1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 47 #include <asm/pgtable.h> 48 #include <asm/io.h> 49 #include <asm/processor.h> 50 #include <asm/mmu.h> 51 #include <asm/prom.h> 52 #include <asm/machdep.h> 53 #include <asm/time.h> 54 #include <asm/runlatch.h> 55 #include <asm/syscalls.h> 56 #include <asm/switch_to.h> 57 #include <asm/tm.h> 58 #include <asm/debug.h> 59 #ifdef CONFIG_PPC64 60 #include <asm/firmware.h> 61 #include <asm/hw_irq.h> 62 #endif 63 #include <asm/code-patching.h> 64 #include <asm/exec.h> 65 #include <asm/livepatch.h> 66 #include <asm/cpu_has_feature.h> 67 #include <asm/asm-prototypes.h> 68 69 #include <linux/kprobes.h> 70 #include <linux/kdebug.h> 71 72 /* Transactional Memory debug */ 73 #ifdef TM_DEBUG_SW 74 #define TM_DEBUG(x...) printk(KERN_INFO x) 75 #else 76 #define TM_DEBUG(x...) do { } while(0) 77 #endif 78 79 extern unsigned long _get_SP(void); 80 81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 82 /* 83 * Are we running in "Suspend disabled" mode? If so we have to block any 84 * sigreturn that would get us into suspended state, and we also warn in some 85 * other paths that we should never reach with suspend disabled. 86 */ 87 bool tm_suspend_disabled __ro_after_init = false; 88 89 static void check_if_tm_restore_required(struct task_struct *tsk) 90 { 91 /* 92 * If we are saving the current thread's registers, and the 93 * thread is in a transactional state, set the TIF_RESTORE_TM 94 * bit so that we know to restore the registers before 95 * returning to userspace. 96 */ 97 if (tsk == current && tsk->thread.regs && 98 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 99 !test_thread_flag(TIF_RESTORE_TM)) { 100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 101 set_thread_flag(TIF_RESTORE_TM); 102 } 103 } 104 105 static inline bool msr_tm_active(unsigned long msr) 106 { 107 return MSR_TM_ACTIVE(msr); 108 } 109 110 static bool tm_active_with_fp(struct task_struct *tsk) 111 { 112 return msr_tm_active(tsk->thread.regs->msr) && 113 (tsk->thread.ckpt_regs.msr & MSR_FP); 114 } 115 116 static bool tm_active_with_altivec(struct task_struct *tsk) 117 { 118 return msr_tm_active(tsk->thread.regs->msr) && 119 (tsk->thread.ckpt_regs.msr & MSR_VEC); 120 } 121 #else 122 static inline bool msr_tm_active(unsigned long msr) { return false; } 123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 127 128 bool strict_msr_control; 129 EXPORT_SYMBOL(strict_msr_control); 130 131 static int __init enable_strict_msr_control(char *str) 132 { 133 strict_msr_control = true; 134 pr_info("Enabling strict facility control\n"); 135 136 return 0; 137 } 138 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 139 140 unsigned long msr_check_and_set(unsigned long bits) 141 { 142 unsigned long oldmsr = mfmsr(); 143 unsigned long newmsr; 144 145 newmsr = oldmsr | bits; 146 147 #ifdef CONFIG_VSX 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 149 newmsr |= MSR_VSX; 150 #endif 151 152 if (oldmsr != newmsr) 153 mtmsr_isync(newmsr); 154 155 return newmsr; 156 } 157 158 void __msr_check_and_clear(unsigned long bits) 159 { 160 unsigned long oldmsr = mfmsr(); 161 unsigned long newmsr; 162 163 newmsr = oldmsr & ~bits; 164 165 #ifdef CONFIG_VSX 166 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 167 newmsr &= ~MSR_VSX; 168 #endif 169 170 if (oldmsr != newmsr) 171 mtmsr_isync(newmsr); 172 } 173 EXPORT_SYMBOL(__msr_check_and_clear); 174 175 #ifdef CONFIG_PPC_FPU 176 static void __giveup_fpu(struct task_struct *tsk) 177 { 178 unsigned long msr; 179 180 save_fpu(tsk); 181 msr = tsk->thread.regs->msr; 182 msr &= ~MSR_FP; 183 #ifdef CONFIG_VSX 184 if (cpu_has_feature(CPU_FTR_VSX)) 185 msr &= ~MSR_VSX; 186 #endif 187 tsk->thread.regs->msr = msr; 188 } 189 190 void giveup_fpu(struct task_struct *tsk) 191 { 192 check_if_tm_restore_required(tsk); 193 194 msr_check_and_set(MSR_FP); 195 __giveup_fpu(tsk); 196 msr_check_and_clear(MSR_FP); 197 } 198 EXPORT_SYMBOL(giveup_fpu); 199 200 /* 201 * Make sure the floating-point register state in the 202 * the thread_struct is up to date for task tsk. 203 */ 204 void flush_fp_to_thread(struct task_struct *tsk) 205 { 206 if (tsk->thread.regs) { 207 /* 208 * We need to disable preemption here because if we didn't, 209 * another process could get scheduled after the regs->msr 210 * test but before we have finished saving the FP registers 211 * to the thread_struct. That process could take over the 212 * FPU, and then when we get scheduled again we would store 213 * bogus values for the remaining FP registers. 214 */ 215 preempt_disable(); 216 if (tsk->thread.regs->msr & MSR_FP) { 217 /* 218 * This should only ever be called for current or 219 * for a stopped child process. Since we save away 220 * the FP register state on context switch, 221 * there is something wrong if a stopped child appears 222 * to still have its FP state in the CPU registers. 223 */ 224 BUG_ON(tsk != current); 225 giveup_fpu(tsk); 226 } 227 preempt_enable(); 228 } 229 } 230 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 231 232 void enable_kernel_fp(void) 233 { 234 unsigned long cpumsr; 235 236 WARN_ON(preemptible()); 237 238 cpumsr = msr_check_and_set(MSR_FP); 239 240 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 241 check_if_tm_restore_required(current); 242 /* 243 * If a thread has already been reclaimed then the 244 * checkpointed registers are on the CPU but have definitely 245 * been saved by the reclaim code. Don't need to and *cannot* 246 * giveup as this would save to the 'live' structure not the 247 * checkpointed structure. 248 */ 249 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 250 return; 251 __giveup_fpu(current); 252 } 253 } 254 EXPORT_SYMBOL(enable_kernel_fp); 255 256 static int restore_fp(struct task_struct *tsk) 257 { 258 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 259 load_fp_state(¤t->thread.fp_state); 260 current->thread.load_fp++; 261 return 1; 262 } 263 return 0; 264 } 265 #else 266 static int restore_fp(struct task_struct *tsk) { return 0; } 267 #endif /* CONFIG_PPC_FPU */ 268 269 #ifdef CONFIG_ALTIVEC 270 #define loadvec(thr) ((thr).load_vec) 271 272 static void __giveup_altivec(struct task_struct *tsk) 273 { 274 unsigned long msr; 275 276 save_altivec(tsk); 277 msr = tsk->thread.regs->msr; 278 msr &= ~MSR_VEC; 279 #ifdef CONFIG_VSX 280 if (cpu_has_feature(CPU_FTR_VSX)) 281 msr &= ~MSR_VSX; 282 #endif 283 tsk->thread.regs->msr = msr; 284 } 285 286 void giveup_altivec(struct task_struct *tsk) 287 { 288 check_if_tm_restore_required(tsk); 289 290 msr_check_and_set(MSR_VEC); 291 __giveup_altivec(tsk); 292 msr_check_and_clear(MSR_VEC); 293 } 294 EXPORT_SYMBOL(giveup_altivec); 295 296 void enable_kernel_altivec(void) 297 { 298 unsigned long cpumsr; 299 300 WARN_ON(preemptible()); 301 302 cpumsr = msr_check_and_set(MSR_VEC); 303 304 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 305 check_if_tm_restore_required(current); 306 /* 307 * If a thread has already been reclaimed then the 308 * checkpointed registers are on the CPU but have definitely 309 * been saved by the reclaim code. Don't need to and *cannot* 310 * giveup as this would save to the 'live' structure not the 311 * checkpointed structure. 