1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/interrupt.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #include <asm/time.h> 51 #include <asm/runlatch.h> 52 #include <asm/syscalls.h> 53 #include <asm/switch_to.h> 54 #include <asm/tm.h> 55 #include <asm/debug.h> 56 #ifdef CONFIG_PPC64 57 #include <asm/firmware.h> 58 #include <asm/hw_irq.h> 59 #endif 60 #include <asm/code-patching.h> 61 #include <asm/exec.h> 62 #include <asm/livepatch.h> 63 #include <asm/cpu_has_feature.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/stacktrace.h> 66 #include <asm/hw_breakpoint.h> 67 68 #include <linux/kprobes.h> 69 #include <linux/kdebug.h> 70 71 /* Transactional Memory debug */ 72 #ifdef TM_DEBUG_SW 73 #define TM_DEBUG(x...) printk(KERN_INFO x) 74 #else 75 #define TM_DEBUG(x...) do { } while(0) 76 #endif 77 78 extern unsigned long _get_SP(void); 79 80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 81 /* 82 * Are we running in "Suspend disabled" mode? If so we have to block any 83 * sigreturn that would get us into suspended state, and we also warn in some 84 * other paths that we should never reach with suspend disabled. 85 */ 86 bool tm_suspend_disabled __ro_after_init = false; 87 88 static void check_if_tm_restore_required(struct task_struct *tsk) 89 { 90 /* 91 * If we are saving the current thread's registers, and the 92 * thread is in a transactional state, set the TIF_RESTORE_TM 93 * bit so that we know to restore the registers before 94 * returning to userspace. 95 */ 96 if (tsk == current && tsk->thread.regs && 97 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 98 !test_thread_flag(TIF_RESTORE_TM)) { 99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 100 set_thread_flag(TIF_RESTORE_TM); 101 } 102 } 103 104 #else 105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 107 108 bool strict_msr_control; 109 EXPORT_SYMBOL(strict_msr_control); 110 111 static int __init enable_strict_msr_control(char *str) 112 { 113 strict_msr_control = true; 114 pr_info("Enabling strict facility control\n"); 115 116 return 0; 117 } 118 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 119 120 /* notrace because it's called by restore_math */ 121 unsigned long notrace msr_check_and_set(unsigned long bits) 122 { 123 unsigned long oldmsr = mfmsr(); 124 unsigned long newmsr; 125 126 newmsr = oldmsr | bits; 127 128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 129 newmsr |= MSR_VSX; 130 131 if (oldmsr != newmsr) 132 mtmsr_isync(newmsr); 133 134 return newmsr; 135 } 136 EXPORT_SYMBOL_GPL(msr_check_and_set); 137 138 /* notrace because it's called by restore_math */ 139 void notrace __msr_check_and_clear(unsigned long bits) 140 { 141 unsigned long oldmsr = mfmsr(); 142 unsigned long newmsr; 143 144 newmsr = oldmsr & ~bits; 145 146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 147 newmsr &= ~MSR_VSX; 148 149 if (oldmsr != newmsr) 150 mtmsr_isync(newmsr); 151 } 152 EXPORT_SYMBOL(__msr_check_and_clear); 153 154 #ifdef CONFIG_PPC_FPU 155 static void __giveup_fpu(struct task_struct *tsk) 156 { 157 unsigned long msr; 158 159 save_fpu(tsk); 160 msr = tsk->thread.regs->msr; 161 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 162 if (cpu_has_feature(CPU_FTR_VSX)) 163 msr &= ~MSR_VSX; 164 tsk->thread.regs->msr = msr; 165 } 166 167 void giveup_fpu(struct task_struct *tsk) 168 { 169 check_if_tm_restore_required(tsk); 170 171 msr_check_and_set(MSR_FP); 172 __giveup_fpu(tsk); 173 msr_check_and_clear(MSR_FP); 174 } 175 EXPORT_SYMBOL(giveup_fpu); 176 177 /* 178 * Make sure the floating-point register state in the 179 * the thread_struct is up to date for task tsk. 180 */ 181 void flush_fp_to_thread(struct task_struct *tsk) 182 { 183 if (tsk->thread.regs) { 184 /* 185 * We need to disable preemption here because if we didn't, 186 * another process could get scheduled after the regs->msr 187 * test but before we have finished saving the FP registers 188 * to the thread_struct. That process could take over the 189 * FPU, and then when we get scheduled again we would store 190 * bogus values for the remaining FP registers. 191 */ 192 preempt_disable(); 193 if (tsk->thread.regs->msr & MSR_FP) { 194 /* 195 * This should only ever be called for current or 196 * for a stopped child process. Since we save away 197 * the FP register state on context switch, 198 * there is something wrong if a stopped child appears 199 * to still have its FP state in the CPU registers. 200 */ 201 BUG_ON(tsk != current); 202 giveup_fpu(tsk); 203 } 204 preempt_enable(); 205 } 206 } 207 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 208 209 void enable_kernel_fp(void) 210 { 211 unsigned long cpumsr; 212 213 WARN_ON(preemptible()); 214 215 cpumsr = msr_check_and_set(MSR_FP); 216 217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 218 check_if_tm_restore_required(current); 219 /* 220 * If a thread has already been reclaimed then the 221 * checkpointed registers are on the CPU but have definitely 222 * been saved by the reclaim code. Don't need to and *cannot* 223 * giveup as this would save to the 'live' structure not the 224 * checkpointed structure. 225 */ 226 if (!MSR_TM_ACTIVE(cpumsr) && 227 MSR_TM_ACTIVE(current->thread.regs->msr)) 228 return; 229 __giveup_fpu(current); 230 } 231 } 232 EXPORT_SYMBOL(enable_kernel_fp); 233 #else 234 static inline void __giveup_fpu(struct task_struct *tsk) { } 235 #endif /* CONFIG_PPC_FPU */ 236 237 #ifdef CONFIG_ALTIVEC 238 static void __giveup_altivec(struct task_struct *tsk) 239 { 240 unsigned long msr; 241 242 save_altivec(tsk); 243 msr = tsk->thread.regs->msr; 244 msr &= ~MSR_VEC; 245 if (cpu_has_feature(CPU_FTR_VSX)) 246 msr &= ~MSR_VSX; 247 tsk->thread.regs->msr = msr; 248 } 249 250 void giveup_altivec(struct task_struct *tsk) 251 { 252 check_if_tm_restore_required(tsk); 253 254 msr_check_and_set(MSR_VEC); 255 __giveup_altivec(tsk); 256 msr_check_and_clear(MSR_VEC); 257 } 258 EXPORT_SYMBOL(giveup_altivec); 259 260 void enable_kernel_altivec(void) 261 { 262 unsigned long cpumsr; 263 264 WARN_ON(preemptible()); 265 266 cpumsr = msr_check_and_set(MSR_VEC); 267 268 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 269 check_if_tm_restore_required(current); 270 /* 271 * If a thread has already been reclaimed then the 272 * checkpointed registers are on the CPU but have definitely 273 * been saved by the reclaim code. Don't need to and *cannot* 274 * giveup as this would save to the 'live' structure not the 275 * checkpointed structure. 276 */ 277 if (!MSR_TM_ACTIVE(cpumsr) && 278 MSR_TM_ACTIVE(current->thread.regs->msr)) 279 return; 280 __giveup_altivec(current); 281 } 282 } 283 EXPORT_SYMBOL(enable_kernel_altivec); 284 285 /* 286 * Make sure the VMX/Altivec register state in the 287 * the thread_struct is up to date for task tsk. 288 */ 289 void flush_altivec_to_thread(struct task_struct *tsk) 290 { 291 if (tsk->thread.regs) { 292 preempt_disable(); 293 if (tsk->thread.regs->msr & MSR_VEC) { 294 BUG_ON(tsk != current); 295 giveup_altivec(tsk); 296 } 297 preempt_enable(); 298 } 299 } 300 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 301 #endif /* CONFIG_ALTIVEC */ 302 303 #ifdef CONFIG_VSX 304 static void __giveup_vsx(struct task_struct *tsk) 305 { 306 unsigned long msr = tsk->thread.regs->msr; 307 308 /* 309 * We should never be ssetting MSR_VSX without also setting 310 * MSR_FP and MSR_VEC 311 */ 312 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 313 314 /* __giveup_fpu will clear MSR_VSX */ 315 if (msr & MSR_FP) 316 __giveup_fpu(tsk); 317 if (msr & MSR_VEC) 318 __giveup_altivec(tsk); 319 } 320 321 static void giveup_vsx(struct task_struct *tsk) 322 { 323 check_if_tm_restore_required(tsk); 324 325 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 326 __giveup_vsx(tsk); 327 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 328 } 329 330 void enable_kernel_vsx(void) 331 { 332 unsigned long cpumsr; 333 334 WARN_ON(preemptible()); 335 336 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 337 338 if (current->thread.regs && 339 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 340 check_if_tm_restore_required(current); 341 /* 342 * If a thread has already been reclaimed then the 343 * checkpointed registers are on the CPU but have definitely 344 * been saved by the reclaim code. Don't need to and *cannot* 345 * giveup as this would save to the 'live' structure not the 346 * checkpointed structure. 