xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision abfbd895)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60 
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67 
68 extern unsigned long _get_SP(void);
69 
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76 
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80 	/*
81 	 * If we are saving the current thread's registers, and the
82 	 * thread is in a transactional state, set the TIF_RESTORE_TM
83 	 * bit so that we know to restore the registers before
84 	 * returning to userspace.
85 	 */
86 	if (tsk == current && tsk->thread.regs &&
87 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 	    !test_thread_flag(TIF_RESTORE_TM)) {
89 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90 		set_thread_flag(TIF_RESTORE_TM);
91 	}
92 
93 	giveup_fpu(tsk);
94 }
95 
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98 	/*
99 	 * If we are saving the current thread's registers, and the
100 	 * thread is in a transactional state, set the TIF_RESTORE_TM
101 	 * bit so that we know to restore the registers before
102 	 * returning to userspace.
103 	 */
104 	if (tsk == current && tsk->thread.regs &&
105 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 	    !test_thread_flag(TIF_RESTORE_TM)) {
107 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
108 		set_thread_flag(TIF_RESTORE_TM);
109 	}
110 
111 	giveup_altivec(tsk);
112 }
113 
114 #else
115 #define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118 
119 #ifdef CONFIG_PPC_FPU
120 /*
121  * Make sure the floating-point register state in the
122  * the thread_struct is up to date for task tsk.
123  */
124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126 	if (tsk->thread.regs) {
127 		/*
128 		 * We need to disable preemption here because if we didn't,
129 		 * another process could get scheduled after the regs->msr
130 		 * test but before we have finished saving the FP registers
131 		 * to the thread_struct.  That process could take over the
132 		 * FPU, and then when we get scheduled again we would store
133 		 * bogus values for the remaining FP registers.
134 		 */
135 		preempt_disable();
136 		if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138 			/*
139 			 * This should only ever be called for current or
140 			 * for a stopped child process.  Since we save away
141 			 * the FP register state on context switch on SMP,
142 			 * there is something wrong if a stopped child appears
143 			 * to still have its FP state in the CPU registers.
144 			 */
145 			BUG_ON(tsk != current);
146 #endif
147 			giveup_fpu_maybe_transactional(tsk);
148 		}
149 		preempt_enable();
150 	}
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154 
155 void enable_kernel_fp(void)
156 {
157 	WARN_ON(preemptible());
158 
159 #ifdef CONFIG_SMP
160 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 		giveup_fpu_maybe_transactional(current);
162 	else
163 		giveup_fpu(NULL);	/* just enables FP for kernel */
164 #else
165 	giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169 
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
172 {
173 	WARN_ON(preemptible());
174 
175 #ifdef CONFIG_SMP
176 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 		giveup_altivec_maybe_transactional(current);
178 	else
179 		giveup_altivec_notask();
180 #else
181 	giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185 
186 /*
187  * Make sure the VMX/Altivec register state in the
188  * the thread_struct is up to date for task tsk.
189  */
190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192 	if (tsk->thread.regs) {
193 		preempt_disable();
194 		if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196 			BUG_ON(tsk != current);
197 #endif
198 			giveup_altivec_maybe_transactional(tsk);
199 		}
200 		preempt_enable();
201 	}
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205 
206 #ifdef CONFIG_VSX
207 void enable_kernel_vsx(void)
208 {
209 	WARN_ON(preemptible());
210 
211 #ifdef CONFIG_SMP
212 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
213 		giveup_vsx(current);
214 	else
215 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
216 #else
217 	giveup_vsx(last_task_used_vsx);
218 #endif /* CONFIG_SMP */
219 }
220 EXPORT_SYMBOL(enable_kernel_vsx);
221 
222 void giveup_vsx(struct task_struct *tsk)
223 {
224 	giveup_fpu_maybe_transactional(tsk);
225 	giveup_altivec_maybe_transactional(tsk);
226 	__giveup_vsx(tsk);
227 }
228 EXPORT_SYMBOL(giveup_vsx);
229 
230 void flush_vsx_to_thread(struct task_struct *tsk)
231 {
232 	if (tsk->thread.regs) {
233 		preempt_disable();
234 		if (tsk->thread.regs->msr & MSR_VSX) {
235 #ifdef CONFIG_SMP
236 			BUG_ON(tsk != current);
237 #endif
238 			giveup_vsx(tsk);
239 		}
240 		preempt_enable();
241 	}
242 }
243 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
244 #endif /* CONFIG_VSX */
245 
246 #ifdef CONFIG_SPE
247 
248 void enable_kernel_spe(void)
249 {
250 	WARN_ON(preemptible());
251 
252 #ifdef CONFIG_SMP
253 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
254 		giveup_spe(current);
255 	else
256 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
257 #else
258 	giveup_spe(last_task_used_spe);
259 #endif /* __SMP __ */
260 }
261 EXPORT_SYMBOL(enable_kernel_spe);
262 
263 void flush_spe_to_thread(struct task_struct *tsk)
264 {
265 	if (tsk->thread.regs) {
266 		preempt_disable();
267 		if (tsk->thread.regs->msr & MSR_SPE) {
268 #ifdef CONFIG_SMP
269 			BUG_ON(tsk != current);
270 #endif
271 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
272 			giveup_spe(tsk);
273 		}
274 		preempt_enable();
275 	}
276 }
277 #endif /* CONFIG_SPE */
278 
279 #ifndef CONFIG_SMP
280 /*
281  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
282  * and the current task has some state, discard it.
