xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision addee42a)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 
47 #include <asm/pgtable.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>
50 #include <asm/mmu.h>
51 #include <asm/prom.h>
52 #include <asm/machdep.h>
53 #include <asm/time.h>
54 #include <asm/runlatch.h>
55 #include <asm/syscalls.h>
56 #include <asm/switch_to.h>
57 #include <asm/tm.h>
58 #include <asm/debug.h>
59 #ifdef CONFIG_PPC64
60 #include <asm/firmware.h>
61 #include <asm/hw_irq.h>
62 #endif
63 #include <asm/code-patching.h>
64 #include <asm/exec.h>
65 #include <asm/livepatch.h>
66 #include <asm/cpu_has_feature.h>
67 #include <asm/asm-prototypes.h>
68 
69 #include <linux/kprobes.h>
70 #include <linux/kdebug.h>
71 
72 /* Transactional Memory debug */
73 #ifdef TM_DEBUG_SW
74 #define TM_DEBUG(x...) printk(KERN_INFO x)
75 #else
76 #define TM_DEBUG(x...) do { } while(0)
77 #endif
78 
79 extern unsigned long _get_SP(void);
80 
81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 /*
83  * Are we running in "Suspend disabled" mode? If so we have to block any
84  * sigreturn that would get us into suspended state, and we also warn in some
85  * other paths that we should never reach with suspend disabled.
86  */
87 bool tm_suspend_disabled __ro_after_init = false;
88 
89 static void check_if_tm_restore_required(struct task_struct *tsk)
90 {
91 	/*
92 	 * If we are saving the current thread's registers, and the
93 	 * thread is in a transactional state, set the TIF_RESTORE_TM
94 	 * bit so that we know to restore the registers before
95 	 * returning to userspace.
96 	 */
97 	if (tsk == current && tsk->thread.regs &&
98 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 	    !test_thread_flag(TIF_RESTORE_TM)) {
100 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 		set_thread_flag(TIF_RESTORE_TM);
102 	}
103 }
104 
105 static inline bool msr_tm_active(unsigned long msr)
106 {
107 	return MSR_TM_ACTIVE(msr);
108 }
109 
110 static bool tm_active_with_fp(struct task_struct *tsk)
111 {
112 	return msr_tm_active(tsk->thread.regs->msr) &&
113 		(tsk->thread.ckpt_regs.msr & MSR_FP);
114 }
115 
116 static bool tm_active_with_altivec(struct task_struct *tsk)
117 {
118 	return msr_tm_active(tsk->thread.regs->msr) &&
119 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
120 }
121 #else
122 static inline bool msr_tm_active(unsigned long msr) { return false; }
123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127 
128 bool strict_msr_control;
129 EXPORT_SYMBOL(strict_msr_control);
130 
131 static int __init enable_strict_msr_control(char *str)
132 {
133 	strict_msr_control = true;
134 	pr_info("Enabling strict facility control\n");
135 
136 	return 0;
137 }
138 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139 
140 unsigned long msr_check_and_set(unsigned long bits)
141 {
142 	unsigned long oldmsr = mfmsr();
143 	unsigned long newmsr;
144 
145 	newmsr = oldmsr | bits;
146 
147 #ifdef CONFIG_VSX
148 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 		newmsr |= MSR_VSX;
150 #endif
151 
152 	if (oldmsr != newmsr)
153 		mtmsr_isync(newmsr);
154 
155 	return newmsr;
156 }
157 
158 void __msr_check_and_clear(unsigned long bits)
159 {
160 	unsigned long oldmsr = mfmsr();
161 	unsigned long newmsr;
162 
163 	newmsr = oldmsr & ~bits;
164 
165 #ifdef CONFIG_VSX
166 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
167 		newmsr &= ~MSR_VSX;
168 #endif
169 
170 	if (oldmsr != newmsr)
171 		mtmsr_isync(newmsr);
172 }
173 EXPORT_SYMBOL(__msr_check_and_clear);
174 
175 #ifdef CONFIG_PPC_FPU
176 static void __giveup_fpu(struct task_struct *tsk)
177 {
178 	unsigned long msr;
179 
180 	save_fpu(tsk);
181 	msr = tsk->thread.regs->msr;
182 	msr &= ~MSR_FP;
183 #ifdef CONFIG_VSX
184 	if (cpu_has_feature(CPU_FTR_VSX))
185 		msr &= ~MSR_VSX;
186 #endif
187 	tsk->thread.regs->msr = msr;
188 }
189 
190 void giveup_fpu(struct task_struct *tsk)
191 {
192 	check_if_tm_restore_required(tsk);
193 
194 	msr_check_and_set(MSR_FP);
195 	__giveup_fpu(tsk);
196 	msr_check_and_clear(MSR_FP);
197 }
198 EXPORT_SYMBOL(giveup_fpu);
199 
200 /*
201  * Make sure the floating-point register state in the
202  * the thread_struct is up to date for task tsk.
203  */
204 void flush_fp_to_thread(struct task_struct *tsk)
205 {
206 	if (tsk->thread.regs) {
207 		/*
208 		 * We need to disable preemption here because if we didn't,
209 		 * another process could get scheduled after the regs->msr
210 		 * test but before we have finished saving the FP registers
211 		 * to the thread_struct.  That process could take over the
212 		 * FPU, and then when we get scheduled again we would store
213 		 * bogus values for the remaining FP registers.
214 		 */
215 		preempt_disable();
216 		if (tsk->thread.regs->msr & MSR_FP) {
217 			/*
218 			 * This should only ever be called for current or
219 			 * for a stopped child process.  Since we save away
220 			 * the FP register state on context switch,
221 			 * there is something wrong if a stopped child appears
222 			 * to still have its FP state in the CPU registers.
223 			 */
224 			BUG_ON(tsk != current);
225 			giveup_fpu(tsk);
226 		}
227 		preempt_enable();
228 	}
229 }
230 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
231 
232 void enable_kernel_fp(void)
233 {
234 	unsigned long cpumsr;
235 
236 	WARN_ON(preemptible());
237 
238 	cpumsr = msr_check_and_set(MSR_FP);
239 
240 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
241 		check_if_tm_restore_required(current);
242 		/*
243 		 * If a thread has already been reclaimed then the
244 		 * checkpointed registers are on the CPU but have definitely
245 		 * been saved by the reclaim code. Don't need to and *cannot*
246 		 * giveup as this would save  to the 'live' structure not the
247 		 * checkpointed structure.
248 		 */
249 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
250 			return;
251 		__giveup_fpu(current);
252 	}
253 }
254 EXPORT_SYMBOL(enable_kernel_fp);
255 
256 static int restore_fp(struct task_struct *tsk)
257 {
258 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
259 		load_fp_state(&current->thread.fp_state);
260 		current->thread.load_fp++;
261 		return 1;
262 	}
263 	return 0;
264 }
265 #else
266 static int restore_fp(struct task_struct *tsk) { return 0; }
267 #endif /* CONFIG_PPC_FPU */
268 
269 #ifdef CONFIG_ALTIVEC
270 #define loadvec(thr) ((thr).load_vec)
271 
272 static void __giveup_altivec(struct task_struct *tsk)
273 {
274 	unsigned long msr;
275 
276 	save_altivec(tsk);
277 	msr = tsk->thread.regs->msr;
278 	msr &= ~MSR_VEC;
279 #ifdef CONFIG_VSX
280 	if (cpu_has_feature(CPU_FTR_VSX))
281 		msr &= ~MSR_VSX;
282 #endif
283 	tsk->thread.regs->msr = msr;
284 }
285 
286 void giveup_altivec(struct task_struct *tsk)
287 {
288 	check_if_tm_restore_required(tsk);
289 
290 	msr_check_and_set(MSR_VEC);
291 	__giveup_altivec(tsk);
292 	msr_check_and_clear(MSR_VEC);
293 }
294 EXPORT_SYMBOL(giveup_altivec);
295 
296 void enable_kernel_altivec(void)
297 {
298 	unsigned long cpumsr;
299 
300 	WARN_ON(preemptible());
301 
302 	cpumsr = msr_check_and_set(MSR_VEC);
303 
304 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
305 		check_if_tm_restore_required(current);
306 		/*
307 		 * If a thread has already been reclaimed then the
308 		 * checkpointed registers are on the CPU but have definitely
309 		 * been saved by the reclaim code. Don't need to and *cannot*
310 		 * giveup as this would save  to the 'live' structure not the
311 		 * checkpointed structure.
312 		 */
313 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
314 			return;
315 		__giveup_altivec(current);
316 	}
317 }
318 EXPORT_SYMBOL(enable_kernel_altivec);
319 
320 /*
321  * Make sure the VMX/Altivec register state in the
322  * the thread_struct is up to date for task tsk.
