1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/module.h> 32 #include <linux/kallsyms.h> 33 #include <linux/mqueue.h> 34 #include <linux/hardirq.h> 35 #include <linux/utsname.h> 36 37 #include <asm/pgtable.h> 38 #include <asm/uaccess.h> 39 #include <asm/system.h> 40 #include <asm/io.h> 41 #include <asm/processor.h> 42 #include <asm/mmu.h> 43 #include <asm/prom.h> 44 #include <asm/machdep.h> 45 #include <asm/time.h> 46 #include <asm/syscalls.h> 47 #ifdef CONFIG_PPC64 48 #include <asm/firmware.h> 49 #endif 50 51 extern unsigned long _get_SP(void); 52 53 #ifndef CONFIG_SMP 54 struct task_struct *last_task_used_math = NULL; 55 struct task_struct *last_task_used_altivec = NULL; 56 struct task_struct *last_task_used_spe = NULL; 57 #endif 58 59 /* 60 * Make sure the floating-point register state in the 61 * the thread_struct is up to date for task tsk. 62 */ 63 void flush_fp_to_thread(struct task_struct *tsk) 64 { 65 if (tsk->thread.regs) { 66 /* 67 * We need to disable preemption here because if we didn't, 68 * another process could get scheduled after the regs->msr 69 * test but before we have finished saving the FP registers 70 * to the thread_struct. That process could take over the 71 * FPU, and then when we get scheduled again we would store 72 * bogus values for the remaining FP registers. 73 */ 74 preempt_disable(); 75 if (tsk->thread.regs->msr & MSR_FP) { 76 #ifdef CONFIG_SMP 77 /* 78 * This should only ever be called for current or 79 * for a stopped child process. Since we save away 80 * the FP register state on context switch on SMP, 81 * there is something wrong if a stopped child appears 82 * to still have its FP state in the CPU registers. 83 */ 84 BUG_ON(tsk != current); 85 #endif 86 giveup_fpu(current); 87 } 88 preempt_enable(); 89 } 90 } 91 92 void enable_kernel_fp(void) 93 { 94 WARN_ON(preemptible()); 95 96 #ifdef CONFIG_SMP 97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 98 giveup_fpu(current); 99 else 100 giveup_fpu(NULL); /* just enables FP for kernel */ 101 #else 102 giveup_fpu(last_task_used_math); 103 #endif /* CONFIG_SMP */ 104 } 105 EXPORT_SYMBOL(enable_kernel_fp); 106 107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) 108 { 109 if (!tsk->thread.regs) 110 return 0; 111 flush_fp_to_thread(current); 112 113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); 114 115 return 1; 116 } 117 118 #ifdef CONFIG_ALTIVEC 119 void enable_kernel_altivec(void) 120 { 121 WARN_ON(preemptible()); 122 123 #ifdef CONFIG_SMP 124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 125 giveup_altivec(current); 126 else 127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 128 #else 129 giveup_altivec(last_task_used_altivec); 130 #endif /* CONFIG_SMP */ 131 } 132 EXPORT_SYMBOL(enable_kernel_altivec); 133 134 /* 135 * Make sure the VMX/Altivec register state in the 136 * the thread_struct is up to date for task tsk. 137 */ 138 void flush_altivec_to_thread(struct task_struct *tsk) 139 { 140 if (tsk->thread.regs) { 141 preempt_disable(); 142 if (tsk->thread.regs->msr & MSR_VEC) { 143 #ifdef CONFIG_SMP 144 BUG_ON(tsk != current); 145 #endif 146 giveup_altivec(current); 147 } 148 preempt_enable(); 149 } 150 } 151 152 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) 153 { 154 flush_altivec_to_thread(current); 155 memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); 156 return 1; 157 } 158 #endif /* CONFIG_ALTIVEC */ 159 160 #ifdef CONFIG_SPE 161 162 void enable_kernel_spe(void) 163 { 164 WARN_ON(preemptible()); 165 166 #ifdef CONFIG_SMP 167 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 168 giveup_spe(current); 169 else 170 giveup_spe(NULL); /* just enable SPE for kernel - force */ 171 #else 172 