347 */ 348 if (!MSR_TM_ACTIVE(cpumsr) && 349 MSR_TM_ACTIVE(current->thread.regs->msr)) 350 return; 351 __giveup_vsx(current); 352 } 353 } 354 EXPORT_SYMBOL(enable_kernel_vsx); 355 356 void flush_vsx_to_thread(struct task_struct *tsk) 357 { 358 if (tsk->thread.regs) { 359 preempt_disable(); 360 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 361 BUG_ON(tsk != current); 362 giveup_vsx(tsk); 363 } 364 preempt_enable(); 365 } 366 } 367 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 368 #endif /* CONFIG_VSX */ 369 370 #ifdef CONFIG_SPE 371 void giveup_spe(struct task_struct *tsk) 372 { 373 check_if_tm_restore_required(tsk); 374 375 msr_check_and_set(MSR_SPE); 376 __giveup_spe(tsk); 377 msr_check_and_clear(MSR_SPE); 378 } 379 EXPORT_SYMBOL(giveup_spe); 380 381 void enable_kernel_spe(void) 382 { 383 WARN_ON(preemptible()); 384 385 msr_check_and_set(MSR_SPE); 386 387 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 388 check_if_tm_restore_required(current); 389 __giveup_spe(current); 390 } 391 } 392 EXPORT_SYMBOL(enable_kernel_spe); 393 394 void flush_spe_to_thread(struct task_struct *tsk) 395 { 396 if (tsk->thread.regs) { 397 preempt_disable(); 398 if (tsk->thread.regs->msr & MSR_SPE) { 399 BUG_ON(tsk != current); 400 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 401 giveup_spe(tsk); 402 } 403 preempt_enable(); 404 } 405 } 406 #endif /* CONFIG_SPE */ 407 408 static unsigned long msr_all_available; 409 410 static int __init init_msr_all_available(void) 411 { 412 if (IS_ENABLED(CONFIG_PPC_FPU)) 413 msr_all_available |= MSR_FP; 414 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 415 msr_all_available |= MSR_VEC; 416 if (cpu_has_feature(CPU_FTR_VSX)) 417 msr_all_available |= MSR_VSX; 418 if (cpu_has_feature(CPU_FTR_SPE)) 419 msr_all_available |= MSR_SPE; 420 421 return 0; 422 } 423 early_initcall(init_msr_all_available); 424 425 void giveup_all(struct task_struct *tsk) 426 { 427 unsigned long usermsr; 428 429 if (!tsk->thread.regs) 430 return; 431 432 check_if_tm_restore_required(tsk); 433 434 usermsr = tsk->thread.regs->msr; 435 436 if ((usermsr & msr_all_available) == 0) 437 return; 438 439 msr_check_and_set(msr_all_available); 440 441 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 442 443 if (usermsr & MSR_FP) 444 __giveup_fpu(tsk); 445 if (usermsr & MSR_VEC) 446 __giveup_altivec(tsk); 447 if (usermsr & MSR_SPE) 448 __giveup_spe(tsk); 449 450 msr_check_and_clear(msr_all_available); 451 } 452 EXPORT_SYMBOL(giveup_all); 453 454 #ifdef CONFIG_PPC_BOOK3S_64 455 #ifdef CONFIG_PPC_FPU 456 static bool should_restore_fp(void) 457 { 458 if (current->thread.load_fp) { 459 current->thread.load_fp++; 460 return true; 461 } 462 return false; 463 } 464 465 static void do_restore_fp(void) 466 { 467 load_fp_state(¤t->thread.fp_state); 468 } 469 #else 470 static bool should_restore_fp(void) { return false; } 471 static void do_restore_fp(void) { } 472 #endif /* CONFIG_PPC_FPU */ 473 474 #ifdef CONFIG_ALTIVEC 475 static bool should_restore_altivec(void) 476 { 477 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { 478 current->thread.load_vec++; 479 return true; 480 } 481 return false; 482 } 483 484 static void do_restore_altivec(void) 485 { 486 load_vr_state(¤t->thread.vr_state); 487 current->thread.used_vr = 1; 488 } 489 #else 490 static bool should_restore_altivec(void) { return false; } 491 static void do_restore_altivec(void) { } 492 #endif /* CONFIG_ALTIVEC */ 493 494 static bool should_restore_vsx(void) 495 { 496 if (cpu_has_feature(CPU_FTR_VSX)) 497 return true; 498 return false; 499 } 500 #ifdef CONFIG_VSX 501 static void do_restore_vsx(void) 502 { 503 current->thread.used_vsr = 1; 504 } 505 #else 506 static void do_restore_vsx(void) { } 507 #endif /* CONFIG_VSX */ 508 509 /* 510 * The exception exit path calls restore_math() with interrupts hard disabled 511 * but the soft irq state not "reconciled". ftrace code that calls 512 * local_irq_save/restore causes warnings. 513 * 514 * Rather than complicate the exit path, just don't trace restore_math. This 515 * could be done by having ftrace entry code check for this un-reconciled 516 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 517 * temporarily fix it up for the duration of the ftrace call. 518 */ 519 void notrace restore_math(struct pt_regs *regs) 520 { 521 unsigned long msr; 522 unsigned long new_msr = 0; 523 524 msr = regs->msr; 525 526 /* 527 * new_msr tracks the facilities that are to be restored. Only reload 528 * if the bit is not set in the user MSR (if it is set, the registers 529 * are live for the user thread). 530 */ 531 if ((!(msr & MSR_FP)) && should_restore_fp()) 532 new_msr |= MSR_FP; 533 534 if ((!(msr & MSR_VEC)) && should_restore_altivec()) 535 new_msr |= MSR_VEC; 536 537 if ((!(msr & MSR_VSX)) && should_restore_vsx()) { 538 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) 539 new_msr |= MSR_VSX; 540 } 541 542 if (new_msr) { 543 unsigned long fpexc_mode = 0; 544 545 msr_check_and_set(new_msr); 546 547 if (new_msr & MSR_FP) { 548 do_restore_fp(); 549 550 // This also covers VSX, because VSX implies FP 551 fpexc_mode = current->thread.fpexc_mode; 552 } 553 554 if (new_msr & MSR_VEC) 555 do_restore_altivec(); 556 557 if (new_msr & MSR_VSX) 558 do_restore_vsx(); 559 560 msr_check_and_clear(new_msr); 561 562 regs->msr |= new_msr | fpexc_mode; 563 } 564 } 565 #endif /* CONFIG_PPC_BOOK3S_64 */ 566 567 static void save_all(struct task_struct *tsk) 568 { 569 unsigned long usermsr; 570 571 if (!tsk->thread.regs) 572 return; 573 574 usermsr = tsk->thread.regs->msr; 575 576 if ((usermsr & msr_all_available) == 0) 577 return; 578 579 msr_check_and_set(msr_all_available); 580 581 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 582 583 if (usermsr & MSR_FP) 584 save_fpu(tsk); 585 586 if (usermsr & MSR_VEC) 587 save_altivec(tsk); 588 589 if (usermsr & MSR_SPE) 590 __giveup_spe(tsk); 591 592 msr_check_and_clear(msr_all_available); 593 } 594 595 void flush_all_to_thread(struct task_struct *tsk) 596 { 597 if (tsk->thread.regs) { 598 preempt_disable(); 599 BUG_ON(tsk != current); 600 #ifdef CONFIG_SPE 601 if (tsk->thread.regs->msr & MSR_SPE) 602 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 603 #endif 604 save_all(tsk); 605 606 preempt_enable(); 607 } 608 } 609 EXPORT_SYMBOL(flush_all_to_thread); 610 611 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 612 void do_send_trap(struct pt_regs *regs, unsigned long address, 613 unsigned long error_code, int breakpt) 614 { 615 current->thread.trap_nr = TRAP_HWBKPT; 616 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 617 11, SIGSEGV) == NOTIFY_STOP) 618 return; 619 620 /* Deliver the signal to userspace */ 621 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 622 (void __user *)address); 623 } 624 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 625 626 static void do_break_handler(struct pt_regs *regs) 627 { 628 struct arch_hw_breakpoint null_brk = {0}; 629 struct arch_hw_breakpoint *info; 630 struct ppc_inst instr = ppc_inst(0); 631 int type = 0; 632 int size = 0; 633 unsigned long ea; 634 int i; 635 636 /* 637 * If underneath hw supports only one watchpoint, we know it 638 * caused exception. 8xx also falls into this category. 