323  */
324 void flush_altivec_to_thread(struct task_struct *tsk)
325 {
326 	if (tsk->thread.regs) {
327 		preempt_disable();
328 		if (tsk->thread.regs->msr & MSR_VEC) {
329 			BUG_ON(tsk != current);
330 			giveup_altivec(tsk);
331 		}
332 		preempt_enable();
333 	}
334 }
335 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
336 
337 static int restore_altivec(struct task_struct *tsk)
338 {
339 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
340 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
341 		load_vr_state(&tsk->thread.vr_state);
342 		tsk->thread.used_vr = 1;
343 		tsk->thread.load_vec++;
344 
345 		return 1;
346 	}
347 	return 0;
348 }
349 #else
350 #define loadvec(thr) 0
351 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
352 #endif /* CONFIG_ALTIVEC */
353 
354 #ifdef CONFIG_VSX
355 static void __giveup_vsx(struct task_struct *tsk)
356 {
357 	unsigned long msr = tsk->thread.regs->msr;
358 
359 	/*
360 	 * We should never be ssetting MSR_VSX without also setting
361 	 * MSR_FP and MSR_VEC
362 	 */
363 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
364 
365 	/* __giveup_fpu will clear MSR_VSX */
366 	if (msr & MSR_FP)
367 		__giveup_fpu(tsk);
368 	if (msr & MSR_VEC)
369 		__giveup_altivec(tsk);
370 }
371 
372 static void giveup_vsx(struct task_struct *tsk)
373 {
374 	check_if_tm_restore_required(tsk);
375 
376 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
377 	__giveup_vsx(tsk);
378 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
379 }
380 
381 void enable_kernel_vsx(void)
382 {
383 	unsigned long cpumsr;
384 
385 	WARN_ON(preemptible());
386 
387 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
388 
389 	if (current->thread.regs &&
390 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
391 		check_if_tm_restore_required(current);
392 		/*
393 		 * If a thread has already been reclaimed then the
394 		 * checkpointed registers are on the CPU but have definitely
395 		 * been saved by the reclaim code. Don't need to and *cannot*
396 		 * giveup as this would save  to the 'live' structure not the
397 		 * checkpointed structure.
398 		 */
399 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
400 			return;
401 		__giveup_vsx(current);
402 	}
403 }
404 EXPORT_SYMBOL(enable_kernel_vsx);
405 
406 void flush_vsx_to_thread(struct task_struct *tsk)
407 {
408 	if (tsk->thread.regs) {
409 		preempt_disable();
410 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411 			BUG_ON(tsk != current);
412 			giveup_vsx(tsk);
413 		}
414 		preempt_enable();
415 	}
416 }
417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
418 
419 static int restore_vsx(struct task_struct *tsk)
420 {
421 	if (cpu_has_feature(CPU_FTR_VSX)) {
422 		tsk->thread.used_vsr = 1;
423 		return 1;
424 	}
425 
426 	return 0;
427 }
428 #else
429 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430 #endif /* CONFIG_VSX */
431 
432 #ifdef CONFIG_SPE
433 void giveup_spe(struct task_struct *tsk)
434 {
435 	check_if_tm_restore_required(tsk);
436 
437 	msr_check_and_set(MSR_SPE);
438 	__giveup_spe(tsk);
439 	msr_check_and_clear(MSR_SPE);
440 }
441 EXPORT_SYMBOL(giveup_spe);
442 
443 void enable_kernel_spe(void)
444 {
445 	WARN_ON(preemptible());
446 
447 	msr_check_and_set(MSR_SPE);
448 
449 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 		check_if_tm_restore_required(current);
451 		__giveup_spe(current);
452 	}
453 }
454 EXPORT_SYMBOL(enable_kernel_spe);
455 
456 void flush_spe_to_thread(struct task_struct *tsk)
457 {
458 	if (tsk->thread.regs) {
459 		preempt_disable();
460 		if (tsk->thread.regs->msr & MSR_SPE) {
461 			BUG_ON(tsk != current);
462 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463 			giveup_spe(tsk);
464 		}
465 		preempt_enable();
466 	}
467 }
468 #endif /* CONFIG_SPE */
469 
470 static unsigned long msr_all_available;
471 
472 static int __init init_msr_all_available(void)
473 {
474 #ifdef CONFIG_PPC_FPU
475 	msr_all_available |= MSR_FP;
476 #endif
477 #ifdef CONFIG_ALTIVEC
478 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 		msr_all_available |= MSR_VEC;
480 #endif
481 #ifdef CONFIG_VSX
482 	if (cpu_has_feature(CPU_FTR_VSX))
483 		msr_all_available |= MSR_VSX;
484 #endif
485 #ifdef CONFIG_SPE
486 	if (cpu_has_feature(CPU_FTR_SPE))
487 		msr_all_available |= MSR_SPE;
488 #endif
489 
490 	return 0;
491 }
492 early_initcall(init_msr_all_available);
493 
494 void giveup_all(struct task_struct *tsk)
495 {
496 	unsigned long usermsr;
497 
498 	if (!tsk->thread.regs)
499 		return;
500 
501 	usermsr = tsk->thread.regs->msr;
502 
503 	if ((usermsr & msr_all_available) == 0)
504 		return;
505 
506 	msr_check_and_set(msr_all_available);
507 	check_if_tm_restore_required(tsk);
508 
509 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510 
511 #ifdef CONFIG_PPC_FPU
512 	if (usermsr & MSR_FP)
513 		__giveup_fpu(tsk);
514 #endif
515 #ifdef CONFIG_ALTIVEC
516 	if (usermsr & MSR_VEC)
517 		__giveup_altivec(tsk);
518 #endif
519 #ifdef CONFIG_SPE
520 	if (usermsr & MSR_SPE)
521 		__giveup_spe(tsk);
522 #endif
523 
524 	msr_check_and_clear(msr_all_available);
525 }
526 EXPORT_SYMBOL(giveup_all);
527 
528 void restore_math(struct pt_regs *regs)
529 {
530 	unsigned long msr;
531 
532 	if (!msr_tm_active(regs->msr) &&
533 		!current->thread.load_fp && !loadvec(current->thread))
534 		return;
535 
536 	msr = regs->msr;
537 	msr_check_and_set(msr_all_available);
538 
539 	/*
540 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 	 * indicates that the registers are hot
542 	 */
543 	if ((!(msr & MSR_FP)) && restore_fp(current))
544 		msr |= MSR_FP | current->thread.fpexc_mode;
545 
546 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 		msr |= MSR_VEC;
548 
549 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 			restore_vsx(current)) {
551 		msr |= MSR_VSX;
552 	}
553 
554 	msr_check_and_clear(msr_all_available);
555 
556 	regs->msr = msr;
557 }
558 
559 static void save_all(struct task_struct *tsk)
560 {
561 	unsigned long usermsr;
562 
563 	if (!tsk->thread.regs)
564 		return;
565 
566 	usermsr = tsk->thread.regs->msr;
567 
568 	if ((usermsr & msr_all_available) == 0)
569 		return;
570 
571 	msr_check_and_set(msr_all_available);
572 
573 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574 
575 	if (usermsr & MSR_FP)
576 		save_fpu(tsk);
577 
578 	if (usermsr & MSR_VEC)
579 		save_altivec(tsk);
580 
581 	if (usermsr & MSR_SPE)
582 		__giveup_spe(tsk);
583 
584 	msr_check_and_clear(msr_all_available);
585 }
586 
587 void flush_all_to_thread(struct task_struct *tsk)
588 {
589 	if (tsk->thread.regs) {
590 		preempt_disable();
591 		BUG_ON(tsk != current);
592 		save_all(tsk);
593 
594 #ifdef CONFIG_SPE
595 		if (tsk->thread.regs->msr & MSR_SPE)
596 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
597 #endif
598 
599 		preempt_enable();
600 	}
601 }
602 EXPORT_SYMBOL(flush_all_to_thread);
603 
604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
605 void do_send_trap(struct pt_regs *regs, unsigned long address,
606 		  unsigned long error_code, int breakpt)
607 {
608 	current->thread.trap_nr = TRAP_HWBKPT;
609 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 			11, SIGSEGV) == NOTIFY_STOP)
611 		return;
612 
613 	/* Deliver the signal to userspace */
614 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615 				    (void __user *)address);
616 }
617 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
618 void do_break (struct pt_regs *regs, unsigned long address,
619 		    unsigned long error_code)
620 {
621 	siginfo_t info;
622 
623 	current->thread.trap_nr = TRAP_HWBKPT;
624 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
625 			11, SIGSEGV) == NOTIFY_STOP)
626 		return;
627 
628 	if (debugger_break_match(regs))
629 		return;
630 
631 	/* Clear the breakpoint */
632 	hw_breakpoint_disable();
633 
634 	/* Deliver the signal to userspace */
635 	info.si_signo = SIGTRAP;
636 	info.si_errno = 0;
637 	info.si_code = TRAP_HWBKPT;
638 	info.si_addr = (void __user *)address;
639 	force_sig_info(SIGTRAP, &info, current);
640 }
641 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
642 
643 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
644 
645 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
646 /*
647  * Set the debug registers back to their default "safe" values.
