsr & MSR_VSX) 500 __giveup_vsx(tsk); 501 #endif 502 #ifdef CONFIG_SPE 503 if (usermsr & MSR_SPE) 504 __giveup_spe(tsk); 505 #endif 506 507 msr_check_and_clear(msr_all_available); 508 } 509 EXPORT_SYMBOL(giveup_all); 510 511 void restore_math(struct pt_regs *regs) 512 { 513 unsigned long msr; 514 515 if (!msr_tm_active(regs->msr) && 516 !current->thread.load_fp && !loadvec(current->thread)) 517 return; 518 519 msr = regs->msr; 520 msr_check_and_set(msr_all_available); 521 522 /* 523 * Only reload if the bit is not set in the user MSR, the bit BEING set 524 * indicates that the registers are hot 525 */ 526 if ((!(msr & MSR_FP)) && restore_fp(current)) 527 msr |= MSR_FP | current->thread.fpexc_mode; 528 529 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 530 msr |= MSR_VEC; 531 532 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 533 restore_vsx(current)) { 534 msr |= MSR_VSX; 535 } 536 537 msr_check_and_clear(msr_all_available); 538 539 regs->msr = msr; 540 } 541 542 void save_all(struct task_struct *tsk) 543 { 544 unsigned long usermsr; 545 546 if (!tsk->thread.regs) 547 return; 548 549 usermsr = tsk->thread.regs->msr; 550 551 if ((usermsr & msr_all_available) == 0) 552 return; 553 554 msr_check_and_set(msr_all_available); 555 556 /* 557 * Saving the way the register space is in hardware, save_vsx boils 558 * down to a save_fpu() and save_altivec() 559 */ 560 if (usermsr & MSR_VSX) { 561 save_vsx(tsk); 562 } else { 563 if (usermsr & MSR_FP) 564 save_fpu(tsk); 565 566 if (usermsr & MSR_VEC) 567 save_altivec(tsk); 568 } 569 570 if (usermsr & MSR_SPE) 571 __giveup_spe(tsk); 572 573 msr_check_and_clear(msr_all_available); 574 } 575 576 void flush_all_to_thread(struct task_struct *tsk) 577 { 578 if (tsk->thread.regs) { 579 preempt_disable(); 580 BUG_ON(tsk != current); 581 save_all(tsk); 582 583 #ifdef CONFIG_SPE 584 if (tsk->thread.regs->msr & MSR_SPE) 585 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 586 #endif 587 588 preempt_enable(); 589 } 590 } 591 EXPORT_SYMBOL(flush_all_to_thread); 592 593 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 594 void do_send_trap(struct pt_regs *regs, unsigned long address, 595 unsigned long error_code, int signal_code, int breakpt) 596 { 597 siginfo_t info; 598 599 current->thread.trap_nr = signal_code; 600 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 601 11, SIGSEGV) == NOTIFY_STOP) 602 return; 603 604 /* Deliver the signal to userspace */ 605 info.si_signo = SIGTRAP; 606 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 607 info.si_code = signal_code; 608 info.si_addr = (void __user *)address; 609 force_sig_info(SIGTRAP, &info, current); 610 } 611 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 612 void do_break (struct pt_regs *regs, unsigned long address, 613 unsigned long error_code) 614 { 615 siginfo_t info; 616 617 current->thread.trap_nr = TRAP_HWBKPT; 618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 619 11, SIGSEGV) == NOTIFY_STOP) 620 return; 621 622 if (debugger_break_match(regs)) 623 return; 624 625 /* Clear the breakpoint */ 626 hw_breakpoint_disable(); 627 628 /* Deliver the signal to userspace */ 629 info.si_signo = SIGTRAP; 630 info.si_errno = 0; 631 info.si_code = TRAP_HWBKPT; 632 info.si_addr = (void __user *)address; 633 force_sig_info(SIGTRAP, &info, current); 634 } 635 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 636 637 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 638 639 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 640 /* 641 * Set the debug registers back to their default "safe" values. 642 */ 643 static void set_debug_reg_defaults(struct thread_struct *thread) 644 { 645 thread->debug.iac1 = thread->debug.iac2 = 0; 646 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 647 thread->debug.iac3 = thread->debug.iac4 = 0; 648 #endif 649 thread->debug.dac1 = thread->debug.dac2 = 0; 650 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 651 thread->debug.dvc1 = thread->debug.dvc2 = 0; 652 #endif 653 thread->debug.dbcr0 = 0; 654 #ifdef CONFIG_BOOKE 655 /* 656 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 657 */ 658 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 659 DBCR1_IAC3US | DBCR1_IAC4US; 660 /* 661 * Force Data Address Compare User/Supervisor bits to be User-only 662 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 663 */ 664 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 665 #else 666 thread->debug.dbcr1 = 0; 667 #endif 668 } 669 670 static void prime_debug_regs(struct debug_reg *debug) 671 { 672 /* 673 * We could have inherited MSR_DE from userspace, since 674 * it doesn't get cleared on exception entry. Make sure 675 * MSR_DE is clear before we enable any debug events. 676 */ 677 mtmsr(mfmsr() & ~MSR_DE); 678 679 mtspr(SPRN_IAC1, debug->iac1); 680 mtspr(SPRN_IAC2, debug->iac2); 681 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 682 mtspr(SPRN_IAC3, debug->iac3); 683 mtspr(SPRN_IAC4, debug->iac4); 684 #endif 685 mtspr(SPRN_DAC1, debug->dac1); 686 mtspr(SPRN_DAC2, debug->dac2); 687 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 688 mtspr(SPRN_DVC1, debug->dvc1); 689 mtspr(SPRN_DVC2, debug->dvc2); 690 #endif 691 mtspr(SPRN_DBCR0, debug->dbcr0); 692 mtspr(SPRN_DBCR1, debug->dbcr1); 693 #ifdef CONFIG_BOOKE 694 mtspr(SPRN_DBCR2, debug->dbcr2); 695 #endif 696 } 697 /* 698 * Unless neither the old or new thread are making use of the 699 * debug registers, set the debug registers from the values 700 * stored in the new thread. 