xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision b4e18b29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43 
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66 
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69 
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76 
77 extern unsigned long _get_SP(void);
78 
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86 
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89 	/*
90 	 * If we are saving the current thread's registers, and the
91 	 * thread is in a transactional state, set the TIF_RESTORE_TM
92 	 * bit so that we know to restore the registers before
93 	 * returning to userspace.
94 	 */
95 	if (tsk == current && tsk->thread.regs &&
96 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 	    !test_thread_flag(TIF_RESTORE_TM)) {
98 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 		set_thread_flag(TIF_RESTORE_TM);
100 	}
101 }
102 
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106 
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109 
110 static int __init enable_strict_msr_control(char *str)
111 {
112 	strict_msr_control = true;
113 	pr_info("Enabling strict facility control\n");
114 
115 	return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118 
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122 	unsigned long oldmsr = mfmsr();
123 	unsigned long newmsr;
124 
125 	newmsr = oldmsr | bits;
126 
127 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
128 		newmsr |= MSR_VSX;
129 
130 	if (oldmsr != newmsr)
131 		mtmsr_isync(newmsr);
132 
133 	return newmsr;
134 }
135 EXPORT_SYMBOL_GPL(msr_check_and_set);
136 
137 /* notrace because it's called by restore_math */
138 void notrace __msr_check_and_clear(unsigned long bits)
139 {
140 	unsigned long oldmsr = mfmsr();
141 	unsigned long newmsr;
142 
143 	newmsr = oldmsr & ~bits;
144 
145 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
146 		newmsr &= ~MSR_VSX;
147 
148 	if (oldmsr != newmsr)
149 		mtmsr_isync(newmsr);
150 }
151 EXPORT_SYMBOL(__msr_check_and_clear);
152 
153 #ifdef CONFIG_PPC_FPU
154 static void __giveup_fpu(struct task_struct *tsk)
155 {
156 	unsigned long msr;
157 
158 	save_fpu(tsk);
159 	msr = tsk->thread.regs->msr;
160 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
161 	if (cpu_has_feature(CPU_FTR_VSX))
162 		msr &= ~MSR_VSX;
163 	tsk->thread.regs->msr = msr;
164 }
165 
166 void giveup_fpu(struct task_struct *tsk)
167 {
168 	check_if_tm_restore_required(tsk);
169 
170 	msr_check_and_set(MSR_FP);
171 	__giveup_fpu(tsk);
172 	msr_check_and_clear(MSR_FP);
173 }
174 EXPORT_SYMBOL(giveup_fpu);
175 
176 /*
177  * Make sure the floating-point register state in the
178  * the thread_struct is up to date for task tsk.
179  */
180 void flush_fp_to_thread(struct task_struct *tsk)
181 {
182 	if (tsk->thread.regs) {
183 		/*
184 		 * We need to disable preemption here because if we didn't,
185 		 * another process could get scheduled after the regs->msr
186 		 * test but before we have finished saving the FP registers
187 		 * to the thread_struct.  That process could take over the
188 		 * FPU, and then when we get scheduled again we would store
189 		 * bogus values for the remaining FP registers.
190 		 */
191 		preempt_disable();
192 		if (tsk->thread.regs->msr & MSR_FP) {
193 			/*
194 			 * This should only ever be called for current or
195 			 * for a stopped child process.  Since we save away
196 			 * the FP register state on context switch,
197 			 * there is something wrong if a stopped child appears
198 			 * to still have its FP state in the CPU registers.
199 			 */
200 			BUG_ON(tsk != current);
201 			giveup_fpu(tsk);
202 		}
203 		preempt_enable();
204 	}
205 }
206 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
207 
208 void enable_kernel_fp(void)
209 {
210 	unsigned long cpumsr;
211 
212 	WARN_ON(preemptible());
213 
214 	cpumsr = msr_check_and_set(MSR_FP);
215 
216 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
217 		check_if_tm_restore_required(current);
218 		/*
219 		 * If a thread has already been reclaimed then the
220 		 * checkpointed registers are on the CPU but have definitely
221 		 * been saved by the reclaim code. Don't need to and *cannot*
222 		 * giveup as this would save  to the 'live' structure not the
223 		 * checkpointed structure.
224 		 */
225 		if (!MSR_TM_ACTIVE(cpumsr) &&
226 		     MSR_TM_ACTIVE(current->thread.regs->msr))
227 			return;
228 		__giveup_fpu(current);
229 	}
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232 #else
233 static inline void __giveup_fpu(struct task_struct *tsk) { }
234 #endif /* CONFIG_PPC_FPU */
235 
236 #ifdef CONFIG_ALTIVEC
237 static void __giveup_altivec(struct task_struct *tsk)
238 {
239 	unsigned long msr;
240 
241 	save_altivec(tsk);
242 	msr = tsk->thread.regs->msr;
243 	msr &= ~MSR_VEC;
244 	if (cpu_has_feature(CPU_FTR_VSX))
245 		msr &= ~MSR_VSX;
246 	tsk->thread.regs->msr = msr;
247 }
248 
249 void giveup_altivec(struct task_struct *tsk)
250 {
251 	check_if_tm_restore_required(tsk);
252 
253 	msr_check_and_set(MSR_VEC);
254 	__giveup_altivec(tsk);
255 	msr_check_and_clear(MSR_VEC);
256 }
257 EXPORT_SYMBOL(giveup_altivec);
258 
259 void enable_kernel_altivec(void)
260 {
261 	unsigned long cpumsr;
262 
263 	WARN_ON(preemptible());
264 
265 	cpumsr = msr_check_and_set(MSR_VEC);
266 
267 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
268 		check_if_tm_restore_required(current);
269 		/*
270 		 * If a thread has already been reclaimed then the
271 		 * checkpointed registers are on the CPU but have definitely
272 		 * been saved by the reclaim code. Don't need to and *cannot*
273 		 * giveup as this would save  to the 'live' structure not the
274 		 * checkpointed structure.
275 		 */
276 		if (!MSR_TM_ACTIVE(cpumsr) &&
277 		     MSR_TM_ACTIVE(current->thread.regs->msr))
278 			return;
279 		__giveup_altivec(current);
280 	}
281 }
282 EXPORT_SYMBOL(enable_kernel_altivec);
283 
284 /*
285  * Make sure the VMX/Altivec register state in the
286  * the thread_struct is up to date for task tsk.
287  */
288 void flush_altivec_to_thread(struct task_struct *tsk)
289 {
290 	if (tsk->thread.regs) {
291 		preempt_disable();
292 		if (tsk->thread.regs->msr & MSR_VEC) {
293 			BUG_ON(tsk != current);
294 			giveup_altivec(tsk);
295 		}
296 		preempt_enable();
297 	}
298 }
299 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
300 #endif /* CONFIG_ALTIVEC */
301 
302 #ifdef CONFIG_VSX
303 static void __giveup_vsx(struct task_struct *tsk)
304 {
305 	unsigned long msr = tsk->thread.regs->msr;
306 
307 	/*
308 	 * We should never be ssetting MSR_VSX without also setting
309 	 * MSR_FP and MSR_VEC
310 	 */
311 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
312 
313 	/* __giveup_fpu will clear MSR_VSX */
314 	if (msr & MSR_FP)
315 		__giveup_fpu(tsk);
316 	if (msr & MSR_VEC)
317 		__giveup_altivec(tsk);
318 }
319 
320 static void giveup_vsx(struct task_struct *tsk)
321 {
322 	check_if_tm_restore_required(tsk);
323 
324 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
325 	__giveup_vsx(tsk);
326 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
327 }
328 
329 void enable_kernel_vsx(void)
330 {
331 	unsigned long cpumsr;
332 
333 	WARN_ON(preemptible());
334 
335 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
336 
337 	if (current->thread.regs &&
338 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
339 		check_if_tm_restore_required(current);
340 		/*
341 		 * If a thread has already been reclaimed then the
342 		 * checkpointed registers are on the CPU but have definitely
343 		 * been saved by the reclaim code. Don't need to and *cannot*
344 		 * giveup as this would save  to the 'live' structure not the
345 		 * checkpointed structure.