283  */
284 void discard_lazy_cpu_state(void)
285 {
286 	preempt_disable();
287 	if (last_task_used_math == current)
288 		last_task_used_math = NULL;
289 #ifdef CONFIG_ALTIVEC
290 	if (last_task_used_altivec == current)
291 		last_task_used_altivec = NULL;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_VSX
294 	if (last_task_used_vsx == current)
295 		last_task_used_vsx = NULL;
296 #endif /* CONFIG_VSX */
297 #ifdef CONFIG_SPE
298 	if (last_task_used_spe == current)
299 		last_task_used_spe = NULL;
300 #endif
301 	preempt_enable();
302 }
303 #endif /* CONFIG_SMP */
304 
305 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
306 void do_send_trap(struct pt_regs *regs, unsigned long address,
307 		  unsigned long error_code, int signal_code, int breakpt)
308 {
309 	siginfo_t info;
310 
311 	current->thread.trap_nr = signal_code;
312 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
313 			11, SIGSEGV) == NOTIFY_STOP)
314 		return;
315 
316 	/* Deliver the signal to userspace */
317 	info.si_signo = SIGTRAP;
318 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
319 	info.si_code = signal_code;
320 	info.si_addr = (void __user *)address;
321 	force_sig_info(SIGTRAP, &info, current);
322 }
323 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
324 void do_break (struct pt_regs *regs, unsigned long address,
325 		    unsigned long error_code)
326 {
327 	siginfo_t info;
328 
329 	current->thread.trap_nr = TRAP_HWBKPT;
330 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
331 			11, SIGSEGV) == NOTIFY_STOP)
332 		return;
333 
334 	if (debugger_break_match(regs))
335 		return;
336 
337 	/* Clear the breakpoint */
338 	hw_breakpoint_disable();
339 
340 	/* Deliver the signal to userspace */
341 	info.si_signo = SIGTRAP;
342 	info.si_errno = 0;
343 	info.si_code = TRAP_HWBKPT;
344 	info.si_addr = (void __user *)address;
345 	force_sig_info(SIGTRAP, &info, current);
346 }
347 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
348 
349 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
350 
351 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
352 /*
353  * Set the debug registers back to their default "safe" values.
354  */
355 static void set_debug_reg_defaults(struct thread_struct *thread)
356 {
357 	thread->debug.iac1 = thread->debug.iac2 = 0;
358 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
359 	thread->debug.iac3 = thread->debug.iac4 = 0;
360 #endif
361 	thread->debug.dac1 = thread->debug.dac2 = 0;
362 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
363 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
364 #endif
365 	thread->debug.dbcr0 = 0;
366 #ifdef CONFIG_BOOKE
367 	/*
368 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
369 	 */
370 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
371 			DBCR1_IAC3US | DBCR1_IAC4US;
372 	/*
373 	 * Force Data Address Compare User/Supervisor bits to be User-only
374 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
375 	 */
376 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
377 #else
378 	thread->debug.dbcr1 = 0;
379 #endif
380 }
381 
382 static void prime_debug_regs(struct debug_reg *debug)
383 {
384 	/*
385 	 * We could have inherited MSR_DE from userspace, since
386 	 * it doesn't get cleared on exception entry.  Make sure
387 	 * MSR_DE is clear before we enable any debug events.