648  */
649 static void set_debug_reg_defaults(struct thread_struct *thread)
650 {
651 	thread->debug.iac1 = thread->debug.iac2 = 0;
652 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
653 	thread->debug.iac3 = thread->debug.iac4 = 0;
654 #endif
655 	thread->debug.dac1 = thread->debug.dac2 = 0;
656 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
657 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
658 #endif
659 	thread->debug.dbcr0 = 0;
660 #ifdef CONFIG_BOOKE
661 	/*
662 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
663 	 */
664 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
665 			DBCR1_IAC3US | DBCR1_IAC4US;
666 	/*
667 	 * Force Data Address Compare User/Supervisor bits to be User-only
668 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
669 	 */
670 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
671 #else
672 	thread->debug.dbcr1 = 0;
673 #endif
674 }
675 
676 static void prime_debug_regs(struct debug_reg *debug)
677 {
678 	/*
679 	 * We could have inherited MSR_DE from userspace, since
680 	 * it doesn't get cleared on exception entry.  Make sure
681 	 * MSR_DE is clear before we enable any debug events.
682 	 */
683 	mtmsr(mfmsr() & ~MSR_DE);
684 
685 	mtspr(SPRN_IAC1, debug->iac1);
686 	mtspr(SPRN_IAC2, debug->iac2);
687 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
688 	mtspr(SPRN_IAC3, debug->iac3);
689 	mtspr(SPRN_IAC4, debug->iac4);
690 #endif
691 	mtspr(SPRN_DAC1, debug->dac1);
692 	mtspr(SPRN_DAC2, debug->dac2);
693 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
694 	mtspr(SPRN_DVC1, debug->dvc1);
695 	mtspr(SPRN_DVC2, debug->dvc2);
696 #endif
697 	mtspr(SPRN_DBCR0, debug->dbcr0);
698 	mtspr(SPRN_DBCR1, debug->dbcr1);
699 #ifdef CONFIG_BOOKE
700 	mtspr(SPRN_DBCR2, debug->dbcr2);
701 #endif
702 }
703 /*
704  * Unless neither the old or new thread are making use of the
705  * debug registers, set the debug registers from the values
706  * stored in the new thread.
707  */
708 void switch_booke_debug_regs(struct debug_reg *new_debug)
709 {
710 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
711 		|| (new_debug->dbcr0 & DBCR0_IDM))
712 			prime_debug_regs(new_debug);
713 }
714 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
715 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
716 #ifndef CONFIG_HAVE_HW_BREAKPOINT
717 static void set_debug_reg_defaults(struct thread_struct *thread)
718 {
719 	thread->hw_brk.address = 0;
720 	thread->hw_brk.type = 0;
721 	if (ppc_breakpoint_available())
722 		set_breakpoint(&thread->hw_brk);
723 }
724 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
725 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
726 
727 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
728 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
729 {
730 	mtspr(SPRN_DAC1, dabr);
731 #ifdef CONFIG_PPC_47x
732 	isync();
733 #endif
734 	return 0;
735 }
736 #elif defined(CONFIG_PPC_BOOK3S)
737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 {
739 	mtspr(SPRN_DABR, dabr);
740 	if (cpu_has_feature(CPU_FTR_DABRX))
741 		mtspr(SPRN_DABRX, dabrx);
742 	return 0;
743 }
744 #elif defined(CONFIG_PPC_8xx)
745 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
746 {
747 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
748 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
749 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
750 
751 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
752 		lctrl1 |= 0xa0000;
753 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
754 		lctrl1 |= 0xf0000;
755 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
756 		lctrl2 = 0;
757 
758 	mtspr(SPRN_LCTRL2, 0);
759 	mtspr(SPRN_CMPE, addr);
760 	mtspr(SPRN_CMPF, addr + 4);
761 	mtspr(SPRN_LCTRL1, lctrl1);
762 	mtspr(SPRN_LCTRL2, lctrl2);
763 
764 	return 0;
765 }
766 #else
767 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
768 {
769 	return -EINVAL;
770 }
771 #endif
772 
773 static inline int set_dabr(struct arch_hw_breakpoint *brk)
774 {
775 	unsigned long dabr, dabrx;
776 
777 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
778 	dabrx = ((brk->type >> 3) & 0x7);
779 
780 	if (ppc_md.set_dabr)
781 		return ppc_md.set_dabr(dabr, dabrx);
782 
783 	return __set_dabr(dabr, dabrx);
784 }
785 
786 static inline int set_dawr(struct arch_hw_breakpoint *brk)
787 {
788 	unsigned long dawr, dawrx, mrd;
789 
790 	dawr = brk->address;
791 
792 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
793 		                   << (63 - 58); //* read/write bits */
794 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
795 		                   << (63 - 59); //* translate */
796 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
797 		                   >> 3; //* PRIM bits */
798 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
799 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
800 	   0b111111=64DW.
801 	   brk->len is in bytes.
802 	   This aligns up to double word size, shifts and does the bias.
803 	*/
804 	mrd = ((brk->len + 7) >> 3) - 1;
805 	dawrx |= (mrd & 0x3f) << (63 - 53);
806 
807 	if (ppc_md.set_dawr)
808 		return ppc_md.set_dawr(dawr, dawrx);
809 	mtspr(SPRN_DAWR, dawr);
810 	mtspr(SPRN_DAWRX, dawrx);
811 	return 0;
812 }
813 
814 void __set_breakpoint(struct arch_hw_breakpoint *brk)
815 {
816 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
817 
818 	if (cpu_has_feature(CPU_FTR_DAWR))
819 		// Power8 or later
820 		set_dawr(brk);
821 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
822 		// Power7 or earlier
823 		set_dabr(brk);
824 	else
825 		// Shouldn't happen due to higher level checks
826 		WARN_ON_ONCE(1);
827 }
828 
829 void set_breakpoint(struct arch_hw_breakpoint *brk)
830 {
831 	preempt_disable();
832 	__set_breakpoint(brk);
833 	preempt_enable();
834 }
835 
836 /* Check if we have DAWR or DABR hardware */
837 bool ppc_breakpoint_available(void)
838 {
839 	if (cpu_has_feature(CPU_FTR_DAWR))
840 		return true; /* POWER8 DAWR */
841 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
842 		return false; /* POWER9 with DAWR disabled */
843 	/* DABR: Everything but POWER8 and POWER9 */
844 	return true;
845 }
846 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
847 
848 #ifdef CONFIG_PPC64
849 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
850 #endif
851 
852 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
853 			      struct arch_hw_breakpoint *b)
854 {
855 	if (a->address != b->address)
856 		return false;
857 	if (a->type != b->type)
858 		return false;
859 	if (a->len != b->len)
860 		return false;
861 	return true;
862 }
863 
864 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
865 
866 static inline bool tm_enabled(struct task_struct *tsk)
867 {
868 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
869 }
870 
871 static void tm_reclaim_thread(struct thread_struct *thr,
872 			      struct thread_info *ti, uint8_t cause)
873 {
874 	/*
875 	 * Use the current MSR TM suspended bit to track if we have
876 	 * checkpointed state outstanding.
877 	 * On signal delivery, we'd normally reclaim the checkpointed
878 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
879 	 * This will then directly return to userspace without going
880 	 * through __switch_to(). However, if the stack frame is bad,
881 	 * we need to exit this thread which calls __switch_to() which
882 	 * will again attempt to reclaim the already saved tm state.
883 	 * Hence we need to check that we've not already reclaimed
884 	 * this state.
885 	 * We do this using the current MSR, rather tracking it in
886 	 * some specific thread_struct bit, as it has the additional
887 	 * benefit of checking for a potential TM bad thing exception.
888 	 */
889 	if (!MSR_TM_SUSPENDED(mfmsr()))
890 		return;
891 
892 	giveup_all(container_of(thr, struct task_struct, thread));
893 
894 	tm_reclaim(thr, cause);
895 
896 	/*
897 	 * If we are in a transaction and FP is off then we can't have
898 	 * used FP inside that transaction. Hence the checkpointed
899 	 * state is the same as the live state. We need to copy the
900 	 * live state to the checkpointed state so that when the
901 	 * transaction is restored, the checkpointed state is correct
902 	 * and the aborted transaction sees the correct state. We use
903 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
904 	 * determine if it's going to write the checkpointed state or
905 	 * not. So either this will write the checkpointed registers,
906 	 * or reclaim will. Similarly for VMX.
