1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/pgtable.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #include <asm/time.h> 51 #include <asm/runlatch.h> 52 #include <asm/syscalls.h> 53 #include <asm/switch_to.h> 54 #include <asm/tm.h> 55 #include <asm/debug.h> 56 #ifdef CONFIG_PPC64 57 #include <asm/firmware.h> 58 #include <asm/hw_irq.h> 59 #endif 60 #include <asm/code-patching.h> 61 #include <asm/exec.h> 62 #include <asm/livepatch.h> 63 #include <asm/cpu_has_feature.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/stacktrace.h> 66 #include <asm/hw_breakpoint.h> 67 68 #include <linux/kprobes.h> 69 #include <linux/kdebug.h> 70 71 /* Transactional Memory debug */ 72 #ifdef TM_DEBUG_SW 73 #define TM_DEBUG(x...) printk(KERN_INFO x) 74 #else 75 #define TM_DEBUG(x...) do { } while(0) 76 #endif 77 78 extern unsigned long _get_SP(void); 79 80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 81 /* 82 * Are we running in "Suspend disabled" mode? If so we have to block any 83 * sigreturn that would get us into suspended state, and we also warn in some 84 * other paths that we should never reach with suspend disabled. 85 */ 86 bool tm_suspend_disabled __ro_after_init = false; 87 88 static void check_if_tm_restore_required(struct task_struct *tsk) 89 { 90 /* 91 * If we are saving the current thread's registers, and the 92 * thread is in a transactional state, set the TIF_RESTORE_TM 93 * bit so that we know to restore the registers before 94 * returning to userspace. 95 */ 96 if (tsk == current && tsk->thread.regs && 97 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 98 !test_thread_flag(TIF_RESTORE_TM)) { 99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 100 set_thread_flag(TIF_RESTORE_TM); 101 } 102 } 103 104 #else 105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 107 108 bool strict_msr_control; 109 EXPORT_SYMBOL(strict_msr_control); 110 111 static int __init enable_strict_msr_control(char *str) 112 { 113 strict_msr_control = true; 114 pr_info("Enabling strict facility control\n"); 115 116 return 0; 117 } 118 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 119 120 /* notrace because it's called by restore_math */ 121 unsigned long notrace msr_check_and_set(unsigned long bits) 122 { 123 unsigned long oldmsr = mfmsr(); 124 unsigned long newmsr; 125 126 newmsr = oldmsr | bits; 127 128 #ifdef CONFIG_VSX 129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 130 newmsr |= MSR_VSX; 131 #endif 132 133 if (oldmsr != newmsr) 134 mtmsr_isync(newmsr); 135 136 return newmsr; 137 } 138 EXPORT_SYMBOL_GPL(msr_check_and_set); 139 140 /* notrace because it's called by restore_math */ 141 void notrace __msr_check_and_clear(unsigned long bits) 142 { 143 unsigned long oldmsr = mfmsr(); 144 unsigned long newmsr; 145 146 newmsr = oldmsr & ~bits; 147 148 #ifdef CONFIG_VSX 149 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 150 newmsr &= ~MSR_VSX; 151 #endif 152 153 if (oldmsr != newmsr) 154 mtmsr_isync(newmsr); 155 } 156 EXPORT_SYMBOL(__msr_check_and_clear); 157 158 #ifdef CONFIG_PPC_FPU 159 static void __giveup_fpu(struct task_struct *tsk) 160 { 161 unsigned long msr; 162 163 save_fpu(tsk); 164 msr = tsk->thread.regs->msr; 165 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 166 #ifdef CONFIG_VSX 167 if (cpu_has_feature(CPU_FTR_VSX)) 168 msr &= ~MSR_VSX; 169 #endif 170 tsk->thread.regs->msr = msr; 171 } 172 173 void giveup_fpu(struct task_struct *tsk) 174 { 175 check_if_tm_restore_required(tsk); 176 177 msr_check_and_set(MSR_FP); 178 __giveup_fpu(tsk); 179 msr_check_and_clear(MSR_FP); 180 } 181 EXPORT_SYMBOL(giveup_fpu); 182 183 /* 184 * Make sure the floating-point register state in the 185 * the thread_struct is up to date for task tsk. 186 */ 187 void flush_fp_to_thread(struct task_struct *tsk) 188 { 189 if (tsk->thread.regs) { 190 /* 191 * We need to disable preemption here because if we didn't, 192 * another process could get scheduled after the regs->msr 193 * test but before we have finished saving the FP registers 194 * to the thread_struct. That process could take over the 195 * FPU, and then when we get scheduled again we would store 196 * bogus values for the remaining FP registers. 197 */ 198 preempt_disable(); 199 if (tsk->thread.regs->msr & MSR_FP) { 200 /* 201 * This should only ever be called for current or 202 * for a stopped child process. Since we save away 203 * the FP register state on context switch, 204 * there is something wrong if a stopped child appears 205 * to still have its FP state in the CPU registers. 206 */ 207 BUG_ON(tsk != current); 208 giveup_fpu(tsk); 209 } 210 preempt_enable(); 211 } 212 } 213 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 214 215 void enable_kernel_fp(void) 216 { 217 unsigned long cpumsr; 218 219 WARN_ON(preemptible()); 220 221 cpumsr = msr_check_and_set(MSR_FP); 222 223 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 224 check_if_tm_restore_required(current); 225 /* 226 * If a thread has already been reclaimed then the 227 * checkpointed registers are on the CPU but have definitely 228 * been saved by the reclaim code. Don't need to and *cannot* 229 * giveup as this would save to the 'live' structure not the 230 * checkpointed structure. 231 */ 232 if (!MSR_TM_ACTIVE(cpumsr) && 233 MSR_TM_ACTIVE(current->thread.regs->msr)) 234 return; 235 __giveup_fpu(current); 236 } 237 } 238 EXPORT_SYMBOL(enable_kernel_fp); 239 240 static int restore_fp(struct task_struct *tsk) 241 { 242 if (tsk->thread.load_fp) { 243 load_fp_state(¤t->thread.fp_state); 244 current->thread.load_fp++; 245 return 1; 246 } 247 return 0; 248 } 249 #else 250 static int restore_fp(struct task_struct *tsk) { return 0; } 251 #endif /* CONFIG_PPC_FPU */ 252 253 #ifdef CONFIG_ALTIVEC 254 #define loadvec(thr) ((thr).load_vec) 255 256 static void __giveup_altivec(struct task_struct *tsk) 257 { 258 unsigned long msr; 259 260 save_altivec(tsk); 261 msr = tsk->thread.regs->msr; 262 msr &= ~MSR_VEC; 263 #ifdef CONFIG_VSX 264 if (cpu_has_feature(CPU_FTR_VSX)) 265 msr &= ~MSR_VSX; 266 #endif 267 tsk->thread.regs->msr = msr; 268 } 269 270 void giveup_altivec(struct task_struct *tsk) 271 { 272 check_if_tm_restore_required(tsk); 273 274 msr_check_and_set(MSR_VEC); 275 __giveup_altivec(tsk); 276 msr_check_and_clear(MSR_VEC); 277 } 278 EXPORT_SYMBOL(giveup_altivec); 279 280 void enable_kernel_altivec(void) 281 { 282 unsigned long cpumsr; 283 284 WARN_ON(preemptible()); 285 286 cpumsr = msr_check_and_set(MSR_VEC); 287 288 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 289 check_if_tm_restore_required(current); 290 /* 291 * If a thread has already been reclaimed then the 292 * checkpointed registers are on the CPU but have definitely 293 * been saved by the reclaim code. Don't need to and *cannot* 294 * giveup as this would save to the 'live' structure not the 295 * checkpointed structure. 