xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision c21b37f6)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50 
51 extern unsigned long _get_SP(void);
52 
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
58 
59 /*
60  * Make sure the floating-point register state in the
61  * the thread_struct is up to date for task tsk.
62  */
63 void flush_fp_to_thread(struct task_struct *tsk)
64 {
65 	if (tsk->thread.regs) {
66 		/*
67 		 * We need to disable preemption here because if we didn't,
68 		 * another process could get scheduled after the regs->msr
69 		 * test but before we have finished saving the FP registers
70 		 * to the thread_struct.  That process could take over the
71 		 * FPU, and then when we get scheduled again we would store
72 		 * bogus values for the remaining FP registers.
73 		 */
74 		preempt_disable();
75 		if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
77 			/*
78 			 * This should only ever be called for current or
79 			 * for a stopped child process.  Since we save away
80 			 * the FP register state on context switch on SMP,
81 			 * there is something wrong if a stopped child appears
82 			 * to still have its FP state in the CPU registers.
83 			 */
84 			BUG_ON(tsk != current);
85 #endif
86 			giveup_fpu(current);
87 		}
88 		preempt_enable();
89 	}
90 }
91 
92 void enable_kernel_fp(void)
93 {
94 	WARN_ON(preemptible());
95 
96 #ifdef CONFIG_SMP
97 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 		giveup_fpu(current);
99 	else
100 		giveup_fpu(NULL);	/* just enables FP for kernel */
101 #else
102 	giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
104 }
105 EXPORT_SYMBOL(enable_kernel_fp);
106 
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
108 {
109 	if (!tsk->thread.regs)
110 		return 0;
111 	flush_fp_to_thread(current);
112 
113 	memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
114 
115 	return 1;
116 }
117 
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
120 {
121 	WARN_ON(preemptible());
122 
123 #ifdef CONFIG_SMP
124 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 		giveup_altivec(current);
126 	else
127 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
128 #else
129 	giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
131 }
132 EXPORT_SYMBOL(enable_kernel_altivec);
133 
134 /*
135  * Make sure the VMX/Altivec register state in the
136  * the thread_struct is up to date for task tsk.
137  */
138 void flush_altivec_to_thread(struct task_struct *tsk)
139 {
140 	if (tsk->thread.regs) {
141 		preempt_disable();
142 		if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 			BUG_ON(tsk != current);
145 #endif
146 			giveup_altivec(current);
147 		}
148 		preempt_enable();
149 	}
150 }
151 
152 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
153 {
154 	flush_altivec_to_thread(current);
155 	memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
156 	return 1;
157 }
158 #endif /* CONFIG_ALTIVEC */
159 
160 #ifdef CONFIG_SPE
161 
162 void enable_kernel_spe(void)
163 {
164 	WARN_ON(preemptible());
165 
166 #ifdef CONFIG_SMP
167 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
168 		giveup_spe(current);
169 	else
170 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
171 #else
172 	giveup_spe(last_task_used_spe);
173 #endif /* __SMP __ */
174 }
175 EXPORT_SYMBOL(enable_kernel_spe);
176 
177 void flush_spe_to_thread(struct task_struct *tsk)
178 {
179 	if (tsk->thread.regs) {
180 		preempt_disable();
181 		if (tsk->thread.regs->msr & MSR_SPE) {
182 #ifdef CONFIG_SMP
183 			BUG_ON(tsk != current);
184 #endif
185 			giveup_spe(current);
186 		}
187 		preempt_enable();
188 	}
189 }
190 
191 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
192 {
193 	flush_spe_to_thread(current);
194 	/* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
195 	memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
196 	return 1;
197 }
198 #endif /* CONFIG_SPE */
199 
200 #ifndef CONFIG_SMP
201 /*
202  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
203  * and the current task has some state, discard it.