907 	 */
908 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
909 		memcpy(&thr->ckfp_state, &thr->fp_state,
910 		       sizeof(struct thread_fp_state));
911 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
912 		memcpy(&thr->ckvr_state, &thr->vr_state,
913 		       sizeof(struct thread_vr_state));
914 }
915 
916 void tm_reclaim_current(uint8_t cause)
917 {
918 	tm_enable();
919 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
920 }
921 
922 static inline void tm_reclaim_task(struct task_struct *tsk)
923 {
924 	/* We have to work out if we're switching from/to a task that's in the
925 	 * middle of a transaction.
926 	 *
927 	 * In switching we need to maintain a 2nd register state as
928 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
929 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
930 	 * ckvr_state
931 	 *
932 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
933 	 */
934 	struct thread_struct *thr = &tsk->thread;
935 
936 	if (!thr->regs)
937 		return;
938 
939 	if (!MSR_TM_ACTIVE(thr->regs->msr))
940 		goto out_and_saveregs;
941 
942 	WARN_ON(tm_suspend_disabled);
943 
944 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
945 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
946 		 tsk->pid, thr->regs->nip,
947 		 thr->regs->ccr, thr->regs->msr,
948 		 thr->regs->trap);
949 
950 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
951 
952 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
953 		 tsk->pid);
954 
955 out_and_saveregs:
956 	/* Always save the regs here, even if a transaction's not active.
957 	 * This context-switches a thread's TM info SPRs.  We do it here to
958 	 * be consistent with the restore path (in recheckpoint) which
959 	 * cannot happen later in _switch().
960 	 */
961 	tm_save_sprs(thr);
962 }
963 
964 extern void __tm_recheckpoint(struct thread_struct *thread);
965 
966 void tm_recheckpoint(struct thread_struct *thread)
967 {
968 	unsigned long flags;
969 
970 	if (!(thread->regs->msr & MSR_TM))
971 		return;
972 
973 	/* We really can't be interrupted here as the TEXASR registers can't
974 	 * change and later in the trecheckpoint code, we have a userspace R1.
975 	 * So let's hard disable over this region.
976 	 */
977 	local_irq_save(flags);
978 	hard_irq_disable();
979 
980 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
981 	 * before the trecheckpoint and no explosion occurs.
982 	 */
983 	tm_restore_sprs(thread);
984 
985 	__tm_recheckpoint(thread);
986 
987 	local_irq_restore(flags);
988 }
989 
990 static inline void tm_recheckpoint_new_task(struct task_struct *new)
991 {
992 	if (!cpu_has_feature(CPU_FTR_TM))
993 		return;
994 
995 	/* Recheckpoint the registers of the thread we're about to switch to.
996 	 *
997 	 * If the task was using FP, we non-lazily reload both the original and
998 	 * the speculative FP register states.  This is because the kernel
999 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1000 	 * unavailable later, we are unable to determine which set of FP regs
1001 	 * need to be restored.
1002 	 */
1003 	if (!tm_enabled(new))
1004 		return;
1005 
1006 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1007 		tm_restore_sprs(&new->thread);
1008 		return;
1009 	}
1010 	/* Recheckpoint to restore original checkpointed register state. */
1011 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1012 		 new->pid, new->thread.regs->msr);
1013 
1014 	tm_recheckpoint(&new->thread);
1015 
1016 	/*
1017 	 * The checkpointed state has been restored but the live state has
1018 	 * not, ensure all the math functionality is turned off to trigger
1019 	 * restore_math() to reload.
1020 	 */
1021 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1022 
1023 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1024 		 "(kernel msr 0x%lx)\n",
1025 		 new->pid, mfmsr());
1026 }
1027 
1028 static inline void __switch_to_tm(struct task_struct *prev,
1029 		struct task_struct *new)
1030 {
1031 	if (cpu_has_feature(CPU_FTR_TM)) {
1032 		if (tm_enabled(prev) || tm_enabled(new))
1033 			tm_enable();
1034 
1035 		if (tm_enabled(prev)) {
1036 			prev->thread.load_tm++;
1037 			tm_reclaim_task(prev);
1038 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1039 				prev->thread.regs->msr &= ~MSR_TM;
1040 		}
1041 
1042 		tm_recheckpoint_new_task(new);
1043 	}
1044 }
1045 
1046 /*
1047  * This is called if we are on the way out to userspace and the
1048  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1049  * FP and/or vector state and does so if necessary.
1050  * If userspace is inside a transaction (whether active or
1051  * suspended) and FP/VMX/VSX instructions have ever been enabled
1052  * inside that transaction, then we have to keep them enabled
1053  * and keep the FP/VMX/VSX state loaded while ever the transaction
1054  * continues.  The reason is that if we didn't, and subsequently
1055  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1056  * we don't know whether it's the same transaction, and thus we
1057  * don't know which of the checkpointed state and the transactional
1058  * state to use.
1059  */
1060 void restore_tm_state(struct pt_regs *regs)
1061 {
1062 	unsigned long msr_diff;
1063 
1064 	/*
1065 	 * This is the only moment we should clear TIF_RESTORE_TM as
1066 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1067 	 * again, anything else could lead to an incorrect ckpt_msr being
1068 	 * saved and therefore incorrect signal contexts.
1069 	 */
1070 	clear_thread_flag(TIF_RESTORE_TM);
1071 	if (!MSR_TM_ACTIVE(regs->msr))
1072 		return;
1073 
1074 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1075 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1076 
1077 	/* Ensure that restore_math() will restore */
1078 	if (msr_diff & MSR_FP)
1079 		current->thread.load_fp = 1;
1080 #ifdef CONFIG_ALTIVEC
1081 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1082 		current->thread.load_vec = 1;
1083 #endif
1084 	restore_math(regs);
1085 
1086 	regs->msr |= msr_diff;
1087 }
1088 
1089 #else
1090 #define tm_recheckpoint_new_task(new)
1091 #define __switch_to_tm(prev, new)
1092 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1093 
1094 static inline void save_sprs(struct thread_struct *t)
1095 {
1096 #ifdef CONFIG_ALTIVEC
1097 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1098 		t->vrsave = mfspr(SPRN_VRSAVE);
1099 #endif
1100 #ifdef CONFIG_PPC_BOOK3S_64
1101 	if (cpu_has_feature(CPU_FTR_DSCR))
1102 		t->dscr = mfspr(SPRN_DSCR);
1103 
1104 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1105 		t->bescr = mfspr(SPRN_BESCR);
1106 		t->ebbhr = mfspr(SPRN_EBBHR);
1107 		t->ebbrr = mfspr(SPRN_EBBRR);
1108 
1109 		t->fscr = mfspr(SPRN_FSCR);
1110 
1111 		/*
1112 		 * Note that the TAR is not available for use in the kernel.
1113 		 * (To provide this, the TAR should be backed up/restored on
1114 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1115 		 * this should be in pt_regs anyway (for debug).)
1116 		 */
1117 		t->tar = mfspr(SPRN_TAR);
1118 	}
1119 #endif
1120 
1121 	thread_pkey_regs_save(t);
1122 }
1123 
1124 static inline void restore_sprs(struct thread_struct *old_thread,
1125 				struct thread_struct *new_thread)
1126 {
1127 #ifdef CONFIG_ALTIVEC
1128 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1129 	    old_thread->vrsave != new_thread->vrsave)
1130 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1131 #endif
1132 #ifdef CONFIG_PPC_BOOK3S_64
1133 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1134 		u64 dscr = get_paca()->dscr_default;
1135 		if (new_thread->dscr_inherit)
1136 			dscr = new_thread->dscr;
1137 
1138 		if (old_thread->dscr != dscr)
1139 			mtspr(SPRN_DSCR, dscr);
1140 	}
1141 
1142 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1143 		if (old_thread->bescr != new_thread->bescr)
1144 			mtspr(SPRN_BESCR, new_thread->bescr);
1145 		if (old_thread->ebbhr != new_thread->ebbhr)
1146 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1147 		if (old_thread->ebbrr != new_thread->ebbrr)
1148 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1149 
1150 		if (old_thread->fscr != new_thread->fscr)
1151 			mtspr(SPRN_FSCR, new_thread->fscr);
1152 
1153 		if (old_thread->tar != new_thread->tar)
1154 			mtspr(SPRN_TAR, new_thread->tar);
1155 	}
1156 
1157 	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1158 	    old_thread->tidr != new_thread->tidr)
1159 		mtspr(SPRN_TIDR, new_thread->tidr);
1160 #endif
1161 
1162 	thread_pkey_regs_restore(new_thread, old_thread);
1163 }
1164 
1165 #ifdef CONFIG_PPC_BOOK3S_64
1166 #define CP_SIZE 128
1167 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1168 #endif
1169 
1170 struct task_struct *__switch_to(struct task_struct *prev,
1171 	struct task_struct *new)
1172 {
1173 	struct thread_struct *new_thread, *old_thread;
1174 	struct task_struct *last;
1175 #ifdef CONFIG_PPC_BOOK3S_64
1176 	struct ppc64_tlb_batch *batch;
1177 #endif
1178 
1179 	new_thread = &new->thread;
1180 	old_thread = &current->thread;
1181 
1182 	WARN_ON(!irqs_disabled());
1183 
1184 #ifdef CONFIG_PPC64
1185 	/*
1186 	 * Collect processor utilization data per process
1187 	 */
1188 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1189 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1190 		long unsigned start_tb, current_tb;
1191 		start_tb = old_thread->start_tb;
1192 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1193 		old_thread->accum_tb += (current_tb - start_tb);
1194 		new_thread->start_tb = current_tb;
1195 	}
1196 #endif /* CONFIG_PPC64 */
1197 
1198 #ifdef CONFIG_PPC_BOOK3S_64
1199 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1200 	if (batch->active) {
1201 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1202 		if (batch->index)
1203 			__flush_tlb_pending(batch);
1204 		batch->active = 0;
1205 	}
1206 #endif /* CONFIG_PPC_BOOK3S_64 */
1207 
1208 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1209 	switch_booke_debug_regs(&new->thread.debug);
1210 #else
1211 /*
1212  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1213  * schedule DABR
1214  */
1215 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1216 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1217 		__set_breakpoint(&new->thread.hw_brk);
1218 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1219 #endif
1220 
1221 	/*
1222 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1223 	 * change a number of them.