312 */ 313 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 314 return; 315 __giveup_altivec(current); 316 } 317 } 318 EXPORT_SYMBOL(enable_kernel_altivec); 319 320 /* 321 * Make sure the VMX/Altivec register state in the 322 * the thread_struct is up to date for task tsk. 323 */ 324 void flush_altivec_to_thread(struct task_struct *tsk) 325 { 326 if (tsk->thread.regs) { 327 preempt_disable(); 328 if (tsk->thread.regs->msr & MSR_VEC) { 329 BUG_ON(tsk != current); 330 giveup_altivec(tsk); 331 } 332 preempt_enable(); 333 } 334 } 335 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 336 337 static int restore_altivec(struct task_struct *tsk) 338 { 339 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 340 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 341 load_vr_state(&tsk->thread.vr_state); 342 tsk->thread.used_vr = 1; 343 tsk->thread.load_vec++; 344 345 return 1; 346 } 347 return 0; 348 } 349 #else 350 #define loadvec(thr) 0 351 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 352 #endif /* CONFIG_ALTIVEC */ 353 354 #ifdef CONFIG_VSX 355 static void __giveup_vsx(struct task_struct *tsk) 356 { 357 unsigned long msr = tsk->thread.regs->msr; 358 359 /* 360 * We should never be ssetting MSR_VSX without also setting 361 * MSR_FP and MSR_VEC 362 */ 363 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 364 365 /* __giveup_fpu will clear MSR_VSX */ 366 if (msr & MSR_FP) 367 __giveup_fpu(tsk); 368 if (msr & MSR_VEC) 369 __giveup_altivec(tsk); 370 } 371 372 static void giveup_vsx(struct task_struct *tsk) 373 { 374 check_if_tm_restore_required(tsk); 375 376 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 377 __giveup_vsx(tsk); 378 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 379 } 380 381 void enable_kernel_vsx(void) 382 { 383 unsigned long cpumsr; 384 385 WARN_ON(preemptible()); 386 387 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 388 389 if (current->thread.regs && 390 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 391 check_if_tm_restore_required(current); 392 /* 393 * If a thread has already been reclaimed then the 394 * checkpointed registers are on the CPU but have definitely 395 * been saved by the reclaim code. Don't need to and *cannot* 396 * giveup as this would save to the 'live' structure not the 397 * checkpointed structure. 398 */ 399 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 400 return; 401 __giveup_vsx(current); 402 } 403 } 404 EXPORT_SYMBOL(enable_kernel_vsx); 405 406 void flush_vsx_to_thread(struct task_struct *tsk) 407 { 408 if (tsk->thread.regs) { 409 preempt_disable(); 410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 411 BUG_ON(tsk != current); 412 giveup_vsx(tsk); 413 } 414 preempt_enable(); 415 } 416 } 417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 418 419 static int restore_vsx(struct task_struct *tsk) 420 { 421 if (cpu_has_feature(CPU_FTR_VSX)) { 422 tsk->thread.used_vsr = 1; 423 return 1; 424 } 425 426 return 0; 427 } 428 #else 429 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 430 #endif /* CONFIG_VSX */ 431 432 #ifdef CONFIG_SPE 433 void giveup_spe(struct task_struct *tsk) 434 { 435 check_if_tm_restore_required(tsk); 436 437 msr_check_and_set(MSR_SPE); 438 __giveup_spe(tsk); 439 msr_check_and_clear(MSR_SPE); 440 } 441 EXPORT_SYMBOL(giveup_spe); 442 443 void enable_kernel_spe(void) 444 { 445 WARN_ON(preemptible()); 446 447 msr_check_and_set(MSR_SPE); 448 449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 450 check_if_tm_restore_required(current); 451 __giveup_spe(current); 452 } 453 } 454 EXPORT_SYMBOL(enable_kernel_spe); 455 456 void flush_spe_to_thread(struct task_struct *tsk) 457 { 458 if (tsk->thread.regs) { 459 preempt_disable(); 460 if (tsk->thread.regs->msr & MSR_SPE) { 461 BUG_ON(tsk != current); 462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 463 giveup_spe(tsk); 464 } 465 preempt_enable(); 466 } 467 } 468 #endif /* CONFIG_SPE */ 469 470 static unsigned long msr_all_available; 471 472 static int __init init_msr_all_available(void) 473 { 474 #ifdef CONFIG_PPC_FPU 475 msr_all_available |= MSR_FP; 476 #endif 477 #ifdef CONFIG_ALTIVEC 478 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 479 msr_all_available |= MSR_VEC; 480 #endif 481 #ifdef CONFIG_VSX 482 if (cpu_has_feature(CPU_FTR_VSX)) 483 msr_all_available |= MSR_VSX; 484 #endif 485 #ifdef CONFIG_SPE 486 if (cpu_has_feature(CPU_FTR_SPE)) 487 msr_all_available |= MSR_SPE; 488 #endif 489 490 return 0; 491 } 492 early_initcall(init_msr_all_available); 493 494 void giveup_all(struct task_struct *tsk) 495 { 496 unsigned long usermsr; 497 498 if (!tsk->thread.regs) 499 return; 500 501 usermsr = tsk->thread.regs->msr; 502 503 if ((usermsr & msr_all_available) == 0) 504 return; 505 506 msr_check_and_set(msr_all_available); 507 check_if_tm_restore_required(tsk); 508 509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 510 511 #ifdef CONFIG_PPC_FPU 512 if (usermsr & MSR_FP) 513 __giveup_fpu(tsk); 514 #endif 515 #ifdef CONFIG_ALTIVEC 516 if (usermsr & MSR_VEC) 517 __giveup_altivec(tsk); 518 #endif 519 #ifdef CONFIG_SPE 520 if (usermsr & MSR_SPE) 521 __giveup_spe(tsk); 522 #endif 523 524 msr_check_and_clear(msr_all_available); 525 } 526 EXPORT_SYMBOL(giveup_all); 527 528 void restore_math(struct pt_regs *regs) 529 { 530 unsigned long msr; 531 532 if (!msr_tm_active(regs->msr) && 533 !current->thread.load_fp && !loadvec(current->thread)) 534 return; 535 536 msr = regs->msr; 537 msr_check_and_set(msr_all_available); 538 539 /* 540 * Only reload if the bit is not set in the user MSR, the bit BEING set 541 * indicates that the registers are hot 542 */ 543 if ((!(msr & MSR_FP)) && restore_fp(current)) 544 msr |= MSR_FP | current->thread.fpexc_mode; 545 546 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 547 msr |= MSR_VEC; 548 549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 550 restore_vsx(current)) { 551 msr |= MSR_VSX; 552 } 553 554 msr_check_and_clear(msr_all_available); 555 556 regs->msr = msr; 557 } 558 559 static void save_all(struct task_struct *tsk) 560 { 561 unsigned long usermsr; 562 563 if (!tsk->thread.regs) 564 return; 565 566 usermsr = tsk->thread.regs->msr; 567 568 if ((usermsr & msr_all_available) == 0) 569 return; 570 571 msr_check_and_set(msr_all_available); 572 573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 574 575 if (usermsr & MSR_FP) 576 save_fpu(tsk); 577 578 if (usermsr & MSR_VEC) 579 save_altivec(tsk); 580 581 if (usermsr & MSR_SPE) 582 __giveup_spe(tsk); 583 584 msr_check_and_clear(msr_all_available); 585 } 586 587 void flush_all_to_thread(struct task_struct *tsk) 588 { 589 if (tsk->thread.regs) { 590 preempt_disable(); 591 BUG_ON(tsk != current); 592 save_all(tsk); 593 594 #ifdef CONFIG_SPE 595 if (tsk->thread.regs->msr & MSR_SPE) 596 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 597 #endif 598 599 preempt_enable(); 600 } 601 } 602 EXPORT_SYMBOL(flush_all_to_thread); 603 604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 605 void do_send_trap(struct pt_regs *regs, unsigned long address, 606 unsigned long error_code, int breakpt) 607 { 608 current->thread.trap_nr = TRAP_HWBKPT; 609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 610 11, SIGSEGV) == NOTIFY_STOP) 611 return; 612 613 /* Deliver the signal to userspace */ 614 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 615 (void __user *)address); 616 } 617 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 618 void do_break (struct pt_regs *regs, unsigned long address, 619 unsigned long error_code) 620 { 621 siginfo_t info; 622 623 current->thread.trap_nr = TRAP_HWBKPT; 624 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 625 11, SIGSEGV) == NOTIFY_STOP) 626 return; 627 628 if (debugger_break_match(regs)) 629 return; 630 631 /* Clear the breakpoint */ 632 hw_breakpoint_disable(); 633 634 /* Deliver the signal to userspace */ 635 info.si_signo = SIGTRAP; 636 info.si_errno = 0; 637 info.si_code = TRAP_HWBKPT; 638 info.si_addr = (void __user *)address; 639 force_sig_info(SIGTRAP, &info, current); 640 } 641 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 642 643 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 644 645 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 646 /* 647 * Set the debug registers back to their default "safe" values. 