701 */ 702 void switch_booke_debug_regs(struct debug_reg *new_debug) 703 { 704 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 705 || (new_debug->dbcr0 & DBCR0_IDM)) 706 prime_debug_regs(new_debug); 707 } 708 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 709 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 710 #ifndef CONFIG_HAVE_HW_BREAKPOINT 711 static void set_debug_reg_defaults(struct thread_struct *thread) 712 { 713 thread->hw_brk.address = 0; 714 thread->hw_brk.type = 0; 715 set_breakpoint(&thread->hw_brk); 716 } 717 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 718 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 719 720 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 721 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 722 { 723 mtspr(SPRN_DAC1, dabr); 724 #ifdef CONFIG_PPC_47x 725 isync(); 726 #endif 727 return 0; 728 } 729 #elif defined(CONFIG_PPC_BOOK3S) 730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 731 { 732 mtspr(SPRN_DABR, dabr); 733 if (cpu_has_feature(CPU_FTR_DABRX)) 734 mtspr(SPRN_DABRX, dabrx); 735 return 0; 736 } 737 #elif defined(CONFIG_PPC_8xx) 738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 739 { 740 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 741 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 742 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 743 744 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 745 lctrl1 |= 0xa0000; 746 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 747 lctrl1 |= 0xf0000; 748 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 749 lctrl2 = 0; 750 751 mtspr(SPRN_LCTRL2, 0); 752 mtspr(SPRN_CMPE, addr); 753 mtspr(SPRN_CMPF, addr + 4); 754 mtspr(SPRN_LCTRL1, lctrl1); 755 mtspr(SPRN_LCTRL2, lctrl2); 756 757 return 0; 758 } 759 #else 760 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 761 { 762 return -EINVAL; 763 } 764 #endif 765 766 static inline int set_dabr(struct arch_hw_breakpoint *brk) 767 { 768 unsigned long dabr, dabrx; 769 770 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 771 dabrx = ((brk->type >> 3) & 0x7); 772 773 if (ppc_md.set_dabr) 774 return ppc_md.set_dabr(dabr, dabrx); 775 776 return __set_dabr(dabr, dabrx); 777 } 778 779 static inline int set_dawr(struct arch_hw_breakpoint *brk) 780 { 781 unsigned long dawr, dawrx, mrd; 782 783 dawr = brk->address; 784 785 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 786 << (63 - 58); //* read/write bits */ 787 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 788 << (63 - 59); //* translate */ 789 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 790 >> 3; //* PRIM bits */ 791 /* dawr length is stored in field MDR bits 48:53. Matches range in 792 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 793 0b111111=64DW. 794 brk->len is in bytes. 795 This aligns up to double word size, shifts and does the bias. 796 */ 797 mrd = ((brk->len + 7) >> 3) - 1; 798 dawrx |= (mrd & 0x3f) << (63 - 53); 799 800 if (ppc_md.set_dawr) 801 return ppc_md.set_dawr(dawr, dawrx); 802 mtspr(SPRN_DAWR, dawr); 803 mtspr(SPRN_DAWRX, dawrx); 804 return 0; 805 } 806 807 void __set_breakpoint(struct arch_hw_breakpoint *brk) 808 { 809 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 810 811 if (cpu_has_feature(CPU_FTR_DAWR)) 812 set_dawr(brk); 813 else 814 set_dabr(brk); 815 } 816 817 void set_breakpoint(struct arch_hw_breakpoint *brk) 818 { 819 preempt_disable(); 820 __set_breakpoint(brk); 821 preempt_enable(); 822 } 823 824 #ifdef CONFIG_PPC64 825 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 826 #endif 827 828 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 829 struct arch_hw_breakpoint *b) 830 { 831 if (a->address != b->address) 832 return false; 833 if (a->type != b->type) 834 return false; 835 if (a->len != b->len) 836 return false; 837 return true; 838 } 839 840 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 841 842 static inline bool tm_enabled(struct task_struct *tsk) 843 { 844 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 845 } 846 847 static void tm_reclaim_thread(struct thread_struct *thr, 848 struct thread_info *ti, uint8_t cause) 849 { 850 /* 851 * Use the current MSR TM suspended bit to track if we have 852 * checkpointed state outstanding. 853 * On signal delivery, we'd normally reclaim the checkpointed 854 * state to obtain stack pointer (see:get_tm_stackpointer()). 855 * This will then directly return to userspace without going 856 * through __switch_to(). However, if the stack frame is bad, 857 * we need to exit this thread which calls __switch_to() which 858 * will again attempt to reclaim the already saved tm state. 859 * Hence we need to check that we've not already reclaimed 860 * this state. 861 * We do this using the current MSR, rather tracking it in 862 * some specific thread_struct bit, as it has the additional 863 * benefit of checking for a potential TM bad thing exception. 864 */ 865 if (!MSR_TM_SUSPENDED(mfmsr())) 866 return; 867 868 /* 869 * If we are in a transaction and FP is off then we can't have 870 * used FP inside that transaction. Hence the checkpointed 871 * state is the same as the live state. We need to copy the 872 * live state to the checkpointed state so that when the 873 * transaction is restored, the checkpointed state is correct 874 * and the aborted transaction sees the correct state. We use 875 * ckpt_regs.msr here as that's what tm_reclaim will use to 876 * determine if it's going to write the checkpointed state or 877 * not. So either this will write the checkpointed registers, 878 * or reclaim will. Similarly for VMX. 879 */ 880 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 881 memcpy(&thr->ckfp_state, &thr->fp_state, 882 sizeof(struct thread_fp_state)); 883 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 884 memcpy(&thr->ckvr_state, &thr->vr_state, 885 sizeof(struct thread_vr_state)); 886 887 giveup_all(container_of(thr, struct task_struct, thread)); 888 889 tm_reclaim(thr, thr->ckpt_regs.msr, cause); 890 } 891 892 void tm_reclaim_current(uint8_t cause) 893 { 894 tm_enable(); 895 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 896 } 897 898 static inline void tm_reclaim_task(struct task_struct *tsk) 899 { 900 /* We have to work out if we're switching from/to a task that's in the 901 * middle of a transaction. 