1224 	 */
1225 	save_sprs(&prev->thread);
1226 
1227 	/* Save FPU, Altivec, VSX and SPE state */
1228 	giveup_all(prev);
1229 
1230 	__switch_to_tm(prev, new);
1231 
1232 	if (!radix_enabled()) {
1233 		/*
1234 		 * We can't take a PMU exception inside _switch() since there
1235 		 * is a window where the kernel stack SLB and the kernel stack
1236 		 * are out of sync. Hard disable here.
1237 		 */
1238 		hard_irq_disable();
1239 	}
1240 
1241 	/*
1242 	 * Call restore_sprs() before calling _switch(). If we move it after
1243 	 * _switch() then we miss out on calling it for new tasks. The reason
1244 	 * for this is we manually create a stack frame for new tasks that
1245 	 * directly returns through ret_from_fork() or
1246 	 * ret_from_kernel_thread(). See copy_thread() for details.
1247 	 */
1248 	restore_sprs(old_thread, new_thread);
1249 
1250 	last = _switch(old_thread, new_thread);
1251 
1252 #ifdef CONFIG_PPC_BOOK3S_64
1253 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1254 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1255 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1256 		batch->active = 1;
1257 	}
1258 
1259 	if (current_thread_info()->task->thread.regs) {
1260 		restore_math(current_thread_info()->task->thread.regs);
1261 
1262 		/*
1263 		 * The copy-paste buffer can only store into foreign real
1264 		 * addresses, so unprivileged processes can not see the
1265 		 * data or use it in any way unless they have foreign real
1266 		 * mappings. If the new process has the foreign real address
1267 		 * mappings, we must issue a cp_abort to clear any state and
1268 		 * prevent snooping, corruption or a covert channel.
1269 		 *
1270 		 * DD1 allows paste into normal system memory so we do an
1271 		 * unpaired copy, rather than cp_abort, to clear the buffer,
1272 		 * since cp_abort is quite expensive.
1273 		 */
1274 		if (current_thread_info()->task->thread.used_vas) {
1275 			asm volatile(PPC_CP_ABORT);
1276 		} else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1277 			asm volatile(PPC_COPY(%0, %1)
1278 					: : "r"(dummy_copy_buffer), "r"(0));
1279 		}
1280 	}
1281 #endif /* CONFIG_PPC_BOOK3S_64 */
1282 
1283 	return last;
1284 }
1285 
1286 static int instructions_to_print = 16;
1287 
1288 static void show_instructions(struct pt_regs *regs)
1289 {
1290 	int i;
1291 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1292 			sizeof(int));
1293 
1294 	printk("Instruction dump:");
1295 
1296 	for (i = 0; i < instructions_to_print; i++) {
1297 		int instr;
1298 
1299 		if (!(i % 8))
1300 			pr_cont("\n");
1301 
1302 #if !defined(CONFIG_BOOKE)
1303 		/* If executing with the IMMU off, adjust pc rather
1304 		 * than print XXXXXXXX.
1305 		 */
1306 		if (!(regs->msr & MSR_IR))
1307 			pc = (unsigned long)phys_to_virt(pc);
1308 #endif
1309 
1310 		if (!__kernel_text_address(pc) ||
1311 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1312 			pr_cont("XXXXXXXX ");
1313 		} else {
1314 			if (regs->nip == pc)
1315 				pr_cont("<%08x> ", instr);
1316 			else
1317 				pr_cont("%08x ", instr);
1318 		}
1319 
1320 		pc += sizeof(int);
1321 	}
1322 
1323 	pr_cont("\n");
1324 }
1325 
1326 struct regbit {
1327 	unsigned long bit;
1328 	const char *name;
1329 };
1330 
1331 static struct regbit msr_bits[] = {
1332 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1333 	{MSR_SF,	"SF"},
1334 	{MSR_HV,	"HV"},
1335 #endif
1336 	{MSR_VEC,	"VEC"},
1337 	{MSR_VSX,	"VSX"},
1338 #ifdef CONFIG_BOOKE
1339 	{MSR_CE,	"CE"},
1340 #endif
1341 	{MSR_EE,	"EE"},
1342 	{MSR_PR,	"PR"},
1343 	{MSR_FP,	"FP"},
1344 	{MSR_ME,	"ME"},
1345 #ifdef CONFIG_BOOKE
1346 	{MSR_DE,	"DE"},
1347 #else
1348 	{MSR_SE,	"SE"},
1349 	{MSR_BE,	"BE"},
1350 #endif
1351 	{MSR_IR,	"IR"},
1352 	{MSR_DR,	"DR"},
1353 	{MSR_PMM,	"PMM"},
1354 #ifndef CONFIG_BOOKE
1355 	{MSR_RI,	"RI"},
1356 	{MSR_LE,	"LE"},
1357 #endif
1358 	{0,		NULL}
1359 };
1360 
1361 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1362 {
1363 	const char *s = "";
1364 
1365 	for (; bits->bit; ++bits)
1366 		if (val & bits->bit) {
1367 			pr_cont("%s%s", s, bits->name);
1368 			s = sep;
1369 		}
1370 }
1371 
1372 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1373 static struct regbit msr_tm_bits[] = {
1374 	{MSR_TS_T,	"T"},
1375 	{MSR_TS_S,	"S"},
1376 	{MSR_TM,	"E"},
1377 	{0,		NULL}
1378 };
1379 
1380 static void print_tm_bits(unsigned long val)
1381 {
1382 /*
1383  * This only prints something if at least one of the TM bit is set.
1384  * Inside the TM[], the output means:
1385  *   E: Enabled		(bit 32)
1386  *   S: Suspended	(bit 33)
1387  *   T: Transactional	(bit 34)
1388  */
1389 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1390 		pr_cont(",TM[");
1391 		print_bits(val, msr_tm_bits, "");
1392 		pr_cont("]");
1393 	}
1394 }
1395 #else
1396 static void print_tm_bits(unsigned long val) {}
1397 #endif
1398 
1399 static void print_msr_bits(unsigned long val)
1400 {
1401 	pr_cont("<");
1402 	print_bits(val, msr_bits, ",");
1403 	print_tm_bits(val);
1404 	pr_cont(">");
1405 }
1406 
1407 #ifdef CONFIG_PPC64
1408 #define REG		"%016lx"
1409 #define REGS_PER_LINE	4
1410 #define LAST_VOLATILE	13
1411 #else
1412 #define REG		"%08lx"
1413 #define REGS_PER_LINE	8
1414 #define LAST_VOLATILE	12
1415 #endif
1416 
1417 void show_regs(struct pt_regs * regs)
1418 {
1419 	int i, trap;
1420 
1421 	show_regs_print_info(KERN_DEFAULT);
1422 
1423 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1424 	       regs->nip, regs->link, regs->ctr);
1425 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1426 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1427 	printk("MSR:  "REG" ", regs->msr);
1428 	print_msr_bits(regs->msr);
1429 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1430 	trap = TRAP(regs);
1431 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1432 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1433 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1434 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1435 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1436 #else
1437 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1438 #endif
1439 #ifdef CONFIG_PPC64
1440 	pr_cont("SOFTE: %ld ", regs->softe);
1441 #endif
1442 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1443 	if (MSR_TM_ACTIVE(regs->msr))
1444 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1445 #endif
1446 
1447 	for (i = 0;  i < 32;  i++) {
1448 		if ((i % REGS_PER_LINE) == 0)
1449 			pr_cont("\nGPR%02d: ", i);
1450 		pr_cont(REG " ", regs->gpr[i]);
1451 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1452 			break;
1453 	}
1454 	pr_cont("\n");
1455 #ifdef CONFIG_KALLSYMS
1456 	/*
1457 	 * Lookup NIP late so we have the best change of getting the
1458 	 * above info out without failing
1459 	 */
1460 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1461 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1462 #endif
1463 	show_stack(current, (unsigned long *) regs->gpr[1]);
1464 	if (!user_mode(regs))
1465 		show_instructions(regs);
1466 }
1467 
1468 void flush_thread(void)
1469 {
1470 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1471 	flush_ptrace_hw_breakpoint(current);
1472 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1473 	set_debug_reg_defaults(&current->thread);
1474 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1475 }
1476 
1477 int set_thread_uses_vas(void)
1478 {
1479 #ifdef CONFIG_PPC_BOOK3S_64
1480 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1481 		return -EINVAL;
1482 
1483 	current->thread.used_vas = 1;
1484 
1485 	/*
1486 	 * Even a process that has no foreign real address mapping can use
1487 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1488 	 * to clear any pending COPY and prevent a covert channel.