giveup_spe(last_task_used_spe); 173 #endif /* __SMP __ */ 174 } 175 EXPORT_SYMBOL(enable_kernel_spe); 176 177 void flush_spe_to_thread(struct task_struct *tsk) 178 { 179 if (tsk->thread.regs) { 180 preempt_disable(); 181 if (tsk->thread.regs->msr & MSR_SPE) { 182 #ifdef CONFIG_SMP 183 BUG_ON(tsk != current); 184 #endif 185 giveup_spe(current); 186 } 187 preempt_enable(); 188 } 189 } 190 191 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) 192 { 193 flush_spe_to_thread(current); 194 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ 195 memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); 196 return 1; 197 } 198 #endif /* CONFIG_SPE */ 199 200 #ifndef CONFIG_SMP 201 /* 202 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 203 * and the current task has some state, discard it. 204 */ 205 void discard_lazy_cpu_state(void) 206 { 207 preempt_disable(); 208 if (last_task_used_math == current) 209 last_task_used_math = NULL; 210 #ifdef CONFIG_ALTIVEC 211 if (last_task_used_altivec == current) 212 last_task_used_altivec = NULL; 213 #endif /* CONFIG_ALTIVEC */ 214 #ifdef CONFIG_SPE 215 if (last_task_used_spe == current) 216 last_task_used_spe = NULL; 217 #endif 218 preempt_enable(); 219 } 220 #endif /* CONFIG_SMP */ 221 222 int set_dabr(unsigned long dabr) 223 { 224 #ifdef CONFIG_PPC_MERGE /* XXX for now */ 225 if (ppc_md.set_dabr) 226 return ppc_md.set_dabr(dabr); 227 #endif 228 229 /* XXX should we have a CPU_FTR_HAS_DABR ? */ 230 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx) 231 mtspr(SPRN_DABR, dabr); 232 #endif 233 return 0; 234 } 235 236 #ifdef CONFIG_PPC64 237 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 238 #endif 239 240 static DEFINE_PER_CPU(unsigned long, current_dabr); 241 242 struct task_struct *__switch_to(struct task_struct *prev, 243 struct task_struct *new) 244 { 245 struct thread_struct *new_thread, *old_thread; 246 unsigned long flags; 247 struct task_struct *last; 248 249 #ifdef CONFIG_SMP 250 /* avoid complexity of lazy save/restore of fpu 251 * by just saving it every time we switch out if 252 * this task used the fpu during the last quantum. 253 * 254 * If it tries to use the fpu again, it'll trap and 255 * reload its fp regs. So we don't have to do a restore 256 * every switch, just a save. 257 * -- Cort 258 */ 259 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 260 giveup_fpu(prev); 261 #ifdef CONFIG_ALTIVEC 262 /* 263 * If the previous thread used altivec in the last quantum 264 * (thus changing altivec regs) then save them. 265 * We used to check the VRSAVE register but not all apps 266 * set it, so we don't rely on it now (and in fact we need 267 * to save & restore VSCR even if VRSAVE == 0). -- paulus 268 * 269 * On SMP we always save/restore altivec regs just to avoid the 270 * complexity of changing processors. 271 * -- Cort 272 */ 273 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 274 giveup_altivec(prev); 275 #endif /* CONFIG_ALTIVEC */ 276 #ifdef CONFIG_SPE 277 /* 278 * If the previous thread used spe in the last quantum 279 * (thus changing spe regs) then save them. 280 * 281 * On SMP we always save/restore spe regs just to avoid the 282 * complexity of changing processors. 