902 * 903 * In switching we need to maintain a 2nd register state as 904 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 905 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 906 * ckvr_state 907 * 908 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 909 */ 910 struct thread_struct *thr = &tsk->thread; 911 912 if (!thr->regs) 913 return; 914 915 if (!MSR_TM_ACTIVE(thr->regs->msr)) 916 goto out_and_saveregs; 917 918 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 919 "ccr=%lx, msr=%lx, trap=%lx)\n", 920 tsk->pid, thr->regs->nip, 921 thr->regs->ccr, thr->regs->msr, 922 thr->regs->trap); 923 924 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 925 926 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 927 tsk->pid); 928 929 out_and_saveregs: 930 /* Always save the regs here, even if a transaction's not active. 931 * This context-switches a thread's TM info SPRs. We do it here to 932 * be consistent with the restore path (in recheckpoint) which 933 * cannot happen later in _switch(). 934 */ 935 tm_save_sprs(thr); 936 } 937 938 extern void __tm_recheckpoint(struct thread_struct *thread, 939 unsigned long orig_msr); 940 941 void tm_recheckpoint(struct thread_struct *thread, 942 unsigned long orig_msr) 943 { 944 unsigned long flags; 945 946 if (!(thread->regs->msr & MSR_TM)) 947 return; 948 949 /* We really can't be interrupted here as the TEXASR registers can't 950 * change and later in the trecheckpoint code, we have a userspace R1. 951 * So let's hard disable over this region. 952 */ 953 local_irq_save(flags); 954 hard_irq_disable(); 955 956 /* The TM SPRs are restored here, so that TEXASR.FS can be set 957 * before the trecheckpoint and no explosion occurs. 958 */ 959 tm_restore_sprs(thread); 960 961 __tm_recheckpoint(thread, orig_msr); 962 963 local_irq_restore(flags); 964 } 965 966 static inline void tm_recheckpoint_new_task(struct task_struct *new) 967 { 968 unsigned long msr; 969 970 if (!cpu_has_feature(CPU_FTR_TM)) 971 return; 972 973 /* Recheckpoint the registers of the thread we're about to switch to. 974 * 975 * If the task was using FP, we non-lazily reload both the original and 976 * the speculative FP register states. This is because the kernel 977 * doesn't see if/when a TM rollback occurs, so if we take an FP 978 * unavailable later, we are unable to determine which set of FP regs 979 * need to be restored. 980 */ 981 if (!tm_enabled(new)) 982 return; 983 984 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 985 tm_restore_sprs(&new->thread); 986 return; 987 } 988 msr = new->thread.ckpt_regs.msr; 989 /* Recheckpoint to restore original checkpointed register state. */ 990 TM_DEBUG("*** tm_recheckpoint of pid %d " 991 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 992 new->pid, new->thread.regs->msr, msr); 993 994 tm_recheckpoint(&new->thread, msr); 995 996 /* 997 * The checkpointed state has been restored but the live state has 998 * not, ensure all the math functionality is turned off to trigger 999 * restore_math() to reload. 1000 */ 1001 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1002 1003 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1004 "(kernel msr 0x%lx)\n", 1005 new->pid, mfmsr()); 1006 } 1007 1008 static inline void __switch_to_tm(struct task_struct *prev, 1009 struct task_struct *new) 1010 { 1011 if (cpu_has_feature(CPU_FTR_TM)) { 1012 if (tm_enabled(prev) || tm_enabled(new)) 1013 tm_enable(); 1014 1015 if (tm_enabled(prev)) { 1016 prev->thread.load_tm++; 1017 tm_reclaim_task(prev); 1018 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1019 prev->thread.regs->msr &= ~MSR_TM; 1020 } 1021 1022 tm_recheckpoint_new_task(new); 1023 } 1024 } 1025 1026 /* 1027 * This is called if we are on the way out to userspace and the 1028 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1029 * FP and/or vector state and does so if necessary. 1030 * If userspace is inside a transaction (whether active or 1031 * suspended) and FP/VMX/VSX instructions have ever been enabled 1032 * inside that transaction, then we have to keep them enabled 1033 * and keep the FP/VMX/VSX state loaded while ever the transaction 1034 * continues. The reason is that if we didn't, and subsequently 1035 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1036 * we don't know whether it's the same transaction, and thus we 1037 * don't know which of the checkpointed state and the transactional 1038 * state to use. 1039 */ 1040 void restore_tm_state(struct pt_regs *regs) 1041 { 1042 unsigned long msr_diff; 1043 1044 /* 1045 * This is the only moment we should clear TIF_RESTORE_TM as 1046 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1047 * again, anything else could lead to an incorrect ckpt_msr being 1048 * saved and therefore incorrect signal contexts. 1049 */ 1050 clear_thread_flag(TIF_RESTORE_TM); 1051 if (!MSR_TM_ACTIVE(regs->msr)) 1052 return; 1053 1054 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1055 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1056 1057 /* Ensure that restore_math() will restore */ 1058 if (msr_diff & MSR_FP) 1059 current->thread.load_fp = 1; 1060 #ifdef CONFIG_ALTIVEC 1061 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1062 current->thread.load_vec = 1; 1063 #endif 1064 restore_math(regs); 1065 1066 regs->msr |= msr_diff; 1067 } 1068 1069 #else 1070 #define tm_recheckpoint_new_task(new) 1071 #define __switch_to_tm(prev, new) 1072 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1073 1074 static inline void save_sprs(struct thread_struct *t) 1075 { 1076 #ifdef CONFIG_ALTIVEC 1077 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1078 t->vrsave = mfspr(SPRN_VRSAVE); 1079 #endif 1080 #ifdef CONFIG_PPC_BOOK3S_64 1081 if (cpu_has_feature(CPU_FTR_DSCR)) 1082 t->dscr = mfspr(SPRN_DSCR); 1083 1084 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1085 t->bescr = mfspr(SPRN_BESCR); 1086 t->ebbhr = mfspr(SPRN_EBBHR); 1087 t->ebbrr = mfspr(SPRN_EBBRR); 1088 1089 t->fscr = mfspr(SPRN_FSCR); 1090 1091 /* 1092 * Note that the TAR is not available for use in the kernel. 