639 */ 640 if (nr_wp_slots() == 1) { 641 __set_breakpoint(0, &null_brk); 642 current->thread.hw_brk[0] = null_brk; 643 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED; 644 return; 645 } 646 647 /* Otherwise findout which DAWR caused exception and disable it. */ 648 wp_get_instr_detail(regs, &instr, &type, &size, &ea); 649 650 for (i = 0; i < nr_wp_slots(); i++) { 651 info = ¤t->thread.hw_brk[i]; 652 if (!info->address) 653 continue; 654 655 if (wp_check_constraints(regs, instr, ea, type, size, info)) { 656 __set_breakpoint(i, &null_brk); 657 current->thread.hw_brk[i] = null_brk; 658 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED; 659 } 660 } 661 } 662 663 DEFINE_INTERRUPT_HANDLER(do_break) 664 { 665 current->thread.trap_nr = TRAP_HWBKPT; 666 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr, 667 11, SIGSEGV) == NOTIFY_STOP) 668 return; 669 670 if (debugger_break_match(regs)) 671 return; 672 673 /* 674 * We reach here only when watchpoint exception is generated by ptrace 675 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set, 676 * watchpoint is already handled by hw_breakpoint_handler() so we don't 677 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set, 678 * we need to manually handle the watchpoint here. 679 */ 680 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT)) 681 do_break_handler(regs); 682 683 /* Deliver the signal to userspace */ 684 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar); 685 } 686 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 687 688 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 689 690 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 691 /* 692 * Set the debug registers back to their default "safe" values. 693 */ 694 static void set_debug_reg_defaults(struct thread_struct *thread) 695 { 696 thread->debug.iac1 = thread->debug.iac2 = 0; 697 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 698 thread->debug.iac3 = thread->debug.iac4 = 0; 699 #endif 700 thread->debug.dac1 = thread->debug.dac2 = 0; 701 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 702 thread->debug.dvc1 = thread->debug.dvc2 = 0; 703 #endif 704 thread->debug.dbcr0 = 0; 705 #ifdef CONFIG_BOOKE 706 /* 707 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 708 */ 709 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 710 DBCR1_IAC3US | DBCR1_IAC4US; 711 /* 712 * Force Data Address Compare User/Supervisor bits to be User-only 713 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 714 */ 715 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 716 #else 717 thread->debug.dbcr1 = 0; 718 #endif 719 } 720 721 static void prime_debug_regs(struct debug_reg *debug) 722 { 723 /* 724 * We could have inherited MSR_DE from userspace, since 725 * it doesn't get cleared on exception entry. Make sure 726 * MSR_DE is clear before we enable any debug events. 727 */ 728 mtmsr(mfmsr() & ~MSR_DE); 729 730 mtspr(SPRN_IAC1, debug->iac1); 731 mtspr(SPRN_IAC2, debug->iac2); 732 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 733 mtspr(SPRN_IAC3, debug->iac3); 734 mtspr(SPRN_IAC4, debug->iac4); 735 #endif 736 mtspr(SPRN_DAC1, debug->dac1); 737 mtspr(SPRN_DAC2, debug->dac2); 738 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 739 mtspr(SPRN_DVC1, debug->dvc1); 740 mtspr(SPRN_DVC2, debug->dvc2); 741 #endif 742 mtspr(SPRN_DBCR0, debug->dbcr0); 743 mtspr(SPRN_DBCR1, debug->dbcr1); 744 #ifdef CONFIG_BOOKE 745 mtspr(SPRN_DBCR2, debug->dbcr2); 746 #endif 747 } 748 /* 749 * Unless neither the old or new thread are making use of the 750 * debug registers, set the debug registers from the values 751 * stored in the new thread. 752 */ 753 void switch_booke_debug_regs(struct debug_reg *new_debug) 754 { 755 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 756 || (new_debug->dbcr0 & DBCR0_IDM)) 757 prime_debug_regs(new_debug); 758 } 759 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 760 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 761 #ifndef CONFIG_HAVE_HW_BREAKPOINT 762 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 763 { 764 preempt_disable(); 765 __set_breakpoint(i, brk); 766 preempt_enable(); 767 } 768 769 static void set_debug_reg_defaults(struct thread_struct *thread) 770 { 771 int i; 772 struct arch_hw_breakpoint null_brk = {0}; 773 774 for (i = 0; i < nr_wp_slots(); i++) { 775 thread->hw_brk[i] = null_brk; 776 if (ppc_breakpoint_available()) 777 set_breakpoint(i, &thread->hw_brk[i]); 778 } 779 } 780 781 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 782 struct arch_hw_breakpoint *b) 783 { 784 if (a->address != b->address) 785 return false; 786 if (a->type != b->type) 787 return false; 788 if (a->len != b->len) 789 return false; 790 /* no need to check hw_len. it's calculated from address and len */ 791 return true; 792 } 793 794 static void switch_hw_breakpoint(struct task_struct *new) 795 { 796 int i; 797 798 for (i = 0; i < nr_wp_slots(); i++) { 799 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 800 &new->thread.hw_brk[i]))) 801 continue; 802 803 __set_breakpoint(i, &new->thread.hw_brk[i]); 804 } 805 } 806 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 807 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 808 809 static inline int set_dabr(struct arch_hw_breakpoint *brk) 810 { 811 unsigned long dabr, dabrx; 812 813 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 814 dabrx = ((brk->type >> 3) & 0x7); 815 816 if (ppc_md.set_dabr) 817 return ppc_md.set_dabr(dabr, dabrx); 818 819 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) { 820 mtspr(SPRN_DAC1, dabr); 821 if (IS_ENABLED(CONFIG_PPC_47x)) 822 isync(); 823 return 0; 824 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 825 mtspr(SPRN_DABR, dabr); 826 if (cpu_has_feature(CPU_FTR_DABRX)) 827 mtspr(SPRN_DABRX, dabrx); 828 return 0; 829 } else { 830 return -EINVAL; 831 } 832 } 833 834 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 835 { 836 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 837 LCTRL1_CRWF_RW; 838 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 839 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 840 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 841 842 if (start_addr == 0) 843 lctrl2 |= LCTRL2_LW0LA_F; 844 else if (end_addr == 0) 845 lctrl2 |= LCTRL2_LW0LA_E; 846 else 847 lctrl2 |= LCTRL2_LW0LA_EandF; 848 849 mtspr(SPRN_LCTRL2, 0); 850 851 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 852 return 0; 853 854 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 855 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 856 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 857 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 858 859 mtspr(SPRN_CMPE, start_addr - 1); 860 mtspr(SPRN_CMPF, end_addr); 861 mtspr(SPRN_LCTRL1, lctrl1); 862 mtspr(SPRN_LCTRL2, lctrl2); 863 864 return 0; 865 } 866 867 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 868 { 869 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 870 871 if (dawr_enabled()) 872 // Power8 or later 873 set_dawr(nr, brk); 874 else if (IS_ENABLED(CONFIG_PPC_8xx)) 875 set_breakpoint_8xx(brk); 876 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 877 // Power7 or earlier 878 set_dabr(brk); 879 else 880 // Shouldn't happen due to higher level checks 881 WARN_ON_ONCE(1); 882 } 883 884 /* Check if we have DAWR or DABR hardware */ 885 bool ppc_breakpoint_available(void) 886 { 887 if (dawr_enabled()) 888 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 889 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 890 return false; /* POWER9 with DAWR disabled */ 891 /* DABR: Everything but POWER8 and POWER9 */ 892 return true; 893 } 894 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 895 896 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 897 898 static inline bool tm_enabled(struct task_struct *tsk) 899 { 900 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 901 } 902 903 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 904 { 905 /* 906 * Use the current MSR TM suspended bit to track if we have 907 * checkpointed state outstanding. 908 * On signal delivery, we'd normally reclaim the checkpointed 909 * state to obtain stack pointer (see:get_tm_stackpointer()). 910 * This will then directly return to userspace without going 911 * through __switch_to(). However, if the stack frame is bad, 912 * we need to exit this thread which calls __switch_to() which 913 * will again attempt to reclaim the already saved tm state. 914 * Hence we need to check that we've not already reclaimed 915 * this state. 