388 	 */
389 	mtmsr(mfmsr() & ~MSR_DE);
390 
391 	mtspr(SPRN_IAC1, debug->iac1);
392 	mtspr(SPRN_IAC2, debug->iac2);
393 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
394 	mtspr(SPRN_IAC3, debug->iac3);
395 	mtspr(SPRN_IAC4, debug->iac4);
396 #endif
397 	mtspr(SPRN_DAC1, debug->dac1);
398 	mtspr(SPRN_DAC2, debug->dac2);
399 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
400 	mtspr(SPRN_DVC1, debug->dvc1);
401 	mtspr(SPRN_DVC2, debug->dvc2);
402 #endif
403 	mtspr(SPRN_DBCR0, debug->dbcr0);
404 	mtspr(SPRN_DBCR1, debug->dbcr1);
405 #ifdef CONFIG_BOOKE
406 	mtspr(SPRN_DBCR2, debug->dbcr2);
407 #endif
408 }
409 /*
410  * Unless neither the old or new thread are making use of the
411  * debug registers, set the debug registers from the values
412  * stored in the new thread.
413  */
414 void switch_booke_debug_regs(struct debug_reg *new_debug)
415 {
416 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
417 		|| (new_debug->dbcr0 & DBCR0_IDM))
418 			prime_debug_regs(new_debug);
419 }
420 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
421 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
422 #ifndef CONFIG_HAVE_HW_BREAKPOINT
423 static void set_debug_reg_defaults(struct thread_struct *thread)
424 {
425 	thread->hw_brk.address = 0;
426 	thread->hw_brk.type = 0;
427 	set_breakpoint(&thread->hw_brk);
428 }
429 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
430 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
431 
432 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
433 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
434 {
435 	mtspr(SPRN_DAC1, dabr);
436 #ifdef CONFIG_PPC_47x
437 	isync();
438 #endif
439 	return 0;
440 }
441 #elif defined(CONFIG_PPC_BOOK3S)
442 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
443 {
444 	mtspr(SPRN_DABR, dabr);
445 	if (cpu_has_feature(CPU_FTR_DABRX))
446 		mtspr(SPRN_DABRX, dabrx);
447 	return 0;
448 }
449 #else
450 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
451 {
452 	return -EINVAL;
453 }
454 #endif
455 
456 static inline int set_dabr(struct arch_hw_breakpoint *brk)
457 {
458 	unsigned long dabr, dabrx;
459 
460 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
461 	dabrx = ((brk->type >> 3) & 0x7);
462 
463 	if (ppc_md.set_dabr)
464 		return ppc_md.set_dabr(dabr, dabrx);
465 
466 	return __set_dabr(dabr, dabrx);
467 }
468 
469 static inline int set_dawr(struct arch_hw_breakpoint *brk)
470 {
471 	unsigned long dawr, dawrx, mrd;
472 
473 	dawr = brk->address;
474 
475 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
476 		                   << (63 - 58); //* read/write bits */
477 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
478 		                   << (63 - 59); //* translate */
479 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
480 		                   >> 3; //* PRIM bits */
481 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
482 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
483 	   0b111111=64DW.
484 	   brk->len is in bytes.
485 	   This aligns up to double word size, shifts and does the bias.
486 	*/
487 	mrd = ((brk->len + 7) >> 3) - 1;
488 	dawrx |= (mrd & 0x3f) << (63 - 53);
489 
490 	if (ppc_md.set_dawr)
491 		return ppc_md.set_dawr(dawr, dawrx);
492 	mtspr(SPRN_DAWR, dawr);
493 	mtspr(SPRN_DAWRX, dawrx);
494 	return 0;
495 }
496 
497 void __set_breakpoint(struct arch_hw_breakpoint *brk)
498 {
499 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
500 
501 	if (cpu_has_feature(CPU_FTR_DAWR))
502 		set_dawr(brk);
503 	else
504 		set_dabr(brk);
505 }
506 
507 void set_breakpoint(struct arch_hw_breakpoint *brk)
508 {
509 	preempt_disable();
510 	__set_breakpoint(brk);
511 	preempt_enable();
512 }
513 
514 #ifdef CONFIG_PPC64
515 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
516 #endif
517 
518 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
519 			      struct arch_hw_breakpoint *b)
520 {
521 	if (a->address != b->address)
522 		return false;
523 	if (a->type != b->type)
524 		return false;
525 	if (a->len != b->len)
526 		return false;
527 	return true;
528 }
529 
530 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531 static void tm_reclaim_thread(struct thread_struct *thr,
532 			      struct thread_info *ti, uint8_t cause)
533 {
534 	unsigned long msr_diff = 0;
535 
536 	/*
537 	 * If FP/VSX registers have been already saved to the
538 	 * thread_struct, move them to the transact_fp array.