204  */
205 void discard_lazy_cpu_state(void)
206 {
207 	preempt_disable();
208 	if (last_task_used_math == current)
209 		last_task_used_math = NULL;
210 #ifdef CONFIG_ALTIVEC
211 	if (last_task_used_altivec == current)
212 		last_task_used_altivec = NULL;
213 #endif /* CONFIG_ALTIVEC */
214 #ifdef CONFIG_SPE
215 	if (last_task_used_spe == current)
216 		last_task_used_spe = NULL;
217 #endif
218 	preempt_enable();
219 }
220 #endif /* CONFIG_SMP */
221 
222 int set_dabr(unsigned long dabr)
223 {
224 #ifdef CONFIG_PPC_MERGE		/* XXX for now */
225 	if (ppc_md.set_dabr)
226 		return ppc_md.set_dabr(dabr);
227 #endif
228 
229 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
230 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
231 	mtspr(SPRN_DABR, dabr);
232 #endif
233 	return 0;
234 }
235 
236 #ifdef CONFIG_PPC64
237 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
238 #endif
239 
240 static DEFINE_PER_CPU(unsigned long, current_dabr);
241 
242 struct task_struct *__switch_to(struct task_struct *prev,
243 	struct task_struct *new)
244 {
245 	struct thread_struct *new_thread, *old_thread;
246 	unsigned long flags;
247 	struct task_struct *last;
248 
249 #ifdef CONFIG_SMP
250 	/* avoid complexity of lazy save/restore of fpu
251 	 * by just saving it every time we switch out if
252 	 * this task used the fpu during the last quantum.
253 	 *
254 	 * If it tries to use the fpu again, it'll trap and
255 	 * reload its fp regs.  So we don't have to do a restore
256 	 * every switch, just a save.
257 	 *  -- Cort
258 	 */
259 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
260 		giveup_fpu(prev);
261 #ifdef CONFIG_ALTIVEC
262 	/*
263 	 * If the previous thread used altivec in the last quantum
264 	 * (thus changing altivec regs) then save them.
265 	 * We used to check the VRSAVE register but not all apps
266 	 * set it, so we don't rely on it now (and in fact we need
267 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
268 	 *
269 	 * On SMP we always save/restore altivec regs just to avoid the
270 	 * complexity of changing processors.
271 	 *  -- Cort
272 	 */
273 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
274 		giveup_altivec(prev);
275 #endif /* CONFIG_ALTIVEC */
276 #ifdef CONFIG_SPE
277 	/*
278 	 * If the previous thread used spe in the last quantum
279 	 * (thus changing spe regs) then save them.
280 	 *
281 	 * On SMP we always save/restore spe regs just to avoid the
282 	 * complexity of changing processors.
283 	 */
284 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
285 		giveup_spe(prev);
286 #endif /* CONFIG_SPE */
287 
288 #else  /* CONFIG_SMP */
289 #ifdef CONFIG_ALTIVEC
290 	/* Avoid the trap.  On smp this this never happens since
291 	 * we don't set last_task_used_altivec -- Cort
292 	 */
293 	if (new->thread.regs && last_task_used_altivec == new)
294 		new->thread.regs->msr |= MSR_VEC;
295 #endif /* CONFIG_ALTIVEC */
296 #ifdef CONFIG_SPE
297 	/* Avoid the trap.  On smp this this never happens since
298 	 * we don't set last_task_used_spe
299 	 */
300 	if (new->thread.regs && last_task_used_spe == new)
301 		new->thread.regs->msr |= MSR_SPE;
302 #endif /* CONFIG_SPE */
303 
304 #endif /* CONFIG_SMP */
305 
306 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
307 		set_dabr(new->thread.dabr);
308 		__get_cpu_var(current_dabr) = new->thread.dabr;
309 	}
310 
311 	new_thread = &new->thread;
312 	old_thread = &current->thread;
313 
314 #ifdef CONFIG_PPC64
315 	/*
316 	 * Collect processor utilization data per process
317 	 */
318 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
319 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
320 		long unsigned start_tb, current_tb;
321 		start_tb = old_thread->start_tb;
322 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
323 		old_thread->accum_tb += (current_tb - start_tb);
324 		new_thread->start_tb = current_tb;
325 	}
326 #endif
327 
328 	local_irq_save(flags);
329 
330 	account_system_vtime(current);
331 	account_process_vtime(current);
332 	calculate_steal_time();
333 
334 	last = _switch(old_thread, new_thread);
335 
336 	local_irq_restore(flags);
337 
338 	return last;
339 }
340 
341 static int instructions_to_print = 16;
342 
343 static void show_instructions(struct pt_regs *regs)
344 {
345 	int i;
346 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
347 			sizeof(int));
348 
349 	printk("Instruction dump:");
350 
351 	for (i = 0; i < instructions_to_print; i++) {
352 		int instr;
353 
354 		if (!(i % 8))
355 			printk("\n");
356 
357 		/* We use __get_user here *only* to avoid an OOPS on a
358 		 * bad address because the pc *should* only be a
359 		 * kernel address.