283 */ 284 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 285 giveup_spe(prev); 286 #endif /* CONFIG_SPE */ 287 288 #else /* CONFIG_SMP */ 289 #ifdef CONFIG_ALTIVEC 290 /* Avoid the trap. On smp this this never happens since 291 * we don't set last_task_used_altivec -- Cort 292 */ 293 if (new->thread.regs && last_task_used_altivec == new) 294 new->thread.regs->msr |= MSR_VEC; 295 #endif /* CONFIG_ALTIVEC */ 296 #ifdef CONFIG_SPE 297 /* Avoid the trap. On smp this this never happens since 298 * we don't set last_task_used_spe 299 */ 300 if (new->thread.regs && last_task_used_spe == new) 301 new->thread.regs->msr |= MSR_SPE; 302 #endif /* CONFIG_SPE */ 303 304 #endif /* CONFIG_SMP */ 305 306 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) { 307 set_dabr(new->thread.dabr); 308 __get_cpu_var(current_dabr) = new->thread.dabr; 309 } 310 311 new_thread = &new->thread; 312 old_thread = ¤t->thread; 313 314 #ifdef CONFIG_PPC64 315 /* 316 * Collect processor utilization data per process 317 */ 318 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 319 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 320 long unsigned start_tb, current_tb; 321 start_tb = old_thread->start_tb; 322 cu->current_tb = current_tb = mfspr(SPRN_PURR); 323 old_thread->accum_tb += (current_tb - start_tb); 324 new_thread->start_tb = current_tb; 325 } 326 #endif 327 328 local_irq_save(flags); 329 330 account_system_vtime(current); 331 account_process_vtime(current); 332 calculate_steal_time(); 333 334 last = _switch(old_thread, new_thread); 335 336 local_irq_restore(flags); 337 338 return last; 339 } 340 341 static int instructions_to_print = 16; 342 343 static void show_instructions(struct pt_regs *regs) 344 { 345 int i; 346 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 347 sizeof(int)); 348 349 printk("Instruction dump:"); 350 351 for (i = 0; i < instructions_to_print; i++) { 352 int instr; 353 354 if (!(i % 8)) 355 printk("\n"); 356 357 /* We use __get_user here *only* to avoid an OOPS on a 358 * bad address because the pc *should* only be a 359 * kernel address. 360 */ 361 if (!__kernel_text_address(pc) || 362 __get_user(instr, (unsigned int __user *)pc)) { 363 printk("XXXXXXXX "); 364 } else { 365 if (regs->nip == pc) 366 printk("<%08x> ", instr); 367 else 368 printk("%08x ", instr); 369 } 370 371 pc += sizeof(int); 372 } 373 374 printk("\n"); 375 } 376 377 static struct regbit { 378 unsigned long bit; 379 const char *name; 380 } msr_bits[] = { 381 {MSR_EE, "EE"}, 382 {MSR_PR, "PR"}, 383 {MSR_FP, "FP"}, 384 {MSR_ME, "ME"}, 385 {MSR_IR, "IR"}, 386 {MSR_DR, "DR"}, 387 {0, NULL} 388 }; 389 390 static void printbits(unsigned long val, struct regbit *bits) 391 { 392 const char *sep = ""; 393 394 printk("<"); 395 for (; bits->bit; ++bits) 396 if (val & bits->bit) { 397 printk("%s%s", sep, bits->name); 398 sep = ","; 399 } 400 printk(">"); 401 } 402 403 #ifdef CONFIG_PPC64 404 #define REG "%016lx" 405 #define REGS_PER_LINE 4 406 #define LAST_VOLATILE 13 407 #else 408 #define REG "%08lx" 409 #define REGS_PER_LINE 8 410 #define LAST_VOLATILE 12 411 #endif 412 413 void show_regs(struct pt_regs * regs) 414 { 415 int i, trap; 416 417 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 418 regs->nip, regs->link, regs->ctr); 419 printk("REGS: %p TRAP: %04lx %s (%s)\n", 420 regs, regs->trap, print_tainted(), init_utsname()->release); 421 printk("MSR: "REG" ", regs->msr); 422 printbits(regs->msr, msr_bits); 423 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 424 trap = TRAP(regs); 425 if (trap == 0x300 || trap == 0x600) 426 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 427 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); 428 #else 429 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 430 #endif 431 printk("TASK = %p[%d] '%s' THREAD: %p", 432 current, current->pid, current->comm, task_thread_info(current)); 433 434 #ifdef CONFIG_SMP 435 printk(" CPU: %d", smp_processor_id()); 436 #endif /* CONFIG_SMP */ 437 438 for (i = 0; i < 32; i++) { 439 if ((i % REGS_PER_LINE) == 0) 440 printk("\n" KERN_INFO "GPR%02d: ", i); 441 printk(REG " ", regs->gpr[i]); 442 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 443 break; 444 } 445 printk("\n"); 446 #ifdef CONFIG_KALLSYMS 447 /* 448 * Lookup NIP late so we have the best change of getting the 449 * above info out without failing 450 */ 451 printk("NIP ["REG"] ", regs->nip); 452 print_symbol("%s\n", regs->nip); 453 printk("LR ["REG"] ", regs->link); 454 print_symbol("%s\n", regs->link); 455 #endif 456 show_stack(current, (unsigned long *) regs->gpr[1]); 457 if (!user_mode(regs)) 458 show_instructions(regs); 459 } 460 461 void exit_thread(void) 462 { 463 discard_lazy_cpu_state(); 464 } 465 466 void flush_thread(void) 467 { 468 #ifdef CONFIG_PPC64 469 struct thread_info *t = current_thread_info(); 470 471 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) { 472 clear_ti_thread_flag(t, TIF_ABI_PENDING); 473 if (test_ti_thread_flag(t, TIF_32BIT)) 474 clear_ti_thread_flag(t, TIF_32BIT); 475 else 476 set_ti_thread_flag(t, TIF_32BIT); 477 } 478 #endif 479 480 discard_lazy_cpu_state(); 481 482 if (current->thread.dabr) { 483 current->thread.dabr = 0; 484 set_dabr(0); 485 } 486 } 487 488 void 489 release_thread(struct task_struct *t) 490 { 491 } 492 493 /* 494 * This gets called before we allocate a new thread and copy 495 * the current task into it. 496 */ 497 void prepare_to_copy(struct task_struct *tsk) 498 { 499 flush_fp_to_thread(current); 500 flush_altivec_to_thread(current); 501 flush_spe_to_thread(current); 502 } 503 504 /* 505 * Copy a thread.. 506 */ 507 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 508 unsigned long unused, struct task_struct *p, 509 struct pt_regs *regs) 510 { 511 struct pt_regs *childregs, *kregs; 512 extern void ret_from_fork(void); 513 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 514 515 CHECK_FULL_REGS(regs); 516 /* Copy registers */ 517 sp -= sizeof(struct pt_regs); 518 childregs = (struct pt_regs *) sp; 519 *childregs = *regs; 520 if ((childregs->msr & MSR_PR) == 0) { 521 /* for kernel thread, set `current' and stackptr in new task */ 522 childregs->gpr[1] = sp + sizeof(struct pt_regs); 523 #ifdef CONFIG_PPC32 524 childregs->gpr[2] = (unsigned long) p; 525 #else 526 clear_tsk_thread_flag(p, TIF_32BIT); 527 #endif 528 p->thread.regs = NULL; /* no user register state */ 529 } else { 530 childregs->gpr[1] = usp; 531 p->thread.regs = childregs; 532 if (clone_flags & CLONE_SETTLS) { 533 #ifdef CONFIG_PPC64 534 if (!test_thread_flag(TIF_32BIT)) 535 childregs->gpr[13] = childregs->gpr[6]; 536 else 537 #endif 538 childregs->gpr[2] = childregs->gpr[6]; 539 } 540 } 541 childregs->gpr[3] = 0; /* Result from fork() */ 542 sp -= STACK_FRAME_OVERHEAD; 543 544 /* 545 * The way this works is that at some point in the future 546 * some task will call _switch to switch to the new task. 547 * That will pop off the stack frame created below and start 548 * the new task running at ret_from_fork. The new task will 549 * do some house keeping and then return from the fork or clone 550 * system call, using the stack frame created above. 551 */ 552 sp -= sizeof(struct pt_regs); 553 kregs = (struct pt_regs *) sp; 554 sp -= STACK_FRAME_OVERHEAD; 555 p->thread.ksp = sp; 556 557 #ifdef CONFIG_PPC64 558 if (cpu_has_feature(CPU_FTR_SLB)) { 559 unsigned long sp_vsid = get_kernel_vsid(sp); 560 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 561 562 sp_vsid <<= SLB_VSID_SHIFT; 563 sp_vsid |= SLB_VSID_KERNEL | llp; 564 p->thread.ksp_vsid = sp_vsid; 565 } 566 567 /* 568 * The PPC64 ABI makes use of a TOC to contain function 569 * pointers. The function (ret_from_except) is actually a pointer 570 * to the TOC entry. The first entry is a pointer to the actual 571 * function. 