539 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
540 	 * the thread will no longer be transactional.
541 	 */
542 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
543 		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
544 		if (msr_diff & MSR_FP)
545 			memcpy(&thr->transact_fp, &thr->fp_state,
546 			       sizeof(struct thread_fp_state));
547 		if (msr_diff & MSR_VEC)
548 			memcpy(&thr->transact_vr, &thr->vr_state,
549 			       sizeof(struct thread_vr_state));
550 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
551 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
552 	}
553 
554 	/*
555 	 * Use the current MSR TM suspended bit to track if we have
556 	 * checkpointed state outstanding.
557 	 * On signal delivery, we'd normally reclaim the checkpointed
558 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
559 	 * This will then directly return to userspace without going
560 	 * through __switch_to(). However, if the stack frame is bad,
561 	 * we need to exit this thread which calls __switch_to() which
562 	 * will again attempt to reclaim the already saved tm state.
563 	 * Hence we need to check that we've not already reclaimed
564 	 * this state.
565 	 * We do this using the current MSR, rather tracking it in
566 	 * some specific thread_struct bit, as it has the additional
567 	 * benifit of checking for a potential TM bad thing exception.
568 	 */
569 	if (!MSR_TM_SUSPENDED(mfmsr()))
570 		return;
571 
572 	tm_reclaim(thr, thr->regs->msr, cause);
573 
574 	/* Having done the reclaim, we now have the checkpointed
575 	 * FP/VSX values in the registers.  These might be valid
576 	 * even if we have previously called enable_kernel_fp() or
577 	 * flush_fp_to_thread(), so update thr->regs->msr to
578 	 * indicate their current validity.
579 	 */
580 	thr->regs->msr |= msr_diff;
581 }
582 
583 void tm_reclaim_current(uint8_t cause)
584 {
585 	tm_enable();
586 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
587 }
588 
589 static inline void tm_reclaim_task(struct task_struct *tsk)
590 {
591 	/* We have to work out if we're switching from/to a task that's in the
592 	 * middle of a transaction.
593 	 *
594 	 * In switching we need to maintain a 2nd register state as
595 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
596 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
597 	 * (current) FPRs into oldtask->thread.transact_fpr[].
598 	 *
599 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
600 	 */
601 	struct thread_struct *thr = &tsk->thread;
602 
603 	if (!thr->regs)
604 		return;
605 
606 	if (!MSR_TM_ACTIVE(thr->regs->msr))
607 		goto out_and_saveregs;
608 
609 	/* Stash the original thread MSR, as giveup_fpu et al will
610 	 * modify it.  We hold onto it to see whether the task used
611 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
612 	 * ckpt_regs.msr is already set.
613 	 */
614 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
615 		thr->ckpt_regs.msr = thr->regs->msr;
616 
617 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
618 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
619 		 tsk->pid, thr->regs->nip,
620 		 thr->regs->ccr, thr->regs->msr,
621 		 thr->regs->trap);
622 
623 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
624 
625 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
626 		 tsk->pid);
627 
628 out_and_saveregs:
629 	/* Always save the regs here, even if a transaction's not active.
630 	 * This context-switches a thread's TM info SPRs.  We do it here to
631 	 * be consistent with the restore path (in recheckpoint) which
632 	 * cannot happen later in _switch().
633 	 */
634 	tm_save_sprs(thr);
635 }
636 
637 extern void __tm_recheckpoint(struct thread_struct *thread,
638 			      unsigned long orig_msr);
639 
640 void tm_recheckpoint(struct thread_struct *thread,
641 		     unsigned long orig_msr)
642 {
643 	unsigned long flags;
644 
645 	/* We really can't be interrupted here as the TEXASR registers can't
646 	 * change and later in the trecheckpoint code, we have a userspace R1.
647 	 * So let's hard disable over this region.
648 	 */
649 	local_irq_save(flags);
650 	hard_irq_disable();
651 
652 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
653 	 * before the trecheckpoint and no explosion occurs.