648 */ 649 static void set_debug_reg_defaults(struct thread_struct *thread) 650 { 651 thread->debug.iac1 = thread->debug.iac2 = 0; 652 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 653 thread->debug.iac3 = thread->debug.iac4 = 0; 654 #endif 655 thread->debug.dac1 = thread->debug.dac2 = 0; 656 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 657 thread->debug.dvc1 = thread->debug.dvc2 = 0; 658 #endif 659 thread->debug.dbcr0 = 0; 660 #ifdef CONFIG_BOOKE 661 /* 662 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 663 */ 664 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 665 DBCR1_IAC3US | DBCR1_IAC4US; 666 /* 667 * Force Data Address Compare User/Supervisor bits to be User-only 668 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 669 */ 670 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 671 #else 672 thread->debug.dbcr1 = 0; 673 #endif 674 } 675 676 static void prime_debug_regs(struct debug_reg *debug) 677 { 678 /* 679 * We could have inherited MSR_DE from userspace, since 680 * it doesn't get cleared on exception entry. Make sure 681 * MSR_DE is clear before we enable any debug events. 682 */ 683 mtmsr(mfmsr() & ~MSR_DE); 684 685 mtspr(SPRN_IAC1, debug->iac1); 686 mtspr(SPRN_IAC2, debug->iac2); 687 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 688 mtspr(SPRN_IAC3, debug->iac3); 689 mtspr(SPRN_IAC4, debug->iac4); 690 #endif 691 mtspr(SPRN_DAC1, debug->dac1); 692 mtspr(SPRN_DAC2, debug->dac2); 693 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 694 mtspr(SPRN_DVC1, debug->dvc1); 695 mtspr(SPRN_DVC2, debug->dvc2); 696 #endif 697 mtspr(SPRN_DBCR0, debug->dbcr0); 698 mtspr(SPRN_DBCR1, debug->dbcr1); 699 #ifdef CONFIG_BOOKE 700 mtspr(SPRN_DBCR2, debug->dbcr2); 701 #endif 702 } 703 /* 704 * Unless neither the old or new thread are making use of the 705 * debug registers, set the debug registers from the values 706 * stored in the new thread. 707 */ 708 void switch_booke_debug_regs(struct debug_reg *new_debug) 709 { 710 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 711 || (new_debug->dbcr0 & DBCR0_IDM)) 712 prime_debug_regs(new_debug); 713 } 714 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 715 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 716 #ifndef CONFIG_HAVE_HW_BREAKPOINT 717 static void set_debug_reg_defaults(struct thread_struct *thread) 718 { 719 thread->hw_brk.address = 0; 720 thread->hw_brk.type = 0; 721 if (ppc_breakpoint_available()) 722 set_breakpoint(&thread->hw_brk); 723 } 724 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 725 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 726 727 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 728 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 729 { 730 mtspr(SPRN_DAC1, dabr); 731 #ifdef CONFIG_PPC_47x 732 isync(); 733 #endif 734 return 0; 735 } 736 #elif defined(CONFIG_PPC_BOOK3S) 737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 738 { 739 mtspr(SPRN_DABR, dabr); 740 if (cpu_has_feature(CPU_FTR_DABRX)) 741 mtspr(SPRN_DABRX, dabrx); 742 return 0; 743 } 744 #elif defined(CONFIG_PPC_8xx) 745 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 746 { 747 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 748 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 749 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 750 751 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 752 lctrl1 |= 0xa0000; 753 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 754 lctrl1 |= 0xf0000; 755 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 756 lctrl2 = 0; 757 758 mtspr(SPRN_LCTRL2, 0); 759 mtspr(SPRN_CMPE, addr); 760 mtspr(SPRN_CMPF, addr + 4); 761 mtspr(SPRN_LCTRL1, lctrl1); 762 mtspr(SPRN_LCTRL2, lctrl2); 763 764 return 0; 765 } 766 #else 767 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 768 { 769 return -EINVAL; 770 } 771 #endif 772 773 static inline int set_dabr(struct arch_hw_breakpoint *brk) 774 { 775 unsigned long dabr, dabrx; 776 777 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 778 dabrx = ((brk->type >> 3) & 0x7); 779 780 if (ppc_md.set_dabr) 781 return ppc_md.set_dabr(dabr, dabrx); 782 783 return __set_dabr(dabr, dabrx); 784 } 785 786 static inline int set_dawr(struct arch_hw_breakpoint *brk) 787 { 788 unsigned long dawr, dawrx, mrd; 789 790 dawr = brk->address; 791 792 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 793 << (63 - 58); //* read/write bits */ 794 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 795 << (63 - 59); //* translate */ 796 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 797 >> 3; //* PRIM bits */ 798 /* dawr length is stored in field MDR bits 48:53. Matches range in 799 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 800 0b111111=64DW. 801 brk->len is in bytes. 802 This aligns up to double word size, shifts and does the bias. 803 */ 804 mrd = ((brk->len + 7) >> 3) - 1; 805 dawrx |= (mrd & 0x3f) << (63 - 53); 806 807 if (ppc_md.set_dawr) 808 return ppc_md.set_dawr(dawr, dawrx); 809 mtspr(SPRN_DAWR, dawr); 810 mtspr(SPRN_DAWRX, dawrx); 811 return 0; 812 } 813 814 void __set_breakpoint(struct arch_hw_breakpoint *brk) 815 { 816 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 817 818 if (cpu_has_feature(CPU_FTR_DAWR)) 819 // Power8 or later 820 set_dawr(brk); 821 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 822 // Power7 or earlier 823 set_dabr(brk); 824 else 825 // Shouldn't happen due to higher level checks 826 WARN_ON_ONCE(1); 827 } 828 829 void set_breakpoint(struct arch_hw_breakpoint *brk) 830 { 831 preempt_disable(); 832 __set_breakpoint(brk); 833 preempt_enable(); 834 } 835 836 /* Check if we have DAWR or DABR hardware */ 837 bool ppc_breakpoint_available(void) 838 { 839 if (cpu_has_feature(CPU_FTR_DAWR)) 840 return true; /* POWER8 DAWR */ 841 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 842 return false; /* POWER9 with DAWR disabled */ 843 /* DABR: Everything but POWER8 and POWER9 */ 844 return true; 845 } 846 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 847 848 #ifdef CONFIG_PPC64 849 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 850 #endif 851 852 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 853 struct arch_hw_breakpoint *b) 854 { 855 if (a->address != b->address) 856 return false; 857 if (a->type != b->type) 858 return false; 859 if (a->len != b->len) 860 return false; 861 return true; 862 } 863 864 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 865 866 static inline bool tm_enabled(struct task_struct *tsk) 867 { 868 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 869 } 870 871 static void tm_reclaim_thread(struct thread_struct *thr, 872 struct thread_info *ti, uint8_t cause) 873 { 874 /* 875 * Use the current MSR TM suspended bit to track if we have 876 * checkpointed state outstanding. 877 * On signal delivery, we'd normally reclaim the checkpointed 878 * state to obtain stack pointer (see:get_tm_stackpointer()). 879 * This will then directly return to userspace without going 880 * through __switch_to(). However, if the stack frame is bad, 881 * we need to exit this thread which calls __switch_to() which 882 * will again attempt to reclaim the already saved tm state. 883 * Hence we need to check that we've not already reclaimed 884 * this state. 885 * We do this using the current MSR, rather tracking it in 886 * some specific thread_struct bit, as it has the additional 887 * benefit of checking for a potential TM bad thing exception. 888 */ 889 if (!MSR_TM_SUSPENDED(mfmsr())) 890 return; 891 892 giveup_all(container_of(thr, struct task_struct, thread)); 893 894 tm_reclaim(thr, cause); 895 896 /* 897 * If we are in a transaction and FP is off then we can't have 898 * used FP inside that transaction. Hence the checkpointed 899 * state is the same as the live state. We need to copy the 900 * live state to the checkpointed state so that when the 901 * transaction is restored, the checkpointed state is correct 902 * and the aborted transaction sees the correct state. We use 903 * ckpt_regs.msr here as that's what tm_reclaim will use to 904 * determine if it's going to write the checkpointed state or 905 * not. So either this will write the checkpointed registers, 906 * or reclaim will. Similarly for VMX. 907 */ 908 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 909 memcpy(&thr->ckfp_state, &thr->fp_state, 910 sizeof(struct thread_fp_state)); 911 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 912 memcpy(&thr->ckvr_state, &thr->vr_state, 913 sizeof(struct thread_vr_state)); 914 } 915 916 void tm_reclaim_current(uint8_t cause) 917 { 918 tm_enable(); 919 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 920 } 921 922 static inline void tm_reclaim_task(struct task_struct *tsk) 923 { 924 /* We have to work out if we're switching from/to a task that's in the 925 * middle of a transaction. 