572 */ 573 kregs->nip = *((unsigned long *)ret_from_fork); 574 #else 575 kregs->nip = (unsigned long)ret_from_fork; 576 #endif 577 578 return 0; 579 } 580 581 /* 582 * Set up a thread for executing a new program 583 */ 584 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 585 { 586 #ifdef CONFIG_PPC64 587 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 588 #endif 589 590 set_fs(USER_DS); 591 592 /* 593 * If we exec out of a kernel thread then thread.regs will not be 594 * set. Do it now. 595 */ 596 if (!current->thread.regs) { 597 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 598 current->thread.regs = regs - 1; 599 } 600 601 memset(regs->gpr, 0, sizeof(regs->gpr)); 602 regs->ctr = 0; 603 regs->link = 0; 604 regs->xer = 0; 605 regs->ccr = 0; 606 regs->gpr[1] = sp; 607 608 #ifdef CONFIG_PPC32 609 regs->mq = 0; 610 regs->nip = start; 611 regs->msr = MSR_USER; 612 #else 613 if (!test_thread_flag(TIF_32BIT)) { 614 unsigned long entry, toc; 615 616 /* start is a relocated pointer to the function descriptor for 617 * the elf _start routine. The first entry in the function 618 * descriptor is the entry address of _start and the second 619 * entry is the TOC value we need to use. 620 */ 621 __get_user(entry, (unsigned long __user *)start); 622 __get_user(toc, (unsigned long __user *)start+1); 623 624 /* Check whether the e_entry function descriptor entries 625 * need to be relocated before we can use them. 626 */ 627 if (load_addr != 0) { 628 entry += load_addr; 629 toc += load_addr; 630 } 631 regs->nip = entry; 632 regs->gpr[2] = toc; 633 regs->msr = MSR_USER64; 634 } else { 635 regs->nip = start; 636 regs->gpr[2] = 0; 637 regs->msr = MSR_USER32; 638 } 639 #endif 640 641 discard_lazy_cpu_state(); 642 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 643 current->thread.fpscr.val = 0; 644 #ifdef CONFIG_ALTIVEC 645 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 646 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 647 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 648 current->thread.vrsave = 0; 649 current->thread.used_vr = 0; 650 #endif /* CONFIG_ALTIVEC */ 651 #ifdef CONFIG_SPE 652 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 653 current->thread.acc = 0; 654 current->thread.spefscr = 0; 655 current->thread.used_spe = 0; 656 #endif /* CONFIG_SPE */ 657 } 658 659 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 660 | PR_FP_EXC_RES | PR_FP_EXC_INV) 661 662 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 663 { 664 struct pt_regs *regs = tsk->thread.regs; 665 666 /* This is a bit hairy. If we are an SPE enabled processor 667 * (have embedded fp) we store the IEEE exception enable flags in 668 * fpexc_mode. fpexc_mode is also used for setting FP exception 669 * mode (asyn, precise, disabled) for 'Classic' FP. */ 670 if (val & PR_FP_EXC_SW_ENABLE) { 671 #ifdef CONFIG_SPE 672 tsk->thread.fpexc_mode = val & 673 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 674 return 0; 675 #else 676 return -EINVAL; 677 #endif 678 } 679 680 /* on a CONFIG_SPE this does not hurt us. The bits that 681 * __pack_fe01 use do not overlap with bits used for 682 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 683 * on CONFIG_SPE implementations are reserved so writing to 684 * them does not change anything */ 685 if (val > PR_FP_EXC_PRECISE) 686 return -EINVAL; 687 tsk->thread.fpexc_mode = __pack_fe01(val); 688 if (regs != NULL && (regs->msr & MSR_FP) != 0) 689 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 690 | tsk->thread.fpexc_mode; 691 return 0; 692 } 693 694 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 695 { 696 unsigned int val; 697 698 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 699 #ifdef CONFIG_SPE 700 val = tsk->thread.fpexc_mode; 701 #else 702 return -EINVAL; 703 #endif 704 else 705 val = __unpack_fe01(tsk->thread.fpexc_mode); 