916 * We do this using the current MSR, rather tracking it in 917 * some specific thread_struct bit, as it has the additional 918 * benefit of checking for a potential TM bad thing exception. 919 */ 920 if (!MSR_TM_SUSPENDED(mfmsr())) 921 return; 922 923 giveup_all(container_of(thr, struct task_struct, thread)); 924 925 tm_reclaim(thr, cause); 926 927 /* 928 * If we are in a transaction and FP is off then we can't have 929 * used FP inside that transaction. Hence the checkpointed 930 * state is the same as the live state. We need to copy the 931 * live state to the checkpointed state so that when the 932 * transaction is restored, the checkpointed state is correct 933 * and the aborted transaction sees the correct state. We use 934 * ckpt_regs.msr here as that's what tm_reclaim will use to 935 * determine if it's going to write the checkpointed state or 936 * not. So either this will write the checkpointed registers, 937 * or reclaim will. Similarly for VMX. 938 */ 939 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 940 memcpy(&thr->ckfp_state, &thr->fp_state, 941 sizeof(struct thread_fp_state)); 942 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 943 memcpy(&thr->ckvr_state, &thr->vr_state, 944 sizeof(struct thread_vr_state)); 945 } 946 947 void tm_reclaim_current(uint8_t cause) 948 { 949 tm_enable(); 950 tm_reclaim_thread(¤t->thread, cause); 951 } 952 953 static inline void tm_reclaim_task(struct task_struct *tsk) 954 { 955 /* We have to work out if we're switching from/to a task that's in the 956 * middle of a transaction. 957 * 958 * In switching we need to maintain a 2nd register state as 959 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 960 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 961 * ckvr_state 962 * 963 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 964 */ 965 struct thread_struct *thr = &tsk->thread; 966 967 if (!thr->regs) 968 return; 969 970 if (!MSR_TM_ACTIVE(thr->regs->msr)) 971 goto out_and_saveregs; 972 973 WARN_ON(tm_suspend_disabled); 974 975 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 976 "ccr=%lx, msr=%lx, trap=%lx)\n", 977 tsk->pid, thr->regs->nip, 978 thr->regs->ccr, thr->regs->msr, 979 thr->regs->trap); 980 981 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 982 983 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 984 tsk->pid); 985 986 out_and_saveregs: 987 /* Always save the regs here, even if a transaction's not active. 988 * This context-switches a thread's TM info SPRs. We do it here to 989 * be consistent with the restore path (in recheckpoint) which 990 * cannot happen later in _switch(). 991 */ 992 tm_save_sprs(thr); 993 } 994 995 extern void __tm_recheckpoint(struct thread_struct *thread); 996 997 void tm_recheckpoint(struct thread_struct *thread) 998 { 999 unsigned long flags; 1000 1001 if (!(thread->regs->msr & MSR_TM)) 1002 return; 1003 1004 /* We really can't be interrupted here as the TEXASR registers can't 1005 * change and later in the trecheckpoint code, we have a userspace R1. 1006 * So let's hard disable over this region. 1007 */ 1008 local_irq_save(flags); 1009 hard_irq_disable(); 1010 1011 /* The TM SPRs are restored here, so that TEXASR.FS can be set 1012 * before the trecheckpoint and no explosion occurs. 1013 */ 1014 tm_restore_sprs(thread); 1015 1016 __tm_recheckpoint(thread); 1017 1018 local_irq_restore(flags); 1019 } 1020 1021 static inline void tm_recheckpoint_new_task(struct task_struct *new) 1022 { 1023 if (!cpu_has_feature(CPU_FTR_TM)) 1024 return; 1025 1026 /* Recheckpoint the registers of the thread we're about to switch to. 1027 * 1028 * If the task was using FP, we non-lazily reload both the original and 1029 * the speculative FP register states. This is because the kernel 1030 * doesn't see if/when a TM rollback occurs, so if we take an FP 1031 * unavailable later, we are unable to determine which set of FP regs 1032 * need to be restored. 1033 */ 1034 if (!tm_enabled(new)) 1035 return; 1036 1037 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1038 tm_restore_sprs(&new->thread); 1039 return; 1040 } 1041 /* Recheckpoint to restore original checkpointed register state. */ 1042 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1043 new->pid, new->thread.regs->msr); 1044 1045 tm_recheckpoint(&new->thread); 1046 1047 /* 1048 * The checkpointed state has been restored but the live state has 1049 * not, ensure all the math functionality is turned off to trigger 1050 * restore_math() to reload. 1051 */ 1052 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1053 1054 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1055 "(kernel msr 0x%lx)\n", 1056 new->pid, mfmsr()); 1057 } 1058 1059 static inline void __switch_to_tm(struct task_struct *prev, 1060 struct task_struct *new) 1061 { 1062 if (cpu_has_feature(CPU_FTR_TM)) { 1063 if (tm_enabled(prev) || tm_enabled(new)) 1064 tm_enable(); 1065 1066 if (tm_enabled(prev)) { 1067 prev->thread.load_tm++; 1068 tm_reclaim_task(prev); 1069 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1070 prev->thread.regs->msr &= ~MSR_TM; 1071 } 1072 1073 tm_recheckpoint_new_task(new); 1074 } 1075 } 1076 1077 /* 1078 * This is called if we are on the way out to userspace and the 1079 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1080 * FP and/or vector state and does so if necessary. 1081 * If userspace is inside a transaction (whether active or 1082 * suspended) and FP/VMX/VSX instructions have ever been enabled 1083 * inside that transaction, then we have to keep them enabled 1084 * and keep the FP/VMX/VSX state loaded while ever the transaction 1085 * continues. The reason is that if we didn't, and subsequently 1086 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1087 * we don't know whether it's the same transaction, and thus we 1088 * don't know which of the checkpointed state and the transactional 1089 * state to use. 1090 */ 1091 void restore_tm_state(struct pt_regs *regs) 1092 { 1093 unsigned long msr_diff; 1094 1095 /* 1096 * This is the only moment we should clear TIF_RESTORE_TM as 1097 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1098 * again, anything else could lead to an incorrect ckpt_msr being 1099 * saved and therefore incorrect signal contexts. 1100 */ 1101 clear_thread_flag(TIF_RESTORE_TM); 1102 if (!MSR_TM_ACTIVE(regs->msr)) 1103 return; 1104 1105 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1106 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1107 1108 /* Ensure that restore_math() will restore */ 1109 if (msr_diff & MSR_FP) 1110 current->thread.load_fp = 1; 1111 #ifdef CONFIG_ALTIVEC 1112 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1113 current->thread.load_vec = 1; 1114 #endif 1115 restore_math(regs); 1116 1117 regs->msr |= msr_diff; 1118 } 1119 1120 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */ 1121 #define tm_recheckpoint_new_task(new) 1122 #define __switch_to_tm(prev, new) 1123 void tm_reclaim_current(uint8_t cause) {} 1124 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1125 1126 static inline void save_sprs(struct thread_struct *t) 1127 { 1128 #ifdef CONFIG_ALTIVEC 1129 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1130 t->vrsave = mfspr(SPRN_VRSAVE); 1131 #endif 1132 #ifdef CONFIG_PPC_BOOK3S_64 1133 if (cpu_has_feature(CPU_FTR_DSCR)) 1134 t->dscr = mfspr(SPRN_DSCR); 1135 1136 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1137 t->bescr = mfspr(SPRN_BESCR); 1138 t->ebbhr = mfspr(SPRN_EBBHR); 1139 t->ebbrr = mfspr(SPRN_EBBRR); 1140 1141 t->fscr = mfspr(SPRN_FSCR); 1142 1143 /* 1144 * Note that the TAR is not available for use in the kernel. 1145 * (To provide this, the TAR should be backed up/restored on 1146 * exception entry/exit instead, and be in pt_regs. FIXME, 1147 * this should be in pt_regs anyway (for debug).) 