926 * 927 * In switching we need to maintain a 2nd register state as 928 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 929 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 930 * ckvr_state 931 * 932 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 933 */ 934 struct thread_struct *thr = &tsk->thread; 935 936 if (!thr->regs) 937 return; 938 939 if (!MSR_TM_ACTIVE(thr->regs->msr)) 940 goto out_and_saveregs; 941 942 WARN_ON(tm_suspend_disabled); 943 944 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 945 "ccr=%lx, msr=%lx, trap=%lx)\n", 946 tsk->pid, thr->regs->nip, 947 thr->regs->ccr, thr->regs->msr, 948 thr->regs->trap); 949 950 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 951 952 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 953 tsk->pid); 954 955 out_and_saveregs: 956 /* Always save the regs here, even if a transaction's not active. 957 * This context-switches a thread's TM info SPRs. We do it here to 958 * be consistent with the restore path (in recheckpoint) which 959 * cannot happen later in _switch(). 960 */ 961 tm_save_sprs(thr); 962 } 963 964 extern void __tm_recheckpoint(struct thread_struct *thread); 965 966 void tm_recheckpoint(struct thread_struct *thread) 967 { 968 unsigned long flags; 969 970 if (!(thread->regs->msr & MSR_TM)) 971 return; 972 973 /* We really can't be interrupted here as the TEXASR registers can't 974 * change and later in the trecheckpoint code, we have a userspace R1. 975 * So let's hard disable over this region. 976 */ 977 local_irq_save(flags); 978 hard_irq_disable(); 979 980 /* The TM SPRs are restored here, so that TEXASR.FS can be set 981 * before the trecheckpoint and no explosion occurs. 982 */ 983 tm_restore_sprs(thread); 984 985 __tm_recheckpoint(thread); 986 987 local_irq_restore(flags); 988 } 989 990 static inline void tm_recheckpoint_new_task(struct task_struct *new) 991 { 992 if (!cpu_has_feature(CPU_FTR_TM)) 993 return; 994 995 /* Recheckpoint the registers of the thread we're about to switch to. 996 * 997 * If the task was using FP, we non-lazily reload both the original and 998 * the speculative FP register states. This is because the kernel 999 * doesn't see if/when a TM rollback occurs, so if we take an FP 1000 * unavailable later, we are unable to determine which set of FP regs 1001 * need to be restored. 1002 */ 1003 if (!tm_enabled(new)) 1004 return; 1005 1006 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1007 tm_restore_sprs(&new->thread); 1008 return; 1009 } 1010 /* Recheckpoint to restore original checkpointed register state. */ 1011 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1012 new->pid, new->thread.regs->msr); 1013 1014 tm_recheckpoint(&new->thread); 1015 1016 /* 1017 * The checkpointed state has been restored but the live state has 1018 * not, ensure all the math functionality is turned off to trigger 1019 * restore_math() to reload. 1020 */ 1021 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1022 1023 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1024 "(kernel msr 0x%lx)\n", 1025 new->pid, mfmsr()); 1026 } 1027 1028 static inline void __switch_to_tm(struct task_struct *prev, 1029 struct task_struct *new) 1030 { 1031 if (cpu_has_feature(CPU_FTR_TM)) { 1032 if (tm_enabled(prev) || tm_enabled(new)) 1033 tm_enable(); 1034 1035 if (tm_enabled(prev)) { 1036 prev->thread.load_tm++; 1037 tm_reclaim_task(prev); 1038 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1039 prev->thread.regs->msr &= ~MSR_TM; 1040 } 1041 1042 tm_recheckpoint_new_task(new); 1043 } 1044 } 1045 1046 /* 1047 * This is called if we are on the way out to userspace and the 1048 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1049 * FP and/or vector state and does so if necessary. 1050 * If userspace is inside a transaction (whether active or 1051 * suspended) and FP/VMX/VSX instructions have ever been enabled 1052 * inside that transaction, then we have to keep them enabled 1053 * and keep the FP/VMX/VSX state loaded while ever the transaction 1054 * continues. The reason is that if we didn't, and subsequently 1055 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1056 * we don't know whether it's the same transaction, and thus we 1057 * don't know which of the checkpointed state and the transactional 1058 * state to use. 1059 */ 1060 void restore_tm_state(struct pt_regs *regs) 1061 { 1062 unsigned long msr_diff; 1063 1064 /* 1065 * This is the only moment we should clear TIF_RESTORE_TM as 1066 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1067 * again, anything else could lead to an incorrect ckpt_msr being 1068 * saved and therefore incorrect signal contexts. 1069 */ 1070 clear_thread_flag(TIF_RESTORE_TM); 1071 if (!MSR_TM_ACTIVE(regs->msr)) 1072 return; 1073 1074 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1075 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1076 1077 /* Ensure that restore_math() will restore */ 1078 if (msr_diff & MSR_FP) 1079 current->thread.load_fp = 1; 1080 #ifdef CONFIG_ALTIVEC 1081 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1082 current->thread.load_vec = 1; 1083 #endif 1084 restore_math(regs); 1085 1086 regs->msr |= msr_diff; 1087 } 1088 1089 #else 1090 #define tm_recheckpoint_new_task(new) 1091 #define __switch_to_tm(prev, new) 1092 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1093 1094 static inline void save_sprs(struct thread_struct *t) 1095 { 1096 #ifdef CONFIG_ALTIVEC 1097 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1098 t->vrsave = mfspr(SPRN_VRSAVE); 1099 #endif 1100 #ifdef CONFIG_PPC_BOOK3S_64 1101 if (cpu_has_feature(CPU_FTR_DSCR)) 1102 t->dscr = mfspr(SPRN_DSCR); 1103 1104 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1105 t->bescr = mfspr(SPRN_BESCR); 1106 t->ebbhr = mfspr(SPRN_EBBHR); 1107 t->ebbrr = mfspr(SPRN_EBBRR); 1108 1109 t->fscr = mfspr(SPRN_FSCR); 1110 1111 /* 1112 * Note that the TAR is not available for use in the kernel. 1113 * (To provide this, the TAR should be backed up/restored on 1114 * exception entry/exit instead, and be in pt_regs. FIXME, 1115 * this should be in pt_regs anyway (for debug).) 1116 */ 1117 t->tar = mfspr(SPRN_TAR); 1118 } 1119 #endif 1120 1121 thread_pkey_regs_save(t); 1122 } 1123 1124 static inline void restore_sprs(struct thread_struct *old_thread, 1125 struct thread_struct *new_thread) 1126 { 1127 #ifdef CONFIG_ALTIVEC 1128 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1129 old_thread->vrsave != new_thread->vrsave) 1130 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1131 #endif 1132 #ifdef CONFIG_PPC_BOOK3S_64 1133 if (cpu_has_feature(CPU_FTR_DSCR)) { 1134 u64 dscr = get_paca()->dscr_default; 1135 if (new_thread->dscr_inherit) 1136 dscr = new_thread->dscr; 1137 1138 if (old_thread->dscr != dscr) 1139 mtspr(SPRN_DSCR, dscr); 1140 } 1141 1142 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1143 if (old_thread->bescr != new_thread->bescr) 1144 mtspr(SPRN_BESCR, new_thread->bescr); 1145 if (old_thread->ebbhr != new_thread->ebbhr) 1146 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1147 if (old_thread->ebbrr != new_thread->ebbrr) 1148 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1149 1150 if (old_thread->fscr != new_thread->fscr) 1151 mtspr(SPRN_FSCR, new_thread->fscr); 1152 1153 if (old_thread->tar != new_thread->tar) 1154 mtspr(SPRN_TAR, new_thread->tar); 1155 } 1156 1157 if (cpu_has_feature(CPU_FTR_ARCH_300) && 1158 old_thread->tidr != new_thread->tidr) 1159 mtspr(SPRN_TIDR, new_thread->tidr); 