1093 * (To provide this, the TAR should be backed up/restored on 1094 * exception entry/exit instead, and be in pt_regs. FIXME, 1095 * this should be in pt_regs anyway (for debug).) 1096 */ 1097 t->tar = mfspr(SPRN_TAR); 1098 } 1099 #endif 1100 } 1101 1102 static inline void restore_sprs(struct thread_struct *old_thread, 1103 struct thread_struct *new_thread) 1104 { 1105 #ifdef CONFIG_ALTIVEC 1106 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1107 old_thread->vrsave != new_thread->vrsave) 1108 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1109 #endif 1110 #ifdef CONFIG_PPC_BOOK3S_64 1111 if (cpu_has_feature(CPU_FTR_DSCR)) { 1112 u64 dscr = get_paca()->dscr_default; 1113 if (new_thread->dscr_inherit) 1114 dscr = new_thread->dscr; 1115 1116 if (old_thread->dscr != dscr) 1117 mtspr(SPRN_DSCR, dscr); 1118 } 1119 1120 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1121 if (old_thread->bescr != new_thread->bescr) 1122 mtspr(SPRN_BESCR, new_thread->bescr); 1123 if (old_thread->ebbhr != new_thread->ebbhr) 1124 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1125 if (old_thread->ebbrr != new_thread->ebbrr) 1126 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1127 1128 if (old_thread->fscr != new_thread->fscr) 1129 mtspr(SPRN_FSCR, new_thread->fscr); 1130 1131 if (old_thread->tar != new_thread->tar) 1132 mtspr(SPRN_TAR, new_thread->tar); 1133 } 1134 #endif 1135 } 1136 1137 #ifdef CONFIG_PPC_BOOK3S_64 1138 #define CP_SIZE 128 1139 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1140 #endif 1141 1142 struct task_struct *__switch_to(struct task_struct *prev, 1143 struct task_struct *new) 1144 { 1145 struct thread_struct *new_thread, *old_thread; 1146 struct task_struct *last; 1147 #ifdef CONFIG_PPC_BOOK3S_64 1148 struct ppc64_tlb_batch *batch; 1149 #endif 1150 1151 new_thread = &new->thread; 1152 old_thread = ¤t->thread; 1153 1154 WARN_ON(!irqs_disabled()); 1155 1156 #ifdef CONFIG_PPC64 1157 /* 1158 * Collect processor utilization data per process 1159 */ 1160 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1161 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1162 long unsigned start_tb, current_tb; 1163 start_tb = old_thread->start_tb; 1164 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1165 old_thread->accum_tb += (current_tb - start_tb); 1166 new_thread->start_tb = current_tb; 1167 } 1168 #endif /* CONFIG_PPC64 */ 1169 1170 #ifdef CONFIG_PPC_STD_MMU_64 1171 batch = this_cpu_ptr(&ppc64_tlb_batch); 1172 if (batch->active) { 1173 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1174 if (batch->index) 1175 __flush_tlb_pending(batch); 1176 batch->active = 0; 1177 } 1178 #endif /* CONFIG_PPC_STD_MMU_64 */ 1179 1180 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1181 switch_booke_debug_regs(&new->thread.debug); 1182 #else 1183 /* 1184 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1185 * schedule DABR 1186 */ 1187 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1188 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1189 __set_breakpoint(&new->thread.hw_brk); 1190 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1191 #endif 1192 1193 /* 1194 * We need to save SPRs before treclaim/trecheckpoint as these will 1195 * change a number of them. 1196 */ 1197 save_sprs(&prev->thread); 1198 1199 /* Save FPU, Altivec, VSX and SPE state */ 1200 giveup_all(prev); 1201 1202 __switch_to_tm(prev, new); 1203 1204 if (!radix_enabled()) { 1205 /* 1206 * We can't take a PMU exception inside _switch() since there 1207 * is a window where the kernel stack SLB and the kernel stack 1208 * are out of sync. Hard disable here. 1209 */ 1210 hard_irq_disable(); 1211 } 1212 1213 /* 1214 * Call restore_sprs() before calling _switch(). If we move it after 1215 * _switch() then we miss out on calling it for new tasks. The reason 1216 * for this is we manually create a stack frame for new tasks that 1217 * directly returns through ret_from_fork() or 1218 * ret_from_kernel_thread(). See copy_thread() for details. 1219 */ 1220 restore_sprs(old_thread, new_thread); 1221 1222 last = _switch(old_thread, new_thread); 1223 1224 #ifdef CONFIG_PPC_STD_MMU_64 1225 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1226 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1227 batch = this_cpu_ptr(&ppc64_tlb_batch); 1228 batch->active = 1; 1229 } 1230 1231 if (current_thread_info()->task->thread.regs) { 1232 restore_math(current_thread_info()->task->thread.regs); 1233 1234 /* 1235 * The copy-paste buffer can only store into foreign real 1236 * addresses, so unprivileged processes can not see the 1237 * data or use it in any way unless they have foreign real 1238 * mappings. We don't have a VAS driver that allocates those 1239 * yet, so no cpabort is required. 1240 */ 1241 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { 1242 /* 1243 * DD1 allows paste into normal system memory, so we 1244 * do an unpaired copy here to clear the buffer and 1245 * prevent a covert channel being set up. 1246 * 1247 * cpabort is not used because it is quite expensive. 