346 		 */
347 		if (!MSR_TM_ACTIVE(cpumsr) &&
348 		     MSR_TM_ACTIVE(current->thread.regs->msr))
349 			return;
350 		__giveup_vsx(current);
351 	}
352 }
353 EXPORT_SYMBOL(enable_kernel_vsx);
354 
355 void flush_vsx_to_thread(struct task_struct *tsk)
356 {
357 	if (tsk->thread.regs) {
358 		preempt_disable();
359 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
360 			BUG_ON(tsk != current);
361 			giveup_vsx(tsk);
362 		}
363 		preempt_enable();
364 	}
365 }
366 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
367 #endif /* CONFIG_VSX */
368 
369 #ifdef CONFIG_SPE
370 void giveup_spe(struct task_struct *tsk)
371 {
372 	check_if_tm_restore_required(tsk);
373 
374 	msr_check_and_set(MSR_SPE);
375 	__giveup_spe(tsk);
376 	msr_check_and_clear(MSR_SPE);
377 }
378 EXPORT_SYMBOL(giveup_spe);
379 
380 void enable_kernel_spe(void)
381 {
382 	WARN_ON(preemptible());
383 
384 	msr_check_and_set(MSR_SPE);
385 
386 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
387 		check_if_tm_restore_required(current);
388 		__giveup_spe(current);
389 	}
390 }
391 EXPORT_SYMBOL(enable_kernel_spe);
392 
393 void flush_spe_to_thread(struct task_struct *tsk)
394 {
395 	if (tsk->thread.regs) {
396 		preempt_disable();
397 		if (tsk->thread.regs->msr & MSR_SPE) {
398 			BUG_ON(tsk != current);
399 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
400 			giveup_spe(tsk);
401 		}
402 		preempt_enable();
403 	}
404 }
405 #endif /* CONFIG_SPE */
406 
407 static unsigned long msr_all_available;
408 
409 static int __init init_msr_all_available(void)
410 {
411 	if (IS_ENABLED(CONFIG_PPC_FPU))
412 		msr_all_available |= MSR_FP;
413 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
414 		msr_all_available |= MSR_VEC;
415 	if (cpu_has_feature(CPU_FTR_VSX))
416 		msr_all_available |= MSR_VSX;
417 	if (cpu_has_feature(CPU_FTR_SPE))
418 		msr_all_available |= MSR_SPE;
419 
420 	return 0;
421 }
422 early_initcall(init_msr_all_available);
423 
424 void giveup_all(struct task_struct *tsk)
425 {
426 	unsigned long usermsr;
427 
428 	if (!tsk->thread.regs)
429 		return;
430 
431 	check_if_tm_restore_required(tsk);
432 
433 	usermsr = tsk->thread.regs->msr;
434 
435 	if ((usermsr & msr_all_available) == 0)
436 		return;
437 
438 	msr_check_and_set(msr_all_available);
439 
440 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
441 
442 	if (usermsr & MSR_FP)
443 		__giveup_fpu(tsk);
444 	if (usermsr & MSR_VEC)
445 		__giveup_altivec(tsk);
446 	if (usermsr & MSR_SPE)
447 		__giveup_spe(tsk);
448 
449 	msr_check_and_clear(msr_all_available);
450 }
451 EXPORT_SYMBOL(giveup_all);
452 
453 #ifdef CONFIG_PPC_BOOK3S_64
454 #ifdef CONFIG_PPC_FPU
455 static bool should_restore_fp(void)
456 {
457 	if (current->thread.load_fp) {
458 		current->thread.load_fp++;
459 		return true;
460 	}
461 	return false;
462 }
463 
464 static void do_restore_fp(void)
465 {
466 	load_fp_state(&current->thread.fp_state);
467 }
468 #else
469 static bool should_restore_fp(void) { return false; }
470 static void do_restore_fp(void) { }
471 #endif /* CONFIG_PPC_FPU */
472 
473 #ifdef CONFIG_ALTIVEC
474 static bool should_restore_altivec(void)
475 {
476 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
477 		current->thread.load_vec++;
478 		return true;
479 	}
480 	return false;
481 }
482 
483 static void do_restore_altivec(void)
484 {
485 	load_vr_state(&current->thread.vr_state);
486 	current->thread.used_vr = 1;
487 }
488 #else
489 static bool should_restore_altivec(void) { return false; }
490 static void do_restore_altivec(void) { }
491 #endif /* CONFIG_ALTIVEC */
492 
493 static bool should_restore_vsx(void)
494 {
495 	if (cpu_has_feature(CPU_FTR_VSX))
496 		return true;
497 	return false;
498 }
499 #ifdef CONFIG_VSX
500 static void do_restore_vsx(void)
501 {
502 	current->thread.used_vsr = 1;
503 }
504 #else
505 static void do_restore_vsx(void) { }
506 #endif /* CONFIG_VSX */
507 
508 /*
509  * The exception exit path calls restore_math() with interrupts hard disabled
510  * but the soft irq state not "reconciled". ftrace code that calls
511  * local_irq_save/restore causes warnings.
512  *
513  * Rather than complicate the exit path, just don't trace restore_math. This
514  * could be done by having ftrace entry code check for this un-reconciled
515  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
516  * temporarily fix it up for the duration of the ftrace call.
517  */
518 void notrace restore_math(struct pt_regs *regs)
519 {
520 	unsigned long msr;
521 	unsigned long new_msr = 0;
522 
523 	msr = regs->msr;
524 
525 	/*
526 	 * new_msr tracks the facilities that are to be restored. Only reload
527 	 * if the bit is not set in the user MSR (if it is set, the registers
528 	 * are live for the user thread).
529 	 */
530 	if ((!(msr & MSR_FP)) && should_restore_fp())
531 		new_msr |= MSR_FP;
532 
533 	if ((!(msr & MSR_VEC)) && should_restore_altivec())
534 		new_msr |= MSR_VEC;
535 
536 	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
537 		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
538 			new_msr |= MSR_VSX;
539 	}
540 
541 	if (new_msr) {
542 		unsigned long fpexc_mode = 0;
543 
544 		msr_check_and_set(new_msr);
545 
546 		if (new_msr & MSR_FP) {
547 			do_restore_fp();
548 
549 			// This also covers VSX, because VSX implies FP
550 			fpexc_mode = current->thread.fpexc_mode;
551 		}
552 
553 		if (new_msr & MSR_VEC)
554 			do_restore_altivec();
555 
556 		if (new_msr & MSR_VSX)
557 			do_restore_vsx();
558 
559 		msr_check_and_clear(new_msr);
560 
561 		regs->msr |= new_msr | fpexc_mode;
562 	}
563 }
564 #endif /* CONFIG_PPC_BOOK3S_64 */
565 
566 static void save_all(struct task_struct *tsk)
567 {
568 	unsigned long usermsr;
569 
570 	if (!tsk->thread.regs)
571 		return;
572 
573 	usermsr = tsk->thread.regs->msr;
574 
575 	if ((usermsr & msr_all_available) == 0)
576 		return;
577 
578 	msr_check_and_set(msr_all_available);
579 
580 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
581 
582 	if (usermsr & MSR_FP)
583 		save_fpu(tsk);
584 
585 	if (usermsr & MSR_VEC)
586 		save_altivec(tsk);
587 
588 	if (usermsr & MSR_SPE)
589 		__giveup_spe(tsk);
590 
591 	msr_check_and_clear(msr_all_available);
592 }
593 
594 void flush_all_to_thread(struct task_struct *tsk)
595 {
596 	if (tsk->thread.regs) {
597 		preempt_disable();
598 		BUG_ON(tsk != current);
599 #ifdef CONFIG_SPE
600 		if (tsk->thread.regs->msr & MSR_SPE)
601 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
602 #endif
603 		save_all(tsk);
604 
605 		preempt_enable();
606 	}
607 }
608 EXPORT_SYMBOL(flush_all_to_thread);
609 
610 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
611 void do_send_trap(struct pt_regs *regs, unsigned long address,
612 		  unsigned long error_code, int breakpt)
613 {
614 	current->thread.trap_nr = TRAP_HWBKPT;
615 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
616 			11, SIGSEGV) == NOTIFY_STOP)
617 		return;
618 
619 	/* Deliver the signal to userspace */
620 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
621 				    (void __user *)address);
622 }
623 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
624 
625 static void do_break_handler(struct pt_regs *regs)
626 {
627 	struct arch_hw_breakpoint null_brk = {0};
628 	struct arch_hw_breakpoint *info;
629 	struct ppc_inst instr = ppc_inst(0);
630 	int type = 0;
631 	int size = 0;
632 	unsigned long ea;
633 	int i;
634 
635 	/*
636 	 * If underneath hw supports only one watchpoint, we know it
637 	 * caused exception. 8xx also falls into this category.