1489 	 *
1490 	 * __switch_to() will issue CP_ABORT on future context switches.
1491 	 */
1492 	asm volatile(PPC_CP_ABORT);
1493 
1494 #endif /* CONFIG_PPC_BOOK3S_64 */
1495 	return 0;
1496 }
1497 
1498 #ifdef CONFIG_PPC64
1499 static DEFINE_SPINLOCK(vas_thread_id_lock);
1500 static DEFINE_IDA(vas_thread_ida);
1501 
1502 /*
1503  * We need to assign a unique thread id to each thread in a process.
1504  *
1505  * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1506  * is intended to be used to direct an ASB_Notify from the hardware to the
1507  * thread, when a suitable event occurs in the system.
1508  *
1509  * One such event is a "paste" instruction in the context of Fast Thread
1510  * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1511  * (VAS) in POWER9.
1512  *
1513  * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1514  * the problem is that task_pid_nr() is not yet available copy_thread() is
1515  * called. Fixing that would require changing more intrusive arch-neutral
1516  * code in code path in copy_process()?.
1517  *
1518  * Further, to assign unique TIDRs within each process, we need an atomic
1519  * field (or an IDR) in task_struct, which again intrudes into the arch-
1520  * neutral code. So try to assign globally unique TIDRs for now.
1521  *
1522  * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1523  *	 For now, only threads that expect to be notified by the VAS
1524  *	 hardware need a TIDR value and we assign values > 0 for those.
1525  */
1526 #define MAX_THREAD_CONTEXT	((1 << 16) - 1)
1527 static int assign_thread_tidr(void)
1528 {
1529 	int index;
1530 	int err;
1531 	unsigned long flags;
1532 
1533 again:
1534 	if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1535 		return -ENOMEM;
1536 
1537 	spin_lock_irqsave(&vas_thread_id_lock, flags);
1538 	err = ida_get_new_above(&vas_thread_ida, 1, &index);
1539 	spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1540 
1541 	if (err == -EAGAIN)
1542 		goto again;
1543 	else if (err)
1544 		return err;
1545 
1546 	if (index > MAX_THREAD_CONTEXT) {
1547 		spin_lock_irqsave(&vas_thread_id_lock, flags);
1548 		ida_remove(&vas_thread_ida, index);
1549 		spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1550 		return -ENOMEM;
1551 	}
1552 
1553 	return index;
1554 }
1555 
1556 static void free_thread_tidr(int id)
1557 {
1558 	unsigned long flags;
1559 
1560 	spin_lock_irqsave(&vas_thread_id_lock, flags);
1561 	ida_remove(&vas_thread_ida, id);
1562 	spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1563 }
1564 
1565 /*
1566  * Clear any TIDR value assigned to this thread.
1567  */
1568 void clear_thread_tidr(struct task_struct *t)
1569 {
1570 	if (!t->thread.tidr)
1571 		return;
1572 
1573 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1574 		WARN_ON_ONCE(1);
1575 		return;
1576 	}
1577 
1578 	mtspr(SPRN_TIDR, 0);
1579 	free_thread_tidr(t->thread.tidr);
1580 	t->thread.tidr = 0;
1581 }
1582 
1583 void arch_release_task_struct(struct task_struct *t)
1584 {
1585 	clear_thread_tidr(t);
1586 }
1587 
1588 /*
1589  * Assign a unique TIDR (thread id) for task @t and set it in the thread
1590  * structure. For now, we only support setting TIDR for 'current' task.
1591  */
1592 int set_thread_tidr(struct task_struct *t)
1593 {
1594 	int rc;
1595 
1596 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1597 		return -EINVAL;
1598 
1599 	if (t != current)
1600 		return -EINVAL;
1601 
1602 	if (t->thread.tidr)
1603 		return 0;
1604 
1605 	rc = assign_thread_tidr();
1606 	if (rc < 0)
1607 		return rc;
1608 
1609 	t->thread.tidr = rc;
1610 	mtspr(SPRN_TIDR, t->thread.tidr);
1611 
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(set_thread_tidr);
1615 
1616 #endif /* CONFIG_PPC64 */
1617 
1618 void
1619 release_thread(struct task_struct *t)
1620 {
1621 }
1622 
1623 /*
1624  * this gets called so that we can store coprocessor state into memory and
1625  * copy the current task into the new thread.
1626  */
1627 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1628 {
1629 	flush_all_to_thread(src);
1630 	/*
1631 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1632 	 * flush but it removes the checkpointed state from the current CPU and
1633 	 * transitions the CPU out of TM mode.  Hence we need to call
1634 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1635 	 * checkpointed state back and the TM mode.
1636 	 *
1637 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1638 	 * dst is only important for __switch_to()
1639 	 */
1640 	__switch_to_tm(src, src);
1641 
1642 	*dst = *src;
1643 
1644 	clear_task_ebb(dst);
1645 
1646 	return 0;
1647 }
1648 
1649 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1650 {
1651 #ifdef CONFIG_PPC_BOOK3S_64
1652 	unsigned long sp_vsid;
1653 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1654 
1655 	if (radix_enabled())
1656 		return;
1657 
1658 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1659 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1660 			<< SLB_VSID_SHIFT_1T;
1661 	else
1662 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1663 			<< SLB_VSID_SHIFT;
1664 	sp_vsid |= SLB_VSID_KERNEL | llp;
1665 	p->thread.ksp_vsid = sp_vsid;
1666 #endif
1667 }
1668 
1669 /*
1670  * Copy a thread..
1671  */
1672 
1673 /*
1674  * Copy architecture-specific thread state
1675  */
1676 int copy_thread(unsigned long clone_flags, unsigned long usp,
1677 		unsigned long kthread_arg, struct task_struct *p)
1678 {
1679 	struct pt_regs *childregs, *kregs;
1680 	extern void ret_from_fork(void);
1681 	extern void ret_from_kernel_thread(void);
1682 	void (*f)(void);
1683 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1684 	struct thread_info *ti = task_thread_info(p);
1685 
1686 	klp_init_thread_info(ti);
1687 
1688 	/* Copy registers */
1689 	sp -= sizeof(struct pt_regs);
1690 	childregs = (struct pt_regs *) sp;
1691 	if (unlikely(p->flags & PF_KTHREAD)) {
1692 		/* kernel thread */
1693 		memset(childregs, 0, sizeof(struct pt_regs));
1694 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1695 		/* function */
1696 		if (usp)
1697 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1698 #ifdef CONFIG_PPC64
1699 		clear_tsk_thread_flag(p, TIF_32BIT);
1700 		childregs->softe = IRQS_ENABLED;
1701 #endif
1702 		childregs->gpr[15] = kthread_arg;
1703 		p->thread.regs = NULL;	/* no user register state */
1704 		ti->flags |= _TIF_RESTOREALL;
1705 		f = ret_from_kernel_thread;
1706 	} else {
1707 		/* user thread */
1708 		struct pt_regs *regs = current_pt_regs();
1709 		CHECK_FULL_REGS(regs);
1710 		*childregs = *regs;
1711 		if (usp)
1712 			childregs->gpr[1] = usp;
1713 		p->thread.regs = childregs;
1714 		childregs->gpr[3] = 0;  /* Result from fork() */
1715 		if (clone_flags & CLONE_SETTLS) {
1716 #ifdef CONFIG_PPC64
1717 			if (!is_32bit_task())
1718 				childregs->gpr[13] = childregs->gpr[6];
1719 			else
1720 #endif
1721 				childregs->gpr[2] = childregs->gpr[6];
1722 		}
1723 
1724 		f = ret_from_fork;
1725 	}
1726 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1727 	sp -= STACK_FRAME_OVERHEAD;
1728 
1729 	/*
1730 	 * The way this works is that at some point in the future
1731 	 * some task will call _switch to switch to the new task.