1148 */ 1149 t->tar = mfspr(SPRN_TAR); 1150 } 1151 #endif 1152 } 1153 1154 static inline void restore_sprs(struct thread_struct *old_thread, 1155 struct thread_struct *new_thread) 1156 { 1157 #ifdef CONFIG_ALTIVEC 1158 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1159 old_thread->vrsave != new_thread->vrsave) 1160 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1161 #endif 1162 #ifdef CONFIG_PPC_BOOK3S_64 1163 if (cpu_has_feature(CPU_FTR_DSCR)) { 1164 u64 dscr = get_paca()->dscr_default; 1165 if (new_thread->dscr_inherit) 1166 dscr = new_thread->dscr; 1167 1168 if (old_thread->dscr != dscr) 1169 mtspr(SPRN_DSCR, dscr); 1170 } 1171 1172 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1173 if (old_thread->bescr != new_thread->bescr) 1174 mtspr(SPRN_BESCR, new_thread->bescr); 1175 if (old_thread->ebbhr != new_thread->ebbhr) 1176 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1177 if (old_thread->ebbrr != new_thread->ebbrr) 1178 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1179 1180 if (old_thread->fscr != new_thread->fscr) 1181 mtspr(SPRN_FSCR, new_thread->fscr); 1182 1183 if (old_thread->tar != new_thread->tar) 1184 mtspr(SPRN_TAR, new_thread->tar); 1185 } 1186 1187 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1188 old_thread->tidr != new_thread->tidr) 1189 mtspr(SPRN_TIDR, new_thread->tidr); 1190 #endif 1191 1192 } 1193 1194 struct task_struct *__switch_to(struct task_struct *prev, 1195 struct task_struct *new) 1196 { 1197 struct thread_struct *new_thread, *old_thread; 1198 struct task_struct *last; 1199 #ifdef CONFIG_PPC_BOOK3S_64 1200 struct ppc64_tlb_batch *batch; 1201 #endif 1202 1203 new_thread = &new->thread; 1204 old_thread = ¤t->thread; 1205 1206 WARN_ON(!irqs_disabled()); 1207 1208 #ifdef CONFIG_PPC_BOOK3S_64 1209 batch = this_cpu_ptr(&ppc64_tlb_batch); 1210 if (batch->active) { 1211 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1212 if (batch->index) 1213 __flush_tlb_pending(batch); 1214 batch->active = 0; 1215 } 1216 #endif /* CONFIG_PPC_BOOK3S_64 */ 1217 1218 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1219 switch_booke_debug_regs(&new->thread.debug); 1220 #else 1221 /* 1222 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1223 * schedule DABR 1224 */ 1225 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1226 switch_hw_breakpoint(new); 1227 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1228 #endif 1229 1230 /* 1231 * We need to save SPRs before treclaim/trecheckpoint as these will 1232 * change a number of them. 1233 */ 1234 save_sprs(&prev->thread); 1235 1236 /* Save FPU, Altivec, VSX and SPE state */ 1237 giveup_all(prev); 1238 1239 __switch_to_tm(prev, new); 1240 1241 if (!radix_enabled()) { 1242 /* 1243 * We can't take a PMU exception inside _switch() since there 1244 * is a window where the kernel stack SLB and the kernel stack 1245 * are out of sync. Hard disable here. 1246 */ 1247 hard_irq_disable(); 1248 } 1249 1250 /* 1251 * Call restore_sprs() before calling _switch(). If we move it after 1252 * _switch() then we miss out on calling it for new tasks. The reason 1253 * for this is we manually create a stack frame for new tasks that 1254 * directly returns through ret_from_fork() or 1255 * ret_from_kernel_thread(). See copy_thread() for details. 1256 */ 1257 restore_sprs(old_thread, new_thread); 1258 1259 #ifdef CONFIG_PPC32 1260 kuap_assert_locked(); 1261 #endif 1262 last = _switch(old_thread, new_thread); 1263 1264 #ifdef CONFIG_PPC_BOOK3S_64 1265 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1266 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1267 batch = this_cpu_ptr(&ppc64_tlb_batch); 1268 batch->active = 1; 1269 } 1270 1271 if (current->thread.regs) { 1272 restore_math(current->thread.regs); 1273 1274 /* 1275 * On POWER9 the copy-paste buffer can only paste into 1276 * foreign real addresses, so unprivileged processes can not 1277 * see the data or use it in any way unless they have 1278 * foreign real mappings. If the new process has the foreign 1279 * real address mappings, we must issue a cp_abort to clear 1280 * any state and prevent snooping, corruption or a covert 1281 * channel. ISA v3.1 supports paste into local memory. 1282 */ 1283 if (current->mm && 1284 (cpu_has_feature(CPU_FTR_ARCH_31) || 1285 atomic_read(¤t->mm->context.vas_windows))) 1286 asm volatile(PPC_CP_ABORT); 1287 } 1288 #endif /* CONFIG_PPC_BOOK3S_64 */ 1289 1290 return last; 1291 } 1292 1293 #define NR_INSN_TO_PRINT 16 1294 1295 static void show_instructions(struct pt_regs *regs) 1296 { 1297 int i; 1298 unsigned long nip = regs->nip; 1299 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1300 1301 printk("Instruction dump:"); 1302 1303 /* 1304 * If we were executing with the MMU off for instructions, adjust pc 1305 * rather than printing XXXXXXXX. 1306 */ 1307 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { 1308 pc = (unsigned long)phys_to_virt(pc); 1309 nip = (unsigned long)phys_to_virt(regs->nip); 1310 } 1311 1312 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1313 int instr; 1314 1315 if (!(i % 8)) 1316 pr_cont("\n"); 1317 1318 if (!__kernel_text_address(pc) || 1319 get_kernel_nofault(instr, (const void *)pc)) { 1320 pr_cont("XXXXXXXX "); 1321 } else { 1322 if (nip == pc) 1323 pr_cont("<%08x> ", instr); 1324 else 1325 pr_cont("%08x ", instr); 1326 } 1327 1328 pc += sizeof(int); 1329 } 1330 1331 pr_cont("\n"); 1332 } 1333 1334 void show_user_instructions(struct pt_regs *regs) 1335 { 1336 unsigned long pc; 1337 int n = NR_INSN_TO_PRINT; 1338 struct seq_buf s; 1339 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1340 1341 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1342 1343 seq_buf_init(&s, buf, sizeof(buf)); 1344 1345 while (n) { 1346 int i; 1347 1348 seq_buf_clear(&s); 1349 1350 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1351 int instr; 1352 1353 if (copy_from_user_nofault(&instr, (void __user *)pc, 1354 sizeof(instr))) { 1355 seq_buf_printf(&s, "XXXXXXXX "); 1356 continue; 1357 } 1358 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1359 } 1360 1361 if (!seq_buf_has_overflowed(&s)) 1362 pr_info("%s[%d]: code: %s\n", current->comm, 1363 current->pid, s.buffer); 1364 } 1365 } 1366 1367 struct regbit { 1368 unsigned long bit; 1369 const char *name; 1370 }; 1371 1372 static struct regbit msr_bits[] = { 1373 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1374 {MSR_SF, "SF"}, 1375 {MSR_HV, "HV"}, 1376 #endif 1377 {MSR_VEC, "VEC"}, 1378 {MSR_VSX, "VSX"}, 1379 #ifdef CONFIG_BOOKE 1380 {MSR_CE, "CE"}, 1381 #endif 1382 {MSR_EE, "EE"}, 1383 {MSR_PR, "PR"}, 1384 {MSR_FP, "FP"}, 1385 {MSR_ME, "ME"}, 1386 #ifdef CONFIG_BOOKE 1387 {MSR_DE, "DE"}, 1388 #else 1389 {MSR_SE, "SE"}, 1390 {MSR_BE, "BE"}, 1391 #endif 1392 {MSR_IR, "IR"}, 1393 {MSR_DR, "DR"}, 1394 {MSR_PMM, "PMM"}, 1395 #ifndef CONFIG_BOOKE 1396 {MSR_RI, "RI"}, 1397 {MSR_LE, "LE"}, 1398 #endif 1399 {0, NULL} 1400 }; 1401 1402 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1403 { 1404 const char *s = ""; 1405 1406 for (; bits->bit; ++bits) 1407 if (val & bits->bit) { 1408 pr_cont("%s%s", s, bits->name); 1409 s = sep; 1410 } 1411 } 1412 1413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1414 static struct regbit msr_tm_bits[] = { 1415 {MSR_TS_T, "T"}, 1416 {MSR_TS_S, "S"}, 1417 {MSR_TM, "E"}, 1418 {0, NULL} 1419 }; 1420 1421 static void print_tm_bits(unsigned long val) 1422 { 1423 /* 1424 * This only prints something if at least one of the TM bit is set. 1425 * Inside the TM[], the output means: 1426 * E: Enabled (bit 32) 1427 * S: Suspended (bit 33) 1428 * T: Transactional (bit 34) 1429 */ 1430 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1431 pr_cont(",TM["); 1432 print_bits(val, msr_tm_bits, ""); 1433 pr_cont("]"); 1434 } 1435 } 1436 #else 1437 static void print_tm_bits(unsigned long val) {} 1438 #endif 1439 1440 static void print_msr_bits(unsigned long val) 1441 { 1442 pr_cont("<"); 1443 print_bits(val, msr_bits, ","); 1444 print_tm_bits(val); 1445 pr_cont(">"); 1446 } 1447 1448 #ifdef CONFIG_PPC64 1449 #define REG "%016lx" 1450 #define REGS_PER_LINE 4 1451 #else 1452 #define REG "%08lx" 1453 #define REGS_PER_LINE 8 1454 #endif 1455 1456 static void __show_regs(struct pt_regs *regs) 1457 { 1458 int i, trap; 1459 1460 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1461 regs->nip, regs->link, regs->ctr); 1462 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1463 regs, regs->trap, print_tainted(), init_utsname()->release); 