638 	 */
639 	if (nr_wp_slots() == 1) {
640 		__set_breakpoint(0, &null_brk);
641 		current->thread.hw_brk[0] = null_brk;
642 		current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
643 		return;
644 	}
645 
646 	/* Otherwise findout which DAWR caused exception and disable it. */
647 	wp_get_instr_detail(regs, &instr, &type, &size, &ea);
648 
649 	for (i = 0; i < nr_wp_slots(); i++) {
650 		info = &current->thread.hw_brk[i];
651 		if (!info->address)
652 			continue;
653 
654 		if (wp_check_constraints(regs, instr, ea, type, size, info)) {
655 			__set_breakpoint(i, &null_brk);
656 			current->thread.hw_brk[i] = null_brk;
657 			current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
658 		}
659 	}
660 }
661 
662 void do_break (struct pt_regs *regs, unsigned long address,
663 		    unsigned long error_code)
664 {
665 	current->thread.trap_nr = TRAP_HWBKPT;
666 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
667 			11, SIGSEGV) == NOTIFY_STOP)
668 		return;
669 
670 	if (debugger_break_match(regs))
671 		return;
672 
673 	/*
674 	 * We reach here only when watchpoint exception is generated by ptrace
675 	 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
676 	 * watchpoint is already handled by hw_breakpoint_handler() so we don't
677 	 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
678 	 * we need to manually handle the watchpoint here.
679 	 */
680 	if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
681 		do_break_handler(regs);
682 
683 	/* Deliver the signal to userspace */
684 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
685 }
686 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
687 
688 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
689 
690 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
691 /*
692  * Set the debug registers back to their default "safe" values.
693  */
694 static void set_debug_reg_defaults(struct thread_struct *thread)
695 {
696 	thread->debug.iac1 = thread->debug.iac2 = 0;
697 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
698 	thread->debug.iac3 = thread->debug.iac4 = 0;
699 #endif
700 	thread->debug.dac1 = thread->debug.dac2 = 0;
701 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
702 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
703 #endif
704 	thread->debug.dbcr0 = 0;
705 #ifdef CONFIG_BOOKE
706 	/*
707 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
708 	 */
709 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
710 			DBCR1_IAC3US | DBCR1_IAC4US;
711 	/*
712 	 * Force Data Address Compare User/Supervisor bits to be User-only
713 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
714 	 */
715 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
716 #else
717 	thread->debug.dbcr1 = 0;
718 #endif
719 }
720 
721 static void prime_debug_regs(struct debug_reg *debug)
722 {
723 	/*
724 	 * We could have inherited MSR_DE from userspace, since
725 	 * it doesn't get cleared on exception entry.  Make sure
726 	 * MSR_DE is clear before we enable any debug events.
727 	 */
728 	mtmsr(mfmsr() & ~MSR_DE);
729 
730 	mtspr(SPRN_IAC1, debug->iac1);
731 	mtspr(SPRN_IAC2, debug->iac2);
732 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
733 	mtspr(SPRN_IAC3, debug->iac3);
734 	mtspr(SPRN_IAC4, debug->iac4);
735 #endif
736 	mtspr(SPRN_DAC1, debug->dac1);
737 	mtspr(SPRN_DAC2, debug->dac2);
738 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
739 	mtspr(SPRN_DVC1, debug->dvc1);
740 	mtspr(SPRN_DVC2, debug->dvc2);
741 #endif
742 	mtspr(SPRN_DBCR0, debug->dbcr0);
743 	mtspr(SPRN_DBCR1, debug->dbcr1);
744 #ifdef CONFIG_BOOKE
745 	mtspr(SPRN_DBCR2, debug->dbcr2);
746 #endif
747 }
748 /*
749  * Unless neither the old or new thread are making use of the
750  * debug registers, set the debug registers from the values
751  * stored in the new thread.
752  */
753 void switch_booke_debug_regs(struct debug_reg *new_debug)
754 {
755 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
756 		|| (new_debug->dbcr0 & DBCR0_IDM))
757 			prime_debug_regs(new_debug);
758 }
759 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
760 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
761 #ifndef CONFIG_HAVE_HW_BREAKPOINT
762 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
763 {
764 	preempt_disable();
765 	__set_breakpoint(i, brk);
766 	preempt_enable();
767 }
768 
769 static void set_debug_reg_defaults(struct thread_struct *thread)
770 {
771 	int i;
772 	struct arch_hw_breakpoint null_brk = {0};
773 
774 	for (i = 0; i < nr_wp_slots(); i++) {
775 		thread->hw_brk[i] = null_brk;
776 		if (ppc_breakpoint_available())
777 			set_breakpoint(i, &thread->hw_brk[i]);
778 	}
779 }
780 
781 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
782 				struct arch_hw_breakpoint *b)
783 {
784 	if (a->address != b->address)
785 		return false;
786 	if (a->type != b->type)
787 		return false;
788 	if (a->len != b->len)
789 		return false;
790 	/* no need to check hw_len. it's calculated from address and len */
791 	return true;
792 }
793 
794 static void switch_hw_breakpoint(struct task_struct *new)
795 {
796 	int i;
797 
798 	for (i = 0; i < nr_wp_slots(); i++) {
799 		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
800 					&new->thread.hw_brk[i])))
801 			continue;
802 
803 		__set_breakpoint(i, &new->thread.hw_brk[i]);
804 	}
805 }
806 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
807 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
808 
809 static inline int set_dabr(struct arch_hw_breakpoint *brk)
810 {
811 	unsigned long dabr, dabrx;
812 
813 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
814 	dabrx = ((brk->type >> 3) & 0x7);
815 
816 	if (ppc_md.set_dabr)
817 		return ppc_md.set_dabr(dabr, dabrx);
818 
819 	if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
820 		mtspr(SPRN_DAC1, dabr);
821 		if (IS_ENABLED(CONFIG_PPC_47x))
822 			isync();
823 		return 0;
824 	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
825 		mtspr(SPRN_DABR, dabr);
826 		if (cpu_has_feature(CPU_FTR_DABRX))
827 			mtspr(SPRN_DABRX, dabrx);
828 		return 0;
829 	} else {
830 		return -EINVAL;
831 	}
832 }
833 
834 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
835 {
836 	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
837 			       LCTRL1_CRWF_RW;
838 	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
839 	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
840 	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
841 
842 	if (start_addr == 0)
843 		lctrl2 |= LCTRL2_LW0LA_F;
844 	else if (end_addr == 0)
845 		lctrl2 |= LCTRL2_LW0LA_E;
846 	else
847 		lctrl2 |= LCTRL2_LW0LA_EandF;
848 
849 	mtspr(SPRN_LCTRL2, 0);
850 
851 	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
852 		return 0;
853 
854 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
855 		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
856 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
857 		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
858 
859 	mtspr(SPRN_CMPE, start_addr - 1);
860 	mtspr(SPRN_CMPF, end_addr);
861 	mtspr(SPRN_LCTRL1, lctrl1);
862 	mtspr(SPRN_LCTRL2, lctrl2);
863 
864 	return 0;
865 }
866 
867 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
868 {
869 	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
870 
871 	if (dawr_enabled())
872 		// Power8 or later
873 		set_dawr(nr, brk);
874 	else if (IS_ENABLED(CONFIG_PPC_8xx))
875 		set_breakpoint_8xx(brk);
876 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
877 		// Power7 or earlier
878 		set_dabr(brk);
879 	else
880 		// Shouldn't happen due to higher level checks
881 		WARN_ON_ONCE(1);
882 }
883 
884 /* Check if we have DAWR or DABR hardware */
885 bool ppc_breakpoint_available(void)
886 {
887 	if (dawr_enabled())
888 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
889 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
890 		return false; /* POWER9 with DAWR disabled */
891 	/* DABR: Everything but POWER8 and POWER9 */
892 	return true;
893 }
894 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
895 
896 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
897 
898 static inline bool tm_enabled(struct task_struct *tsk)
899 {
900 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
901 }
902 
903 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
904 {
905 	/*
906 	 * Use the current MSR TM suspended bit to track if we have
907 	 * checkpointed state outstanding.
908 	 * On signal delivery, we'd normally reclaim the checkpointed
909 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
910 	 * This will then directly return to userspace without going
911 	 * through __switch_to(). However, if the stack frame is bad,
912 	 * we need to exit this thread which calls __switch_to() which
913 	 * will again attempt to reclaim the already saved tm state.
914 	 * Hence we need to check that we've not already reclaimed
915 	 * this state.
916 	 * We do this using the current MSR, rather tracking it in
917 	 * some specific thread_struct bit, as it has the additional
918 	 * benefit of checking for a potential TM bad thing exception.
919 	 */
920 	if (!MSR_TM_SUSPENDED(mfmsr()))
921 		return;
922 
923 	giveup_all(container_of(thr, struct task_struct, thread));
924 
925 	tm_reclaim(thr, cause);
926 
927 	/*
928 	 * If we are in a transaction and FP is off then we can't have
929 	 * used FP inside that transaction. Hence the checkpointed
930 	 * state is the same as the live state. We need to copy the
931 	 * live state to the checkpointed state so that when the
932 	 * transaction is restored, the checkpointed state is correct
933 	 * and the aborted transaction sees the correct state. We use
934 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
935 	 * determine if it's going to write the checkpointed state or
936 	 * not. So either this will write the checkpointed registers,
937 	 * or reclaim will. Similarly for VMX.