360 		 */
361 		if (!__kernel_text_address(pc) ||
362 		     __get_user(instr, (unsigned int __user *)pc)) {
363 			printk("XXXXXXXX ");
364 		} else {
365 			if (regs->nip == pc)
366 				printk("<%08x> ", instr);
367 			else
368 				printk("%08x ", instr);
369 		}
370 
371 		pc += sizeof(int);
372 	}
373 
374 	printk("\n");
375 }
376 
377 static struct regbit {
378 	unsigned long bit;
379 	const char *name;
380 } msr_bits[] = {
381 	{MSR_EE,	"EE"},
382 	{MSR_PR,	"PR"},
383 	{MSR_FP,	"FP"},
384 	{MSR_ME,	"ME"},
385 	{MSR_IR,	"IR"},
386 	{MSR_DR,	"DR"},
387 	{0,		NULL}
388 };
389 
390 static void printbits(unsigned long val, struct regbit *bits)
391 {
392 	const char *sep = "";
393 
394 	printk("<");
395 	for (; bits->bit; ++bits)
396 		if (val & bits->bit) {
397 			printk("%s%s", sep, bits->name);
398 			sep = ",";
399 		}
400 	printk(">");
401 }
402 
403 #ifdef CONFIG_PPC64
404 #define REG		"%016lx"
405 #define REGS_PER_LINE	4
406 #define LAST_VOLATILE	13
407 #else
408 #define REG		"%08lx"
409 #define REGS_PER_LINE	8
410 #define LAST_VOLATILE	12
411 #endif
412 
413 void show_regs(struct pt_regs * regs)
414 {
415 	int i, trap;
416 
417 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
418 	       regs->nip, regs->link, regs->ctr);
419 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
420 	       regs, regs->trap, print_tainted(), init_utsname()->release);
421 	printk("MSR: "REG" ", regs->msr);
422 	printbits(regs->msr, msr_bits);
423 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
424 	trap = TRAP(regs);
425 	if (trap == 0x300 || trap == 0x600)
426 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
427 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
428 #else
429 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
430 #endif
431 	printk("TASK = %p[%d] '%s' THREAD: %p",
432 	       current, current->pid, current->comm, task_thread_info(current));
433 
434 #ifdef CONFIG_SMP
435 	printk(" CPU: %d", smp_processor_id());
436 #endif /* CONFIG_SMP */
437 
438 	for (i = 0;  i < 32;  i++) {
439 		if ((i % REGS_PER_LINE) == 0)
440 			printk("\n" KERN_INFO "GPR%02d: ", i);
441 		printk(REG " ", regs->gpr[i]);
442 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
443 			break;
444 	}
445 	printk("\n");
446 #ifdef CONFIG_KALLSYMS
447 	/*
448 	 * Lookup NIP late so we have the best change of getting the
449 	 * above info out without failing
450 	 */
451 	printk("NIP ["REG"] ", regs->nip);
452 	print_symbol("%s\n", regs->nip);
453 	printk("LR ["REG"] ", regs->link);
454 	print_symbol("%s\n", regs->link);
455 #endif
456 	show_stack(current, (unsigned long *) regs->gpr[1]);
457 	if (!user_mode(regs))
458 		show_instructions(regs);
459 }
460 
461 void exit_thread(void)
462 {
463 	discard_lazy_cpu_state();
464 }
465 
466 void flush_thread(void)
467 {
468 #ifdef CONFIG_PPC64
469 	struct thread_info *t = current_thread_info();
470 
471 	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
472 		clear_ti_thread_flag(t, TIF_ABI_PENDING);
473 		if (test_ti_thread_flag(t, TIF_32BIT))
474 			clear_ti_thread_flag(t, TIF_32BIT);
475 		else
476 			set_ti_thread_flag(t, TIF_32BIT);
477 	}
478 #endif
479 
480 	discard_lazy_cpu_state();
481 
482 	if (current->thread.dabr) {
483 		current->thread.dabr = 0;
484 		set_dabr(0);
485 	}
486 }
487 
488 void
489 release_thread(struct task_struct *t)
490 {
491 }
492 
493 /*
494  * This gets called before we allocate a new thread and copy
495  * the current task into it.