1248 */ 1249 asm volatile(PPC_COPY(%0, %1) 1250 : : "r"(dummy_copy_buffer), "r"(0)); 1251 } 1252 } 1253 #endif /* CONFIG_PPC_STD_MMU_64 */ 1254 1255 return last; 1256 } 1257 1258 static int instructions_to_print = 16; 1259 1260 static void show_instructions(struct pt_regs *regs) 1261 { 1262 int i; 1263 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1264 sizeof(int)); 1265 1266 printk("Instruction dump:"); 1267 1268 for (i = 0; i < instructions_to_print; i++) { 1269 int instr; 1270 1271 if (!(i % 8)) 1272 pr_cont("\n"); 1273 1274 #if !defined(CONFIG_BOOKE) 1275 /* If executing with the IMMU off, adjust pc rather 1276 * than print XXXXXXXX. 1277 */ 1278 if (!(regs->msr & MSR_IR)) 1279 pc = (unsigned long)phys_to_virt(pc); 1280 #endif 1281 1282 if (!__kernel_text_address(pc) || 1283 probe_kernel_address((unsigned int __user *)pc, instr)) { 1284 pr_cont("XXXXXXXX "); 1285 } else { 1286 if (regs->nip == pc) 1287 pr_cont("<%08x> ", instr); 1288 else 1289 pr_cont("%08x ", instr); 1290 } 1291 1292 pc += sizeof(int); 1293 } 1294 1295 pr_cont("\n"); 1296 } 1297 1298 struct regbit { 1299 unsigned long bit; 1300 const char *name; 1301 }; 1302 1303 static struct regbit msr_bits[] = { 1304 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1305 {MSR_SF, "SF"}, 1306 {MSR_HV, "HV"}, 1307 #endif 1308 {MSR_VEC, "VEC"}, 1309 {MSR_VSX, "VSX"}, 1310 #ifdef CONFIG_BOOKE 1311 {MSR_CE, "CE"}, 1312 #endif 1313 {MSR_EE, "EE"}, 1314 {MSR_PR, "PR"}, 1315 {MSR_FP, "FP"}, 1316 {MSR_ME, "ME"}, 1317 #ifdef CONFIG_BOOKE 1318 {MSR_DE, "DE"}, 1319 #else 1320 {MSR_SE, "SE"}, 1321 {MSR_BE, "BE"}, 1322 #endif 1323 {MSR_IR, "IR"}, 1324 {MSR_DR, "DR"}, 1325 {MSR_PMM, "PMM"}, 1326 #ifndef CONFIG_BOOKE 1327 {MSR_RI, "RI"}, 1328 {MSR_LE, "LE"}, 1329 #endif 1330 {0, NULL} 1331 }; 1332 1333 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1334 { 1335 const char *s = ""; 1336 1337 for (; bits->bit; ++bits) 1338 if (val & bits->bit) { 1339 pr_cont("%s%s", s, bits->name); 1340 s = sep; 1341 } 1342 } 1343 1344 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1345 static struct regbit msr_tm_bits[] = { 1346 {MSR_TS_T, "T"}, 1347 {MSR_TS_S, "S"}, 1348 {MSR_TM, "E"}, 1349 {0, NULL} 1350 }; 1351 1352 static void print_tm_bits(unsigned long val) 1353 { 1354 /* 1355 * This only prints something if at least one of the TM bit is set. 1356 * Inside the TM[], the output means: 1357 * E: Enabled (bit 32) 1358 * S: Suspended (bit 33) 1359 * T: Transactional (bit 34) 1360 */ 1361 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1362 pr_cont(",TM["); 1363 print_bits(val, msr_tm_bits, ""); 1364 pr_cont("]"); 1365 } 1366 } 1367 #else 1368 static void print_tm_bits(unsigned long val) {} 1369 #endif 1370 1371 static void print_msr_bits(unsigned long val) 1372 { 1373 pr_cont("<"); 1374 print_bits(val, msr_bits, ","); 1375 print_tm_bits(val); 1376 pr_cont(">"); 1377 } 1378 1379 #ifdef CONFIG_PPC64 1380 #define REG "%016lx" 1381 #define REGS_PER_LINE 4 1382 #define LAST_VOLATILE 13 1383 #else 1384 #define REG "%08lx" 1385 #define REGS_PER_LINE 8 1386 #define LAST_VOLATILE 12 1387 #endif 1388 1389 void show_regs(struct pt_regs * regs) 1390 { 1391 int i, trap; 1392 1393 show_regs_print_info(KERN_DEFAULT); 1394 1395 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1396 regs->nip, regs->link, regs->ctr); 1397 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1398 regs, regs->trap, print_tainted(), init_utsname()->release); 1399 printk("MSR: "REG" ", regs->msr); 1400 print_msr_bits(regs->msr); 1401 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1402 trap = TRAP(regs); 1403 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1404 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1405 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1406 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1407 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1408 #else 1409 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1410 #endif 1411 #ifdef CONFIG_PPC64 1412 pr_cont("SOFTE: %ld ", regs->softe); 1413 #endif 1414 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1415 if (MSR_TM_ACTIVE(regs->msr)) 1416 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1417 #endif 1418 1419 for (i = 0; i < 32; i++) { 1420 if ((i % REGS_PER_LINE) == 0) 1421 pr_cont("\nGPR%02d: ", i); 1422 pr_cont(REG " ", regs->gpr[i]); 1423 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1424 break; 1425 } 1426 pr_cont("\n"); 1427 #ifdef CONFIG_KALLSYMS 1428 /* 1429 * Lookup NIP late so we have the best change of getting the 1430 * above info out without failing 1431 */ 1432 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1433 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1434 #endif 1435 show_stack(current, (unsigned long *) regs->gpr[1]); 1436 if (!user_mode(regs)) 1437 show_instructions(regs); 1438 } 1439 1440 void flush_thread(void) 1441 { 1442 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1443 flush_ptrace_hw_breakpoint(current); 1444 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1445 set_debug_reg_defaults(¤t->thread); 1446 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1447 } 1448 1449 void 1450 release_thread(struct task_struct *t) 1451 { 1452 } 1453 1454 /* 1455 * this gets called so that we can store coprocessor state into memory and 1456 * copy the current task into the new thread. 