1732 	 * That will pop off the stack frame created below and start
1733 	 * the new task running at ret_from_fork.  The new task will
1734 	 * do some house keeping and then return from the fork or clone
1735 	 * system call, using the stack frame created above.
1736 	 */
1737 	((unsigned long *)sp)[0] = 0;
1738 	sp -= sizeof(struct pt_regs);
1739 	kregs = (struct pt_regs *) sp;
1740 	sp -= STACK_FRAME_OVERHEAD;
1741 	p->thread.ksp = sp;
1742 #ifdef CONFIG_PPC32
1743 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1744 				_ALIGN_UP(sizeof(struct thread_info), 16);
1745 #endif
1746 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1747 	p->thread.ptrace_bps[0] = NULL;
1748 #endif
1749 
1750 	p->thread.fp_save_area = NULL;
1751 #ifdef CONFIG_ALTIVEC
1752 	p->thread.vr_save_area = NULL;
1753 #endif
1754 
1755 	setup_ksp_vsid(p, sp);
1756 
1757 #ifdef CONFIG_PPC64
1758 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1759 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1760 		p->thread.dscr = mfspr(SPRN_DSCR);
1761 	}
1762 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1763 		p->thread.ppr = INIT_PPR;
1764 
1765 	p->thread.tidr = 0;
1766 #endif
1767 	kregs->nip = ppc_function_entry(f);
1768 	return 0;
1769 }
1770 
1771 /*
1772  * Set up a thread for executing a new program
1773  */
1774 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1775 {
1776 #ifdef CONFIG_PPC64
1777 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1778 #endif
1779 
1780 	/*
1781 	 * If we exec out of a kernel thread then thread.regs will not be
1782 	 * set.  Do it now.
1783 	 */
1784 	if (!current->thread.regs) {
1785 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1786 		current->thread.regs = regs - 1;
1787 	}
1788 
1789 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1790 	/*
1791 	 * Clear any transactional state, we're exec()ing. The cause is
1792 	 * not important as there will never be a recheckpoint so it's not
1793 	 * user visible.
1794 	 */
1795 	if (MSR_TM_SUSPENDED(mfmsr()))
1796 		tm_reclaim_current(0);
1797 #endif
1798 
1799 	memset(regs->gpr, 0, sizeof(regs->gpr));
1800 	regs->ctr = 0;
1801 	regs->link = 0;
1802 	regs->xer = 0;
1803 	regs->ccr = 0;
1804 	regs->gpr[1] = sp;
1805 
1806 	/*
1807 	 * We have just cleared all the nonvolatile GPRs, so make
1808 	 * FULL_REGS(regs) return true.  This is necessary to allow
1809 	 * ptrace to examine the thread immediately after exec.
1810 	 */
1811 	regs->trap &= ~1UL;
1812 
1813 #ifdef CONFIG_PPC32
1814 	regs->mq = 0;
1815 	regs->nip = start;
1816 	regs->msr = MSR_USER;
1817 #else
1818 	if (!is_32bit_task()) {
1819 		unsigned long entry;
1820 
1821 		if (is_elf2_task()) {
1822 			/* Look ma, no function descriptors! */
1823 			entry = start;
1824 
1825 			/*
1826 			 * Ulrich says:
1827 			 *   The latest iteration of the ABI requires that when
1828 			 *   calling a function (at its global entry point),
1829 			 *   the caller must ensure r12 holds the entry point
1830 			 *   address (so that the function can quickly
1831 			 *   establish addressability).
1832 			 */
1833 			regs->gpr[12] = start;
1834 			/* Make sure that's restored on entry to userspace. */
1835 			set_thread_flag(TIF_RESTOREALL);
1836 		} else {
1837 			unsigned long toc;
1838 
1839 			/* start is a relocated pointer to the function
1840 			 * descriptor for the elf _start routine.  The first
1841 			 * entry in the function descriptor is the entry
1842 			 * address of _start and the second entry is the TOC
1843 			 * value we need to use.
1844 			 */
1845 			__get_user(entry, (unsigned long __user *)start);
1846 			__get_user(toc, (unsigned long __user *)start+1);
1847 
1848 			/* Check whether the e_entry function descriptor entries
1849 			 * need to be relocated before we can use them.
1850 			 */
1851 			if (load_addr != 0) {
1852 				entry += load_addr;
1853 				toc   += load_addr;
1854 			}
1855 			regs->gpr[2] = toc;
1856 		}
1857 		regs->nip = entry;
1858 		regs->msr = MSR_USER64;
1859 	} else {
1860 		regs->nip = start;
1861 		regs->gpr[2] = 0;
1862 		regs->msr = MSR_USER32;
1863 	}
1864 #endif
1865 #ifdef CONFIG_VSX
1866 	current->thread.used_vsr = 0;
1867 #endif
1868 	current->thread.load_fp = 0;
1869 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1870 	current->thread.fp_save_area = NULL;
1871 #ifdef CONFIG_ALTIVEC
1872 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1873 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1874 	current->thread.vr_save_area = NULL;
1875 	current->thread.vrsave = 0;
1876 	current->thread.used_vr = 0;
1877 	current->thread.load_vec = 0;
1878 #endif /* CONFIG_ALTIVEC */
1879 #ifdef CONFIG_SPE
1880 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1881 	current->thread.acc = 0;
1882 	current->thread.spefscr = 0;
1883 	current->thread.used_spe = 0;
1884 #endif /* CONFIG_SPE */
1885 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1886 	current->thread.tm_tfhar = 0;
1887 	current->thread.tm_texasr = 0;
1888 	current->thread.tm_tfiar = 0;
1889 	current->thread.load_tm = 0;
1890 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1891 
1892 	thread_pkey_regs_init(&current->thread);
1893 }
1894 EXPORT_SYMBOL(start_thread);
1895 
1896 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1897 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1898 
1899 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1900 {
1901 	struct pt_regs *regs = tsk->thread.regs;
1902 
1903 	/* This is a bit hairy.  If we are an SPE enabled  processor
1904 	 * (have embedded fp) we store the IEEE exception enable flags in
1905 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1906 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1907 	if (val & PR_FP_EXC_SW_ENABLE) {
1908 #ifdef CONFIG_SPE
1909 		if (cpu_has_feature(CPU_FTR_SPE)) {
1910 			/*
1911 			 * When the sticky exception bits are set
1912 			 * directly by userspace, it must call prctl
1913 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1914 			 * in the existing prctl settings) or
1915 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1916 			 * the bits being set).  <fenv.h> functions
1917 			 * saving and restoring the whole
1918 			 * floating-point environment need to do so
1919 			 * anyway to restore the prctl settings from
1920 			 * the saved environment.
1921 			 */
1922 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1923 			tsk->thread.fpexc_mode = val &
1924 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1925 			return 0;
1926 		} else {
1927 			return -EINVAL;
1928 		}
1929 #else
1930 		return -EINVAL;
1931 #endif
1932 	}
1933 
1934 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1935 	 * __pack_fe01 use do not overlap with bits used for
1936 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1937 	 * on CONFIG_SPE implementations are reserved so writing to
1938 	 * them does not change anything */
1939 	if (val > PR_FP_EXC_PRECISE)
1940 		return -EINVAL;
1941 	tsk->thread.fpexc_mode = __pack_fe01(val);
1942 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1943 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1944 			| tsk->thread.fpexc_mode;
1945 	return 0;
1946 }
1947 
1948 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1949 {
1950 	unsigned int val;
1951 
1952 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1953 #ifdef CONFIG_SPE
1954 		if (cpu_has_feature(CPU_FTR_SPE)) {
1955 			/*
1956 			 * When the sticky exception bits are set
1957 			 * directly by userspace, it must call prctl
1958 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1959 			 * in the existing prctl settings) or
1960 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1961 			 * the bits being set).  <fenv.h> functions
1962 			 * saving and restoring the whole
1963 			 * floating-point environment need to do so
1964 			 * anyway to restore the prctl settings from
1965 			 * the saved environment.