1160 #endif 1161 1162 thread_pkey_regs_restore(new_thread, old_thread); 1163 } 1164 1165 #ifdef CONFIG_PPC_BOOK3S_64 1166 #define CP_SIZE 128 1167 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1168 #endif 1169 1170 struct task_struct *__switch_to(struct task_struct *prev, 1171 struct task_struct *new) 1172 { 1173 struct thread_struct *new_thread, *old_thread; 1174 struct task_struct *last; 1175 #ifdef CONFIG_PPC_BOOK3S_64 1176 struct ppc64_tlb_batch *batch; 1177 #endif 1178 1179 new_thread = &new->thread; 1180 old_thread = ¤t->thread; 1181 1182 WARN_ON(!irqs_disabled()); 1183 1184 #ifdef CONFIG_PPC64 1185 /* 1186 * Collect processor utilization data per process 1187 */ 1188 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1189 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1190 long unsigned start_tb, current_tb; 1191 start_tb = old_thread->start_tb; 1192 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1193 old_thread->accum_tb += (current_tb - start_tb); 1194 new_thread->start_tb = current_tb; 1195 } 1196 #endif /* CONFIG_PPC64 */ 1197 1198 #ifdef CONFIG_PPC_BOOK3S_64 1199 batch = this_cpu_ptr(&ppc64_tlb_batch); 1200 if (batch->active) { 1201 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1202 if (batch->index) 1203 __flush_tlb_pending(batch); 1204 batch->active = 0; 1205 } 1206 #endif /* CONFIG_PPC_BOOK3S_64 */ 1207 1208 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1209 switch_booke_debug_regs(&new->thread.debug); 1210 #else 1211 /* 1212 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1213 * schedule DABR 1214 */ 1215 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1216 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1217 __set_breakpoint(&new->thread.hw_brk); 1218 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1219 #endif 1220 1221 /* 1222 * We need to save SPRs before treclaim/trecheckpoint as these will 1223 * change a number of them. 1224 */ 1225 save_sprs(&prev->thread); 1226 1227 /* Save FPU, Altivec, VSX and SPE state */ 1228 giveup_all(prev); 1229 1230 __switch_to_tm(prev, new); 1231 1232 if (!radix_enabled()) { 1233 /* 1234 * We can't take a PMU exception inside _switch() since there 1235 * is a window where the kernel stack SLB and the kernel stack 1236 * are out of sync. Hard disable here. 1237 */ 1238 hard_irq_disable(); 1239 } 1240 1241 /* 1242 * Call restore_sprs() before calling _switch(). If we move it after 1243 * _switch() then we miss out on calling it for new tasks. The reason 1244 * for this is we manually create a stack frame for new tasks that 1245 * directly returns through ret_from_fork() or 1246 * ret_from_kernel_thread(). See copy_thread() for details. 1247 */ 1248 restore_sprs(old_thread, new_thread); 1249 1250 last = _switch(old_thread, new_thread); 1251 1252 #ifdef CONFIG_PPC_BOOK3S_64 1253 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1254 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1255 batch = this_cpu_ptr(&ppc64_tlb_batch); 1256 batch->active = 1; 1257 } 1258 1259 if (current_thread_info()->task->thread.regs) { 1260 restore_math(current_thread_info()->task->thread.regs); 1261 1262 /* 1263 * The copy-paste buffer can only store into foreign real 1264 * addresses, so unprivileged processes can not see the 1265 * data or use it in any way unless they have foreign real 1266 * mappings. If the new process has the foreign real address 1267 * mappings, we must issue a cp_abort to clear any state and 1268 * prevent snooping, corruption or a covert channel. 1269 * 1270 * DD1 allows paste into normal system memory so we do an 1271 * unpaired copy, rather than cp_abort, to clear the buffer, 1272 * since cp_abort is quite expensive. 1273 */ 1274 if (current_thread_info()->task->thread.used_vas) { 1275 asm volatile(PPC_CP_ABORT); 1276 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { 1277 asm volatile(PPC_COPY(%0, %1) 1278 : : "r"(dummy_copy_buffer), "r"(0)); 1279 } 1280 } 1281 #endif /* CONFIG_PPC_BOOK3S_64 */ 1282 1283 return last; 1284 } 1285 1286 static int instructions_to_print = 16; 1287 1288 static void show_instructions(struct pt_regs *regs) 1289 { 1290 int i; 1291 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1292 sizeof(int)); 1293 1294 printk("Instruction dump:"); 1295 1296 for (i = 0; i < instructions_to_print; i++) { 1297 int instr; 1298 1299 if (!(i % 8)) 1300 pr_cont("\n"); 1301 1302 #if !defined(CONFIG_BOOKE) 1303 /* If executing with the IMMU off, adjust pc rather 1304 * than print XXXXXXXX. 1305 */ 1306 if (!(regs->msr & MSR_IR)) 1307 pc = (unsigned long)phys_to_virt(pc); 1308 #endif 1309 1310 if (!__kernel_text_address(pc) || 1311 probe_kernel_address((unsigned int __user *)pc, instr)) { 1312 pr_cont("XXXXXXXX "); 1313 } else { 1314 if (regs->nip == pc) 1315 pr_cont("<%08x> ", instr); 1316 else 1317 pr_cont("%08x ", instr); 1318 } 1319 1320 pc += sizeof(int); 1321 } 1322 1323 pr_cont("\n"); 1324 } 1325 1326 struct regbit { 1327 unsigned long bit; 1328 const char *name; 1329 }; 1330 1331 static struct regbit msr_bits[] = { 1332 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1333 {MSR_SF, "SF"}, 1334 {MSR_HV, "HV"}, 1335 #endif 1336 {MSR_VEC, "VEC"}, 1337 {MSR_VSX, "VSX"}, 1338 #ifdef CONFIG_BOOKE 1339 {MSR_CE, "CE"}, 1340 #endif 1341 {MSR_EE, "EE"}, 1342 {MSR_PR, "PR"}, 1343 {MSR_FP, "FP"}, 1344 {MSR_ME, "ME"}, 1345 #ifdef CONFIG_BOOKE 1346 {MSR_DE, "DE"}, 1347 #else 1348 {MSR_SE, "SE"}, 1349 {MSR_BE, "BE"}, 1350 #endif 1351 {MSR_IR, "IR"}, 1352 {MSR_DR, "DR"}, 1353 {MSR_PMM, "PMM"}, 1354 #ifndef CONFIG_BOOKE 1355 {MSR_RI, "RI"}, 1356 {MSR_LE, "LE"}, 1357 #endif 1358 {0, NULL} 1359 }; 1360 1361 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1362 { 1363 const char *s = ""; 1364 1365 for (; bits->bit; ++bits) 1366 if (val & bits->bit) { 1367 pr_cont("%s%s", s, bits->name); 1368 s = sep; 1369 } 1370 } 1371 1372 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1373 static struct regbit msr_tm_bits[] = { 1374 {MSR_TS_T, "T"}, 1375 {MSR_TS_S, "S"}, 1376 {MSR_TM, "E"}, 1377 {0, NULL} 1378 }; 1379 1380 static void print_tm_bits(unsigned long val) 1381 { 1382 /* 1383 * This only prints something if at least one of the TM bit is set. 1384 * Inside the TM[], the output means: 1385 * E: Enabled (bit 32) 1386 * S: Suspended (bit 33) 1387 * T: Transactional (bit 34) 1388 */ 1389 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1390 pr_cont(",TM["); 1391 print_bits(val, msr_tm_bits, ""); 1392 pr_cont("]"); 1393 } 1394 } 1395 #else 1396 static void print_tm_bits(unsigned long val) {} 1397 #endif 1398 1399 static void print_msr_bits(unsigned long val) 1400 { 1401 pr_cont("<"); 1402 print_bits(val, msr_bits, ","); 1403 print_tm_bits(val); 1404 pr_cont(">"); 1405 } 1406 1407 #ifdef CONFIG_PPC64 1408 #define REG "%016lx" 1409 #define REGS_PER_LINE 4 1410 #define LAST_VOLATILE 13 1411 #else 1412 #define REG "%08lx" 1413 #define REGS_PER_LINE 8 1414 #define LAST_VOLATILE 12 1415 #endif 1416 1417 void show_regs(struct pt_regs * regs) 1418 { 1419 int i, trap; 1420 1421 show_regs_print_info(KERN_DEFAULT); 1422 1423 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1424 regs->nip, regs->link, regs->ctr); 1425 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1426 regs, regs->trap, print_tainted(), init_utsname()->release); 1427 printk("MSR: "REG" ", regs->msr); 1428 print_msr_bits(regs->msr); 1429 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1430 trap = TRAP(regs); 1431 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1432 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1433 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1434 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1435 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1436 #else 1437 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1438 #endif 1439 #ifdef CONFIG_PPC64 1440 pr_cont("SOFTE: %ld ", regs->softe); 1441 #endif 1442 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1443 if (MSR_TM_ACTIVE(regs->msr)) 