938 	 */
939 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
940 		memcpy(&thr->ckfp_state, &thr->fp_state,
941 		       sizeof(struct thread_fp_state));
942 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
943 		memcpy(&thr->ckvr_state, &thr->vr_state,
944 		       sizeof(struct thread_vr_state));
945 }
946 
947 void tm_reclaim_current(uint8_t cause)
948 {
949 	tm_enable();
950 	tm_reclaim_thread(&current->thread, cause);
951 }
952 
953 static inline void tm_reclaim_task(struct task_struct *tsk)
954 {
955 	/* We have to work out if we're switching from/to a task that's in the
956 	 * middle of a transaction.
957 	 *
958 	 * In switching we need to maintain a 2nd register state as
959 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
960 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
961 	 * ckvr_state
962 	 *
963 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
964 	 */
965 	struct thread_struct *thr = &tsk->thread;
966 
967 	if (!thr->regs)
968 		return;
969 
970 	if (!MSR_TM_ACTIVE(thr->regs->msr))
971 		goto out_and_saveregs;
972 
973 	WARN_ON(tm_suspend_disabled);
974 
975 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
976 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
977 		 tsk->pid, thr->regs->nip,
978 		 thr->regs->ccr, thr->regs->msr,
979 		 thr->regs->trap);
980 
981 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
982 
983 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
984 		 tsk->pid);
985 
986 out_and_saveregs:
987 	/* Always save the regs here, even if a transaction's not active.
988 	 * This context-switches a thread's TM info SPRs.  We do it here to
989 	 * be consistent with the restore path (in recheckpoint) which
990 	 * cannot happen later in _switch().
991 	 */
992 	tm_save_sprs(thr);
993 }
994 
995 extern void __tm_recheckpoint(struct thread_struct *thread);
996 
997 void tm_recheckpoint(struct thread_struct *thread)
998 {
999 	unsigned long flags;
1000 
1001 	if (!(thread->regs->msr & MSR_TM))
1002 		return;
1003 
1004 	/* We really can't be interrupted here as the TEXASR registers can't
1005 	 * change and later in the trecheckpoint code, we have a userspace R1.
1006 	 * So let's hard disable over this region.
1007 	 */
1008 	local_irq_save(flags);
1009 	hard_irq_disable();
1010 
1011 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
1012 	 * before the trecheckpoint and no explosion occurs.
1013 	 */
1014 	tm_restore_sprs(thread);
1015 
1016 	__tm_recheckpoint(thread);
1017 
1018 	local_irq_restore(flags);
1019 }
1020 
1021 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1022 {
1023 	if (!cpu_has_feature(CPU_FTR_TM))
1024 		return;
1025 
1026 	/* Recheckpoint the registers of the thread we're about to switch to.
1027 	 *
1028 	 * If the task was using FP, we non-lazily reload both the original and
1029 	 * the speculative FP register states.  This is because the kernel
1030 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1031 	 * unavailable later, we are unable to determine which set of FP regs
1032 	 * need to be restored.
1033 	 */
1034 	if (!tm_enabled(new))
1035 		return;
1036 
1037 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1038 		tm_restore_sprs(&new->thread);
1039 		return;
1040 	}
1041 	/* Recheckpoint to restore original checkpointed register state. */
1042 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1043 		 new->pid, new->thread.regs->msr);
1044 
1045 	tm_recheckpoint(&new->thread);
1046 
1047 	/*
1048 	 * The checkpointed state has been restored but the live state has
1049 	 * not, ensure all the math functionality is turned off to trigger
1050 	 * restore_math() to reload.
1051 	 */
1052 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1053 
1054 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1055 		 "(kernel msr 0x%lx)\n",
1056 		 new->pid, mfmsr());
1057 }
1058 
1059 static inline void __switch_to_tm(struct task_struct *prev,
1060 		struct task_struct *new)
1061 {
1062 	if (cpu_has_feature(CPU_FTR_TM)) {
1063 		if (tm_enabled(prev) || tm_enabled(new))
1064 			tm_enable();
1065 
1066 		if (tm_enabled(prev)) {
1067 			prev->thread.load_tm++;
1068 			tm_reclaim_task(prev);
1069 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1070 				prev->thread.regs->msr &= ~MSR_TM;
1071 		}
1072 
1073 		tm_recheckpoint_new_task(new);
1074 	}
1075 }
1076 
1077 /*
1078  * This is called if we are on the way out to userspace and the
1079  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1080  * FP and/or vector state and does so if necessary.
1081  * If userspace is inside a transaction (whether active or
1082  * suspended) and FP/VMX/VSX instructions have ever been enabled
1083  * inside that transaction, then we have to keep them enabled
1084  * and keep the FP/VMX/VSX state loaded while ever the transaction
1085  * continues.  The reason is that if we didn't, and subsequently
1086  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1087  * we don't know whether it's the same transaction, and thus we
1088  * don't know which of the checkpointed state and the transactional
1089  * state to use.
1090  */
1091 void restore_tm_state(struct pt_regs *regs)
1092 {
1093 	unsigned long msr_diff;
1094 
1095 	/*
1096 	 * This is the only moment we should clear TIF_RESTORE_TM as
1097 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1098 	 * again, anything else could lead to an incorrect ckpt_msr being
1099 	 * saved and therefore incorrect signal contexts.
1100 	 */
1101 	clear_thread_flag(TIF_RESTORE_TM);
1102 	if (!MSR_TM_ACTIVE(regs->msr))
1103 		return;
1104 
1105 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1106 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1107 
1108 	/* Ensure that restore_math() will restore */
1109 	if (msr_diff & MSR_FP)
1110 		current->thread.load_fp = 1;
1111 #ifdef CONFIG_ALTIVEC
1112 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1113 		current->thread.load_vec = 1;
1114 #endif
1115 	restore_math(regs);
1116 
1117 	regs->msr |= msr_diff;
1118 }
1119 
1120 #else
1121 #define tm_recheckpoint_new_task(new)
1122 #define __switch_to_tm(prev, new)
1123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1124 
1125 static inline void save_sprs(struct thread_struct *t)
1126 {
1127 #ifdef CONFIG_ALTIVEC
1128 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1129 		t->vrsave = mfspr(SPRN_VRSAVE);
1130 #endif
1131 #ifdef CONFIG_PPC_BOOK3S_64
1132 	if (cpu_has_feature(CPU_FTR_DSCR))
1133 		t->dscr = mfspr(SPRN_DSCR);
1134 
1135 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1136 		t->bescr = mfspr(SPRN_BESCR);
1137 		t->ebbhr = mfspr(SPRN_EBBHR);
1138 		t->ebbrr = mfspr(SPRN_EBBRR);
1139 
1140 		t->fscr = mfspr(SPRN_FSCR);
1141 
1142 		/*
1143 		 * Note that the TAR is not available for use in the kernel.
1144 		 * (To provide this, the TAR should be backed up/restored on
1145 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1146 		 * this should be in pt_regs anyway (for debug).)
1147 		 */
1148 		t->tar = mfspr(SPRN_TAR);
1149 	}
1150 #endif
1151 }
1152 
1153 static inline void restore_sprs(struct thread_struct *old_thread,
1154 				struct thread_struct *new_thread)
1155 {
1156 #ifdef CONFIG_ALTIVEC
1157 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1158 	    old_thread->vrsave != new_thread->vrsave)
1159 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1160 #endif
1161 #ifdef CONFIG_PPC_BOOK3S_64
1162 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1163 		u64 dscr = get_paca()->dscr_default;
1164 		if (new_thread->dscr_inherit)
1165 			dscr = new_thread->dscr;
1166 
1167 		if (old_thread->dscr != dscr)
1168 			mtspr(SPRN_DSCR, dscr);
1169 	}
1170 
1171 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1172 		if (old_thread->bescr != new_thread->bescr)
1173 			mtspr(SPRN_BESCR, new_thread->bescr);
1174 		if (old_thread->ebbhr != new_thread->ebbhr)
1175 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1176 		if (old_thread->ebbrr != new_thread->ebbrr)
1177 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1178 
1179 		if (old_thread->fscr != new_thread->fscr)
1180 			mtspr(SPRN_FSCR, new_thread->fscr);
1181 
1182 		if (old_thread->tar != new_thread->tar)
1183 			mtspr(SPRN_TAR, new_thread->tar);
1184 	}
1185 
1186 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1187 	    old_thread->tidr != new_thread->tidr)
1188 		mtspr(SPRN_TIDR, new_thread->tidr);
1189 #endif
1190 
1191 }
1192 
1193 struct task_struct *__switch_to(struct task_struct *prev,
1194 	struct task_struct *new)
1195 {
1196 	struct thread_struct *new_thread, *old_thread;
1197 	struct task_struct *last;
1198 #ifdef CONFIG_PPC_BOOK3S_64
1199 	struct ppc64_tlb_batch *batch;
1200 #endif
1201 
1202 	new_thread = &new->thread;
1203 	old_thread = &current->thread;
1204 
1205 	WARN_ON(!irqs_disabled());
1206 
1207 #ifdef CONFIG_PPC_BOOK3S_64
1208 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1209 	if (batch->active) {
1210 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1211 		if (batch->index)
1212 			__flush_tlb_pending(batch);
1213 		batch->active = 0;
1214 	}
1215 #endif /* CONFIG_PPC_BOOK3S_64 */
1216 
1217 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1218 	switch_booke_debug_regs(&new->thread.debug);
1219 #else
1220 /*
1221  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1222  * schedule DABR
1223  */
1224 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1225 	switch_hw_breakpoint(new);
1226 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1227 #endif
1228 
1229 	/*
1230 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1231 	 * change a number of them.