296 */ 297 if (!MSR_TM_ACTIVE(cpumsr) && 298 MSR_TM_ACTIVE(current->thread.regs->msr)) 299 return; 300 __giveup_altivec(current); 301 } 302 } 303 EXPORT_SYMBOL(enable_kernel_altivec); 304 305 /* 306 * Make sure the VMX/Altivec register state in the 307 * the thread_struct is up to date for task tsk. 308 */ 309 void flush_altivec_to_thread(struct task_struct *tsk) 310 { 311 if (tsk->thread.regs) { 312 preempt_disable(); 313 if (tsk->thread.regs->msr & MSR_VEC) { 314 BUG_ON(tsk != current); 315 giveup_altivec(tsk); 316 } 317 preempt_enable(); 318 } 319 } 320 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 321 322 static int restore_altivec(struct task_struct *tsk) 323 { 324 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) { 325 load_vr_state(&tsk->thread.vr_state); 326 tsk->thread.used_vr = 1; 327 tsk->thread.load_vec++; 328 329 return 1; 330 } 331 return 0; 332 } 333 #else 334 #define loadvec(thr) 0 335 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 336 #endif /* CONFIG_ALTIVEC */ 337 338 #ifdef CONFIG_VSX 339 static void __giveup_vsx(struct task_struct *tsk) 340 { 341 unsigned long msr = tsk->thread.regs->msr; 342 343 /* 344 * We should never be ssetting MSR_VSX without also setting 345 * MSR_FP and MSR_VEC 346 */ 347 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 348 349 /* __giveup_fpu will clear MSR_VSX */ 350 if (msr & MSR_FP) 351 __giveup_fpu(tsk); 352 if (msr & MSR_VEC) 353 __giveup_altivec(tsk); 354 } 355 356 static void giveup_vsx(struct task_struct *tsk) 357 { 358 check_if_tm_restore_required(tsk); 359 360 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 361 __giveup_vsx(tsk); 362 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 363 } 364 365 void enable_kernel_vsx(void) 366 { 367 unsigned long cpumsr; 368 369 WARN_ON(preemptible()); 370 371 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 372 373 if (current->thread.regs && 374 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 375 check_if_tm_restore_required(current); 376 /* 377 * If a thread has already been reclaimed then the 378 * checkpointed registers are on the CPU but have definitely 379 * been saved by the reclaim code. Don't need to and *cannot* 380 * giveup as this would save to the 'live' structure not the 381 * checkpointed structure. 382 */ 383 if (!MSR_TM_ACTIVE(cpumsr) && 384 MSR_TM_ACTIVE(current->thread.regs->msr)) 385 return; 386 __giveup_vsx(current); 387 } 388 } 389 EXPORT_SYMBOL(enable_kernel_vsx); 390 391 void flush_vsx_to_thread(struct task_struct *tsk) 392 { 393 if (tsk->thread.regs) { 394 preempt_disable(); 395 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 396 BUG_ON(tsk != current); 397 giveup_vsx(tsk); 398 } 399 preempt_enable(); 400 } 401 } 402 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 403 404 static int restore_vsx(struct task_struct *tsk) 405 { 406 if (cpu_has_feature(CPU_FTR_VSX)) { 407 tsk->thread.used_vsr = 1; 408 return 1; 409 } 410 411 return 0; 412 } 413 #else 414 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 415 #endif /* CONFIG_VSX */ 416 417 #ifdef CONFIG_SPE 418 void giveup_spe(struct task_struct *tsk) 419 { 420 check_if_tm_restore_required(tsk); 421 422 msr_check_and_set(MSR_SPE); 423 __giveup_spe(tsk); 424 msr_check_and_clear(MSR_SPE); 425 } 426 EXPORT_SYMBOL(giveup_spe); 427 428 void enable_kernel_spe(void) 429 { 430 WARN_ON(preemptible()); 431 432 msr_check_and_set(MSR_SPE); 433 434 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 435 check_if_tm_restore_required(current); 436 __giveup_spe(current); 437 } 438 } 439 EXPORT_SYMBOL(enable_kernel_spe); 440 441 void flush_spe_to_thread(struct task_struct *tsk) 442 { 443 if (tsk->thread.regs) { 444 preempt_disable(); 445 if (tsk->thread.regs->msr & MSR_SPE) { 446 BUG_ON(tsk != current); 447 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 448 giveup_spe(tsk); 449 } 450 preempt_enable(); 451 } 452 } 453 #endif /* CONFIG_SPE */ 454 455 static unsigned long msr_all_available; 456 457 static int __init init_msr_all_available(void) 458 { 459 #ifdef CONFIG_PPC_FPU 460 msr_all_available |= MSR_FP; 461 #endif 462 #ifdef CONFIG_ALTIVEC 463 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 464 msr_all_available |= MSR_VEC; 465 #endif 466 #ifdef CONFIG_VSX 467 if (cpu_has_feature(CPU_FTR_VSX)) 468 msr_all_available |= MSR_VSX; 469 #endif 470 #ifdef CONFIG_SPE 471 if (cpu_has_feature(CPU_FTR_SPE)) 472 msr_all_available |= MSR_SPE; 473 #endif 474 475 return 0; 476 } 477 early_initcall(init_msr_all_available); 478 479 void giveup_all(struct task_struct *tsk) 480 { 481 unsigned long usermsr; 482 483 if (!tsk->thread.regs) 484 return; 485 486 check_if_tm_restore_required(tsk); 487 488 usermsr = tsk->thread.regs->msr; 489 490 if ((usermsr & msr_all_available) == 0) 491 return; 492 493 msr_check_and_set(msr_all_available); 494 495 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 496 497 #ifdef CONFIG_PPC_FPU 498 if (usermsr & MSR_FP) 499 __giveup_fpu(tsk); 500 #endif 501 #ifdef CONFIG_ALTIVEC 502 if (usermsr & MSR_VEC) 503 __giveup_altivec(tsk); 504 #endif 505 #ifdef CONFIG_SPE 506 if (usermsr & MSR_SPE) 507 __giveup_spe(tsk); 508 #endif 509 510 msr_check_and_clear(msr_all_available); 511 } 512 EXPORT_SYMBOL(giveup_all); 513 514 /* 515 * The exception exit path calls restore_math() with interrupts hard disabled 516 * but the soft irq state not "reconciled". ftrace code that calls 517 * local_irq_save/restore causes warnings. 518 * 519 * Rather than complicate the exit path, just don't trace restore_math. This 520 * could be done by having ftrace entry code check for this un-reconciled 521 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 522 * temporarily fix it up for the duration of the ftrace call. 523 */ 524 void notrace restore_math(struct pt_regs *regs) 525 { 526 unsigned long msr; 527 528 if (!MSR_TM_ACTIVE(regs->msr) && 529 !current->thread.load_fp && !loadvec(current->thread)) 530 return; 531 532 msr = regs->msr; 533 msr_check_and_set(msr_all_available); 534 535 /* 536 * Only reload if the bit is not set in the user MSR, the bit BEING set 537 * indicates that the registers are hot 538 */ 539 if ((!(msr & MSR_FP)) && restore_fp(current)) 540 msr |= MSR_FP | current->thread.fpexc_mode; 541 542 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 543 msr |= MSR_VEC; 544 545 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 546 restore_vsx(current)) { 547 msr |= MSR_VSX; 548 } 549 550 msr_check_and_clear(msr_all_available); 551 552 regs->msr = msr; 553 } 554 555 static void save_all(struct task_struct *tsk) 556 { 557 unsigned long usermsr; 558 559 if (!tsk->thread.regs) 560 return; 561 562 usermsr = tsk->thread.regs->msr; 563 564 if ((usermsr & msr_all_available) == 0) 565 return; 566 567 msr_check_and_set(msr_all_available); 568 569 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 570 571 if (usermsr & MSR_FP) 572 save_fpu(tsk); 573 574 if (usermsr & MSR_VEC) 575 save_altivec(tsk); 576 577 if (usermsr & MSR_SPE) 578 __giveup_spe(tsk); 579 580 msr_check_and_clear(msr_all_available); 581 thread_pkey_regs_save(&tsk->thread); 582 } 583 584 void flush_all_to_thread(struct task_struct *tsk) 585 { 586 if (tsk->thread.regs) { 587 preempt_disable(); 588 BUG_ON(tsk != current); 589 #ifdef CONFIG_SPE 590 if (tsk->thread.regs->msr & MSR_SPE) 591 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 592 #endif 593 save_all(tsk); 594 595 preempt_enable(); 596 } 597 } 598 EXPORT_SYMBOL(flush_all_to_thread); 599 600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 601 void do_send_trap(struct pt_regs *regs, unsigned long address, 602 unsigned long error_code, int breakpt) 603 { 604 current->thread.trap_nr = TRAP_HWBKPT; 605 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 606 11, SIGSEGV) == NOTIFY_STOP) 607 return; 608 609 /* Deliver the signal to userspace */ 610 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 611 (void __user *)address); 612 } 613 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 614 void do_break (struct pt_regs *regs, unsigned long address, 615 unsigned long error_code) 616 { 617 current->thread.trap_nr = TRAP_HWBKPT; 618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 619 11, SIGSEGV) == NOTIFY_STOP) 620 return; 621 622 if (debugger_break_match(regs)) 623 return; 624 625 /* Clear the breakpoint */ 626 hw_breakpoint_disable(); 627 628 /* Deliver the signal to userspace */ 629 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 630 } 631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 632 633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 634 635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 636 /* 637 * Set the debug registers back to their default "safe" values. 