1464 printk("MSR: "REG" ", regs->msr); 1465 print_msr_bits(regs->msr); 1466 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1467 trap = TRAP(regs); 1468 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1469 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1470 if (trap == INTERRUPT_MACHINE_CHECK || 1471 trap == INTERRUPT_DATA_STORAGE || 1472 trap == INTERRUPT_ALIGNMENT) { 1473 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE)) 1474 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1475 else 1476 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1477 } 1478 1479 #ifdef CONFIG_PPC64 1480 pr_cont("IRQMASK: %lx ", regs->softe); 1481 #endif 1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1483 if (MSR_TM_ACTIVE(regs->msr)) 1484 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1485 #endif 1486 1487 for (i = 0; i < 32; i++) { 1488 if ((i % REGS_PER_LINE) == 0) 1489 pr_cont("\nGPR%02d: ", i); 1490 pr_cont(REG " ", regs->gpr[i]); 1491 } 1492 pr_cont("\n"); 1493 /* 1494 * Lookup NIP late so we have the best change of getting the 1495 * above info out without failing 1496 */ 1497 if (IS_ENABLED(CONFIG_KALLSYMS)) { 1498 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1499 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1500 } 1501 } 1502 1503 void show_regs(struct pt_regs *regs) 1504 { 1505 show_regs_print_info(KERN_DEFAULT); 1506 __show_regs(regs); 1507 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1508 if (!user_mode(regs)) 1509 show_instructions(regs); 1510 } 1511 1512 void flush_thread(void) 1513 { 1514 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1515 flush_ptrace_hw_breakpoint(current); 1516 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1517 set_debug_reg_defaults(¤t->thread); 1518 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1519 } 1520 1521 void arch_setup_new_exec(void) 1522 { 1523 1524 #ifdef CONFIG_PPC_BOOK3S_64 1525 if (!radix_enabled()) 1526 hash__setup_new_exec(); 1527 #endif 1528 /* 1529 * If we exec out of a kernel thread then thread.regs will not be 1530 * set. Do it now. 1531 */ 1532 if (!current->thread.regs) { 1533 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1534 current->thread.regs = regs - 1; 1535 } 1536 1537 #ifdef CONFIG_PPC_MEM_KEYS 1538 current->thread.regs->amr = default_amr; 1539 current->thread.regs->iamr = default_iamr; 1540 #endif 1541 } 1542 1543 #ifdef CONFIG_PPC64 1544 /** 1545 * Assign a TIDR (thread ID) for task @t and set it in the thread 1546 * structure. For now, we only support setting TIDR for 'current' task. 1547 * 1548 * Since the TID value is a truncated form of it PID, it is possible 1549 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1550 * that 2 threads share the same TID and are waiting, one of the following 1551 * cases will happen: 1552 * 1553 * 1. The correct thread is running, the wrong thread is not 1554 * In this situation, the correct thread is woken and proceeds to pass it's 1555 * condition check. 1556 * 1557 * 2. Neither threads are running 1558 * In this situation, neither thread will be woken. When scheduled, the waiting 1559 * threads will execute either a wait, which will return immediately, followed 1560 * by a condition check, which will pass for the correct thread and fail 1561 * for the wrong thread, or they will execute the condition check immediately. 1562 * 1563 * 3. The wrong thread is running, the correct thread is not 1564 * The wrong thread will be woken, but will fail it's condition check and 1565 * re-execute wait. The correct thread, when scheduled, will execute either 1566 * it's condition check (which will pass), or wait, which returns immediately 1567 * when called the first time after the thread is scheduled, followed by it's 1568 * condition check (which will pass). 1569 * 1570 * 4. Both threads are running 1571 * Both threads will be woken. The wrong thread will fail it's condition check 1572 * and execute another wait, while the correct thread will pass it's condition 1573 * check. 1574 * 1575 * @t: the task to set the thread ID for 1576 */ 1577 int set_thread_tidr(struct task_struct *t) 1578 { 1579 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1580 return -EINVAL; 1581 1582 if (t != current) 1583 return -EINVAL; 1584 1585 if (t->thread.tidr) 1586 return 0; 1587 1588 t->thread.tidr = (u16)task_pid_nr(t); 1589 mtspr(SPRN_TIDR, t->thread.tidr); 1590 1591 return 0; 1592 } 1593 EXPORT_SYMBOL_GPL(set_thread_tidr); 1594 1595 #endif /* CONFIG_PPC64 */ 1596 1597 void 1598 release_thread(struct task_struct *t) 1599 { 1600 } 1601 1602 /* 1603 * this gets called so that we can store coprocessor state into memory and 1604 * copy the current task into the new thread. 1605 */ 1606 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1607 { 1608 flush_all_to_thread(src); 1609 /* 1610 * Flush TM state out so we can copy it. __switch_to_tm() does this 1611 * flush but it removes the checkpointed state from the current CPU and 1612 * transitions the CPU out of TM mode. Hence we need to call 1613 * tm_recheckpoint_new_task() (on the same task) to restore the 1614 * checkpointed state back and the TM mode. 1615 * 1616 * Can't pass dst because it isn't ready. Doesn't matter, passing 1617 * dst is only important for __switch_to() 1618 */ 1619 __switch_to_tm(src, src); 1620 1621 *dst = *src; 1622 1623 clear_task_ebb(dst); 1624 1625 return 0; 1626 } 1627 1628 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1629 { 1630 #ifdef CONFIG_PPC_BOOK3S_64 1631 unsigned long sp_vsid; 1632 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1633 1634 if (radix_enabled()) 1635 return; 1636 1637 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1638 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1639 << SLB_VSID_SHIFT_1T; 1640 else 1641 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1642 << SLB_VSID_SHIFT; 1643 sp_vsid |= SLB_VSID_KERNEL | llp; 1644 p->thread.ksp_vsid = sp_vsid; 1645 #endif 1646 } 1647 1648 /* 1649 * Copy a thread.. 1650 */ 1651 1652 /* 1653 * Copy architecture-specific thread state 1654 */ 1655 int copy_thread(unsigned long clone_flags, unsigned long usp, 1656 unsigned long kthread_arg, struct task_struct *p, 1657 unsigned long tls) 1658 { 1659 struct pt_regs *childregs, *kregs; 1660 extern void ret_from_fork(void); 1661 extern void ret_from_fork_scv(void); 1662 extern void ret_from_kernel_thread(void); 1663 void (*f)(void); 1664 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1665 struct thread_info *ti = task_thread_info(p); 1666 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1667 int i; 1668 #endif 1669 1670 klp_init_thread_info(p); 1671 1672 /* Copy registers */ 1673 sp -= sizeof(struct pt_regs); 1674 childregs = (struct pt_regs *) sp; 1675 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) { 1676 /* kernel thread */ 1677 memset(childregs, 0, sizeof(struct pt_regs)); 1678 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1679 /* function */ 1680 if (usp) 1681 childregs->gpr[14] = ppc_function_entry((void *)usp); 1682 #ifdef CONFIG_PPC64 1683 clear_tsk_thread_flag(p, TIF_32BIT); 1684 childregs->softe = IRQS_ENABLED; 1685 #endif 1686 childregs->gpr[15] = kthread_arg; 1687 p->thread.regs = NULL; /* no user register state */ 1688 ti->flags |= _TIF_RESTOREALL; 1689 f = ret_from_kernel_thread; 1690 } else { 1691 /* user thread */ 1692 struct pt_regs *regs = current_pt_regs(); 1693 *childregs = *regs; 1694 if (usp) 1695 childregs->gpr[1] = usp; 1696 p->thread.regs = childregs; 1697 /* 64s sets this in ret_from_fork */ 1698 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1699 childregs->gpr[3] = 0; /* Result from fork() */ 1700 if (clone_flags & CLONE_SETTLS) { 1701 if (!is_32bit_task()) 1702 childregs->gpr[13] = tls; 1703 else 1704 childregs->gpr[2] = tls; 1705 } 1706 1707 if (trap_is_scv(regs)) 1708 f = ret_from_fork_scv; 1709 else 1710 f = ret_from_fork; 1711 } 1712 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1713 sp -= STACK_FRAME_OVERHEAD; 1714 1715 /* 1716 * The way this works is that at some point in the future 1717 * some task will call _switch to switch to the new task. 1718 * That will pop off the stack frame created below and start 1719 * the new task running at ret_from_fork. The new task will 1720 * do some house keeping and then return from the fork or clone 1721 * system call, using the stack frame created above. 