496  */
497 void prepare_to_copy(struct task_struct *tsk)
498 {
499 	flush_fp_to_thread(current);
500 	flush_altivec_to_thread(current);
501 	flush_spe_to_thread(current);
502 }
503 
504 /*
505  * Copy a thread..
506  */
507 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
508 		unsigned long unused, struct task_struct *p,
509 		struct pt_regs *regs)
510 {
511 	struct pt_regs *childregs, *kregs;
512 	extern void ret_from_fork(void);
513 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
514 
515 	CHECK_FULL_REGS(regs);
516 	/* Copy registers */
517 	sp -= sizeof(struct pt_regs);
518 	childregs = (struct pt_regs *) sp;
519 	*childregs = *regs;
520 	if ((childregs->msr & MSR_PR) == 0) {
521 		/* for kernel thread, set `current' and stackptr in new task */
522 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
523 #ifdef CONFIG_PPC32
524 		childregs->gpr[2] = (unsigned long) p;
525 #else
526 		clear_tsk_thread_flag(p, TIF_32BIT);
527 #endif
528 		p->thread.regs = NULL;	/* no user register state */
529 	} else {
530 		childregs->gpr[1] = usp;
531 		p->thread.regs = childregs;
532 		if (clone_flags & CLONE_SETTLS) {
533 #ifdef CONFIG_PPC64
534 			if (!test_thread_flag(TIF_32BIT))
535 				childregs->gpr[13] = childregs->gpr[6];
536 			else
537 #endif
538 				childregs->gpr[2] = childregs->gpr[6];
539 		}
540 	}
541 	childregs->gpr[3] = 0;  /* Result from fork() */
542 	sp -= STACK_FRAME_OVERHEAD;
543 
544 	/*
545 	 * The way this works is that at some point in the future
546 	 * some task will call _switch to switch to the new task.
547 	 * That will pop off the stack frame created below and start
548 	 * the new task running at ret_from_fork.  The new task will
549 	 * do some house keeping and then return from the fork or clone
550 	 * system call, using the stack frame created above.
551 	 */
552 	sp -= sizeof(struct pt_regs);
553 	kregs = (struct pt_regs *) sp;
554 	sp -= STACK_FRAME_OVERHEAD;
555 	p->thread.ksp = sp;
556 
557 #ifdef CONFIG_PPC64
558 	if (cpu_has_feature(CPU_FTR_SLB)) {
559 		unsigned long sp_vsid = get_kernel_vsid(sp);
560 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
561 
562 		sp_vsid <<= SLB_VSID_SHIFT;
563 		sp_vsid |= SLB_VSID_KERNEL | llp;
564 		p->thread.ksp_vsid = sp_vsid;
565 	}
566 
567 	/*
568 	 * The PPC64 ABI makes use of a TOC to contain function
569 	 * pointers.  The function (ret_from_except) is actually a pointer
570 	 * to the TOC entry.  The first entry is a pointer to the actual
571 	 * function.
572  	 */
573 	kregs->nip = *((unsigned long *)ret_from_fork);
574 #else
575 	kregs->nip = (unsigned long)ret_from_fork;
576 #endif
577 
578 	return 0;
579 }
580 
581 /*
582  * Set up a thread for executing a new program
583  */
584 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
585 {
586 #ifdef CONFIG_PPC64
587 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
588 #endif
589 
590 	set_fs(USER_DS);
591 
592 	/*
593 	 * If we exec out of a kernel thread then thread.regs will not be
594 	 * set.  Do it now.