654 	 */
655 	tm_restore_sprs(thread);
656 
657 	__tm_recheckpoint(thread, orig_msr);
658 
659 	local_irq_restore(flags);
660 }
661 
662 static inline void tm_recheckpoint_new_task(struct task_struct *new)
663 {
664 	unsigned long msr;
665 
666 	if (!cpu_has_feature(CPU_FTR_TM))
667 		return;
668 
669 	/* Recheckpoint the registers of the thread we're about to switch to.
670 	 *
671 	 * If the task was using FP, we non-lazily reload both the original and
672 	 * the speculative FP register states.  This is because the kernel
673 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
674 	 * unavoidable later, we are unable to determine which set of FP regs
675 	 * need to be restored.
676 	 */
677 	if (!new->thread.regs)
678 		return;
679 
680 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
681 		tm_restore_sprs(&new->thread);
682 		return;
683 	}
684 	msr = new->thread.ckpt_regs.msr;
685 	/* Recheckpoint to restore original checkpointed register state. */
686 	TM_DEBUG("*** tm_recheckpoint of pid %d "
687 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
688 		 new->pid, new->thread.regs->msr, msr);
689 
690 	/* This loads the checkpointed FP/VEC state, if used */
691 	tm_recheckpoint(&new->thread, msr);
692 
693 	/* This loads the speculative FP/VEC state, if used */
694 	if (msr & MSR_FP) {
695 		do_load_up_transact_fpu(&new->thread);
696 		new->thread.regs->msr |=
697 			(MSR_FP | new->thread.fpexc_mode);
698 	}
699 #ifdef CONFIG_ALTIVEC
700 	if (msr & MSR_VEC) {
701 		do_load_up_transact_altivec(&new->thread);
702 		new->thread.regs->msr |= MSR_VEC;
703 	}
704 #endif
705 	/* We may as well turn on VSX too since all the state is restored now */
706 	if (msr & MSR_VSX)
707 		new->thread.regs->msr |= MSR_VSX;
708 
709 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
710 		 "(kernel msr 0x%lx)\n",
711 		 new->pid, mfmsr());
712 }
713 
714 static inline void __switch_to_tm(struct task_struct *prev)
715 {
716 	if (cpu_has_feature(CPU_FTR_TM)) {
717 		tm_enable();
718 		tm_reclaim_task(prev);
719 	}
720 }
721 
722 /*
723  * This is called if we are on the way out to userspace and the
724  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
725  * FP and/or vector state and does so if necessary.
726  * If userspace is inside a transaction (whether active or
727  * suspended) and FP/VMX/VSX instructions have ever been enabled
728  * inside that transaction, then we have to keep them enabled
729  * and keep the FP/VMX/VSX state loaded while ever the transaction
730  * continues.  The reason is that if we didn't, and subsequently
731  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
732  * we don't know whether it's the same transaction, and thus we
733  * don't know which of the checkpointed state and the transactional
734  * state to use.
735  */
736 void restore_tm_state(struct pt_regs *regs)
737 {
738 	unsigned long msr_diff;
739 
740 	clear_thread_flag(TIF_RESTORE_TM);
741 	if (!MSR_TM_ACTIVE(regs->msr))
742 		return;
743 
744 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
745 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
746 	if (msr_diff & MSR_FP) {
747 		fp_enable();
748 		load_fp_state(&current->thread.fp_state);
749 		regs->msr |= current->thread.fpexc_mode;
750 	}
751 	if (msr_diff & MSR_VEC) {
752 		vec_enable();
753 		load_vr_state(&current->thread.vr_state);
754 	}
755 	regs->msr |= msr_diff;
756 }
757 
758 #else
759 #define tm_recheckpoint_new_task(new)
760 #define __switch_to_tm(prev)
761 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
762 
763 struct task_struct *__switch_to(struct task_struct *prev,
764 	struct task_struct *new)
765 {
766 	struct thread_struct *new_thread, *old_thread;
767 	struct task_struct *last;
768 #ifdef CONFIG_PPC_BOOK3S_64
769 	struct ppc64_tlb_batch *batch;
770 #endif
771 
772 	WARN_ON(!irqs_disabled());
773 
774 	/* Back up the TAR and DSCR across context switches.
775 	 * Note that the TAR is not available for use in the kernel.  (To
776 	 * provide this, the TAR should be backed up/restored on exception
777 	 * entry/exit instead, and be in pt_regs.  FIXME, this should be in
778 	 * pt_regs anyway (for debug).)
779 	 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
780 	 * these will change them.