1444 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1445 #endif 1446 1447 for (i = 0; i < 32; i++) { 1448 if ((i % REGS_PER_LINE) == 0) 1449 pr_cont("\nGPR%02d: ", i); 1450 pr_cont(REG " ", regs->gpr[i]); 1451 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1452 break; 1453 } 1454 pr_cont("\n"); 1455 #ifdef CONFIG_KALLSYMS 1456 /* 1457 * Lookup NIP late so we have the best change of getting the 1458 * above info out without failing 1459 */ 1460 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1461 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1462 #endif 1463 show_stack(current, (unsigned long *) regs->gpr[1]); 1464 if (!user_mode(regs)) 1465 show_instructions(regs); 1466 } 1467 1468 void flush_thread(void) 1469 { 1470 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1471 flush_ptrace_hw_breakpoint(current); 1472 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1473 set_debug_reg_defaults(¤t->thread); 1474 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1475 } 1476 1477 int set_thread_uses_vas(void) 1478 { 1479 #ifdef CONFIG_PPC_BOOK3S_64 1480 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1481 return -EINVAL; 1482 1483 current->thread.used_vas = 1; 1484 1485 /* 1486 * Even a process that has no foreign real address mapping can use 1487 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1488 * to clear any pending COPY and prevent a covert channel. 1489 * 1490 * __switch_to() will issue CP_ABORT on future context switches. 1491 */ 1492 asm volatile(PPC_CP_ABORT); 1493 1494 #endif /* CONFIG_PPC_BOOK3S_64 */ 1495 return 0; 1496 } 1497 1498 #ifdef CONFIG_PPC64 1499 static DEFINE_SPINLOCK(vas_thread_id_lock); 1500 static DEFINE_IDA(vas_thread_ida); 1501 1502 /* 1503 * We need to assign a unique thread id to each thread in a process. 1504 * 1505 * This thread id, referred to as TIDR, and separate from the Linux's tgid, 1506 * is intended to be used to direct an ASB_Notify from the hardware to the 1507 * thread, when a suitable event occurs in the system. 1508 * 1509 * One such event is a "paste" instruction in the context of Fast Thread 1510 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard 1511 * (VAS) in POWER9. 1512 * 1513 * To get a unique TIDR per process we could simply reuse task_pid_nr() but 1514 * the problem is that task_pid_nr() is not yet available copy_thread() is 1515 * called. Fixing that would require changing more intrusive arch-neutral 1516 * code in code path in copy_process()?. 1517 * 1518 * Further, to assign unique TIDRs within each process, we need an atomic 1519 * field (or an IDR) in task_struct, which again intrudes into the arch- 1520 * neutral code. So try to assign globally unique TIDRs for now. 1521 * 1522 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value. 1523 * For now, only threads that expect to be notified by the VAS 1524 * hardware need a TIDR value and we assign values > 0 for those. 1525 */ 1526 #define MAX_THREAD_CONTEXT ((1 << 16) - 1) 1527 static int assign_thread_tidr(void) 1528 { 1529 int index; 1530 int err; 1531 unsigned long flags; 1532 1533 again: 1534 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL)) 1535 return -ENOMEM; 1536 1537 spin_lock_irqsave(&vas_thread_id_lock, flags); 1538 err = ida_get_new_above(&vas_thread_ida, 1, &index); 1539 spin_unlock_irqrestore(&vas_thread_id_lock, flags); 1540 1541 if (err == -EAGAIN) 1542 goto again; 1543 else if (err) 1544 return err; 1545 1546 if (index > MAX_THREAD_CONTEXT) { 1547 spin_lock_irqsave(&vas_thread_id_lock, flags); 1548 ida_remove(&vas_thread_ida, index); 1549 spin_unlock_irqrestore(&vas_thread_id_lock, flags); 1550 return -ENOMEM; 1551 } 1552 1553 return index; 1554 } 1555 1556 static void free_thread_tidr(int id) 1557 { 1558 unsigned long flags; 1559 1560 spin_lock_irqsave(&vas_thread_id_lock, flags); 1561 ida_remove(&vas_thread_ida, id); 1562 spin_unlock_irqrestore(&vas_thread_id_lock, flags); 1563 } 1564 1565 /* 1566 * Clear any TIDR value assigned to this thread. 1567 */ 1568 void clear_thread_tidr(struct task_struct *t) 1569 { 1570 if (!t->thread.tidr) 1571 return; 1572 1573 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1574 WARN_ON_ONCE(1); 1575 return; 1576 } 1577 1578 mtspr(SPRN_TIDR, 0); 1579 free_thread_tidr(t->thread.tidr); 1580 t->thread.tidr = 0; 1581 } 1582 1583 void arch_release_task_struct(struct task_struct *t) 1584 { 1585 clear_thread_tidr(t); 1586 } 1587 1588 /* 1589 * Assign a unique TIDR (thread id) for task @t and set it in the thread 1590 * structure. For now, we only support setting TIDR for 'current' task. 1591 */ 1592 int set_thread_tidr(struct task_struct *t) 1593 { 1594 int rc; 1595 1596 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1597 return -EINVAL; 1598 1599 if (t != current) 1600 return -EINVAL; 1601 1602 if (t->thread.tidr) 1603 return 0; 1604 1605 rc = assign_thread_tidr(); 1606 if (rc < 0) 1607 return rc; 1608 1609 t->thread.tidr = rc; 1610 mtspr(SPRN_TIDR, t->thread.tidr); 1611 1612 return 0; 1613 } 1614 EXPORT_SYMBOL_GPL(set_thread_tidr); 1615 1616 #endif /* CONFIG_PPC64 */ 1617 1618 void 1619 release_thread(struct task_struct *t) 1620 { 1621 } 1622 1623 /* 1624 * this gets called so that we can store coprocessor state into memory and 1625 * copy the current task into the new thread. 1626 */ 1627 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1628 { 1629 flush_all_to_thread(src); 1630 /* 1631 * Flush TM state out so we can copy it. __switch_to_tm() does this 1632 * flush but it removes the checkpointed state from the current CPU and 1633 * transitions the CPU out of TM mode. Hence we need to call 1634 * tm_recheckpoint_new_task() (on the same task) to restore the 1635 * checkpointed state back and the TM mode. 1636 * 1637 * Can't pass dst because it isn't ready. Doesn't matter, passing 1638 * dst is only important for __switch_to() 1639 */ 1640 __switch_to_tm(src, src); 1641 1642 *dst = *src; 1643 1644 clear_task_ebb(dst); 1645 1646 return 0; 1647 } 1648 1649 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1650 { 1651 #ifdef CONFIG_PPC_BOOK3S_64 1652 unsigned long sp_vsid; 1653 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1654 1655 if (radix_enabled()) 1656 return; 1657 1658 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1659 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1660 << SLB_VSID_SHIFT_1T; 1661 else 1662 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1663 << SLB_VSID_SHIFT; 1664 sp_vsid |= SLB_VSID_KERNEL | llp; 1665 p->thread.ksp_vsid = sp_vsid; 1666 #endif 1667 } 1668 1669 /* 1670 * Copy a thread.. 1671 */ 1672 1673 /* 1674 * Copy architecture-specific thread state 1675 */ 1676 int copy_thread(unsigned long clone_flags, unsigned long usp, 1677 unsigned long kthread_arg, struct task_struct *p) 1678 { 1679 struct pt_regs *childregs, *kregs; 1680 extern void ret_from_fork(void); 1681 extern void ret_from_kernel_thread(void); 1682 void (*f)(void); 1683 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1684 struct thread_info *ti = task_thread_info(p); 1685 1686 klp_init_thread_info(ti); 1687 1688 /* Copy registers */ 1689 sp -= sizeof(struct pt_regs); 1690 childregs = (struct pt_regs *) sp; 1691 if (unlikely(p->flags & PF_KTHREAD)) { 1692 /* kernel thread */ 1693 memset(childregs, 0, sizeof(struct pt_regs)); 1694 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1695 /* function */ 1696 if (usp) 1697 childregs->gpr[14] = ppc_function_entry((void *)usp); 1698 #ifdef CONFIG_PPC64 1699 clear_tsk_thread_flag(p, TIF_32BIT); 1700 childregs->softe = IRQS_ENABLED; 1701 #endif 1702 childregs->gpr[15] = kthread_arg; 1703 p->thread.regs = NULL; /* no user register state */ 1704 ti->flags |= _TIF_RESTOREALL; 1705 f = ret_from_kernel_thread; 1706 } else { 1707 /* user thread */ 1708 struct pt_regs *regs = current_pt_regs(); 1709 CHECK_FULL_REGS(regs); 1710 *childregs = *regs; 1711 if (usp) 1712 childregs->gpr[1] = usp; 1713 p->thread.regs = childregs; 1714 childregs->gpr[3] = 0; /* Result from fork() */ 1715 if (clone_flags & CLONE_SETTLS) { 1716 #ifdef CONFIG_PPC64 1717 if (!is_32bit_task()) 1718 childregs->gpr[13] = childregs->gpr[6]; 1719 else 1720 #endif 1721 childregs->gpr[2] = childregs->gpr[6]; 1722 } 1723 1724 f = ret_from_fork; 1725 } 1726 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1727 sp -= STACK_FRAME_OVERHEAD; 1728 1729 /* 1730 * The way this works is that at some point in the future 1731 * some task will call _switch to switch to the new task. 1732 * That will pop off the stack frame created below and start 1733 * the new task running at ret_from_fork. The new task will 1734 * do some house keeping and then return from the fork or clone 1735 * system call, using the stack frame created above. 