1722 */ 1723 ((unsigned long *)sp)[0] = 0; 1724 sp -= sizeof(struct pt_regs); 1725 kregs = (struct pt_regs *) sp; 1726 sp -= STACK_FRAME_OVERHEAD; 1727 p->thread.ksp = sp; 1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1729 for (i = 0; i < nr_wp_slots(); i++) 1730 p->thread.ptrace_bps[i] = NULL; 1731 #endif 1732 1733 #ifdef CONFIG_PPC_FPU_REGS 1734 p->thread.fp_save_area = NULL; 1735 #endif 1736 #ifdef CONFIG_ALTIVEC 1737 p->thread.vr_save_area = NULL; 1738 #endif 1739 1740 setup_ksp_vsid(p, sp); 1741 1742 #ifdef CONFIG_PPC64 1743 if (cpu_has_feature(CPU_FTR_DSCR)) { 1744 p->thread.dscr_inherit = current->thread.dscr_inherit; 1745 p->thread.dscr = mfspr(SPRN_DSCR); 1746 } 1747 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1748 childregs->ppr = DEFAULT_PPR; 1749 1750 p->thread.tidr = 0; 1751 #endif 1752 /* 1753 * Run with the current AMR value of the kernel 1754 */ 1755 #ifdef CONFIG_PPC_PKEY 1756 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP)) 1757 kregs->amr = AMR_KUAP_BLOCKED; 1758 1759 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP)) 1760 kregs->iamr = AMR_KUEP_BLOCKED; 1761 #endif 1762 kregs->nip = ppc_function_entry(f); 1763 return 0; 1764 } 1765 1766 void preload_new_slb_context(unsigned long start, unsigned long sp); 1767 1768 /* 1769 * Set up a thread for executing a new program 1770 */ 1771 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1772 { 1773 #ifdef CONFIG_PPC64 1774 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1775 1776 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled()) 1777 preload_new_slb_context(start, sp); 1778 #endif 1779 1780 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1781 /* 1782 * Clear any transactional state, we're exec()ing. The cause is 1783 * not important as there will never be a recheckpoint so it's not 1784 * user visible. 1785 */ 1786 if (MSR_TM_SUSPENDED(mfmsr())) 1787 tm_reclaim_current(0); 1788 #endif 1789 1790 memset(regs->gpr, 0, sizeof(regs->gpr)); 1791 regs->ctr = 0; 1792 regs->link = 0; 1793 regs->xer = 0; 1794 regs->ccr = 0; 1795 regs->gpr[1] = sp; 1796 1797 #ifdef CONFIG_PPC32 1798 regs->mq = 0; 1799 regs->nip = start; 1800 regs->msr = MSR_USER; 1801 #else 1802 if (!is_32bit_task()) { 1803 unsigned long entry; 1804 1805 if (is_elf2_task()) { 1806 /* Look ma, no function descriptors! */ 1807 entry = start; 1808 1809 /* 1810 * Ulrich says: 1811 * The latest iteration of the ABI requires that when 1812 * calling a function (at its global entry point), 1813 * the caller must ensure r12 holds the entry point 1814 * address (so that the function can quickly 1815 * establish addressability). 1816 */ 1817 regs->gpr[12] = start; 1818 /* Make sure that's restored on entry to userspace. */ 1819 set_thread_flag(TIF_RESTOREALL); 1820 } else { 1821 unsigned long toc; 1822 1823 /* start is a relocated pointer to the function 1824 * descriptor for the elf _start routine. The first 1825 * entry in the function descriptor is the entry 1826 * address of _start and the second entry is the TOC 1827 * value we need to use. 1828 */ 1829 __get_user(entry, (unsigned long __user *)start); 1830 __get_user(toc, (unsigned long __user *)start+1); 1831 1832 /* Check whether the e_entry function descriptor entries 1833 * need to be relocated before we can use them. 1834 */ 1835 if (load_addr != 0) { 1836 entry += load_addr; 1837 toc += load_addr; 1838 } 1839 regs->gpr[2] = toc; 1840 } 1841 regs->nip = entry; 1842 regs->msr = MSR_USER64; 1843 } else { 1844 regs->nip = start; 1845 regs->gpr[2] = 0; 1846 regs->msr = MSR_USER32; 1847 } 1848 #endif 1849 #ifdef CONFIG_VSX 1850 current->thread.used_vsr = 0; 1851 #endif 1852 current->thread.load_slb = 0; 1853 current->thread.load_fp = 0; 1854 #ifdef CONFIG_PPC_FPU_REGS 1855 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1856 current->thread.fp_save_area = NULL; 1857 #endif 1858 #ifdef CONFIG_ALTIVEC 1859 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1860 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1861 current->thread.vr_save_area = NULL; 1862 current->thread.vrsave = 0; 1863 current->thread.used_vr = 0; 1864 current->thread.load_vec = 0; 1865 #endif /* CONFIG_ALTIVEC */ 1866 #ifdef CONFIG_SPE 1867 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1868 current->thread.acc = 0; 1869 current->thread.spefscr = 0; 1870 current->thread.used_spe = 0; 1871 #endif /* CONFIG_SPE */ 1872 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1873 current->thread.tm_tfhar = 0; 1874 current->thread.tm_texasr = 0; 1875 current->thread.tm_tfiar = 0; 1876 current->thread.load_tm = 0; 1877 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1878 1879 } 1880 EXPORT_SYMBOL(start_thread); 1881 1882 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1883 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1884 1885 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1886 { 1887 struct pt_regs *regs = tsk->thread.regs; 1888 1889 /* This is a bit hairy. If we are an SPE enabled processor 1890 * (have embedded fp) we store the IEEE exception enable flags in 1891 * fpexc_mode. fpexc_mode is also used for setting FP exception 1892 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1893 if (val & PR_FP_EXC_SW_ENABLE) { 1894 if (cpu_has_feature(CPU_FTR_SPE)) { 1895 /* 1896 * When the sticky exception bits are set 1897 * directly by userspace, it must call prctl 1898 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1899 * in the existing prctl settings) or 1900 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1901 * the bits being set). <fenv.h> functions 1902 * saving and restoring the whole 1903 * floating-point environment need to do so 1904 * anyway to restore the prctl settings from 1905 * the saved environment. 1906 */ 1907 #ifdef CONFIG_SPE 1908 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1909 tsk->thread.fpexc_mode = val & 1910 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1911 #endif 1912 return 0; 1913 } else { 1914 return -EINVAL; 1915 } 1916 } 1917 1918 /* on a CONFIG_SPE this does not hurt us. The bits that 1919 * __pack_fe01 use do not overlap with bits used for 1920 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1921 * on CONFIG_SPE implementations are reserved so writing to 1922 * them does not change anything */ 1923 if (val > PR_FP_EXC_PRECISE) 1924 return -EINVAL; 1925 tsk->thread.fpexc_mode = __pack_fe01(val); 1926 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1927 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1928 | tsk->thread.fpexc_mode; 1929 return 0; 1930 } 1931 1932 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1933 { 1934 unsigned int val = 0; 1935 1936 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) { 1937 if (cpu_has_feature(CPU_FTR_SPE)) { 1938 /* 1939 * When the sticky exception bits are set 1940 * directly by userspace, it must call prctl 1941 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1942 * in the existing prctl settings) or 1943 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1944 * the bits being set). <fenv.h> functions 1945 * saving and restoring the whole 1946 * floating-point environment need to do so 1947 * anyway to restore the prctl settings from 1948 * the saved environment. 