595 	 */
596 	if (!current->thread.regs) {
597 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
598 		current->thread.regs = regs - 1;
599 	}
600 
601 	memset(regs->gpr, 0, sizeof(regs->gpr));
602 	regs->ctr = 0;
603 	regs->link = 0;
604 	regs->xer = 0;
605 	regs->ccr = 0;
606 	regs->gpr[1] = sp;
607 
608 #ifdef CONFIG_PPC32
609 	regs->mq = 0;
610 	regs->nip = start;
611 	regs->msr = MSR_USER;
612 #else
613 	if (!test_thread_flag(TIF_32BIT)) {
614 		unsigned long entry, toc;
615 
616 		/* start is a relocated pointer to the function descriptor for
617 		 * the elf _start routine.  The first entry in the function
618 		 * descriptor is the entry address of _start and the second
619 		 * entry is the TOC value we need to use.
620 		 */
621 		__get_user(entry, (unsigned long __user *)start);
622 		__get_user(toc, (unsigned long __user *)start+1);
623 
624 		/* Check whether the e_entry function descriptor entries
625 		 * need to be relocated before we can use them.
626 		 */
627 		if (load_addr != 0) {
628 			entry += load_addr;
629 			toc   += load_addr;
630 		}
631 		regs->nip = entry;
632 		regs->gpr[2] = toc;
633 		regs->msr = MSR_USER64;
634 	} else {
635 		regs->nip = start;
636 		regs->gpr[2] = 0;
637 		regs->msr = MSR_USER32;
638 	}
639 #endif
640 
641 	discard_lazy_cpu_state();
642 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
643 	current->thread.fpscr.val = 0;
644 #ifdef CONFIG_ALTIVEC
645 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
646 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
647 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
648 	current->thread.vrsave = 0;
649 	current->thread.used_vr = 0;
650 #endif /* CONFIG_ALTIVEC */
651 #ifdef CONFIG_SPE
652 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
653 	current->thread.acc = 0;
654 	current->thread.spefscr = 0;
655 	current->thread.used_spe = 0;
656 #endif /* CONFIG_SPE */
657 }
658 
659 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
660 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
661 
662 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
663 {
664 	struct pt_regs *regs = tsk->thread.regs;
665 
666 	/* This is a bit hairy.  If we are an SPE enabled  processor
667 	 * (have embedded fp) we store the IEEE exception enable flags in
668 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
669 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
670 	if (val & PR_FP_EXC_SW_ENABLE) {
671 #ifdef CONFIG_SPE
672 		tsk->thread.fpexc_mode = val &
673 			(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
674 		return 0;
675 #else
676 		return -EINVAL;
677 #endif
678 	}
679 
680 	/* on a CONFIG_SPE this does not hurt us.  The bits that
681 	 * __pack_fe01 use do not overlap with bits used for
682 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
683 	 * on CONFIG_SPE implementations are reserved so writing to
684 	 * them does not change anything */
685 	if (val > PR_FP_EXC_PRECISE)
686 		return -EINVAL;
687 	tsk->thread.fpexc_mode = __pack_fe01(val);
688 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
689 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
690 			| tsk->thread.fpexc_mode;
691 	return 0;
692 }
693 
694 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
695 {
696 	unsigned int val;
697 
698 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
699 #ifdef CONFIG_SPE
700 		val = tsk->thread.fpexc_mode;
701 #else
702 		return -EINVAL;
703 #endif
704 	else
705 		val = __unpack_fe01(tsk->thread.fpexc_mode);
706 	return put_user(val, (unsigned int __user *) adr);
707 }