638 */ 639 static void set_debug_reg_defaults(struct thread_struct *thread) 640 { 641 thread->debug.iac1 = thread->debug.iac2 = 0; 642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 643 thread->debug.iac3 = thread->debug.iac4 = 0; 644 #endif 645 thread->debug.dac1 = thread->debug.dac2 = 0; 646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 647 thread->debug.dvc1 = thread->debug.dvc2 = 0; 648 #endif 649 thread->debug.dbcr0 = 0; 650 #ifdef CONFIG_BOOKE 651 /* 652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 653 */ 654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 655 DBCR1_IAC3US | DBCR1_IAC4US; 656 /* 657 * Force Data Address Compare User/Supervisor bits to be User-only 658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 659 */ 660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 661 #else 662 thread->debug.dbcr1 = 0; 663 #endif 664 } 665 666 static void prime_debug_regs(struct debug_reg *debug) 667 { 668 /* 669 * We could have inherited MSR_DE from userspace, since 670 * it doesn't get cleared on exception entry. Make sure 671 * MSR_DE is clear before we enable any debug events. 672 */ 673 mtmsr(mfmsr() & ~MSR_DE); 674 675 mtspr(SPRN_IAC1, debug->iac1); 676 mtspr(SPRN_IAC2, debug->iac2); 677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 678 mtspr(SPRN_IAC3, debug->iac3); 679 mtspr(SPRN_IAC4, debug->iac4); 680 #endif 681 mtspr(SPRN_DAC1, debug->dac1); 682 mtspr(SPRN_DAC2, debug->dac2); 683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 684 mtspr(SPRN_DVC1, debug->dvc1); 685 mtspr(SPRN_DVC2, debug->dvc2); 686 #endif 687 mtspr(SPRN_DBCR0, debug->dbcr0); 688 mtspr(SPRN_DBCR1, debug->dbcr1); 689 #ifdef CONFIG_BOOKE 690 mtspr(SPRN_DBCR2, debug->dbcr2); 691 #endif 692 } 693 /* 694 * Unless neither the old or new thread are making use of the 695 * debug registers, set the debug registers from the values 696 * stored in the new thread. 697 */ 698 void switch_booke_debug_regs(struct debug_reg *new_debug) 699 { 700 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 701 || (new_debug->dbcr0 & DBCR0_IDM)) 702 prime_debug_regs(new_debug); 703 } 704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 706 #ifndef CONFIG_HAVE_HW_BREAKPOINT 707 static void set_breakpoint(struct arch_hw_breakpoint *brk) 708 { 709 preempt_disable(); 710 __set_breakpoint(brk); 711 preempt_enable(); 712 } 713 714 static void set_debug_reg_defaults(struct thread_struct *thread) 715 { 716 thread->hw_brk.address = 0; 717 thread->hw_brk.type = 0; 718 if (ppc_breakpoint_available()) 719 set_breakpoint(&thread->hw_brk); 720 } 721 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 722 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 723 724 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 725 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 726 { 727 mtspr(SPRN_DAC1, dabr); 728 #ifdef CONFIG_PPC_47x 729 isync(); 730 #endif 731 return 0; 732 } 733 #elif defined(CONFIG_PPC_BOOK3S) 734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 735 { 736 mtspr(SPRN_DABR, dabr); 737 if (cpu_has_feature(CPU_FTR_DABRX)) 738 mtspr(SPRN_DABRX, dabrx); 739 return 0; 740 } 741 #elif defined(CONFIG_PPC_8xx) 742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 743 { 744 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 745 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 746 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 747 748 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 749 lctrl1 |= 0xa0000; 750 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 751 lctrl1 |= 0xf0000; 752 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 753 lctrl2 = 0; 754 755 mtspr(SPRN_LCTRL2, 0); 756 mtspr(SPRN_CMPE, addr); 757 mtspr(SPRN_CMPF, addr + 4); 758 mtspr(SPRN_LCTRL1, lctrl1); 759 mtspr(SPRN_LCTRL2, lctrl2); 760 761 return 0; 762 } 763 #else 764 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 765 { 766 return -EINVAL; 767 } 768 #endif 769 770 static inline int set_dabr(struct arch_hw_breakpoint *brk) 771 { 772 unsigned long dabr, dabrx; 773 774 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 775 dabrx = ((brk->type >> 3) & 0x7); 776 777 if (ppc_md.set_dabr) 778 return ppc_md.set_dabr(dabr, dabrx); 779 780 return __set_dabr(dabr, dabrx); 781 } 782 783 void __set_breakpoint(struct arch_hw_breakpoint *brk) 784 { 785 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 786 787 if (dawr_enabled()) 788 // Power8 or later 789 set_dawr(brk); 790 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 791 // Power7 or earlier 792 set_dabr(brk); 793 else 794 // Shouldn't happen due to higher level checks 795 WARN_ON_ONCE(1); 796 } 797 798 /* Check if we have DAWR or DABR hardware */ 799 bool ppc_breakpoint_available(void) 800 { 801 if (dawr_enabled()) 802 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 803 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 804 return false; /* POWER9 with DAWR disabled */ 805 /* DABR: Everything but POWER8 and POWER9 */ 806 return true; 807 } 808 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 809 810 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 811 struct arch_hw_breakpoint *b) 812 { 813 if (a->address != b->address) 814 return false; 815 if (a->type != b->type) 816 return false; 817 if (a->len != b->len) 818 return false; 819 return true; 820 } 821 822 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 823 824 static inline bool tm_enabled(struct task_struct *tsk) 825 { 826 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 827 } 828 829 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 830 { 831 /* 832 * Use the current MSR TM suspended bit to track if we have 833 * checkpointed state outstanding. 834 * On signal delivery, we'd normally reclaim the checkpointed 835 * state to obtain stack pointer (see:get_tm_stackpointer()). 836 * This will then directly return to userspace without going 837 * through __switch_to(). However, if the stack frame is bad, 838 * we need to exit this thread which calls __switch_to() which 839 * will again attempt to reclaim the already saved tm state. 840 * Hence we need to check that we've not already reclaimed 841 * this state. 842 * We do this using the current MSR, rather tracking it in 843 * some specific thread_struct bit, as it has the additional 844 * benefit of checking for a potential TM bad thing exception. 845 */ 846 if (!MSR_TM_SUSPENDED(mfmsr())) 847 return; 848 849 giveup_all(container_of(thr, struct task_struct, thread)); 850 851 tm_reclaim(thr, cause); 852 853 /* 854 * If we are in a transaction and FP is off then we can't have 855 * used FP inside that transaction. Hence the checkpointed 856 * state is the same as the live state. We need to copy the 857 * live state to the checkpointed state so that when the 858 * transaction is restored, the checkpointed state is correct 859 * and the aborted transaction sees the correct state. We use 860 * ckpt_regs.msr here as that's what tm_reclaim will use to 861 * determine if it's going to write the checkpointed state or 862 * not. So either this will write the checkpointed registers, 863 * or reclaim will. Similarly for VMX. 864 */ 865 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 866 memcpy(&thr->ckfp_state, &thr->fp_state, 867 sizeof(struct thread_fp_state)); 868 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 869 memcpy(&thr->ckvr_state, &thr->vr_state, 870 sizeof(struct thread_vr_state)); 871 } 872 873 void tm_reclaim_current(uint8_t cause) 874 { 875 tm_enable(); 876 tm_reclaim_thread(¤t->thread, cause); 877 } 878 879 static inline void tm_reclaim_task(struct task_struct *tsk) 880 { 881 /* We have to work out if we're switching from/to a task that's in the 882 * middle of a transaction. 