1232 	 */
1233 	save_sprs(&prev->thread);
1234 
1235 	/* Save FPU, Altivec, VSX and SPE state */
1236 	giveup_all(prev);
1237 
1238 	__switch_to_tm(prev, new);
1239 
1240 	if (!radix_enabled()) {
1241 		/*
1242 		 * We can't take a PMU exception inside _switch() since there
1243 		 * is a window where the kernel stack SLB and the kernel stack
1244 		 * are out of sync. Hard disable here.
1245 		 */
1246 		hard_irq_disable();
1247 	}
1248 
1249 	/*
1250 	 * Call restore_sprs() before calling _switch(). If we move it after
1251 	 * _switch() then we miss out on calling it for new tasks. The reason
1252 	 * for this is we manually create a stack frame for new tasks that
1253 	 * directly returns through ret_from_fork() or
1254 	 * ret_from_kernel_thread(). See copy_thread() for details.
1255 	 */
1256 	restore_sprs(old_thread, new_thread);
1257 
1258 	last = _switch(old_thread, new_thread);
1259 
1260 #ifdef CONFIG_PPC_BOOK3S_64
1261 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1262 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1263 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1264 		batch->active = 1;
1265 	}
1266 
1267 	if (current->thread.regs) {
1268 		restore_math(current->thread.regs);
1269 
1270 		/*
1271 		 * On POWER9 the copy-paste buffer can only paste into
1272 		 * foreign real addresses, so unprivileged processes can not
1273 		 * see the data or use it in any way unless they have
1274 		 * foreign real mappings. If the new process has the foreign
1275 		 * real address mappings, we must issue a cp_abort to clear
1276 		 * any state and prevent snooping, corruption or a covert
1277 		 * channel. ISA v3.1 supports paste into local memory.
1278 		 */
1279 		if (current->mm &&
1280 			(cpu_has_feature(CPU_FTR_ARCH_31) ||
1281 			atomic_read(&current->mm->context.vas_windows)))
1282 			asm volatile(PPC_CP_ABORT);
1283 	}
1284 #endif /* CONFIG_PPC_BOOK3S_64 */
1285 
1286 	return last;
1287 }
1288 
1289 #define NR_INSN_TO_PRINT	16
1290 
1291 static void show_instructions(struct pt_regs *regs)
1292 {
1293 	int i;
1294 	unsigned long nip = regs->nip;
1295 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1296 
1297 	printk("Instruction dump:");
1298 
1299 	/*
1300 	 * If we were executing with the MMU off for instructions, adjust pc
1301 	 * rather than printing XXXXXXXX.
1302 	 */
1303 	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1304 		pc = (unsigned long)phys_to_virt(pc);
1305 		nip = (unsigned long)phys_to_virt(regs->nip);
1306 	}
1307 
1308 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1309 		int instr;
1310 
1311 		if (!(i % 8))
1312 			pr_cont("\n");
1313 
1314 		if (!__kernel_text_address(pc) ||
1315 		    get_kernel_nofault(instr, (const void *)pc)) {
1316 			pr_cont("XXXXXXXX ");
1317 		} else {
1318 			if (nip == pc)
1319 				pr_cont("<%08x> ", instr);
1320 			else
1321 				pr_cont("%08x ", instr);
1322 		}
1323 
1324 		pc += sizeof(int);
1325 	}
1326 
1327 	pr_cont("\n");
1328 }
1329 
1330 void show_user_instructions(struct pt_regs *regs)
1331 {
1332 	unsigned long pc;
1333 	int n = NR_INSN_TO_PRINT;
1334 	struct seq_buf s;
1335 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1336 
1337 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1338 
1339 	seq_buf_init(&s, buf, sizeof(buf));
1340 
1341 	while (n) {
1342 		int i;
1343 
1344 		seq_buf_clear(&s);
1345 
1346 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1347 			int instr;
1348 
1349 			if (copy_from_user_nofault(&instr, (void __user *)pc,
1350 					sizeof(instr))) {
1351 				seq_buf_printf(&s, "XXXXXXXX ");
1352 				continue;
1353 			}
1354 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1355 		}
1356 
1357 		if (!seq_buf_has_overflowed(&s))
1358 			pr_info("%s[%d]: code: %s\n", current->comm,
1359 				current->pid, s.buffer);
1360 	}
1361 }
1362 
1363 struct regbit {
1364 	unsigned long bit;
1365 	const char *name;
1366 };
1367 
1368 static struct regbit msr_bits[] = {
1369 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1370 	{MSR_SF,	"SF"},
1371 	{MSR_HV,	"HV"},
1372 #endif
1373 	{MSR_VEC,	"VEC"},
1374 	{MSR_VSX,	"VSX"},
1375 #ifdef CONFIG_BOOKE
1376 	{MSR_CE,	"CE"},
1377 #endif
1378 	{MSR_EE,	"EE"},
1379 	{MSR_PR,	"PR"},
1380 	{MSR_FP,	"FP"},
1381 	{MSR_ME,	"ME"},
1382 #ifdef CONFIG_BOOKE
1383 	{MSR_DE,	"DE"},
1384 #else
1385 	{MSR_SE,	"SE"},
1386 	{MSR_BE,	"BE"},
1387 #endif
1388 	{MSR_IR,	"IR"},
1389 	{MSR_DR,	"DR"},
1390 	{MSR_PMM,	"PMM"},
1391 #ifndef CONFIG_BOOKE
1392 	{MSR_RI,	"RI"},
1393 	{MSR_LE,	"LE"},
1394 #endif
1395 	{0,		NULL}
1396 };
1397 
1398 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1399 {
1400 	const char *s = "";
1401 
1402 	for (; bits->bit; ++bits)
1403 		if (val & bits->bit) {
1404 			pr_cont("%s%s", s, bits->name);
1405 			s = sep;
1406 		}
1407 }
1408 
1409 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1410 static struct regbit msr_tm_bits[] = {
1411 	{MSR_TS_T,	"T"},
1412 	{MSR_TS_S,	"S"},
1413 	{MSR_TM,	"E"},
1414 	{0,		NULL}
1415 };
1416 
1417 static void print_tm_bits(unsigned long val)
1418 {
1419 /*
1420  * This only prints something if at least one of the TM bit is set.