781 	 */
782 	save_early_sprs(&prev->thread);
783 
784 	__switch_to_tm(prev);
785 
786 #ifdef CONFIG_SMP
787 	/* avoid complexity of lazy save/restore of fpu
788 	 * by just saving it every time we switch out if
789 	 * this task used the fpu during the last quantum.
790 	 *
791 	 * If it tries to use the fpu again, it'll trap and
792 	 * reload its fp regs.  So we don't have to do a restore
793 	 * every switch, just a save.
794 	 *  -- Cort
795 	 */
796 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
797 		giveup_fpu(prev);
798 #ifdef CONFIG_ALTIVEC
799 	/*
800 	 * If the previous thread used altivec in the last quantum
801 	 * (thus changing altivec regs) then save them.
802 	 * We used to check the VRSAVE register but not all apps
803 	 * set it, so we don't rely on it now (and in fact we need
804 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
805 	 *
806 	 * On SMP we always save/restore altivec regs just to avoid the
807 	 * complexity of changing processors.
808 	 *  -- Cort
809 	 */
810 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
811 		giveup_altivec(prev);
812 #endif /* CONFIG_ALTIVEC */
813 #ifdef CONFIG_VSX
814 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
815 		/* VMX and FPU registers are already save here */
816 		__giveup_vsx(prev);
817 #endif /* CONFIG_VSX */
818 #ifdef CONFIG_SPE
819 	/*
820 	 * If the previous thread used spe in the last quantum
821 	 * (thus changing spe regs) then save them.
822 	 *
823 	 * On SMP we always save/restore spe regs just to avoid the
824 	 * complexity of changing processors.
825 	 */
826 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
827 		giveup_spe(prev);
828 #endif /* CONFIG_SPE */
829 
830 #else  /* CONFIG_SMP */
831 #ifdef CONFIG_ALTIVEC
832 	/* Avoid the trap.  On smp this this never happens since
833 	 * we don't set last_task_used_altivec -- Cort
834 	 */
835 	if (new->thread.regs && last_task_used_altivec == new)
836 		new->thread.regs->msr |= MSR_VEC;
837 #endif /* CONFIG_ALTIVEC */
838 #ifdef CONFIG_VSX
839 	if (new->thread.regs && last_task_used_vsx == new)
840 		new->thread.regs->msr |= MSR_VSX;
841 #endif /* CONFIG_VSX */
842 #ifdef CONFIG_SPE
843 	/* Avoid the trap.  On smp this this never happens since
844 	 * we don't set last_task_used_spe
845 	 */
846 	if (new->thread.regs && last_task_used_spe == new)
847 		new->thread.regs->msr |= MSR_SPE;
848 #endif /* CONFIG_SPE */
849 
850 #endif /* CONFIG_SMP */
851 
852 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
853 	switch_booke_debug_regs(&new->thread.debug);
854 #else
855 /*
856  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
857  * schedule DABR
858  */
859 #ifndef CONFIG_HAVE_HW_BREAKPOINT
860 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
861 		__set_breakpoint(&new->thread.hw_brk);
862 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
863 #endif
864 
865 
866 	new_thread = &new->thread;
867 	old_thread = &current->thread;
868 
869 #ifdef CONFIG_PPC64
870 	/*
871 	 * Collect processor utilization data per process
872 	 */
873 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
874 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
875 		long unsigned start_tb, current_tb;
876 		start_tb = old_thread->start_tb;
877 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
878 		old_thread->accum_tb += (current_tb - start_tb);
879 		new_thread->start_tb = current_tb;
880 	}
881 #endif /* CONFIG_PPC64 */
882 
883 #ifdef CONFIG_PPC_BOOK3S_64
884 	batch = this_cpu_ptr(&ppc64_tlb_batch);
885 	if (batch->active) {
886 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
887 		if (batch->index)
888 			__flush_tlb_pending(batch);
889 		batch->active = 0;
890 	}
891 #endif /* CONFIG_PPC_BOOK3S_64 */
892 
893 	/*
894 	 * We can't take a PMU exception inside _switch() since there is a
895 	 * window where the kernel stack SLB and the kernel stack are out
896 	 * of sync. Hard disable here.