883 * 884 * In switching we need to maintain a 2nd register state as 885 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 886 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 887 * ckvr_state 888 * 889 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 890 */ 891 struct thread_struct *thr = &tsk->thread; 892 893 if (!thr->regs) 894 return; 895 896 if (!MSR_TM_ACTIVE(thr->regs->msr)) 897 goto out_and_saveregs; 898 899 WARN_ON(tm_suspend_disabled); 900 901 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 902 "ccr=%lx, msr=%lx, trap=%lx)\n", 903 tsk->pid, thr->regs->nip, 904 thr->regs->ccr, thr->regs->msr, 905 thr->regs->trap); 906 907 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 908 909 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 910 tsk->pid); 911 912 out_and_saveregs: 913 /* Always save the regs here, even if a transaction's not active. 914 * This context-switches a thread's TM info SPRs. We do it here to 915 * be consistent with the restore path (in recheckpoint) which 916 * cannot happen later in _switch(). 917 */ 918 tm_save_sprs(thr); 919 } 920 921 extern void __tm_recheckpoint(struct thread_struct *thread); 922 923 void tm_recheckpoint(struct thread_struct *thread) 924 { 925 unsigned long flags; 926 927 if (!(thread->regs->msr & MSR_TM)) 928 return; 929 930 /* We really can't be interrupted here as the TEXASR registers can't 931 * change and later in the trecheckpoint code, we have a userspace R1. 932 * So let's hard disable over this region. 933 */ 934 local_irq_save(flags); 935 hard_irq_disable(); 936 937 /* The TM SPRs are restored here, so that TEXASR.FS can be set 938 * before the trecheckpoint and no explosion occurs. 939 */ 940 tm_restore_sprs(thread); 941 942 __tm_recheckpoint(thread); 943 944 local_irq_restore(flags); 945 } 946 947 static inline void tm_recheckpoint_new_task(struct task_struct *new) 948 { 949 if (!cpu_has_feature(CPU_FTR_TM)) 950 return; 951 952 /* Recheckpoint the registers of the thread we're about to switch to. 953 * 954 * If the task was using FP, we non-lazily reload both the original and 955 * the speculative FP register states. This is because the kernel 956 * doesn't see if/when a TM rollback occurs, so if we take an FP 957 * unavailable later, we are unable to determine which set of FP regs 958 * need to be restored. 959 */ 960 if (!tm_enabled(new)) 961 return; 962 963 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 964 tm_restore_sprs(&new->thread); 965 return; 966 } 967 /* Recheckpoint to restore original checkpointed register state. */ 968 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 969 new->pid, new->thread.regs->msr); 970 971 tm_recheckpoint(&new->thread); 972 973 /* 974 * The checkpointed state has been restored but the live state has 975 * not, ensure all the math functionality is turned off to trigger 976 * restore_math() to reload. 977 */ 978 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 979 980 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 981 "(kernel msr 0x%lx)\n", 982 new->pid, mfmsr()); 983 } 984 985 static inline void __switch_to_tm(struct task_struct *prev, 986 struct task_struct *new) 987 { 988 if (cpu_has_feature(CPU_FTR_TM)) { 989 if (tm_enabled(prev) || tm_enabled(new)) 990 tm_enable(); 991 992 if (tm_enabled(prev)) { 993 prev->thread.load_tm++; 994 tm_reclaim_task(prev); 995 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 996 prev->thread.regs->msr &= ~MSR_TM; 997 } 998 999 tm_recheckpoint_new_task(new); 1000 } 1001 } 1002 1003 /* 1004 * This is called if we are on the way out to userspace and the 1005 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1006 * FP and/or vector state and does so if necessary. 1007 * If userspace is inside a transaction (whether active or 1008 * suspended) and FP/VMX/VSX instructions have ever been enabled 1009 * inside that transaction, then we have to keep them enabled 1010 * and keep the FP/VMX/VSX state loaded while ever the transaction 1011 * continues. The reason is that if we didn't, and subsequently 1012 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1013 * we don't know whether it's the same transaction, and thus we 1014 * don't know which of the checkpointed state and the transactional 1015 * state to use. 1016 */ 1017 void restore_tm_state(struct pt_regs *regs) 1018 { 1019 unsigned long msr_diff; 1020 1021 /* 1022 * This is the only moment we should clear TIF_RESTORE_TM as 1023 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1024 * again, anything else could lead to an incorrect ckpt_msr being 1025 * saved and therefore incorrect signal contexts. 1026 */ 1027 clear_thread_flag(TIF_RESTORE_TM); 1028 if (!MSR_TM_ACTIVE(regs->msr)) 1029 return; 1030 1031 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1032 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1033 1034 /* Ensure that restore_math() will restore */ 1035 if (msr_diff & MSR_FP) 1036 current->thread.load_fp = 1; 1037 #ifdef CONFIG_ALTIVEC 1038 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1039 current->thread.load_vec = 1; 1040 #endif 1041 restore_math(regs); 1042 1043 regs->msr |= msr_diff; 1044 } 1045 1046 #else 1047 #define tm_recheckpoint_new_task(new) 1048 #define __switch_to_tm(prev, new) 1049 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1050 1051 static inline void save_sprs(struct thread_struct *t) 1052 { 1053 #ifdef CONFIG_ALTIVEC 1054 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1055 t->vrsave = mfspr(SPRN_VRSAVE); 1056 #endif 1057 #ifdef CONFIG_PPC_BOOK3S_64 1058 if (cpu_has_feature(CPU_FTR_DSCR)) 1059 t->dscr = mfspr(SPRN_DSCR); 1060 1061 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1062 t->bescr = mfspr(SPRN_BESCR); 1063 t->ebbhr = mfspr(SPRN_EBBHR); 1064 t->ebbrr = mfspr(SPRN_EBBRR); 1065 1066 t->fscr = mfspr(SPRN_FSCR); 1067 1068 /* 1069 * Note that the TAR is not available for use in the kernel. 1070 * (To provide this, the TAR should be backed up/restored on 1071 * exception entry/exit instead, and be in pt_regs. FIXME, 1072 * this should be in pt_regs anyway (for debug).) 1073 */ 1074 t->tar = mfspr(SPRN_TAR); 1075 } 1076 #endif 1077 1078 thread_pkey_regs_save(t); 1079 } 1080 1081 static inline void restore_sprs(struct thread_struct *old_thread, 1082 struct thread_struct *new_thread) 1083 { 1084 #ifdef CONFIG_ALTIVEC 1085 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1086 old_thread->vrsave != new_thread->vrsave) 1087 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1088 #endif 1089 #ifdef CONFIG_PPC_BOOK3S_64 1090 if (cpu_has_feature(CPU_FTR_DSCR)) { 1091 u64 dscr = get_paca()->dscr_default; 1092 if (new_thread->dscr_inherit) 1093 dscr = new_thread->dscr; 1094 1095 if (old_thread->dscr != dscr) 1096 mtspr(SPRN_DSCR, dscr); 1097 } 1098 1099 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1100 if (old_thread->bescr != new_thread->bescr) 1101 mtspr(SPRN_BESCR, new_thread->bescr); 1102 if (old_thread->ebbhr != new_thread->ebbhr) 1103 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1104 if (old_thread->ebbrr != new_thread->ebbrr) 1105 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1106 1107 if (old_thread->fscr != new_thread->fscr) 1108 mtspr(SPRN_FSCR, new_thread->fscr); 1109 1110 if (old_thread->tar != new_thread->tar) 1111 mtspr(SPRN_TAR, new_thread->tar); 1112 } 1113 1114 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1115 old_thread->tidr != new_thread->tidr) 1116 mtspr(SPRN_TIDR, new_thread->tidr); 1117 #endif 1118 1119 thread_pkey_regs_restore(new_thread, old_thread); 1120 } 1121 1122 struct task_struct *__switch_to(struct