1421  * Inside the TM[], the output means:
1422  *   E: Enabled		(bit 32)
1423  *   S: Suspended	(bit 33)
1424  *   T: Transactional	(bit 34)
1425  */
1426 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1427 		pr_cont(",TM[");
1428 		print_bits(val, msr_tm_bits, "");
1429 		pr_cont("]");
1430 	}
1431 }
1432 #else
1433 static void print_tm_bits(unsigned long val) {}
1434 #endif
1435 
1436 static void print_msr_bits(unsigned long val)
1437 {
1438 	pr_cont("<");
1439 	print_bits(val, msr_bits, ",");
1440 	print_tm_bits(val);
1441 	pr_cont(">");
1442 }
1443 
1444 #ifdef CONFIG_PPC64
1445 #define REG		"%016lx"
1446 #define REGS_PER_LINE	4
1447 #define LAST_VOLATILE	13
1448 #else
1449 #define REG		"%08lx"
1450 #define REGS_PER_LINE	8
1451 #define LAST_VOLATILE	12
1452 #endif
1453 
1454 static void __show_regs(struct pt_regs *regs)
1455 {
1456 	int i, trap;
1457 
1458 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1459 	       regs->nip, regs->link, regs->ctr);
1460 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1461 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1462 	printk("MSR:  "REG" ", regs->msr);
1463 	print_msr_bits(regs->msr);
1464 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1465 	trap = TRAP(regs);
1466 	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1467 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1468 	if (trap == 0x200 || trap == 0x300 || trap == 0x600) {
1469 		if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1470 			pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1471 		else
1472 			pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1473 	}
1474 
1475 #ifdef CONFIG_PPC64
1476 	pr_cont("IRQMASK: %lx ", regs->softe);
1477 #endif
1478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1479 	if (MSR_TM_ACTIVE(regs->msr))
1480 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1481 #endif
1482 
1483 	for (i = 0;  i < 32;  i++) {
1484 		if ((i % REGS_PER_LINE) == 0)
1485 			pr_cont("\nGPR%02d: ", i);
1486 		pr_cont(REG " ", regs->gpr[i]);
1487 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1488 			break;
1489 	}
1490 	pr_cont("\n");
1491 	/*
1492 	 * Lookup NIP late so we have the best change of getting the
1493 	 * above info out without failing
1494 	 */
1495 	if (IS_ENABLED(CONFIG_KALLSYMS)) {
1496 		printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1497 		printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1498 	}
1499 }
1500 
1501 void show_regs(struct pt_regs *regs)
1502 {
1503 	show_regs_print_info(KERN_DEFAULT);
1504 	__show_regs(regs);
1505 	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1506 	if (!user_mode(regs))
1507 		show_instructions(regs);
1508 }
1509 
1510 void flush_thread(void)
1511 {
1512 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1513 	flush_ptrace_hw_breakpoint(current);
1514 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1515 	set_debug_reg_defaults(&current->thread);
1516 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1517 }
1518 
1519 void arch_setup_new_exec(void)
1520 {
1521 
1522 #ifdef CONFIG_PPC_BOOK3S_64
1523 	if (!radix_enabled())
1524 		hash__setup_new_exec();
1525 #endif
1526 	/*
1527 	 * If we exec out of a kernel thread then thread.regs will not be
1528 	 * set.  Do it now.
1529 	 */
1530 	if (!current->thread.regs) {
1531 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1532 		current->thread.regs = regs - 1;
1533 	}
1534 
1535 #ifdef CONFIG_PPC_MEM_KEYS
1536 	current->thread.regs->amr  = default_amr;
1537 	current->thread.regs->iamr  = default_iamr;
1538 #endif
1539 }
1540 
1541 #ifdef CONFIG_PPC64
1542 /**
1543  * Assign a TIDR (thread ID) for task @t and set it in the thread
1544  * structure. For now, we only support setting TIDR for 'current' task.
1545  *
1546  * Since the TID value is a truncated form of it PID, it is possible
1547  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1548  * that 2 threads share the same TID and are waiting, one of the following
1549  * cases will happen:
1550  *
1551  * 1. The correct thread is running, the wrong thread is not
1552  * In this situation, the correct thread is woken and proceeds to pass it's
1553  * condition check.
1554  *
1555  * 2. Neither threads are running
1556  * In this situation, neither thread will be woken. When scheduled, the waiting
1557  * threads will execute either a wait, which will return immediately, followed
1558  * by a condition check, which will pass for the correct thread and fail
1559  * for the wrong thread, or they will execute the condition check immediately.
1560  *
1561  * 3. The wrong thread is running, the correct thread is not
1562  * The wrong thread will be woken, but will fail it's condition check and
1563  * re-execute wait. The correct thread, when scheduled, will execute either
1564  * it's condition check (which will pass), or wait, which returns immediately
1565  * when called the first time after the thread is scheduled, followed by it's
1566  * condition check (which will pass).
1567  *
1568  * 4. Both threads are running
1569  * Both threads will be woken. The wrong thread will fail it's condition check
1570  * and execute another wait, while the correct thread will pass it's condition
1571  * check.
1572  *
1573  * @t: the task to set the thread ID for
1574  */
1575 int set_thread_tidr(struct task_struct *t)
1576 {
1577 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1578 		return -EINVAL;
1579 
1580 	if (t != current)
1581 		return -EINVAL;
1582 
1583 	if (t->thread.tidr)
1584 		return 0;
1585 
1586 	t->thread.tidr = (u16)task_pid_nr(t);
1587 	mtspr(SPRN_TIDR, t->thread.tidr);
1588 
1589 	return 0;
1590 }
1591 EXPORT_SYMBOL_GPL(set_thread_tidr);
1592 
1593 #endif /* CONFIG_PPC64 */
1594 
1595 void
1596 release_thread(struct task_struct *t)
1597 {
1598 }
1599 
1600 /*
1601  * this gets called so that we can store coprocessor state into memory and
1602  * copy the current task into the new thread.
1603  */
1604 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1605 {
1606 	flush_all_to_thread(src);
1607 	/*
1608 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1609 	 * flush but it removes the checkpointed state from the current CPU and
1610 	 * transitions the CPU out of TM mode.  Hence we need to call
1611 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1612 	 * checkpointed state back and the TM mode.
1613 	 *
1614 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1615 	 * dst is only important for __switch_to()
1616 	 */
1617 	__switch_to_tm(src, src);
1618 
1619 	*dst = *src;
1620 
1621 	clear_task_ebb(dst);
1622 
1623 	return 0;
1624 }
1625 
1626 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1627 {
1628 #ifdef CONFIG_PPC_BOOK3S_64
1629 	unsigned long sp_vsid;
1630 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1631 
1632 	if (radix_enabled())
1633 		return;
1634 
1635 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1636 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1637 			<< SLB_VSID_SHIFT_1T;
1638 	else
1639 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1640 			<< SLB_VSID_SHIFT;
1641 	sp_vsid |= SLB_VSID_KERNEL | llp;
1642 	p->thread.ksp_vsid = sp_vsid;
1643 #endif
1644 }
1645 
1646 /*
1647  * Copy a thread..
1648  */
1649 
1650 /*
1651  * Copy architecture-specific thread state
1652  */
1653 int copy_thread(unsigned long clone_flags, unsigned long usp,
1654 		unsigned long kthread_arg, struct task_struct *p,
1655 		unsigned long tls)
1656 {
1657 	struct pt_regs *childregs, *kregs;
1658 	extern void ret_from_fork(void);
1659 	extern void ret_from_fork_scv(void);
1660 	extern void ret_from_kernel_thread(void);
1661 	void (*f)(void);
1662 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1663 	struct thread_info *ti = task_thread_info(p);
1664 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1665 	int i;
1666 #endif
1667 
1668 	klp_init_thread_info(p);
1669 
1670 	/* Copy registers */
1671 	sp -= sizeof(struct pt_regs);
1672 	childregs = (struct pt_regs *) sp;
1673 	if (unlikely(p->flags & PF_KTHREAD)) {
1674 		/* kernel thread */
1675 		memset(childregs, 0, sizeof(struct pt_regs));
1676 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1677 		/* function */
1678 		if (usp)
1679 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1680 #ifdef CONFIG_PPC64
1681 		clear_tsk_thread_flag(p, TIF_32BIT);
1682 		childregs->softe = IRQS_ENABLED;
1683 #endif
1684 		childregs->gpr[15] = kthread_arg;
1685 		p->thread.regs = NULL;	/* no user register state */
1686 		ti->flags |= _TIF_RESTOREALL;
1687 		f = ret_from_kernel_thread;
1688 	} else {
1689 		/* user thread */
1690 		struct pt_regs *regs = current_pt_regs();
1691 		CHECK_FULL_REGS(regs);
1692 		*childregs = *regs;
1693 		if (usp)
1694 			childregs->gpr[1] = usp;
1695 		p->thread.regs = childregs;
1696 		/* 64s sets this in ret_from_fork */
1697 		if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1698 			childregs->gpr[3] = 0;  /* Result from fork() */
1699 		if (clone_flags & CLONE_SETTLS) {
1700 			if (!is_32bit_task())
1701 				childregs->gpr[13] = tls;
1702 			else
1703 				childregs->gpr[2] = tls;
1704 		}
1705 
1706 		if (trap_is_scv(regs))
1707 			f = ret_from_fork_scv;
1708 		else
1709 			f = ret_from_fork;
1710 	}
1711 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1712 	sp -= STACK_FRAME_OVERHEAD;
1713 
1714 	/*
1715 	 * The way this works is that at some point in the future
1716 	 * some task will call _switch to switch to the new task.
1717 	 * That will pop off the stack frame created below and start
1718 	 * the new task running at ret_from_fork.  The new task will
1719 	 * do some house keeping and then return from the fork or clone
1720 	 * system call, using the stack frame created above.