1736 */ 1737 ((unsigned long *)sp)[0] = 0; 1738 sp -= sizeof(struct pt_regs); 1739 kregs = (struct pt_regs *) sp; 1740 sp -= STACK_FRAME_OVERHEAD; 1741 p->thread.ksp = sp; 1742 #ifdef CONFIG_PPC32 1743 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1744 _ALIGN_UP(sizeof(struct thread_info), 16); 1745 #endif 1746 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1747 p->thread.ptrace_bps[0] = NULL; 1748 #endif 1749 1750 p->thread.fp_save_area = NULL; 1751 #ifdef CONFIG_ALTIVEC 1752 p->thread.vr_save_area = NULL; 1753 #endif 1754 1755 setup_ksp_vsid(p, sp); 1756 1757 #ifdef CONFIG_PPC64 1758 if (cpu_has_feature(CPU_FTR_DSCR)) { 1759 p->thread.dscr_inherit = current->thread.dscr_inherit; 1760 p->thread.dscr = mfspr(SPRN_DSCR); 1761 } 1762 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1763 p->thread.ppr = INIT_PPR; 1764 1765 p->thread.tidr = 0; 1766 #endif 1767 kregs->nip = ppc_function_entry(f); 1768 return 0; 1769 } 1770 1771 /* 1772 * Set up a thread for executing a new program 1773 */ 1774 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1775 { 1776 #ifdef CONFIG_PPC64 1777 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1778 #endif 1779 1780 /* 1781 * If we exec out of a kernel thread then thread.regs will not be 1782 * set. Do it now. 1783 */ 1784 if (!current->thread.regs) { 1785 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1786 current->thread.regs = regs - 1; 1787 } 1788 1789 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1790 /* 1791 * Clear any transactional state, we're exec()ing. The cause is 1792 * not important as there will never be a recheckpoint so it's not 1793 * user visible. 1794 */ 1795 if (MSR_TM_SUSPENDED(mfmsr())) 1796 tm_reclaim_current(0); 1797 #endif 1798 1799 memset(regs->gpr, 0, sizeof(regs->gpr)); 1800 regs->ctr = 0; 1801 regs->link = 0; 1802 regs->xer = 0; 1803 regs->ccr = 0; 1804 regs->gpr[1] = sp; 1805 1806 /* 1807 * We have just cleared all the nonvolatile GPRs, so make 1808 * FULL_REGS(regs) return true. This is necessary to allow 1809 * ptrace to examine the thread immediately after exec. 1810 */ 1811 regs->trap &= ~1UL; 1812 1813 #ifdef CONFIG_PPC32 1814 regs->mq = 0; 1815 regs->nip = start; 1816 regs->msr = MSR_USER; 1817 #else 1818 if (!is_32bit_task()) { 1819 unsigned long entry; 1820 1821 if (is_elf2_task()) { 1822 /* Look ma, no function descriptors! */ 1823 entry = start; 1824 1825 /* 1826 * Ulrich says: 1827 * The latest iteration of the ABI requires that when 1828 * calling a function (at its global entry point), 1829 * the caller must ensure r12 holds the entry point 1830 * address (so that the function can quickly 1831 * establish addressability). 1832 */ 1833 regs->gpr[12] = start; 1834 /* Make sure that's restored on entry to userspace. */ 1835 set_thread_flag(TIF_RESTOREALL); 1836 } else { 1837 unsigned long toc; 1838 1839 /* start is a relocated pointer to the function 1840 * descriptor for the elf _start routine. The first 1841 * entry in the function descriptor is the entry 1842 * address of _start and the second entry is the TOC 1843 * value we need to use. 1844 */ 1845 __get_user(entry, (unsigned long __user *)start); 1846 __get_user(toc, (unsigned long __user *)start+1); 1847 1848 /* Check whether the e_entry function descriptor entries 1849 * need to be relocated before we can use them. 1850 */ 1851 if (load_addr != 0) { 1852 entry += load_addr; 1853 toc += load_addr; 1854 } 1855 regs->gpr[2] = toc; 1856 } 1857 regs->nip = entry; 1858 regs->msr = MSR_USER64; 1859 } else { 1860 regs->nip = start; 1861 regs->gpr[2] = 0; 1862 regs->msr = MSR_USER32; 1863 } 1864 #endif 1865 #ifdef CONFIG_VSX 1866 current->thread.used_vsr = 0; 1867 #endif 1868 current->thread.load_fp = 0; 1869 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1870 current->thread.fp_save_area = NULL; 1871 #ifdef CONFIG_ALTIVEC 1872 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1873 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1874 current->thread.vr_save_area = NULL; 1875 current->thread.vrsave = 0; 1876 current->thread.used_vr = 0; 1877 current->thread.load_vec = 0; 1878 #endif /* CONFIG_ALTIVEC */ 1879 #ifdef CONFIG_SPE 1880 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1881 current->thread.acc = 0; 1882 current->thread.spefscr = 0; 1883 current->thread.used_spe = 0; 1884 #endif /* CONFIG_SPE */ 1885 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1886 current->thread.tm_tfhar = 0; 1887 current->thread.tm_texasr = 0; 1888 current->thread.tm_tfiar = 0; 1889 current->thread.load_tm = 0; 1890 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1891 1892 thread_pkey_regs_init(¤t->thread); 1893 } 1894 EXPORT_SYMBOL(start_thread); 1895 1896 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1897 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1898 1899 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1900 { 1901 struct pt_regs *regs = tsk->thread.regs; 1902 1903 /* This is a bit hairy. If we are an SPE enabled processor 1904 * (have embedded fp) we store the IEEE exception enable flags in 1905 * fpexc_mode. fpexc_mode is also used for setting FP exception 1906 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1907 if (val & PR_FP_EXC_SW_ENABLE) { 1908 #ifdef CONFIG_SPE 1909 if (cpu_has_feature(CPU_FTR_SPE)) { 1910 /* 1911 * When the sticky exception bits are set 1912 * directly by userspace, it must call prctl 1913 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1914 * in the existing prctl settings) or 1915 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1916 * the bits being set). <fenv.h> functions 1917 * saving and restoring the whole 1918 * floating-point environment need to do so 1919 * anyway to restore the prctl settings from 1920 * the saved environment. 1921 */ 1922 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1923 tsk->thread.fpexc_mode = val & 1924 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1925 return 0; 1926 } else { 1927 return -EINVAL; 1928 } 1929 #else 1930 return -EINVAL; 1931 #endif 1932 } 1933 1934 /* on a CONFIG_SPE this does not hurt us. The bits that 1935 * __pack_fe01 use do not overlap with bits used for 1936 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1937 * on CONFIG_SPE implementations are reserved so writing to 1938 * them does not change anything */ 1939 if (val > PR_FP_EXC_PRECISE) 1940 return -EINVAL; 1941 tsk->thread.fpexc_mode = __pack_fe01(val); 1942 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1943 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1944 | tsk->thread.fpexc_mode; 1945 return 0; 1946 } 1947 1948 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1949 { 1950 unsigned int val; 1951 1952 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1953 #ifdef CONFIG_SPE 1954 if (cpu_has_feature(CPU_FTR_SPE)) { 1955 /* 1956 * When the sticky exception bits are set 1957 * directly by userspace, it must call prctl 1958 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1959 * in the existing prctl settings) or 1960 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1961 * the bits being set). <fenv.h> functions 1962 * saving and restoring the whole 1963 * floating-point environment need to do so 1964 * anyway to restore the prctl settings from 1965 * the saved environment. 