1966 			 */
1967 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1968 			val = tsk->thread.fpexc_mode;
1969 		} else
1970 			return -EINVAL;
1971 #else
1972 		return -EINVAL;
1973 #endif
1974 	else
1975 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1976 	return put_user(val, (unsigned int __user *) adr);
1977 }
1978 
1979 int set_endian(struct task_struct *tsk, unsigned int val)
1980 {
1981 	struct pt_regs *regs = tsk->thread.regs;
1982 
1983 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1984 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1985 		return -EINVAL;
1986 
1987 	if (regs == NULL)
1988 		return -EINVAL;
1989 
1990 	if (val == PR_ENDIAN_BIG)
1991 		regs->msr &= ~MSR_LE;
1992 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1993 		regs->msr |= MSR_LE;
1994 	else
1995 		return -EINVAL;
1996 
1997 	return 0;
1998 }
1999 
2000 int get_endian(struct task_struct *tsk, unsigned long adr)
2001 {
2002 	struct pt_regs *regs = tsk->thread.regs;
2003 	unsigned int val;
2004 
2005 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2006 	    !cpu_has_feature(CPU_FTR_REAL_LE))
2007 		return -EINVAL;
2008 
2009 	if (regs == NULL)
2010 		return -EINVAL;
2011 
2012 	if (regs->msr & MSR_LE) {
2013 		if (cpu_has_feature(CPU_FTR_REAL_LE))
2014 			val = PR_ENDIAN_LITTLE;
2015 		else
2016 			val = PR_ENDIAN_PPC_LITTLE;
2017 	} else
2018 		val = PR_ENDIAN_BIG;
2019 
2020 	return put_user(val, (unsigned int __user *)adr);
2021 }
2022 
2023 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2024 {
2025 	tsk->thread.align_ctl = val;
2026 	return 0;
2027 }
2028 
2029 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2030 {
2031 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2032 }
2033 
2034 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2035 				  unsigned long nbytes)
2036 {
2037 	unsigned long stack_page;
2038 	unsigned long cpu = task_cpu(p);
2039 
2040 	/*
2041 	 * Avoid crashing if the stack has overflowed and corrupted
2042 	 * task_cpu(p), which is in the thread_info struct.
2043 	 */
2044 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
2045 		stack_page = (unsigned long) hardirq_ctx[cpu];
2046 		if (sp >= stack_page + sizeof(struct thread_struct)
2047 		    && sp <= stack_page + THREAD_SIZE - nbytes)
2048 			return 1;
2049 
2050 		stack_page = (unsigned long) softirq_ctx[cpu];
2051 		if (sp >= stack_page + sizeof(struct thread_struct)
2052 		    && sp <= stack_page + THREAD_SIZE - nbytes)
2053 			return 1;
2054 	}
2055 	return 0;
2056 }
2057 
2058 int validate_sp(unsigned long sp, struct task_struct *p,
2059 		       unsigned long nbytes)
2060 {
2061 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2062 
2063 	if (sp >= stack_page + sizeof(struct thread_struct)
2064 	    && sp <= stack_page + THREAD_SIZE - nbytes)
2065 		return 1;
2066 
2067 	return valid_irq_stack(sp, p, nbytes);
2068 }
2069 
2070 EXPORT_SYMBOL(validate_sp);
2071 
2072 unsigned long get_wchan(struct task_struct *p)
2073 {
2074 	unsigned long ip, sp;
2075 	int count = 0;
2076 
2077 	if (!p || p == current || p->state == TASK_RUNNING)
2078 		return 0;
2079 
2080 	sp = p->thread.ksp;
2081 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2082 		return 0;
2083 
2084 	do {
2085 		sp = *(unsigned long *)sp;
2086 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2087 		    p->state == TASK_RUNNING)
2088 			return 0;
2089 		if (count > 0) {
2090 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2091 			if (!in_sched_functions(ip))
2092 				return ip;
2093 		}
2094 	} while (count++ < 16);
2095 	return 0;
2096 }
2097 
2098 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2099 
2100 void show_stack(struct task_struct *tsk, unsigned long *stack)
2101 {
2102 	unsigned long sp, ip, lr, newsp;
2103 	int count = 0;
2104 	int firstframe = 1;
2105 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2106 	int curr_frame = current->curr_ret_stack;
2107 	extern void return_to_handler(void);
2108 	unsigned long rth = (unsigned long)return_to_handler;
2109 #endif
2110 
2111 	sp = (unsigned long) stack;
2112 	if (tsk == NULL)
2113 		tsk = current;
2114 	if (sp == 0) {
2115 		if (tsk == current)
2116 			sp = current_stack_pointer();
2117 		else
2118 			sp = tsk->thread.ksp;
2119 	}
2120 
2121 	lr = 0;
2122 	printk("Call Trace:\n");
2123 	do {
2124 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2125 			return;
2126 
2127 		stack = (unsigned long *) sp;
2128 		newsp = stack[0];
2129 		ip = stack[STACK_FRAME_LR_SAVE];
2130 		if (!firstframe || ip != lr) {
2131 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2132 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2133 			if ((ip == rth) && curr_frame >= 0) {
2134 				pr_cont(" (%pS)",
2135 				       (void *)current->ret_stack[curr_frame].ret);
2136 				curr_frame--;
2137 			}
2138 #endif
2139 			if (firstframe)
2140 				pr_cont(" (unreliable)");
2141 			pr_cont("\n");
2142 		}
2143 		firstframe = 0;
2144 
2145 		/*
2146 		 * See if this is an exception frame.
2147 		 * We look for the "regshere" marker in the current frame.
2148 		 */
2149 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2150 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2151 			struct pt_regs *regs = (struct pt_regs *)
2152 				(sp + STACK_FRAME_OVERHEAD);
2153 			lr = regs->link;
2154 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2155 			       regs->trap, (void *)regs->nip, (void *)lr);
2156 			firstframe = 1;
2157 		}
2158 
2159 		sp = newsp;
2160 	} while (count++ < kstack_depth_to_print);
2161 }
2162 
2163 #ifdef CONFIG_PPC64
2164 /* Called with hard IRQs off */
2165 void notrace __ppc64_runlatch_on(void)
2166 {
2167 	struct thread_info *ti = current_thread_info();
2168 
2169 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2170 		/*
2171 		 * Least significant bit (RUN) is the only writable bit of
2172 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2173 		 * earliest ISA where this is the case, but it's convenient.
2174 		 */
2175 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2176 	} else {
2177 		unsigned long ctrl;
2178 
2179 		/*
2180 		 * Some architectures (e.g., Cell) have writable fields other
2181 		 * than RUN, so do the read-modify-write.
2182 		 */
2183 		ctrl = mfspr(SPRN_CTRLF);
2184 		ctrl |= CTRL_RUNLATCH;
2185 		mtspr(SPRN_CTRLT, ctrl);
2186 	}
2187 
2188 	ti->local_flags |= _TLF_RUNLATCH;
2189 }
2190 
2191 /* Called with hard IRQs off */
2192 void notrace __ppc64_runlatch_off(void)
2193 {
2194 	struct thread_info *ti = current_thread_info();
2195 
2196 	ti->local_flags &= ~_TLF_RUNLATCH;
2197 
2198 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2199 		mtspr(SPRN_CTRLT, 0);
2200 	} else {
2201 		unsigned long ctrl;
2202 
2203 		ctrl = mfspr(SPRN_CTRLF);
2204 		ctrl &= ~CTRL_RUNLATCH;
2205 		mtspr(SPRN_CTRLT, ctrl);
2206 	}
2207 }
2208 #endif /* CONFIG_PPC64 */
2209 
2210 unsigned long arch_align_stack(unsigned long sp)
2211 {
2212 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2213 		sp -= get_random_int() & ~PAGE_MASK;
2214 	return sp & ~0xf;
2215 }
2216 
2217 static inline unsigned long brk_rnd(void)
2218 {
2219         unsigned long rnd = 0;
2220 
2221 	/* 8MB for 32bit, 1GB for 64bit */
2222 	if (is_32bit_task())
2223 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2224 	else
2225 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2226 
2227 	return rnd << PAGE_SHIFT;
2228 }
2229 
2230 unsigned long arch_randomize_brk(struct mm_struct *mm)
2231 {
2232 	unsigned long base = mm->brk;
2233 	unsigned long ret;
2234 
2235 #ifdef CONFIG_PPC_BOOK3S_64
2236 	/*
2237 	 * If we are using 1TB segments and we are allowed to randomise
2238 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2239 	 * segment. Otherwise the heap will be in the bottom 1TB
2240 	 * which always uses 256MB segments and this may result in a
2241 	 * performance penalty. We don't need to worry about radix. For
2242 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2243 	 */
2244 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2245 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2246 #endif
2247 
2248 	ret = PAGE_ALIGN(base + brk_rnd());
2249 
2250 	if (ret < mm->brk)
2251 		return mm->brk;
2252 
2253 	return ret;
2254 }
2255 
2256