706 return put_user(val, (unsigned int __user *) adr); 707 } 708 709 int set_endian(struct task_struct *tsk, unsigned int val) 710 { 711 struct pt_regs *regs = tsk->thread.regs; 712 713 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 714 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 715 return -EINVAL; 716 717 if (regs == NULL) 718 return -EINVAL; 719 720 if (val == PR_ENDIAN_BIG) 721 regs->msr &= ~MSR_LE; 722 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 723 regs->msr |= MSR_LE; 724 else 725 return -EINVAL; 726 727 return 0; 728 } 729 730 int get_endian(struct task_struct *tsk, unsigned long adr) 731 { 732 struct pt_regs *regs = tsk->thread.regs; 733 unsigned int val; 734 735 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 736 !cpu_has_feature(CPU_FTR_REAL_LE)) 737 return -EINVAL; 738 739 if (regs == NULL) 740 return -EINVAL; 741 742 if (regs->msr & MSR_LE) { 743 if (cpu_has_feature(CPU_FTR_REAL_LE)) 744 val = PR_ENDIAN_LITTLE; 745 else 746 val = PR_ENDIAN_PPC_LITTLE; 747 } else 748 val = PR_ENDIAN_BIG; 749 750 return put_user(val, (unsigned int __user *)adr); 751 } 752 753 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 754 { 755 tsk->thread.align_ctl = val; 756 return 0; 757 } 758 759 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 760 { 761 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 762 } 763 764 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 765 766 int sys_clone(unsigned long clone_flags, unsigned long usp, 767 int __user *parent_tidp, void __user *child_threadptr, 768 int __user *child_tidp, int p6, 769 struct pt_regs *regs) 770 { 771 CHECK_FULL_REGS(regs); 772 if (usp == 0) 773 usp = regs->gpr[1]; /* stack pointer for child */ 774 #ifdef CONFIG_PPC64 775 if (test_thread_flag(TIF_32BIT)) { 776 parent_tidp = TRUNC_PTR(parent_tidp); 777 child_tidp = TRUNC_PTR(child_tidp); 778 } 779 #endif 780 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 781 } 782 783 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 784 unsigned long p4, unsigned long p5, unsigned long p6, 785 struct pt_regs *regs) 786 { 787 CHECK_FULL_REGS(regs); 788 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 789 } 790 791 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 792 unsigned long p4, unsigned long p5, unsigned long p6, 793 struct pt_regs *regs) 794 { 795 CHECK_FULL_REGS(regs); 796 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 797 regs, 0, NULL, NULL); 798 } 799 800 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 801 unsigned long a3, unsigned long a4, unsigned long a5, 802 struct pt_regs *regs) 803 { 804 int error; 805 char *filename; 806 807 filename = getname((char __user *) a0); 808 error = PTR_ERR(filename); 809 if (IS_ERR(filename)) 810 goto out; 811 flush_fp_to_thread(current); 812 flush_altivec_to_thread(current); 813 flush_spe_to_thread(current); 814 error = do_execve(filename, (char __user * __user *) a1, 815 (char __user * __user *) a2, regs); 816 if (error == 0) { 817 task_lock(current); 818 current->ptrace &= ~PT_DTRACE; 819 task_unlock(current); 820 } 821 putname(filename); 822 out: 823 return error; 824 } 825 826 #ifdef CONFIG_IRQSTACKS 827 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 828 unsigned long nbytes) 829 { 830 unsigned long stack_page; 831 unsigned long cpu = task_cpu(p); 832 833 /* 834 * Avoid crashing if the stack has overflowed and corrupted 835 * task_cpu(p), which is in the thread_info struct. 