708 
709 int set_endian(struct task_struct *tsk, unsigned int val)
710 {
711 	struct pt_regs *regs = tsk->thread.regs;
712 
713 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
714 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
715 		return -EINVAL;
716 
717 	if (regs == NULL)
718 		return -EINVAL;
719 
720 	if (val == PR_ENDIAN_BIG)
721 		regs->msr &= ~MSR_LE;
722 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
723 		regs->msr |= MSR_LE;
724 	else
725 		return -EINVAL;
726 
727 	return 0;
728 }
729 
730 int get_endian(struct task_struct *tsk, unsigned long adr)
731 {
732 	struct pt_regs *regs = tsk->thread.regs;
733 	unsigned int val;
734 
735 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
736 	    !cpu_has_feature(CPU_FTR_REAL_LE))
737 		return -EINVAL;
738 
739 	if (regs == NULL)
740 		return -EINVAL;
741 
742 	if (regs->msr & MSR_LE) {
743 		if (cpu_has_feature(CPU_FTR_REAL_LE))
744 			val = PR_ENDIAN_LITTLE;
745 		else
746 			val = PR_ENDIAN_PPC_LITTLE;
747 	} else
748 		val = PR_ENDIAN_BIG;
749 
750 	return put_user(val, (unsigned int __user *)adr);
751 }
752 
753 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
754 {
755 	tsk->thread.align_ctl = val;
756 	return 0;
757 }
758 
759 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
760 {
761 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
762 }
763 
764 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
765 
766 int sys_clone(unsigned long clone_flags, unsigned long usp,
767 	      int __user *parent_tidp, void __user *child_threadptr,
768 	      int __user *child_tidp, int p6,
769 	      struct pt_regs *regs)
770 {
771 	CHECK_FULL_REGS(regs);
772 	if (usp == 0)
773 		usp = regs->gpr[1];	/* stack pointer for child */
774 #ifdef CONFIG_PPC64
775 	if (test_thread_flag(TIF_32BIT)) {
776 		parent_tidp = TRUNC_PTR(parent_tidp);
777 		child_tidp = TRUNC_PTR(child_tidp);
778 	}
779 #endif
780  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
781 }
782 
783 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
784 	     unsigned long p4, unsigned long p5, unsigned long p6,
785 	     struct pt_regs *regs)
786 {
787 	CHECK_FULL_REGS(regs);
788 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
789 }
790 
791 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
792 	      unsigned long p4, unsigned long p5, unsigned long p6,
793 	      struct pt_regs *regs)
794 {
795 	CHECK_FULL_REGS(regs);
796 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
797 			regs, 0, NULL, NULL);
798 }
799 
800 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
801 	       unsigned long a3, unsigned long a4, unsigned long a5,
802 	       struct pt_regs *regs)
803 {
804 	int error;
805 	char *filename;
806 
807 	filename = getname((char __user *) a0);
808 	error = PTR_ERR(filename);
809 	if (IS_ERR(filename))
810 		goto out;
811 	flush_fp_to_thread(current);
812 	flush_altivec_to_thread(current);
813 	flush_spe_to_thread(current);
814 	error = do_execve(filename, (char __user * __user *) a1,
815 			  (char __user * __user *) a2, regs);
816 	if (error == 0) {
817 		task_lock(current);
818 		current->ptrace &= ~PT_DTRACE;
819 		task_unlock(current);
820 	}
821 	putname(filename);
822 out:
823 	return error;
824 }
825 
826 #ifdef CONFIG_IRQSTACKS
827 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
828 				  unsigned long nbytes)
829 {
830 	unsigned long stack_page;
831 	unsigned long cpu = task_cpu(p);
832 
833 	/*
834 	 * Avoid crashing if the stack has overflowed and corrupted
835 	 * task_cpu(p), which is in the thread_info struct.