1949 */ 1950 #ifdef CONFIG_SPE 1951 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1952 val = tsk->thread.fpexc_mode; 1953 #endif 1954 } else 1955 return -EINVAL; 1956 } else { 1957 val = __unpack_fe01(tsk->thread.fpexc_mode); 1958 } 1959 return put_user(val, (unsigned int __user *) adr); 1960 } 1961 1962 int set_endian(struct task_struct *tsk, unsigned int val) 1963 { 1964 struct pt_regs *regs = tsk->thread.regs; 1965 1966 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1967 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1968 return -EINVAL; 1969 1970 if (regs == NULL) 1971 return -EINVAL; 1972 1973 if (val == PR_ENDIAN_BIG) 1974 regs->msr &= ~MSR_LE; 1975 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1976 regs->msr |= MSR_LE; 1977 else 1978 return -EINVAL; 1979 1980 return 0; 1981 } 1982 1983 int get_endian(struct task_struct *tsk, unsigned long adr) 1984 { 1985 struct pt_regs *regs = tsk->thread.regs; 1986 unsigned int val; 1987 1988 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1989 !cpu_has_feature(CPU_FTR_REAL_LE)) 1990 return -EINVAL; 1991 1992 if (regs == NULL) 1993 return -EINVAL; 1994 1995 if (regs->msr & MSR_LE) { 1996 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1997 val = PR_ENDIAN_LITTLE; 1998 else 1999 val = PR_ENDIAN_PPC_LITTLE; 2000 } else 2001 val = PR_ENDIAN_BIG; 2002 2003 return put_user(val, (unsigned int __user *)adr); 2004 } 2005 2006 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 2007 { 2008 tsk->thread.align_ctl = val; 2009 return 0; 2010 } 2011 2012 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2013 { 2014 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2015 } 2016 2017 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2018 unsigned long nbytes) 2019 { 2020 unsigned long stack_page; 2021 unsigned long cpu = task_cpu(p); 2022 2023 stack_page = (unsigned long)hardirq_ctx[cpu]; 2024 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2025 return 1; 2026 2027 stack_page = (unsigned long)softirq_ctx[cpu]; 2028 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2029 return 1; 2030 2031 return 0; 2032 } 2033 2034 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 2035 unsigned long nbytes) 2036 { 2037 #ifdef CONFIG_PPC64 2038 unsigned long stack_page; 2039 unsigned long cpu = task_cpu(p); 2040 2041 if (!paca_ptrs) 2042 return 0; 2043 2044 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 2045 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2046 return 1; 2047 2048 # ifdef CONFIG_PPC_BOOK3S_64 2049 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 2050 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2051 return 1; 2052 2053 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2054 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2055 return 1; 2056 # endif 2057 #endif 2058 2059 return 0; 2060 } 2061 2062 2063 int validate_sp(unsigned long sp, struct task_struct *p, 2064 unsigned long nbytes) 2065 { 2066 unsigned long stack_page = (unsigned long)task_stack_page(p); 2067 2068 if (sp < THREAD_SIZE) 2069 return 0; 2070 2071 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2072 return 1; 2073 2074 if (valid_irq_stack(sp, p, nbytes)) 2075 return 1; 2076 2077 return valid_emergency_stack(sp, p, nbytes); 2078 } 2079 2080 EXPORT_SYMBOL(validate_sp); 2081 2082 static unsigned long __get_wchan(struct task_struct *p) 2083 { 2084 unsigned long ip, sp; 2085 int count = 0; 2086 2087 if (!p || p == current || p->state == TASK_RUNNING) 2088 return 0; 2089 2090 sp = p->thread.ksp; 2091 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2092 return 0; 2093 2094 do { 2095 sp = *(unsigned long *)sp; 2096 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2097 p->state == TASK_RUNNING) 2098 return 0; 2099 if (count > 0) { 2100 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2101 if (!in_sched_functions(ip)) 2102 return ip; 2103 } 2104 } while (count++ < 16); 2105 return 0; 2106 } 2107 2108 unsigned long get_wchan(struct task_struct *p) 2109 { 2110 unsigned long ret; 2111 2112 if (!try_get_task_stack(p)) 2113 return 0; 2114 2115 ret = __get_wchan(p); 2116 2117 put_task_stack(p); 2118 2119 return ret; 2120 } 2121 2122 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2123 2124 void show_stack(struct task_struct *tsk, unsigned long *stack, 2125 const char *loglvl) 2126 { 2127 unsigned long sp, ip, lr, newsp; 2128 int count = 0; 2129 int firstframe = 1; 2130 unsigned long ret_addr; 2131 int ftrace_idx = 0; 2132 2133 if (tsk == NULL) 2134 tsk = current; 2135 2136 if (!try_get_task_stack(tsk)) 2137 return; 2138 2139 sp = (unsigned long) stack; 2140 if (sp == 0) { 2141 if (tsk == current) 2142 sp = current_stack_frame(); 2143 else 2144 sp = tsk->thread.ksp; 2145 } 2146 2147 lr = 0; 2148 printk("%sCall Trace:\n", loglvl); 2149 do { 2150 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2151 break; 2152 2153 stack = (unsigned long *) sp; 2154 newsp = stack[0]; 2155 ip = stack[STACK_FRAME_LR_SAVE]; 2156 if (!firstframe || ip != lr) { 2157 printk("%s["REG"] ["REG"] %pS", 2158 loglvl, sp, ip, (void *)ip); 2159 ret_addr = ftrace_graph_ret_addr(current, 2160 &ftrace_idx, ip, stack); 2161 if (ret_addr != ip) 2162 pr_cont(" (%pS)", (void *)ret_addr); 2163 if (firstframe) 2164 pr_cont(" (unreliable)"); 2165 pr_cont("\n"); 2166 } 2167 firstframe = 0; 2168 2169 /* 2170 * See if this is an exception frame. 2171 * We look for the "regshere" marker in the current frame. 2172 */ 2173 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS) 2174 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2175 struct pt_regs *regs = (struct pt_regs *) 2176 (sp + STACK_FRAME_OVERHEAD); 2177 2178 lr = regs->link; 2179 printk("%s--- interrupt: %lx at %pS\n", 2180 loglvl, regs->trap, (void *)regs->nip); 2181 __show_regs(regs); 2182 printk("%s--- interrupt: %lx\n", 2183 loglvl, regs->trap); 2184 2185 firstframe = 1; 2186 } 2187 2188 sp = newsp; 2189 } while (count++ < kstack_depth_to_print); 2190 2191 put_task_stack(tsk); 2192 } 2193 2194 #ifdef CONFIG_PPC64 2195 /* Called with hard IRQs off */ 2196 void notrace __ppc64_runlatch_on(void) 2197 { 2198 struct thread_info *ti = current_thread_info(); 2199 2200 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2201 /* 2202 * Least significant bit (RUN) is the only writable bit of 2203 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2204 * earliest ISA where this is the case, but it's convenient. 2205 */ 2206 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2207 } else { 2208 unsigned long ctrl; 2209 2210 /* 2211 * Some architectures (e.g., Cell) have writable fields other 2212 * than RUN, so do the read-modify-write. 2213 */ 2214 ctrl = mfspr(SPRN_CTRLF); 2215 ctrl |= CTRL_RUNLATCH; 2216 mtspr(SPRN_CTRLT, ctrl); 2217 } 2218 2219 ti->local_flags |= _TLF_RUNLATCH; 2220 } 2221 2222 /* Called with hard IRQs off */ 2223 void notrace __ppc64_runlatch_off(void) 2224 { 2225 struct thread_info *ti = current_thread_info(); 2226 2227 ti->local_flags &= ~_TLF_RUNLATCH; 2228 2229 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2230 mtspr(SPRN_CTRLT, 0); 2231 } else { 2232 unsigned long ctrl; 2233 2234 ctrl = mfspr(SPRN_CTRLF); 2235 ctrl &= ~CTRL_RUNLATCH; 2236 mtspr(SPRN_CTRLT, ctrl); 2237 } 2238 } 2239 #endif /* CONFIG_PPC64 */ 2240 2241 unsigned long arch_align_stack(unsigned long sp) 2242 { 2243 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2244 sp -= get_random_int() & ~PAGE_MASK; 2245 return sp & ~0xf; 2246 } 2247 2248 static inline unsigned long brk_rnd(void) 2249 { 2250 unsigned long rnd = 0; 2251 2252 /* 8MB for 32bit, 1GB for 64bit */ 2253 if (is_32bit_task()) 2254 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2255 else 2256 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2257 2258 return rnd << PAGE_SHIFT; 2259 } 2260 2261 unsigned long arch_randomize_brk(struct mm_struct *mm) 2262 { 2263 unsigned long base = mm->brk; 2264 unsigned long ret; 2265 2266 #ifdef CONFIG_PPC_BOOK3S_64 2267 /* 2268 * If we are using 1TB segments and we are allowed to randomise 2269 * the heap, we can put it above 1TB so it is backed by a 1TB 2270 * segment. Otherwise the heap will be in the bottom 1TB 2271 * which always uses 256MB segments and this may result in a 2272 * performance penalty. We don't need to worry about radix. For 2273 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2274 */ 2275 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2276 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2277 #endif 2278 2279 ret = PAGE_ALIGN(base + brk_rnd()); 2280 2281 if (ret < mm->brk) 2282 return mm->brk; 2283 2284 return ret; 2285 } 2286 2287