1457 */ 1458 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1459 { 1460 flush_all_to_thread(src); 1461 /* 1462 * Flush TM state out so we can copy it. __switch_to_tm() does this 1463 * flush but it removes the checkpointed state from the current CPU and 1464 * transitions the CPU out of TM mode. Hence we need to call 1465 * tm_recheckpoint_new_task() (on the same task) to restore the 1466 * checkpointed state back and the TM mode. 1467 * 1468 * Can't pass dst because it isn't ready. Doesn't matter, passing 1469 * dst is only important for __switch_to() 1470 */ 1471 __switch_to_tm(src, src); 1472 1473 *dst = *src; 1474 1475 clear_task_ebb(dst); 1476 1477 return 0; 1478 } 1479 1480 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1481 { 1482 #ifdef CONFIG_PPC_STD_MMU_64 1483 unsigned long sp_vsid; 1484 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1485 1486 if (radix_enabled()) 1487 return; 1488 1489 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1490 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1491 << SLB_VSID_SHIFT_1T; 1492 else 1493 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1494 << SLB_VSID_SHIFT; 1495 sp_vsid |= SLB_VSID_KERNEL | llp; 1496 p->thread.ksp_vsid = sp_vsid; 1497 #endif 1498 } 1499 1500 /* 1501 * Copy a thread.. 1502 */ 1503 1504 /* 1505 * Copy architecture-specific thread state 1506 */ 1507 int copy_thread(unsigned long clone_flags, unsigned long usp, 1508 unsigned long kthread_arg, struct task_struct *p) 1509 { 1510 struct pt_regs *childregs, *kregs; 1511 extern void ret_from_fork(void); 1512 extern void ret_from_kernel_thread(void); 1513 void (*f)(void); 1514 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1515 struct thread_info *ti = task_thread_info(p); 1516 1517 klp_init_thread_info(ti); 1518 1519 /* Copy registers */ 1520 sp -= sizeof(struct pt_regs); 1521 childregs = (struct pt_regs *) sp; 1522 if (unlikely(p->flags & PF_KTHREAD)) { 1523 /* kernel thread */ 1524 memset(childregs, 0, sizeof(struct pt_regs)); 1525 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1526 /* function */ 1527 if (usp) 1528 childregs->gpr[14] = ppc_function_entry((void *)usp); 1529 #ifdef CONFIG_PPC64 1530 clear_tsk_thread_flag(p, TIF_32BIT); 1531 childregs->softe = 1; 1532 #endif 1533 childregs->gpr[15] = kthread_arg; 1534 p->thread.regs = NULL; /* no user register state */ 1535 ti->flags |= _TIF_RESTOREALL; 1536 f = ret_from_kernel_thread; 1537 } else { 1538 /* user thread */ 1539 struct pt_regs *regs = current_pt_regs(); 1540 CHECK_FULL_REGS(regs); 1541 *childregs = *regs; 1542 if (usp) 1543 childregs->gpr[1] = usp; 1544 p->thread.regs = childregs; 1545 childregs->gpr[3] = 0; /* Result from fork() */ 1546 if (clone_flags & CLONE_SETTLS) { 1547 #ifdef CONFIG_PPC64 1548 if (!is_32bit_task()) 1549 childregs->gpr[13] = childregs->gpr[6]; 1550 else 1551 #endif 1552 childregs->gpr[2] = childregs->gpr[6]; 1553 } 1554 1555 f = ret_from_fork; 1556 } 1557 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1558 sp -= STACK_FRAME_OVERHEAD; 1559 1560 /* 1561 * The way this works is that at some point in the future 1562 * some task will call _switch to switch to the new task. 1563 * That will pop off the stack frame created below and start 1564 * the new task running at ret_from_fork. The new task will 1565 * do some house keeping and then return from the fork or clone 1566 * system call, using the stack frame created above. 1567 */ 1568 ((unsigned long *)sp)[0] = 0; 1569 sp -= sizeof(struct pt_regs); 1570 kregs = (struct pt_regs *) sp; 1571 sp -= STACK_FRAME_OVERHEAD; 1572 p->thread.ksp = sp; 1573 #ifdef CONFIG_PPC32 1574 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1575 _ALIGN_UP(sizeof(struct thread_info), 16); 1576 #endif 1577 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1578 p->thread.ptrace_bps[0] = NULL; 1579 #endif 1580 1581 p->thread.fp_save_area = NULL; 1582 #ifdef CONFIG_ALTIVEC 1583 p->thread.vr_save_area = NULL; 1584 #endif 1585 1586 setup_ksp_vsid(p, sp); 1587 1588 #ifdef CONFIG_PPC64 1589 if (cpu_has_feature(CPU_FTR_DSCR)) { 1590 p->thread.dscr_inherit = current->thread.dscr_inherit; 1591 p->thread.dscr = mfspr(SPRN_DSCR); 1592 } 1593 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1594 p->thread.ppr = INIT_PPR; 1595 #endif 1596 kregs->nip = ppc_function_entry(f); 1597 return 0; 1598 } 1599 1600 /* 1601 * Set up a thread for executing a new program 1602 */ 1603 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1604 { 1605 #ifdef CONFIG_PPC64 1606 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1607 #endif 1608 1609 /* 1610 * If we exec out of a kernel thread then thread.regs will not be 1611 * set. Do it now. 1612 */ 1613 if (!current->thread.regs) { 1614 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1615 current->thread.regs = regs - 1; 1616 } 1617 1618 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1619 /* 1620 * Clear any transactional state, we're exec()ing. The cause is 1621 * not important as there will never be a recheckpoint so it's not 1622 * user visible. 1623 */ 1624 if (MSR_TM_SUSPENDED(mfmsr())) 1625 tm_reclaim_current(0); 1626 #endif 1627 1628 memset(regs->gpr, 0, sizeof(regs->gpr)); 1629 regs->ctr = 0; 1630 regs->link = 0; 1631 regs->xer = 0; 1632 regs->ccr = 0; 1633 regs->gpr[1] = sp; 1634 1635 /* 1636 * We have just cleared all the nonvolatile GPRs, so make 1637 * FULL_REGS(regs) return true. This is necessary to allow 1638 * ptrace to examine the thread immediately after exec. 1639 */ 1640 regs->trap &= ~1UL; 1641 1642 #ifdef CONFIG_PPC32 1643 regs->mq = 0; 1644 regs->nip = start; 1645 regs->msr = MSR_USER; 1646 #else 1647 if (!is_32bit_task()) { 1648 unsigned long entry; 1649 1650 if (is_elf2_task()) { 1651 /* Look ma, no function descriptors! */ 1652 entry = start; 1653 1654 /* 1655 * Ulrich says: 1656 * The latest iteration of the ABI requires that when 1657 * calling a function (at its global entry point), 1658 * the caller must ensure r12 holds the entry point 1659 * address (so that the function can quickly 1660 * establish addressability). 