836 */ 837 if (cpu < NR_CPUS && cpu_possible(cpu)) { 838 stack_page = (unsigned long) hardirq_ctx[cpu]; 839 if (sp >= stack_page + sizeof(struct thread_struct) 840 && sp <= stack_page + THREAD_SIZE - nbytes) 841 return 1; 842 843 stack_page = (unsigned long) softirq_ctx[cpu]; 844 if (sp >= stack_page + sizeof(struct thread_struct) 845 && sp <= stack_page + THREAD_SIZE - nbytes) 846 return 1; 847 } 848 return 0; 849 } 850 851 #else 852 #define valid_irq_stack(sp, p, nb) 0 853 #endif /* CONFIG_IRQSTACKS */ 854 855 int validate_sp(unsigned long sp, struct task_struct *p, 856 unsigned long nbytes) 857 { 858 unsigned long stack_page = (unsigned long)task_stack_page(p); 859 860 if (sp >= stack_page + sizeof(struct thread_struct) 861 && sp <= stack_page + THREAD_SIZE - nbytes) 862 return 1; 863 864 return valid_irq_stack(sp, p, nbytes); 865 } 866 867 #ifdef CONFIG_PPC64 868 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */ 869 #define FRAME_LR_SAVE 2 870 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288) 871 #define REGS_MARKER 0x7265677368657265ul 872 #define FRAME_MARKER 12 873 #else 874 #define MIN_STACK_FRAME 16 875 #define FRAME_LR_SAVE 1 876 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) 877 #define REGS_MARKER 0x72656773ul 878 #define FRAME_MARKER 2 879 #endif 880 881 EXPORT_SYMBOL(validate_sp); 882 883 unsigned long get_wchan(struct task_struct *p) 884 { 885 unsigned long ip, sp; 886 int count = 0; 887 888 if (!p || p == current || p->state == TASK_RUNNING) 889 return 0; 890 891 sp = p->thread.ksp; 892 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 893 return 0; 894 895 do { 896 sp = *(unsigned long *)sp; 897 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 898 return 0; 899 if (count > 0) { 900 ip = ((unsigned long *)sp)[FRAME_LR_SAVE]; 901 if (!in_sched_functions(ip)) 902 return ip; 903 } 904 } while (count++ < 16); 905 return 0; 906 } 907 908 static int kstack_depth_to_print = 64; 909 910 void show_stack(struct task_struct *tsk, unsigned long *stack) 911 { 912 unsigned long sp, ip, lr, newsp; 913 int count = 0; 914 int firstframe = 1; 915 916 sp = (unsigned long) stack; 917 if (tsk == NULL) 918 tsk = current; 919 if (sp == 0) { 920 if (tsk == current) 921 asm("mr %0,1" : "=r" (sp)); 922 else 923 sp = tsk->thread.ksp; 924 } 925 926 lr = 0; 927 printk("Call Trace:\n"); 928 do { 929 if (!validate_sp(sp, tsk, MIN_STACK_FRAME)) 930 return; 931 932 stack = (unsigned long *) sp; 933 newsp = stack[0]; 934 ip = stack[FRAME_LR_SAVE]; 935 if (!firstframe || ip != lr) { 936 printk("["REG"] ["REG"] ", sp, ip); 937 print_symbol("%s", ip); 938 if (firstframe) 939 printk(" (unreliable)"); 940 printk("\n"); 941 } 942 firstframe = 0; 943 944 /* 945 * See if this is an exception frame. 946 * We look for the "regshere" marker in the current frame. 947 */ 948 if (validate_sp(sp, tsk, INT_FRAME_SIZE) 949 && stack[FRAME_MARKER] == REGS_MARKER) { 950 struct pt_regs *regs = (struct pt_regs *) 951 (sp + STACK_FRAME_OVERHEAD); 952 printk("--- Exception: %lx", regs->trap); 953 print_symbol(" at %s\n", regs->nip); 954 lr = regs->link; 955 print_symbol(" LR = %s\n", lr); 956 firstframe = 1; 957 } 958 959 sp = newsp; 960 } while (count++ < kstack_depth_to_print); 961 } 962 963 void dump_stack(void) 964 { 965 show_stack(current, NULL); 966 } 967 EXPORT_SYMBOL(dump_stack); 968 969 #ifdef CONFIG_PPC64 970 void ppc64_runlatch_on(void) 971 { 972 unsigned long ctrl; 973 974 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { 975 HMT_medium(); 976 977 ctrl = mfspr(SPRN_CTRLF); 978 ctrl |= CTRL_RUNLATCH; 979 mtspr(SPRN_CTRLT, ctrl); 980 981 set_thread_flag(TIF_RUNLATCH); 982 } 983 } 984 985 void ppc64_runlatch_off(void) 986 { 987 unsigned long ctrl; 988 989 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) { 990 HMT_medium(); 991 992 clear_thread_flag(TIF_RUNLATCH); 993 994 ctrl = mfspr(SPRN_CTRLF); 995 ctrl &= ~CTRL_RUNLATCH; 996 mtspr(SPRN_CTRLT, ctrl); 997 } 998 } 999 #endif 1000