task_struct *prev, 1123 struct task_struct *new) 1124 { 1125 struct thread_struct *new_thread, *old_thread; 1126 struct task_struct *last; 1127 #ifdef CONFIG_PPC_BOOK3S_64 1128 struct ppc64_tlb_batch *batch; 1129 #endif 1130 1131 new_thread = &new->thread; 1132 old_thread = ¤t->thread; 1133 1134 WARN_ON(!irqs_disabled()); 1135 1136 #ifdef CONFIG_PPC_BOOK3S_64 1137 batch = this_cpu_ptr(&ppc64_tlb_batch); 1138 if (batch->active) { 1139 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1140 if (batch->index) 1141 __flush_tlb_pending(batch); 1142 batch->active = 0; 1143 } 1144 #endif /* CONFIG_PPC_BOOK3S_64 */ 1145 1146 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1147 switch_booke_debug_regs(&new->thread.debug); 1148 #else 1149 /* 1150 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1151 * schedule DABR 1152 */ 1153 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1154 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1155 __set_breakpoint(&new->thread.hw_brk); 1156 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1157 #endif 1158 1159 /* 1160 * We need to save SPRs before treclaim/trecheckpoint as these will 1161 * change a number of them. 1162 */ 1163 save_sprs(&prev->thread); 1164 1165 /* Save FPU, Altivec, VSX and SPE state */ 1166 giveup_all(prev); 1167 1168 __switch_to_tm(prev, new); 1169 1170 if (!radix_enabled()) { 1171 /* 1172 * We can't take a PMU exception inside _switch() since there 1173 * is a window where the kernel stack SLB and the kernel stack 1174 * are out of sync. Hard disable here. 1175 */ 1176 hard_irq_disable(); 1177 } 1178 1179 /* 1180 * Call restore_sprs() before calling _switch(). If we move it after 1181 * _switch() then we miss out on calling it for new tasks. The reason 1182 * for this is we manually create a stack frame for new tasks that 1183 * directly returns through ret_from_fork() or 1184 * ret_from_kernel_thread(). See copy_thread() for details. 1185 */ 1186 restore_sprs(old_thread, new_thread); 1187 1188 last = _switch(old_thread, new_thread); 1189 1190 #ifdef CONFIG_PPC_BOOK3S_64 1191 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1192 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1193 batch = this_cpu_ptr(&ppc64_tlb_batch); 1194 batch->active = 1; 1195 } 1196 1197 if (current->thread.regs) { 1198 restore_math(current->thread.regs); 1199 1200 /* 1201 * The copy-paste buffer can only store into foreign real 1202 * addresses, so unprivileged processes can not see the 1203 * data or use it in any way unless they have foreign real 1204 * mappings. If the new process has the foreign real address 1205 * mappings, we must issue a cp_abort to clear any state and 1206 * prevent snooping, corruption or a covert channel. 1207 */ 1208 if (current->thread.used_vas) 1209 asm volatile(PPC_CP_ABORT); 1210 } 1211 #endif /* CONFIG_PPC_BOOK3S_64 */ 1212 1213 return last; 1214 } 1215 1216 #define NR_INSN_TO_PRINT 16 1217 1218 static void show_instructions(struct pt_regs *regs) 1219 { 1220 int i; 1221 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1222 1223 printk("Instruction dump:"); 1224 1225 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1226 int instr; 1227 1228 if (!(i % 8)) 1229 pr_cont("\n"); 1230 1231 #if !defined(CONFIG_BOOKE) 1232 /* If executing with the IMMU off, adjust pc rather 1233 * than print XXXXXXXX. 1234 */ 1235 if (!(regs->msr & MSR_IR)) 1236 pc = (unsigned long)phys_to_virt(pc); 1237 #endif 1238 1239 if (!__kernel_text_address(pc) || 1240 probe_kernel_address((const void *)pc, instr)) { 1241 pr_cont("XXXXXXXX "); 1242 } else { 1243 if (regs->nip == pc) 1244 pr_cont("<%08x> ", instr); 1245 else 1246 pr_cont("%08x ", instr); 1247 } 1248 1249 pc += sizeof(int); 1250 } 1251 1252 pr_cont("\n"); 1253 } 1254 1255 void show_user_instructions(struct pt_regs *regs) 1256 { 1257 unsigned long pc; 1258 int n = NR_INSN_TO_PRINT; 1259 struct seq_buf s; 1260 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1261 1262 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1263 1264 /* 1265 * Make sure the NIP points at userspace, not kernel text/data or 1266 * elsewhere. 1267 */ 1268 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1269 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1270 current->comm, current->pid); 1271 return; 1272 } 1273 1274 seq_buf_init(&s, buf, sizeof(buf)); 1275 1276 while (n) { 1277 int i; 1278 1279 seq_buf_clear(&s); 1280 1281 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1282 int instr; 1283 1284 if (probe_kernel_address((const void *)pc, instr)) { 1285 seq_buf_printf(&s, "XXXXXXXX "); 1286 continue; 1287 } 1288 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1289 } 1290 1291 if (!seq_buf_has_overflowed(&s)) 1292 pr_info("%s[%d]: code: %s\n", current->comm, 1293 current->pid, s.buffer); 1294 } 1295 } 1296 1297 struct regbit { 1298 unsigned long bit; 1299 const char *name; 1300 }; 1301 1302 static struct regbit msr_bits[] = { 1303 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1304 {MSR_SF, "SF"}, 1305 {MSR_HV, "HV"}, 1306 #endif 1307 {MSR_VEC, "VEC"}, 1308 {MSR_VSX, "VSX"}, 1309 #ifdef CONFIG_BOOKE 1310 {MSR_CE, "CE"}, 1311 #endif 1312 {MSR_EE, "EE"}, 1313 {MSR_PR, "PR"}, 1314 {MSR_FP, "FP"}, 1315 {MSR_ME, "ME"}, 1316 #ifdef CONFIG_BOOKE 1317 {MSR_DE, "DE"}, 1318 #else 1319 {MSR_SE, "SE"}, 1320 {MSR_BE, "BE"}, 1321 #endif 1322 {MSR_IR, "IR"}, 1323 {MSR_DR, "DR"}, 1324 {MSR_PMM, "PMM"}, 1325 #ifndef CONFIG_BOOKE 1326 {MSR_RI, "RI"}, 1327 {MSR_LE, "LE"}, 1328 #endif 1329 {0, NULL} 1330 }; 1331 1332 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1333 { 1334 const char *s = ""; 1335 1336 for (; bits->bit; ++bits) 1337 if (val & bits->bit) { 1338 pr_cont("%s%s", s, bits->name); 1339 s = sep; 1340 } 1341 } 1342 1343 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1344 static struct regbit msr_tm_bits[] = { 1345 {MSR_TS_T, "T"}, 1346 {MSR_TS_S, "S"}, 1347 {MSR_TM, "E"}, 1348 {0, NULL} 1349 }; 1350 1351 static void print_tm_bits(unsigned long val) 1352 { 1353 /* 1354 * This only prints something if at least one of the TM bit is set. 1355 * Inside the TM[], the output means: 1356 * E: Enabled (bit 32) 1357 * S: Suspended (bit 33) 1358 * T: Transactional (bit 34) 1359 */ 1360 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1361 pr_cont(",TM["); 1362 print_bits(val, msr_tm_bits, ""); 1363 pr_cont("]"); 1364 } 1365 } 1366 #else 1367 static void print_tm_bits(unsigned long val) {} 1368 #endif 1369 1370 static void print_msr_bits(unsigned long val) 1371 { 1372 pr_cont("<"); 1373 print_bits(val, msr_bits, ","); 1374 print_tm_bits(val); 1375 pr_cont(">"); 1376 } 1377 1378 #ifdef CONFIG_PPC64 1379 #define REG "%016lx" 1380 #define REGS_PER_LINE 4 1381 #define LAST_VOLATILE 13 1382 #else 1383 #define REG "%08lx" 1384 #define REGS_PER_LINE 8 1385 #define LAST_VOLATILE 12 1386 #endif 1387 1388 void show_regs(struct pt_regs * regs) 1389 { 1390 int i, trap; 1391 1392 show_regs_print_info(KERN_DEFAULT); 1393 1394 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1395 regs->nip, regs->link, regs->ctr); 1396 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1397 regs, regs->trap, print_tainted(), init_utsname()->release); 1398 printk("MSR: "REG" ", regs->msr); 1399 print_msr_bits(regs->msr); 1400 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1401 trap = TRAP(regs); 1402 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1403 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1404 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1405 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1406 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1407 #else 1408 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1409 #endif 1410 #ifdef CONFIG_PPC64 