1721 	 */
1722 	((unsigned long *)sp)[0] = 0;
1723 	sp -= sizeof(struct pt_regs);
1724 	kregs = (struct pt_regs *) sp;
1725 	sp -= STACK_FRAME_OVERHEAD;
1726 	p->thread.ksp = sp;
1727 #ifdef CONFIG_PPC32
1728 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1729 #endif
1730 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1731 	for (i = 0; i < nr_wp_slots(); i++)
1732 		p->thread.ptrace_bps[i] = NULL;
1733 #endif
1734 
1735 #ifdef CONFIG_PPC_FPU_REGS
1736 	p->thread.fp_save_area = NULL;
1737 #endif
1738 #ifdef CONFIG_ALTIVEC
1739 	p->thread.vr_save_area = NULL;
1740 #endif
1741 
1742 	setup_ksp_vsid(p, sp);
1743 
1744 #ifdef CONFIG_PPC64
1745 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1746 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1747 		p->thread.dscr = mfspr(SPRN_DSCR);
1748 	}
1749 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1750 		childregs->ppr = DEFAULT_PPR;
1751 
1752 	p->thread.tidr = 0;
1753 #endif
1754 	/*
1755 	 * Run with the current AMR value of the kernel
1756 	 */
1757 #ifdef CONFIG_PPC_PKEY
1758 	if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1759 		kregs->amr = AMR_KUAP_BLOCKED;
1760 
1761 	if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1762 		kregs->iamr = AMR_KUEP_BLOCKED;
1763 #endif
1764 	kregs->nip = ppc_function_entry(f);
1765 	return 0;
1766 }
1767 
1768 void preload_new_slb_context(unsigned long start, unsigned long sp);
1769 
1770 /*
1771  * Set up a thread for executing a new program
1772  */
1773 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1774 {
1775 #ifdef CONFIG_PPC64
1776 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1777 
1778 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1779 		preload_new_slb_context(start, sp);
1780 #endif
1781 
1782 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1783 	/*
1784 	 * Clear any transactional state, we're exec()ing. The cause is
1785 	 * not important as there will never be a recheckpoint so it's not
1786 	 * user visible.
1787 	 */
1788 	if (MSR_TM_SUSPENDED(mfmsr()))
1789 		tm_reclaim_current(0);
1790 #endif
1791 
1792 	memset(regs->gpr, 0, sizeof(regs->gpr));
1793 	regs->ctr = 0;
1794 	regs->link = 0;
1795 	regs->xer = 0;
1796 	regs->ccr = 0;
1797 	regs->gpr[1] = sp;
1798 
1799 	/*
1800 	 * We have just cleared all the nonvolatile GPRs, so make
1801 	 * FULL_REGS(regs) return true.  This is necessary to allow
1802 	 * ptrace to examine the thread immediately after exec.
1803 	 */
1804 	SET_FULL_REGS(regs);
1805 
1806 #ifdef CONFIG_PPC32
1807 	regs->mq = 0;
1808 	regs->nip = start;
1809 	regs->msr = MSR_USER;
1810 #else
1811 	if (!is_32bit_task()) {
1812 		unsigned long entry;
1813 
1814 		if (is_elf2_task()) {
1815 			/* Look ma, no function descriptors! */
1816 			entry = start;
1817 
1818 			/*
1819 			 * Ulrich says:
1820 			 *   The latest iteration of the ABI requires that when
1821 			 *   calling a function (at its global entry point),
1822 			 *   the caller must ensure r12 holds the entry point
1823 			 *   address (so that the function can quickly
1824 			 *   establish addressability).
1825 			 */
1826 			regs->gpr[12] = start;
1827 			/* Make sure that's restored on entry to userspace. */
1828 			set_thread_flag(TIF_RESTOREALL);
1829 		} else {
1830 			unsigned long toc;
1831 
1832 			/* start is a relocated pointer to the function
1833 			 * descriptor for the elf _start routine.  The first
1834 			 * entry in the function descriptor is the entry
1835 			 * address of _start and the second entry is the TOC
1836 			 * value we need to use.
1837 			 */
1838 			__get_user(entry, (unsigned long __user *)start);
1839 			__get_user(toc, (unsigned long __user *)start+1);
1840 
1841 			/* Check whether the e_entry function descriptor entries
1842 			 * need to be relocated before we can use them.
1843 			 */
1844 			if (load_addr != 0) {
1845 				entry += load_addr;
1846 				toc   += load_addr;
1847 			}
1848 			regs->gpr[2] = toc;
1849 		}
1850 		regs->nip = entry;
1851 		regs->msr = MSR_USER64;
1852 	} else {
1853 		regs->nip = start;
1854 		regs->gpr[2] = 0;
1855 		regs->msr = MSR_USER32;
1856 	}
1857 #endif
1858 #ifdef CONFIG_VSX
1859 	current->thread.used_vsr = 0;
1860 #endif
1861 	current->thread.load_slb = 0;
1862 	current->thread.load_fp = 0;
1863 #ifdef CONFIG_PPC_FPU_REGS
1864 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1865 	current->thread.fp_save_area = NULL;
1866 #endif
1867 #ifdef CONFIG_ALTIVEC
1868 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1869 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1870 	current->thread.vr_save_area = NULL;
1871 	current->thread.vrsave = 0;
1872 	current->thread.used_vr = 0;
1873 	current->thread.load_vec = 0;
1874 #endif /* CONFIG_ALTIVEC */
1875 #ifdef CONFIG_SPE
1876 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1877 	current->thread.acc = 0;
1878 	current->thread.spefscr = 0;
1879 	current->thread.used_spe = 0;
1880 #endif /* CONFIG_SPE */
1881 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1882 	current->thread.tm_tfhar = 0;
1883 	current->thread.tm_texasr = 0;
1884 	current->thread.tm_tfiar = 0;
1885 	current->thread.load_tm = 0;
1886 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1887 
1888 }
1889 EXPORT_SYMBOL(start_thread);
1890 
1891 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1892 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1893 
1894 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1895 {
1896 	struct pt_regs *regs = tsk->thread.regs;
1897 
1898 	/* This is a bit hairy.  If we are an SPE enabled  processor
1899 	 * (have embedded fp) we store the IEEE exception enable flags in
1900 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1901 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1902 	if (val & PR_FP_EXC_SW_ENABLE) {
1903 		if (cpu_has_feature(CPU_FTR_SPE)) {
1904 			/*
1905 			 * When the sticky exception bits are set
1906 			 * directly by userspace, it must call prctl
1907 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1908 			 * in the existing prctl settings) or
1909 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1910 			 * the bits being set).  <fenv.h> functions
1911 			 * saving and restoring the whole
1912 			 * floating-point environment need to do so
1913 			 * anyway to restore the prctl settings from
1914 			 * the saved environment.
1915 			 */
1916 #ifdef CONFIG_SPE
1917 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1918 			tsk->thread.fpexc_mode = val &
1919 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1920 #endif
1921 			return 0;
1922 		} else {
1923 			return -EINVAL;
1924 		}
1925 	}
1926 
1927 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1928 	 * __pack_fe01 use do not overlap with bits used for
1929 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1930 	 * on CONFIG_SPE implementations are reserved so writing to
1931 	 * them does not change anything */
1932 	if (val > PR_FP_EXC_PRECISE)
1933 		return -EINVAL;
1934 	tsk->thread.fpexc_mode = __pack_fe01(val);
1935 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1936 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1937 			| tsk->thread.fpexc_mode;
1938 	return 0;
1939 }
1940 
1941 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1942 {
1943 	unsigned int val = 0;
1944 
1945 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1946 		if (cpu_has_feature(CPU_FTR_SPE)) {
1947 			/*
1948 			 * When the sticky exception bits are set
1949 			 * directly by userspace, it must call prctl
1950 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1951 			 * in the existing prctl settings) or
1952 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1953 			 * the bits being set).  <fenv.h> functions
1954 			 * saving and restoring the whole
1955 			 * floating-point environment need to do so
1956 			 * anyway to restore the prctl settings from
1957 			 * the saved environment.