1661 */ 1662 regs->gpr[12] = start; 1663 /* Make sure that's restored on entry to userspace. */ 1664 set_thread_flag(TIF_RESTOREALL); 1665 } else { 1666 unsigned long toc; 1667 1668 /* start is a relocated pointer to the function 1669 * descriptor for the elf _start routine. The first 1670 * entry in the function descriptor is the entry 1671 * address of _start and the second entry is the TOC 1672 * value we need to use. 1673 */ 1674 __get_user(entry, (unsigned long __user *)start); 1675 __get_user(toc, (unsigned long __user *)start+1); 1676 1677 /* Check whether the e_entry function descriptor entries 1678 * need to be relocated before we can use them. 1679 */ 1680 if (load_addr != 0) { 1681 entry += load_addr; 1682 toc += load_addr; 1683 } 1684 regs->gpr[2] = toc; 1685 } 1686 regs->nip = entry; 1687 regs->msr = MSR_USER64; 1688 } else { 1689 regs->nip = start; 1690 regs->gpr[2] = 0; 1691 regs->msr = MSR_USER32; 1692 } 1693 #endif 1694 #ifdef CONFIG_VSX 1695 current->thread.used_vsr = 0; 1696 #endif 1697 current->thread.load_fp = 0; 1698 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1699 current->thread.fp_save_area = NULL; 1700 #ifdef CONFIG_ALTIVEC 1701 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1702 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1703 current->thread.vr_save_area = NULL; 1704 current->thread.vrsave = 0; 1705 current->thread.used_vr = 0; 1706 current->thread.load_vec = 0; 1707 #endif /* CONFIG_ALTIVEC */ 1708 #ifdef CONFIG_SPE 1709 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1710 current->thread.acc = 0; 1711 current->thread.spefscr = 0; 1712 current->thread.used_spe = 0; 1713 #endif /* CONFIG_SPE */ 1714 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1715 current->thread.tm_tfhar = 0; 1716 current->thread.tm_texasr = 0; 1717 current->thread.tm_tfiar = 0; 1718 current->thread.load_tm = 0; 1719 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1720 } 1721 EXPORT_SYMBOL(start_thread); 1722 1723 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1724 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1725 1726 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1727 { 1728 struct pt_regs *regs = tsk->thread.regs; 1729 1730 /* This is a bit hairy. If we are an SPE enabled processor 1731 * (have embedded fp) we store the IEEE exception enable flags in 1732 * fpexc_mode. fpexc_mode is also used for setting FP exception 1733 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1734 if (val & PR_FP_EXC_SW_ENABLE) { 1735 #ifdef CONFIG_SPE 1736 if (cpu_has_feature(CPU_FTR_SPE)) { 1737 /* 1738 * When the sticky exception bits are set 1739 * directly by userspace, it must call prctl 1740 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1741 * in the existing prctl settings) or 1742 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1743 * the bits being set). <fenv.h> functions 1744 * saving and restoring the whole 1745 * floating-point environment need to do so 1746 * anyway to restore the prctl settings from 1747 * the saved environment. 1748 */ 1749 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1750 tsk->thread.fpexc_mode = val & 1751 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1752 return 0; 1753 } else { 1754 return -EINVAL; 1755 } 1756 #else 1757 return -EINVAL; 1758 #endif 1759 } 1760 1761 /* on a CONFIG_SPE this does not hurt us. The bits that 1762 * __pack_fe01 use do not overlap with bits used for 1763 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1764 * on CONFIG_SPE implementations are reserved so writing to 1765 * them does not change anything */ 1766 if (val > PR_FP_EXC_PRECISE) 1767 return -EINVAL; 1768 tsk->thread.fpexc_mode = __pack_fe01(val); 1769 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1770 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1771 | tsk->thread.fpexc_mode; 1772 return 0; 1773 } 1774 1775 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1776 { 1777 unsigned int val; 1778 1779 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1780 #ifdef CONFIG_SPE 1781 if (cpu_has_feature(CPU_FTR_SPE)) { 1782 /* 1783 * When the sticky exception bits are set 1784 * directly by userspace, it must call prctl 1785 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1786 * in the existing prctl settings) or 1787 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1788 * the bits being set). <fenv.h> functions 1789 * saving and restoring the whole 1790 * floating-point environment need to do so 1791 * anyway to restore the prctl settings from 1792 * the saved environment. 1793 */ 1794 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1795 val = tsk->thread.fpexc_mode; 1796 } else 1797 return -EINVAL; 1798 #else 1799 return -EINVAL; 1800 #endif 1801 else 1802 val = __unpack_fe01(tsk->thread.fpexc_mode); 1803 return put_user(val, (unsigned int __user *) adr); 1804 } 1805 1806 int set_endian(struct task_struct *tsk, unsigned int val) 1807 { 1808 struct pt_regs *regs = tsk->thread.regs; 1809 1810 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1811 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1812 return -EINVAL; 1813 1814 if (regs == NULL) 1815 return -EINVAL; 1816 1817 if (val == PR_ENDIAN_BIG) 1818 regs->msr &= ~MSR_LE; 1819 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1820 regs->msr |= MSR_LE; 1821 else 1822 return -EINVAL; 1823 1824 return 0; 1825 } 1826 1827 int get_endian(struct task_struct *tsk, unsigned long adr) 1828 { 1829 struct pt_regs *regs = tsk->thread.regs; 1830 unsigned int val; 1831 1832 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1833 !cpu_has_feature(CPU_FTR_REAL_LE)) 1834 return -EINVAL; 1835 1836 if (regs == NULL) 1837 return -EINVAL; 1838 1839 if (regs->msr & MSR_LE) { 1840 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1841 val = PR_ENDIAN_LITTLE; 1842 else 1843 val = PR_ENDIAN_PPC_LITTLE; 1844 } else 1845 val = PR_ENDIAN_BIG; 1846 1847 return put_user(val, (unsigned int __user *)adr); 1848 } 1849 1850 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1851 { 1852 tsk->thread.align_ctl = val; 1853 return 0; 1854 } 1855 1856 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1857 { 1858 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1859 } 1860 1861 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1862 unsigned long nbytes) 1863 { 1864 unsigned long stack_page; 1865 unsigned long cpu = task_cpu(p); 1866 1867 /* 1868 * Avoid crashing if the stack has overflowed and corrupted 1869 * task_cpu(p), which is in the thread_info struct. 