1411 pr_cont("IRQMASK: %lx ", regs->softe); 1412 #endif 1413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1414 if (MSR_TM_ACTIVE(regs->msr)) 1415 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1416 #endif 1417 1418 for (i = 0; i < 32; i++) { 1419 if ((i % REGS_PER_LINE) == 0) 1420 pr_cont("\nGPR%02d: ", i); 1421 pr_cont(REG " ", regs->gpr[i]); 1422 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1423 break; 1424 } 1425 pr_cont("\n"); 1426 #ifdef CONFIG_KALLSYMS 1427 /* 1428 * Lookup NIP late so we have the best change of getting the 1429 * above info out without failing 1430 */ 1431 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1432 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1433 #endif 1434 show_stack(current, (unsigned long *) regs->gpr[1]); 1435 if (!user_mode(regs)) 1436 show_instructions(regs); 1437 } 1438 1439 void flush_thread(void) 1440 { 1441 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1442 flush_ptrace_hw_breakpoint(current); 1443 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1444 set_debug_reg_defaults(¤t->thread); 1445 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1446 } 1447 1448 #ifdef CONFIG_PPC_BOOK3S_64 1449 void arch_setup_new_exec(void) 1450 { 1451 if (radix_enabled()) 1452 return; 1453 hash__setup_new_exec(); 1454 } 1455 #endif 1456 1457 int set_thread_uses_vas(void) 1458 { 1459 #ifdef CONFIG_PPC_BOOK3S_64 1460 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1461 return -EINVAL; 1462 1463 current->thread.used_vas = 1; 1464 1465 /* 1466 * Even a process that has no foreign real address mapping can use 1467 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1468 * to clear any pending COPY and prevent a covert channel. 1469 * 1470 * __switch_to() will issue CP_ABORT on future context switches. 1471 */ 1472 asm volatile(PPC_CP_ABORT); 1473 1474 #endif /* CONFIG_PPC_BOOK3S_64 */ 1475 return 0; 1476 } 1477 1478 #ifdef CONFIG_PPC64 1479 /** 1480 * Assign a TIDR (thread ID) for task @t and set it in the thread 1481 * structure. For now, we only support setting TIDR for 'current' task. 1482 * 1483 * Since the TID value is a truncated form of it PID, it is possible 1484 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1485 * that 2 threads share the same TID and are waiting, one of the following 1486 * cases will happen: 1487 * 1488 * 1. The correct thread is running, the wrong thread is not 1489 * In this situation, the correct thread is woken and proceeds to pass it's 1490 * condition check. 1491 * 1492 * 2. Neither threads are running 1493 * In this situation, neither thread will be woken. When scheduled, the waiting 1494 * threads will execute either a wait, which will return immediately, followed 1495 * by a condition check, which will pass for the correct thread and fail 1496 * for the wrong thread, or they will execute the condition check immediately. 1497 * 1498 * 3. The wrong thread is running, the correct thread is not 1499 * The wrong thread will be woken, but will fail it's condition check and 1500 * re-execute wait. The correct thread, when scheduled, will execute either 1501 * it's condition check (which will pass), or wait, which returns immediately 1502 * when called the first time after the thread is scheduled, followed by it's 1503 * condition check (which will pass). 1504 * 1505 * 4. Both threads are running 1506 * Both threads will be woken. The wrong thread will fail it's condition check 1507 * and execute another wait, while the correct thread will pass it's condition 1508 * check. 1509 * 1510 * @t: the task to set the thread ID for 1511 */ 1512 int set_thread_tidr(struct task_struct *t) 1513 { 1514 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1515 return -EINVAL; 1516 1517 if (t != current) 1518 return -EINVAL; 1519 1520 if (t->thread.tidr) 1521 return 0; 1522 1523 t->thread.tidr = (u16)task_pid_nr(t); 1524 mtspr(SPRN_TIDR, t->thread.tidr); 1525 1526 return 0; 1527 } 1528 EXPORT_SYMBOL_GPL(set_thread_tidr); 1529 1530 #endif /* CONFIG_PPC64 */ 1531 1532 void 1533 release_thread(struct task_struct *t) 1534 { 1535 } 1536 1537 /* 1538 * this gets called so that we can store coprocessor state into memory and 1539 * copy the current task into the new thread. 1540 */ 1541 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1542 { 1543 flush_all_to_thread(src); 1544 /* 1545 * Flush TM state out so we can copy it. __switch_to_tm() does this 1546 * flush but it removes the checkpointed state from the current CPU and 1547 * transitions the CPU out of TM mode. Hence we need to call 1548 * tm_recheckpoint_new_task() (on the same task) to restore the 1549 * checkpointed state back and the TM mode. 1550 * 1551 * Can't pass dst because it isn't ready. Doesn't matter, passing 1552 * dst is only important for __switch_to() 1553 */ 1554 __switch_to_tm(src, src); 1555 1556 *dst = *src; 1557 1558 clear_task_ebb(dst); 1559 1560 return 0; 1561 } 1562 1563 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1564 { 1565 #ifdef CONFIG_PPC_BOOK3S_64 1566 unsigned long sp_vsid; 1567 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1568 1569 if (radix_enabled()) 1570 return; 1571 1572 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1573 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1574 << SLB_VSID_SHIFT_1T; 1575 else 1576 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1577 << SLB_VSID_SHIFT; 1578 sp_vsid |= SLB_VSID_KERNEL | llp; 1579 p->thread.ksp_vsid = sp_vsid; 1580 #endif 1581 } 1582 1583 /* 1584 * Copy a thread.. 1585 */ 1586 1587 /* 1588 * Copy architecture-specific thread state 1589 */ 1590 int copy_thread(unsigned long clone_flags, unsigned long usp, 1591 unsigned long kthread_arg, struct task_struct *p) 1592 { 1593 struct pt_regs *childregs, *kregs; 1594 extern void ret_from_fork(void); 1595 extern void ret_from_kernel_thread(void); 1596 void (*f)(void); 1597 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1598 struct thread_info *ti = task_thread_info(p); 1599 1600 klp_init_thread_info(p); 1601 1602 /* Copy registers */ 1603 sp -= sizeof(struct pt_regs); 1604 childregs = (struct pt_regs *) sp; 1605 if (unlikely(p->flags & PF_KTHREAD)) { 1606 /* kernel thread */ 1607 memset(childregs, 0, sizeof(struct pt_regs)); 1608 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1609 /* function */ 1610 if (usp) 1611 childregs->gpr[14] = ppc_function_entry((void *)usp); 1612 #ifdef CONFIG_PPC64 1613 clear_tsk_thread_flag(p, TIF_32BIT); 1614 childregs->softe = IRQS_ENABLED; 1615 #endif 1616 childregs->gpr[15] = kthread_arg; 1617 p->thread.regs = NULL; /* no user register state */ 1618 ti->flags |= _TIF_RESTOREALL; 1619 f = ret_from_kernel_thread; 1620 } else { 1621 /* user thread */ 1622 struct pt_regs *regs = current_pt_regs(); 1623 CHECK_FULL_REGS(regs); 1624 *childregs = *regs; 1625 if (usp) 1626 childregs->gpr[1] = usp; 1627 p->thread.regs = childregs; 1628 childregs->gpr[3] = 0; /* Result from fork() */ 1629 if (clone_flags & CLONE_SETTLS) { 1630 #ifdef CONFIG_PPC64 1631 if (!is_32bit_task()) 1632 childregs->gpr[13] = childregs->gpr[6]; 1633 else 1634 #endif 1635 childregs->gpr[2] = childregs->gpr[6]; 1636 } 1637 1638 f = ret_from_fork; 1639 } 1640 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1641 sp -= STACK_FRAME_OVERHEAD; 1642 1643 /* 1644 * The way this works is that at some point in the future 1645 * some task will call _switch to switch to the new task. 1646 * That will pop off the stack frame created below and start 1647 * the new task running at ret_from_fork. The new task will 1648 * do some house keeping and then return from the fork or clone 1649 * system call, using the stack frame created above. 