1958 			 */
1959 #ifdef CONFIG_SPE
1960 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1961 			val = tsk->thread.fpexc_mode;
1962 #endif
1963 		} else
1964 			return -EINVAL;
1965 	} else {
1966 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1967 	}
1968 	return put_user(val, (unsigned int __user *) adr);
1969 }
1970 
1971 int set_endian(struct task_struct *tsk, unsigned int val)
1972 {
1973 	struct pt_regs *regs = tsk->thread.regs;
1974 
1975 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1976 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1977 		return -EINVAL;
1978 
1979 	if (regs == NULL)
1980 		return -EINVAL;
1981 
1982 	if (val == PR_ENDIAN_BIG)
1983 		regs->msr &= ~MSR_LE;
1984 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1985 		regs->msr |= MSR_LE;
1986 	else
1987 		return -EINVAL;
1988 
1989 	return 0;
1990 }
1991 
1992 int get_endian(struct task_struct *tsk, unsigned long adr)
1993 {
1994 	struct pt_regs *regs = tsk->thread.regs;
1995 	unsigned int val;
1996 
1997 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1998 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1999 		return -EINVAL;
2000 
2001 	if (regs == NULL)
2002 		return -EINVAL;
2003 
2004 	if (regs->msr & MSR_LE) {
2005 		if (cpu_has_feature(CPU_FTR_REAL_LE))
2006 			val = PR_ENDIAN_LITTLE;
2007 		else
2008 			val = PR_ENDIAN_PPC_LITTLE;
2009 	} else
2010 		val = PR_ENDIAN_BIG;
2011 
2012 	return put_user(val, (unsigned int __user *)adr);
2013 }
2014 
2015 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2016 {
2017 	tsk->thread.align_ctl = val;
2018 	return 0;
2019 }
2020 
2021 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2022 {
2023 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2024 }
2025 
2026 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2027 				  unsigned long nbytes)
2028 {
2029 	unsigned long stack_page;
2030 	unsigned long cpu = task_cpu(p);
2031 
2032 	stack_page = (unsigned long)hardirq_ctx[cpu];
2033 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2034 		return 1;
2035 
2036 	stack_page = (unsigned long)softirq_ctx[cpu];
2037 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2038 		return 1;
2039 
2040 	return 0;
2041 }
2042 
2043 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2044 					unsigned long nbytes)
2045 {
2046 #ifdef CONFIG_PPC64
2047 	unsigned long stack_page;
2048 	unsigned long cpu = task_cpu(p);
2049 
2050 	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2051 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2052 		return 1;
2053 
2054 # ifdef CONFIG_PPC_BOOK3S_64
2055 	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2056 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2057 		return 1;
2058 
2059 	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2060 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2061 		return 1;
2062 # endif
2063 #endif
2064 
2065 	return 0;
2066 }
2067 
2068 
2069 int validate_sp(unsigned long sp, struct task_struct *p,
2070 		       unsigned long nbytes)
2071 {
2072 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2073 
2074 	if (sp < THREAD_SIZE)
2075 		return 0;
2076 
2077 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2078 		return 1;
2079 
2080 	if (valid_irq_stack(sp, p, nbytes))
2081 		return 1;
2082 
2083 	return valid_emergency_stack(sp, p, nbytes);
2084 }
2085 
2086 EXPORT_SYMBOL(validate_sp);
2087 
2088 static unsigned long __get_wchan(struct task_struct *p)
2089 {
2090 	unsigned long ip, sp;
2091 	int count = 0;
2092 
2093 	if (!p || p == current || p->state == TASK_RUNNING)
2094 		return 0;
2095 
2096 	sp = p->thread.ksp;
2097 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2098 		return 0;
2099 
2100 	do {
2101 		sp = *(unsigned long *)sp;
2102 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2103 		    p->state == TASK_RUNNING)
2104 			return 0;
2105 		if (count > 0) {
2106 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2107 			if (!in_sched_functions(ip))
2108 				return ip;
2109 		}
2110 	} while (count++ < 16);
2111 	return 0;
2112 }
2113 
2114 unsigned long get_wchan(struct task_struct *p)
2115 {
2116 	unsigned long ret;
2117 
2118 	if (!try_get_task_stack(p))
2119 		return 0;
2120 
2121 	ret = __get_wchan(p);
2122 
2123 	put_task_stack(p);
2124 
2125 	return ret;
2126 }
2127 
2128 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2129 
2130 void show_stack(struct task_struct *tsk, unsigned long *stack,
2131 		const char *loglvl)
2132 {
2133 	unsigned long sp, ip, lr, newsp;
2134 	int count = 0;
2135 	int firstframe = 1;
2136 	unsigned long ret_addr;
2137 	int ftrace_idx = 0;
2138 
2139 	if (tsk == NULL)
2140 		tsk = current;
2141 
2142 	if (!try_get_task_stack(tsk))
2143 		return;
2144 
2145 	sp = (unsigned long) stack;
2146 	if (sp == 0) {
2147 		if (tsk == current)
2148 			sp = current_stack_frame();
2149 		else
2150 			sp = tsk->thread.ksp;
2151 	}
2152 
2153 	lr = 0;
2154 	printk("%sCall Trace:\n", loglvl);
2155 	do {
2156 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2157 			break;
2158 
2159 		stack = (unsigned long *) sp;
2160 		newsp = stack[0];
2161 		ip = stack[STACK_FRAME_LR_SAVE];
2162 		if (!firstframe || ip != lr) {
2163 			printk("%s["REG"] ["REG"] %pS",
2164 				loglvl, sp, ip, (void *)ip);
2165 			ret_addr = ftrace_graph_ret_addr(current,
2166 						&ftrace_idx, ip, stack);
2167 			if (ret_addr != ip)
2168 				pr_cont(" (%pS)", (void *)ret_addr);
2169 			if (firstframe)
2170 				pr_cont(" (unreliable)");
2171 			pr_cont("\n");
2172 		}
2173 		firstframe = 0;
2174 
2175 		/*
2176 		 * See if this is an exception frame.
2177 		 * We look for the "regshere" marker in the current frame.
2178 		 */
2179 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2180 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2181 			struct pt_regs *regs = (struct pt_regs *)
2182 				(sp + STACK_FRAME_OVERHEAD);
2183 
2184 			lr = regs->link;
2185 			printk("%s--- interrupt: %lx at %pS\n",
2186 			       loglvl, regs->trap, (void *)regs->nip);
2187 			__show_regs(regs);
2188 			printk("%s--- interrupt: %lx\n",
2189 			       loglvl, regs->trap);
2190 
2191 			firstframe = 1;
2192 		}
2193 
2194 		sp = newsp;
2195 	} while (count++ < kstack_depth_to_print);
2196 
2197 	put_task_stack(tsk);
2198 }
2199 
2200 #ifdef CONFIG_PPC64
2201 /* Called with hard IRQs off */
2202 void notrace __ppc64_runlatch_on(void)
2203 {
2204 	struct thread_info *ti = current_thread_info();
2205 
2206 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2207 		/*
2208 		 * Least significant bit (RUN) is the only writable bit of
2209 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2210 		 * earliest ISA where this is the case, but it's convenient.
2211 		 */
2212 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2213 	} else {
2214 		unsigned long ctrl;
2215 
2216 		/*
2217 		 * Some architectures (e.g., Cell) have writable fields other
2218 		 * than RUN, so do the read-modify-write.
2219 		 */
2220 		ctrl = mfspr(SPRN_CTRLF);
2221 		ctrl |= CTRL_RUNLATCH;
2222 		mtspr(SPRN_CTRLT, ctrl);
2223 	}
2224 
2225 	ti->local_flags |= _TLF_RUNLATCH;
2226 }
2227 
2228 /* Called with hard IRQs off */
2229 void notrace __ppc64_runlatch_off(void)
2230 {
2231 	struct thread_info *ti = current_thread_info();
2232 
2233 	ti->local_flags &= ~_TLF_RUNLATCH;
2234 
2235 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2236 		mtspr(SPRN_CTRLT, 0);
2237 	} else {
2238 		unsigned long ctrl;
2239 
2240 		ctrl = mfspr(SPRN_CTRLF);
2241 		ctrl &= ~CTRL_RUNLATCH;
2242 		mtspr(SPRN_CTRLT, ctrl);
2243 	}
2244 }
2245 #endif /* CONFIG_PPC64 */
2246 
2247 unsigned long arch_align_stack(unsigned long sp)
2248 {
2249 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2250 		sp -= get_random_int() & ~PAGE_MASK;
2251 	return sp & ~0xf;
2252 }
2253 
2254 static inline unsigned long brk_rnd(void)
2255 {
2256         unsigned long rnd = 0;
2257 
2258 	/* 8MB for 32bit, 1GB for 64bit */
2259 	if (is_32bit_task())
2260 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2261 	else
2262 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2263 
2264 	return rnd << PAGE_SHIFT;
2265 }
2266 
2267 unsigned long arch_randomize_brk(struct mm_struct *mm)
2268 {
2269 	unsigned long base = mm->brk;
2270 	unsigned long ret;
2271 
2272 #ifdef CONFIG_PPC_BOOK3S_64
2273 	/*
2274 	 * If we are using 1TB segments and we are allowed to randomise
2275 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2276 	 * segment. Otherwise the heap will be in the bottom 1TB
2277 	 * which always uses 256MB segments and this may result in a
2278 	 * performance penalty. We don't need to worry about radix. For
2279 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2280 	 */
2281 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2282 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2283 #endif
2284 
2285 	ret = PAGE_ALIGN(base + brk_rnd());
2286 
2287 	if (ret < mm->brk)
2288 		return mm->brk;
2289 
2290 	return ret;
2291 }
2292 
2293