1870 */ 1871 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1872 stack_page = (unsigned long) hardirq_ctx[cpu]; 1873 if (sp >= stack_page + sizeof(struct thread_struct) 1874 && sp <= stack_page + THREAD_SIZE - nbytes) 1875 return 1; 1876 1877 stack_page = (unsigned long) softirq_ctx[cpu]; 1878 if (sp >= stack_page + sizeof(struct thread_struct) 1879 && sp <= stack_page + THREAD_SIZE - nbytes) 1880 return 1; 1881 } 1882 return 0; 1883 } 1884 1885 int validate_sp(unsigned long sp, struct task_struct *p, 1886 unsigned long nbytes) 1887 { 1888 unsigned long stack_page = (unsigned long)task_stack_page(p); 1889 1890 if (sp >= stack_page + sizeof(struct thread_struct) 1891 && sp <= stack_page + THREAD_SIZE - nbytes) 1892 return 1; 1893 1894 return valid_irq_stack(sp, p, nbytes); 1895 } 1896 1897 EXPORT_SYMBOL(validate_sp); 1898 1899 unsigned long get_wchan(struct task_struct *p) 1900 { 1901 unsigned long ip, sp; 1902 int count = 0; 1903 1904 if (!p || p == current || p->state == TASK_RUNNING) 1905 return 0; 1906 1907 sp = p->thread.ksp; 1908 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1909 return 0; 1910 1911 do { 1912 sp = *(unsigned long *)sp; 1913 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1914 return 0; 1915 if (count > 0) { 1916 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1917 if (!in_sched_functions(ip)) 1918 return ip; 1919 } 1920 } while (count++ < 16); 1921 return 0; 1922 } 1923 1924 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1925 1926 void show_stack(struct task_struct *tsk, unsigned long *stack) 1927 { 1928 unsigned long sp, ip, lr, newsp; 1929 int count = 0; 1930 int firstframe = 1; 1931 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1932 int curr_frame = current->curr_ret_stack; 1933 extern void return_to_handler(void); 1934 unsigned long rth = (unsigned long)return_to_handler; 1935 #endif 1936 1937 sp = (unsigned long) stack; 1938 if (tsk == NULL) 1939 tsk = current; 1940 if (sp == 0) { 1941 if (tsk == current) 1942 sp = current_stack_pointer(); 1943 else 1944 sp = tsk->thread.ksp; 1945 } 1946 1947 lr = 0; 1948 printk("Call Trace:\n"); 1949 do { 1950 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1951 return; 1952 1953 stack = (unsigned long *) sp; 1954 newsp = stack[0]; 1955 ip = stack[STACK_FRAME_LR_SAVE]; 1956 if (!firstframe || ip != lr) { 1957 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1958 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1959 if ((ip == rth) && curr_frame >= 0) { 1960 pr_cont(" (%pS)", 1961 (void *)current->ret_stack[curr_frame].ret); 1962 curr_frame--; 1963 } 1964 #endif 1965 if (firstframe) 1966 pr_cont(" (unreliable)"); 1967 pr_cont("\n"); 1968 } 1969 firstframe = 0; 1970 1971 /* 1972 * See if this is an exception frame. 1973 * We look for the "regshere" marker in the current frame. 1974 */ 1975 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1976 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1977 struct pt_regs *regs = (struct pt_regs *) 1978 (sp + STACK_FRAME_OVERHEAD); 1979 lr = regs->link; 1980 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1981 regs->trap, (void *)regs->nip, (void *)lr); 1982 firstframe = 1; 1983 } 1984 1985 sp = newsp; 1986 } while (count++ < kstack_depth_to_print); 1987 } 1988 1989 #ifdef CONFIG_PPC64 1990 /* Called with hard IRQs off */ 1991 void notrace __ppc64_runlatch_on(void) 1992 { 1993 struct thread_info *ti = current_thread_info(); 1994 unsigned long ctrl; 1995 1996 ctrl = mfspr(SPRN_CTRLF); 1997 ctrl |= CTRL_RUNLATCH; 1998 mtspr(SPRN_CTRLT, ctrl); 1999 2000 ti->local_flags |= _TLF_RUNLATCH; 2001 } 2002 2003 /* Called with hard IRQs off */ 2004 void notrace __ppc64_runlatch_off(void) 2005 { 2006 struct thread_info *ti = current_thread_info(); 2007 unsigned long ctrl; 2008 2009 ti->local_flags &= ~_TLF_RUNLATCH; 2010 2011 ctrl = mfspr(SPRN_CTRLF); 2012 ctrl &= ~CTRL_RUNLATCH; 2013 mtspr(SPRN_CTRLT, ctrl); 2014 } 2015 #endif /* CONFIG_PPC64 */ 2016 2017 unsigned long arch_align_stack(unsigned long sp) 2018 { 2019 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2020 sp -= get_random_int() & ~PAGE_MASK; 2021 return sp & ~0xf; 2022 } 2023 2024 static inline unsigned long brk_rnd(void) 2025 { 2026 unsigned long rnd = 0; 2027 2028 /* 8MB for 32bit, 1GB for 64bit */ 2029 if (is_32bit_task()) 2030 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2031 else 2032 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2033 2034 return rnd << PAGE_SHIFT; 2035 } 2036 2037 unsigned long arch_randomize_brk(struct mm_struct *mm) 2038 { 2039 unsigned long base = mm->brk; 2040 unsigned long ret; 2041 2042 #ifdef CONFIG_PPC_STD_MMU_64 2043 /* 2044 * If we are using 1TB segments and we are allowed to randomise 2045 * the heap, we can put it above 1TB so it is backed by a 1TB 2046 * segment. Otherwise the heap will be in the bottom 1TB 2047 * which always uses 256MB segments and this may result in a 2048 * performance penalty. We don't need to worry about radix. For 2049 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2050 */ 2051 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2052 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2053 #endif 2054 2055 ret = PAGE_ALIGN(base + brk_rnd()); 2056 2057 if (ret < mm->brk) 2058 return mm->brk; 2059 2060 return ret; 2061 } 2062 2063