1650 */ 1651 ((unsigned long *)sp)[0] = 0; 1652 sp -= sizeof(struct pt_regs); 1653 kregs = (struct pt_regs *) sp; 1654 sp -= STACK_FRAME_OVERHEAD; 1655 p->thread.ksp = sp; 1656 #ifdef CONFIG_PPC32 1657 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1658 #endif 1659 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1660 p->thread.ptrace_bps[0] = NULL; 1661 #endif 1662 1663 p->thread.fp_save_area = NULL; 1664 #ifdef CONFIG_ALTIVEC 1665 p->thread.vr_save_area = NULL; 1666 #endif 1667 1668 setup_ksp_vsid(p, sp); 1669 1670 #ifdef CONFIG_PPC64 1671 if (cpu_has_feature(CPU_FTR_DSCR)) { 1672 p->thread.dscr_inherit = current->thread.dscr_inherit; 1673 p->thread.dscr = mfspr(SPRN_DSCR); 1674 } 1675 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1676 childregs->ppr = DEFAULT_PPR; 1677 1678 p->thread.tidr = 0; 1679 #endif 1680 kregs->nip = ppc_function_entry(f); 1681 return 0; 1682 } 1683 1684 void preload_new_slb_context(unsigned long start, unsigned long sp); 1685 1686 /* 1687 * Set up a thread for executing a new program 1688 */ 1689 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1690 { 1691 #ifdef CONFIG_PPC64 1692 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1693 1694 #ifdef CONFIG_PPC_BOOK3S_64 1695 if (!radix_enabled()) 1696 preload_new_slb_context(start, sp); 1697 #endif 1698 #endif 1699 1700 /* 1701 * If we exec out of a kernel thread then thread.regs will not be 1702 * set. Do it now. 1703 */ 1704 if (!current->thread.regs) { 1705 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1706 current->thread.regs = regs - 1; 1707 } 1708 1709 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1710 /* 1711 * Clear any transactional state, we're exec()ing. The cause is 1712 * not important as there will never be a recheckpoint so it's not 1713 * user visible. 1714 */ 1715 if (MSR_TM_SUSPENDED(mfmsr())) 1716 tm_reclaim_current(0); 1717 #endif 1718 1719 memset(regs->gpr, 0, sizeof(regs->gpr)); 1720 regs->ctr = 0; 1721 regs->link = 0; 1722 regs->xer = 0; 1723 regs->ccr = 0; 1724 regs->gpr[1] = sp; 1725 1726 /* 1727 * We have just cleared all the nonvolatile GPRs, so make 1728 * FULL_REGS(regs) return true. This is necessary to allow 1729 * ptrace to examine the thread immediately after exec. 1730 */ 1731 regs->trap &= ~1UL; 1732 1733 #ifdef CONFIG_PPC32 1734 regs->mq = 0; 1735 regs->nip = start; 1736 regs->msr = MSR_USER; 1737 #else 1738 if (!is_32bit_task()) { 1739 unsigned long entry; 1740 1741 if (is_elf2_task()) { 1742 /* Look ma, no function descriptors! */ 1743 entry = start; 1744 1745 /* 1746 * Ulrich says: 1747 * The latest iteration of the ABI requires that when 1748 * calling a function (at its global entry point), 1749 * the caller must ensure r12 holds the entry point 1750 * address (so that the function can quickly 1751 * establish addressability). 1752 */ 1753 regs->gpr[12] = start; 1754 /* Make sure that's restored on entry to userspace. */ 1755 set_thread_flag(TIF_RESTOREALL); 1756 } else { 1757 unsigned long toc; 1758 1759 /* start is a relocated pointer to the function 1760 * descriptor for the elf _start routine. The first 1761 * entry in the function descriptor is the entry 1762 * address of _start and the second entry is the TOC 1763 * value we need to use. 1764 */ 1765 __get_user(entry, (unsigned long __user *)start); 1766 __get_user(toc, (unsigned long __user *)start+1); 1767 1768 /* Check whether the e_entry function descriptor entries 1769 * need to be relocated before we can use them. 1770 */ 1771 if (load_addr != 0) { 1772 entry += load_addr; 1773 toc += load_addr; 1774 } 1775 regs->gpr[2] = toc; 1776 } 1777 regs->nip = entry; 1778 regs->msr = MSR_USER64; 1779 } else { 1780 regs->nip = start; 1781 regs->gpr[2] = 0; 1782 regs->msr = MSR_USER32; 1783 } 1784 #endif 1785 #ifdef CONFIG_VSX 1786 current->thread.used_vsr = 0; 1787 #endif 1788 current->thread.load_slb = 0; 1789 current->thread.load_fp = 0; 1790 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1791 current->thread.fp_save_area = NULL; 1792 #ifdef CONFIG_ALTIVEC 1793 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1794 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1795 current->thread.vr_save_area = NULL; 1796 current->thread.vrsave = 0; 1797 current->thread.used_vr = 0; 1798 current->thread.load_vec = 0; 1799 #endif /* CONFIG_ALTIVEC */ 1800 #ifdef CONFIG_SPE 1801 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1802 current->thread.acc = 0; 1803 current->thread.spefscr = 0; 1804 current->thread.used_spe = 0; 1805 #endif /* CONFIG_SPE */ 1806 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1807 current->thread.tm_tfhar = 0; 1808 current->thread.tm_texasr = 0; 1809 current->thread.tm_tfiar = 0; 1810 current->thread.load_tm = 0; 1811 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1812 1813 thread_pkey_regs_init(¤t->thread); 1814 } 1815 EXPORT_SYMBOL(start_thread); 1816 1817 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1818 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1819 1820 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1821 { 1822 struct pt_regs *regs = tsk->thread.regs; 1823 1824 /* This is a bit hairy. If we are an SPE enabled processor 1825 * (have embedded fp) we store the IEEE exception enable flags in 1826 * fpexc_mode. fpexc_mode is also used for setting FP exception 1827 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1828 if (val & PR_FP_EXC_SW_ENABLE) { 1829 #ifdef CONFIG_SPE 1830 if (cpu_has_feature(CPU_FTR_SPE)) { 1831 /* 1832 * When the sticky exception bits are set 1833 * directly by userspace, it must call prctl 1834 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1835 * in the existing prctl settings) or 1836 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1837 * the bits being set). <fenv.h> functions 1838 * saving and restoring the whole 1839 * floating-point environment need to do so 1840 * anyway to restore the prctl settings from 1841 * the saved environment. 1842 */ 1843 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1844 tsk->thread.fpexc_mode = val & 1845 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1846 return 0; 1847 } else { 1848 return -EINVAL; 1849 } 1850 #else 1851 return -EINVAL; 1852 #endif 1853 } 1854 1855 /* on a CONFIG_SPE this does not hurt us. The bits that 1856 * __pack_fe01 use do not overlap with bits used for 1857 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1858 * on CONFIG_SPE implementations are reserved so writing to 1859 * them does not change anything */ 1860 if (val > PR_FP_EXC_PRECISE) 1861 return -EINVAL; 1862 tsk->thread.fpexc_mode = __pack_fe01(val); 1863 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1864 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1865 | tsk->thread.fpexc_mode; 1866 return 0; 1867 } 1868 1869 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1870 { 1871 unsigned int val; 1872 1873 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1874 #ifdef CONFIG_SPE 1875 if (cpu_has_feature(CPU_FTR_SPE)) { 1876 /* 1877 * When the sticky exception bits are set 1878 * directly by userspace, it must call prctl 1879 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1880 * in the existing prctl settings) or 1881 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1882 * the bits being set). <fenv.h> functions 1883 * saving and restoring the whole 1884 * floating-point environment need to do so 1885 * anyway to restore the prctl settings from 1886 * the saved environment. 