836 	 */
837 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
838 		stack_page = (unsigned long) hardirq_ctx[cpu];
839 		if (sp >= stack_page + sizeof(struct thread_struct)
840 		    && sp <= stack_page + THREAD_SIZE - nbytes)
841 			return 1;
842 
843 		stack_page = (unsigned long) softirq_ctx[cpu];
844 		if (sp >= stack_page + sizeof(struct thread_struct)
845 		    && sp <= stack_page + THREAD_SIZE - nbytes)
846 			return 1;
847 	}
848 	return 0;
849 }
850 
851 #else
852 #define valid_irq_stack(sp, p, nb)	0
853 #endif /* CONFIG_IRQSTACKS */
854 
855 int validate_sp(unsigned long sp, struct task_struct *p,
856 		       unsigned long nbytes)
857 {
858 	unsigned long stack_page = (unsigned long)task_stack_page(p);
859 
860 	if (sp >= stack_page + sizeof(struct thread_struct)
861 	    && sp <= stack_page + THREAD_SIZE - nbytes)
862 		return 1;
863 
864 	return valid_irq_stack(sp, p, nbytes);
865 }
866 
867 #ifdef CONFIG_PPC64
868 #define MIN_STACK_FRAME	112	/* same as STACK_FRAME_OVERHEAD, in fact */
869 #define FRAME_LR_SAVE	2
870 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
871 #define REGS_MARKER	0x7265677368657265ul
872 #define FRAME_MARKER	12
873 #else
874 #define MIN_STACK_FRAME	16
875 #define FRAME_LR_SAVE	1
876 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
877 #define REGS_MARKER	0x72656773ul
878 #define FRAME_MARKER	2
879 #endif
880 
881 EXPORT_SYMBOL(validate_sp);
882 
883 unsigned long get_wchan(struct task_struct *p)
884 {
885 	unsigned long ip, sp;
886 	int count = 0;
887 
888 	if (!p || p == current || p->state == TASK_RUNNING)
889 		return 0;
890 
891 	sp = p->thread.ksp;
892 	if (!validate_sp(sp, p, MIN_STACK_FRAME))
893 		return 0;
894 
895 	do {
896 		sp = *(unsigned long *)sp;
897 		if (!validate_sp(sp, p, MIN_STACK_FRAME))
898 			return 0;
899 		if (count > 0) {
900 			ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
901 			if (!in_sched_functions(ip))
902 				return ip;
903 		}
904 	} while (count++ < 16);
905 	return 0;
906 }
907 
908 static int kstack_depth_to_print = 64;
909 
910 void show_stack(struct task_struct *tsk, unsigned long *stack)
911 {
912 	unsigned long sp, ip, lr, newsp;
913 	int count = 0;
914 	int firstframe = 1;
915 
916 	sp = (unsigned long) stack;
917 	if (tsk == NULL)
918 		tsk = current;
919 	if (sp == 0) {
920 		if (tsk == current)
921 			asm("mr %0,1" : "=r" (sp));
922 		else
923 			sp = tsk->thread.ksp;
924 	}
925 
926 	lr = 0;
927 	printk("Call Trace:\n");
928 	do {
929 		if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
930 			return;
931 
932 		stack = (unsigned long *) sp;
933 		newsp = stack[0];
934 		ip = stack[FRAME_LR_SAVE];
935 		if (!firstframe || ip != lr) {
936 			printk("["REG"] ["REG"] ", sp, ip);
937 			print_symbol("%s", ip);
938 			if (firstframe)
939 				printk(" (unreliable)");
940 			printk("\n");
941 		}
942 		firstframe = 0;
943 
944 		/*
945 		 * See if this is an exception frame.
946 		 * We look for the "regshere" marker in the current frame.
947 		 */
948 		if (validate_sp(sp, tsk, INT_FRAME_SIZE)
949 		    && stack[FRAME_MARKER] == REGS_MARKER) {
950 			struct pt_regs *regs = (struct pt_regs *)
951 				(sp + STACK_FRAME_OVERHEAD);
952 			printk("--- Exception: %lx", regs->trap);
953 			print_symbol(" at %s\n", regs->nip);
954 			lr = regs->link;
955 			print_symbol("    LR = %s\n", lr);
956 			firstframe = 1;
957 		}
958 
959 		sp = newsp;
960 	} while (count++ < kstack_depth_to_print);
961 }
962 
963 void dump_stack(void)
964 {
965 	show_stack(current, NULL);
966 }
967 EXPORT_SYMBOL(dump_stack);
968 
969 #ifdef CONFIG_PPC64
970 void ppc64_runlatch_on(void)
971 {
972 	unsigned long ctrl;
973 
974 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
975 		HMT_medium();
976 
977 		ctrl = mfspr(SPRN_CTRLF);
978 		ctrl |= CTRL_RUNLATCH;
979 		mtspr(SPRN_CTRLT, ctrl);
980 
981 		set_thread_flag(TIF_RUNLATCH);
982 	}
983 }
984 
985 void ppc64_runlatch_off(void)
986 {
987 	unsigned long ctrl;
988 
989 	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
990 		HMT_medium();
991 
992 		clear_thread_flag(TIF_RUNLATCH);
993 
994 		ctrl = mfspr(SPRN_CTRLF);
995 		ctrl &= ~CTRL_RUNLATCH;
996 		mtspr(SPRN_CTRLT, ctrl);
997 	}
998 }
999 #endif
1000