1966 */ 1967 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1968 val = tsk->thread.fpexc_mode; 1969 } else 1970 return -EINVAL; 1971 #else 1972 return -EINVAL; 1973 #endif 1974 else 1975 val = __unpack_fe01(tsk->thread.fpexc_mode); 1976 return put_user(val, (unsigned int __user *) adr); 1977 } 1978 1979 int set_endian(struct task_struct *tsk, unsigned int val) 1980 { 1981 struct pt_regs *regs = tsk->thread.regs; 1982 1983 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1984 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1985 return -EINVAL; 1986 1987 if (regs == NULL) 1988 return -EINVAL; 1989 1990 if (val == PR_ENDIAN_BIG) 1991 regs->msr &= ~MSR_LE; 1992 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1993 regs->msr |= MSR_LE; 1994 else 1995 return -EINVAL; 1996 1997 return 0; 1998 } 1999 2000 int get_endian(struct task_struct *tsk, unsigned long adr) 2001 { 2002 struct pt_regs *regs = tsk->thread.regs; 2003 unsigned int val; 2004 2005 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 2006 !cpu_has_feature(CPU_FTR_REAL_LE)) 2007 return -EINVAL; 2008 2009 if (regs == NULL) 2010 return -EINVAL; 2011 2012 if (regs->msr & MSR_LE) { 2013 if (cpu_has_feature(CPU_FTR_REAL_LE)) 2014 val = PR_ENDIAN_LITTLE; 2015 else 2016 val = PR_ENDIAN_PPC_LITTLE; 2017 } else 2018 val = PR_ENDIAN_BIG; 2019 2020 return put_user(val, (unsigned int __user *)adr); 2021 } 2022 2023 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 2024 { 2025 tsk->thread.align_ctl = val; 2026 return 0; 2027 } 2028 2029 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2030 { 2031 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2032 } 2033 2034 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2035 unsigned long nbytes) 2036 { 2037 unsigned long stack_page; 2038 unsigned long cpu = task_cpu(p); 2039 2040 /* 2041 * Avoid crashing if the stack has overflowed and corrupted 2042 * task_cpu(p), which is in the thread_info struct. 2043 */ 2044 if (cpu < NR_CPUS && cpu_possible(cpu)) { 2045 stack_page = (unsigned long) hardirq_ctx[cpu]; 2046 if (sp >= stack_page + sizeof(struct thread_struct) 2047 && sp <= stack_page + THREAD_SIZE - nbytes) 2048 return 1; 2049 2050 stack_page = (unsigned long) softirq_ctx[cpu]; 2051 if (sp >= stack_page + sizeof(struct thread_struct) 2052 && sp <= stack_page + THREAD_SIZE - nbytes) 2053 return 1; 2054 } 2055 return 0; 2056 } 2057 2058 int validate_sp(unsigned long sp, struct task_struct *p, 2059 unsigned long nbytes) 2060 { 2061 unsigned long stack_page = (unsigned long)task_stack_page(p); 2062 2063 if (sp >= stack_page + sizeof(struct thread_struct) 2064 && sp <= stack_page + THREAD_SIZE - nbytes) 2065 return 1; 2066 2067 return valid_irq_stack(sp, p, nbytes); 2068 } 2069 2070 EXPORT_SYMBOL(validate_sp); 2071 2072 unsigned long get_wchan(struct task_struct *p) 2073 { 2074 unsigned long ip, sp; 2075 int count = 0; 2076 2077 if (!p || p == current || p->state == TASK_RUNNING) 2078 return 0; 2079 2080 sp = p->thread.ksp; 2081 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2082 return 0; 2083 2084 do { 2085 sp = *(unsigned long *)sp; 2086 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2087 p->state == TASK_RUNNING) 2088 return 0; 2089 if (count > 0) { 2090 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2091 if (!in_sched_functions(ip)) 2092 return ip; 2093 } 2094 } while (count++ < 16); 2095 return 0; 2096 } 2097 2098 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2099 2100 void show_stack(struct task_struct *tsk, unsigned long *stack) 2101 { 2102 unsigned long sp, ip, lr, newsp; 2103 int count = 0; 2104 int firstframe = 1; 2105 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2106 int curr_frame = current->curr_ret_stack; 2107 extern void return_to_handler(void); 2108 unsigned long rth = (unsigned long)return_to_handler; 2109 #endif 2110 2111 sp = (unsigned long) stack; 2112 if (tsk == NULL) 2113 tsk = current; 2114 if (sp == 0) { 2115 if (tsk == current) 2116 sp = current_stack_pointer(); 2117 else 2118 sp = tsk->thread.ksp; 2119 } 2120 2121 lr = 0; 2122 printk("Call Trace:\n"); 2123 do { 2124 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2125 return; 2126 2127 stack = (unsigned long *) sp; 2128 newsp = stack[0]; 2129 ip = stack[STACK_FRAME_LR_SAVE]; 2130 if (!firstframe || ip != lr) { 2131 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2132 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2133 if ((ip == rth) && curr_frame >= 0) { 2134 pr_cont(" (%pS)", 2135 (void *)current->ret_stack[curr_frame].ret); 2136 curr_frame--; 2137 } 2138 #endif 2139 if (firstframe) 2140 pr_cont(" (unreliable)"); 2141 pr_cont("\n"); 2142 } 2143 firstframe = 0; 2144 2145 /* 2146 * See if this is an exception frame. 2147 * We look for the "regshere" marker in the current frame. 2148 */ 2149 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2150 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2151 struct pt_regs *regs = (struct pt_regs *) 2152 (sp + STACK_FRAME_OVERHEAD); 2153 lr = regs->link; 2154 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2155 regs->trap, (void *)regs->nip, (void *)lr); 2156 firstframe = 1; 2157 } 2158 2159 sp = newsp; 2160 } while (count++ < kstack_depth_to_print); 2161 } 2162 2163 #ifdef CONFIG_PPC64 2164 /* Called with hard IRQs off */ 2165 void notrace __ppc64_runlatch_on(void) 2166 { 2167 struct thread_info *ti = current_thread_info(); 2168 2169 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2170 /* 2171 * Least significant bit (RUN) is the only writable bit of 2172 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2173 * earliest ISA where this is the case, but it's convenient. 2174 */ 2175 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2176 } else { 2177 unsigned long ctrl; 2178 2179 /* 2180 * Some architectures (e.g., Cell) have writable fields other 2181 * than RUN, so do the read-modify-write. 2182 */ 2183 ctrl = mfspr(SPRN_CTRLF); 2184 ctrl |= CTRL_RUNLATCH; 2185 mtspr(SPRN_CTRLT, ctrl); 2186 } 2187 2188 ti->local_flags |= _TLF_RUNLATCH; 2189 } 2190 2191 /* Called with hard IRQs off */ 2192 void notrace __ppc64_runlatch_off(void) 2193 { 2194 struct thread_info *ti = current_thread_info(); 2195 2196 ti->local_flags &= ~_TLF_RUNLATCH; 2197 2198 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2199 mtspr(SPRN_CTRLT, 0); 2200 } else { 2201 unsigned long ctrl; 2202 2203 ctrl = mfspr(SPRN_CTRLF); 2204 ctrl &= ~CTRL_RUNLATCH; 2205 mtspr(SPRN_CTRLT, ctrl); 2206 } 2207 } 2208 #endif /* CONFIG_PPC64 */ 2209 2210 unsigned long arch_align_stack(unsigned long sp) 2211 { 2212 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2213 sp -= get_random_int() & ~PAGE_MASK; 2214 return sp & ~0xf; 2215 } 2216 2217 static inline unsigned long brk_rnd(void) 2218 { 2219 unsigned long rnd = 0; 2220 2221 /* 8MB for 32bit, 1GB for 64bit */ 2222 if (is_32bit_task()) 2223 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2224 else 2225 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2226 2227 return rnd << PAGE_SHIFT; 2228 } 2229 2230 unsigned long arch_randomize_brk(struct mm_struct *mm) 2231 { 2232 unsigned long base = mm->brk; 2233 unsigned long ret; 2234 2235 #ifdef CONFIG_PPC_BOOK3S_64 2236 /* 2237 * If we are using 1TB segments and we are allowed to randomise 2238 * the heap, we can put it above 1TB so it is backed by a 1TB 2239 * segment. Otherwise the heap will be in the bottom 1TB 2240 * which always uses 256MB segments and this may result in a 2241 * performance penalty. We don't need to worry about radix. For 2242 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2243 */ 2244 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2245 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2246 #endif 2247 2248 ret = PAGE_ALIGN(base + brk_rnd()); 2249 2250 if (ret < mm->brk) 2251 return mm->brk; 2252 2253 return ret; 2254 } 2255 2256