1887 */ 1888 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1889 val = tsk->thread.fpexc_mode; 1890 } else 1891 return -EINVAL; 1892 #else 1893 return -EINVAL; 1894 #endif 1895 else 1896 val = __unpack_fe01(tsk->thread.fpexc_mode); 1897 return put_user(val, (unsigned int __user *) adr); 1898 } 1899 1900 int set_endian(struct task_struct *tsk, unsigned int val) 1901 { 1902 struct pt_regs *regs = tsk->thread.regs; 1903 1904 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1905 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1906 return -EINVAL; 1907 1908 if (regs == NULL) 1909 return -EINVAL; 1910 1911 if (val == PR_ENDIAN_BIG) 1912 regs->msr &= ~MSR_LE; 1913 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1914 regs->msr |= MSR_LE; 1915 else 1916 return -EINVAL; 1917 1918 return 0; 1919 } 1920 1921 int get_endian(struct task_struct *tsk, unsigned long adr) 1922 { 1923 struct pt_regs *regs = tsk->thread.regs; 1924 unsigned int val; 1925 1926 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1927 !cpu_has_feature(CPU_FTR_REAL_LE)) 1928 return -EINVAL; 1929 1930 if (regs == NULL) 1931 return -EINVAL; 1932 1933 if (regs->msr & MSR_LE) { 1934 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1935 val = PR_ENDIAN_LITTLE; 1936 else 1937 val = PR_ENDIAN_PPC_LITTLE; 1938 } else 1939 val = PR_ENDIAN_BIG; 1940 1941 return put_user(val, (unsigned int __user *)adr); 1942 } 1943 1944 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1945 { 1946 tsk->thread.align_ctl = val; 1947 return 0; 1948 } 1949 1950 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1951 { 1952 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1953 } 1954 1955 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1956 unsigned long nbytes) 1957 { 1958 unsigned long stack_page; 1959 unsigned long cpu = task_cpu(p); 1960 1961 stack_page = (unsigned long)hardirq_ctx[cpu]; 1962 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1963 return 1; 1964 1965 stack_page = (unsigned long)softirq_ctx[cpu]; 1966 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1967 return 1; 1968 1969 return 0; 1970 } 1971 1972 int validate_sp(unsigned long sp, struct task_struct *p, 1973 unsigned long nbytes) 1974 { 1975 unsigned long stack_page = (unsigned long)task_stack_page(p); 1976 1977 if (sp < THREAD_SIZE) 1978 return 0; 1979 1980 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1981 return 1; 1982 1983 return valid_irq_stack(sp, p, nbytes); 1984 } 1985 1986 EXPORT_SYMBOL(validate_sp); 1987 1988 static unsigned long __get_wchan(struct task_struct *p) 1989 { 1990 unsigned long ip, sp; 1991 int count = 0; 1992 1993 if (!p || p == current || p->state == TASK_RUNNING) 1994 return 0; 1995 1996 sp = p->thread.ksp; 1997 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1998 return 0; 1999 2000 do { 2001 sp = *(unsigned long *)sp; 2002 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2003 p->state == TASK_RUNNING) 2004 return 0; 2005 if (count > 0) { 2006 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2007 if (!in_sched_functions(ip)) 2008 return ip; 2009 } 2010 } while (count++ < 16); 2011 return 0; 2012 } 2013 2014 unsigned long get_wchan(struct task_struct *p) 2015 { 2016 unsigned long ret; 2017 2018 if (!try_get_task_stack(p)) 2019 return 0; 2020 2021 ret = __get_wchan(p); 2022 2023 put_task_stack(p); 2024 2025 return ret; 2026 } 2027 2028 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2029 2030 void show_stack(struct task_struct *tsk, unsigned long *stack) 2031 { 2032 unsigned long sp, ip, lr, newsp; 2033 int count = 0; 2034 int firstframe = 1; 2035 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2036 struct ftrace_ret_stack *ret_stack; 2037 extern void return_to_handler(void); 2038 unsigned long rth = (unsigned long)return_to_handler; 2039 int curr_frame = 0; 2040 #endif 2041 2042 if (tsk == NULL) 2043 tsk = current; 2044 2045 if (!try_get_task_stack(tsk)) 2046 return; 2047 2048 sp = (unsigned long) stack; 2049 if (sp == 0) { 2050 if (tsk == current) 2051 sp = current_stack_pointer(); 2052 else 2053 sp = tsk->thread.ksp; 2054 } 2055 2056 lr = 0; 2057 printk("Call Trace:\n"); 2058 do { 2059 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2060 break; 2061 2062 stack = (unsigned long *) sp; 2063 newsp = stack[0]; 2064 ip = stack[STACK_FRAME_LR_SAVE]; 2065 if (!firstframe || ip != lr) { 2066 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2067 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2068 if ((ip == rth) && curr_frame >= 0) { 2069 ret_stack = ftrace_graph_get_ret_stack(current, 2070 curr_frame++); 2071 if (ret_stack) 2072 pr_cont(" (%pS)", 2073 (void *)ret_stack->ret); 2074 else 2075 curr_frame = -1; 2076 } 2077 #endif 2078 if (firstframe) 2079 pr_cont(" (unreliable)"); 2080 pr_cont("\n"); 2081 } 2082 firstframe = 0; 2083 2084 /* 2085 * See if this is an exception frame. 2086 * We look for the "regshere" marker in the current frame. 2087 */ 2088 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2089 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2090 struct pt_regs *regs = (struct pt_regs *) 2091 (sp + STACK_FRAME_OVERHEAD); 2092 lr = regs->link; 2093 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2094 regs->trap, (void *)regs->nip, (void *)lr); 2095 firstframe = 1; 2096 } 2097 2098 sp = newsp; 2099 } while (count++ < kstack_depth_to_print); 2100 2101 put_task_stack(tsk); 2102 } 2103 2104 #ifdef CONFIG_PPC64 2105 /* Called with hard IRQs off */ 2106 void notrace __ppc64_runlatch_on(void) 2107 { 2108 struct thread_info *ti = current_thread_info(); 2109 2110 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2111 /* 2112 * Least significant bit (RUN) is the only writable bit of 2113 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2114 * earliest ISA where this is the case, but it's convenient. 2115 */ 2116 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2117 } else { 2118 unsigned long ctrl; 2119 2120 /* 2121 * Some architectures (e.g., Cell) have writable fields other 2122 * than RUN, so do the read-modify-write. 2123 */ 2124 ctrl = mfspr(SPRN_CTRLF); 2125 ctrl |= CTRL_RUNLATCH; 2126 mtspr(SPRN_CTRLT, ctrl); 2127 } 2128 2129 ti->local_flags |= _TLF_RUNLATCH; 2130 } 2131 2132 /* Called with hard IRQs off */ 2133 void notrace __ppc64_runlatch_off(void) 2134 { 2135 struct thread_info *ti = current_thread_info(); 2136 2137 ti->local_flags &= ~_TLF_RUNLATCH; 2138 2139 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2140 mtspr(SPRN_CTRLT, 0); 2141 } else { 2142 unsigned long ctrl; 2143 2144 ctrl = mfspr(SPRN_CTRLF); 2145 ctrl &= ~CTRL_RUNLATCH; 2146 mtspr(SPRN_CTRLT, ctrl); 2147 } 2148 } 2149 #endif /* CONFIG_PPC64 */ 2150 2151 unsigned long arch_align_stack(unsigned long sp) 2152 { 2153 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2154 sp -= get_random_int() & ~PAGE_MASK; 2155 return sp & ~0xf; 2156 } 2157 2158 static inline unsigned long brk_rnd(void) 2159 { 2160 unsigned long rnd = 0; 2161 2162 /* 8MB for 32bit, 1GB for 64bit */ 2163 if (is_32bit_task()) 2164 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2165 else 2166 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2167 2168 return rnd << PAGE_SHIFT; 2169 } 2170 2171 unsigned long arch_randomize_brk(struct mm_struct *mm) 2172 { 2173 unsigned long base = mm->brk; 2174 unsigned long ret; 2175 2176 #ifdef CONFIG_PPC_BOOK3S_64 2177 /* 2178 * If we are using 1TB segments and we are allowed to randomise 2179 * the heap, we can put it above 1TB so it is backed by a 1TB 2180 * segment. Otherwise the heap will be in the bottom 1TB 2181 * which always uses 256MB segments and this may result in a 2182 * performance penalty. We don't need to worry about radix. For 2183 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2184 */ 2185 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2186 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2187 #endif 2188 2189 ret = PAGE_ALIGN(base + brk_rnd()); 2190 2191 if (ret < mm->brk) 2192 return mm->brk; 2193 2194 return ret; 2195 } 2196 2197