897 	 */
898 	hard_irq_disable();
899 
900 	tm_recheckpoint_new_task(new);
901 
902 	last = _switch(old_thread, new_thread);
903 
904 #ifdef CONFIG_PPC_BOOK3S_64
905 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
906 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
907 		batch = this_cpu_ptr(&ppc64_tlb_batch);
908 		batch->active = 1;
909 	}
910 #endif /* CONFIG_PPC_BOOK3S_64 */
911 
912 	return last;
913 }
914 
915 static int instructions_to_print = 16;
916 
917 static void show_instructions(struct pt_regs *regs)
918 {
919 	int i;
920 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
921 			sizeof(int));
922 
923 	printk("Instruction dump:");
924 
925 	for (i = 0; i < instructions_to_print; i++) {
926 		int instr;
927 
928 		if (!(i % 8))
929 			printk("\n");
930 
931 #if !defined(CONFIG_BOOKE)
932 		/* If executing with the IMMU off, adjust pc rather
933 		 * than print XXXXXXXX.
934 		 */
935 		if (!(regs->msr & MSR_IR))
936 			pc = (unsigned long)phys_to_virt(pc);
937 #endif
938 
939 		if (!__kernel_text_address(pc) ||
940 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
941 			printk(KERN_CONT "XXXXXXXX ");
942 		} else {
943 			if (regs->nip == pc)
944 				printk(KERN_CONT "<%08x> ", instr);
945 			else
946 				printk(KERN_CONT "%08x ", instr);
947 		}
948 
949 		pc += sizeof(int);
950 	}
951 
952 	printk("\n");
953 }
954 
955 static struct regbit {
956 	unsigned long bit;
957 	const char *name;
958 } msr_bits[] = {
959 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
960 	{MSR_SF,	"SF"},
961 	{MSR_HV,	"HV"},
962 #endif
963 	{MSR_VEC,	"VEC"},
964 	{MSR_VSX,	"VSX"},
965 #ifdef CONFIG_BOOKE
966 	{MSR_CE,	"CE"},
967 #endif
968 	{MSR_EE,	"EE"},
969 	{MSR_PR,	"PR"},
970 	{MSR_FP,	"FP"},
971 	{MSR_ME,	"ME"},
972 #ifdef CONFIG_BOOKE
973 	{MSR_DE,	"DE"},
974 #else
975 	{MSR_SE,	"SE"},
976 	{MSR_BE,	"BE"},
977 #endif
978 	{MSR_IR,	"IR"},
979 	{MSR_DR,	"DR"},
980 	{MSR_PMM,	"PMM"},
981 #ifndef CONFIG_BOOKE
982 	{MSR_RI,	"RI"},
983 	{MSR_LE,	"LE"},
984 #endif
985 	{0,		NULL}
986 };
987 
988 static void printbits(unsigned long val, struct regbit *bits)
989 {
990 	const char *sep = "";
991 
992 	printk("<");
993 	for (; bits->bit; ++bits)
994 		if (val & bits->bit) {
995 			printk("%s%s", sep, bits->name);
996 			sep = ",";
997 		}
998 	printk(">");
999 }
1000 
1001 #ifdef CONFIG_PPC64
1002 #define REG		"%016lx"
1003 #define REGS_PER_LINE	4
1004 #define LAST_VOLATILE	13
1005 #else
1006 #define REG		"%08lx"
1007 #define REGS_PER_LINE	8
1008 #define LAST_VOLATILE	12
1009 #endif
1010 
1011 void show_regs(struct pt_regs * regs)
1012 {
1013 	int i, trap;
1014 
1015 	show_regs_print_info(KERN_DEFAULT);
1016 
1017 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1018 	       regs->nip, regs->link, regs->ctr);
1019 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1020 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1021 	printk("MSR: "REG" ", regs->msr);
1022 	printbits(regs->msr, msr_bits);
1023 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1024 	trap = TRAP(regs);
1025 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1026 		printk("CFAR: "REG" ", regs->orig_gpr3);
1027 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1028 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1029 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1030 #else
1031 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1032 #endif
1033 #ifdef CONFIG_PPC64
1034 	printk("SOFTE: %ld ", regs->softe);
1035 #endif
1036 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1037 	if (MSR_TM_ACTIVE(regs->msr))
1038 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1039 #endif
1040 
1041 	for (i = 0;  i < 32;  i++) {
1042 		if ((i % REGS_PER_LINE) == 0)
1043 			printk("\nGPR%02d: ", i);
1044 		printk(REG " ", regs->gpr[i]);
1045 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1046 			break;
1047 	}
1048 	printk("\n");
1049 #ifdef CONFIG_KALLSYMS
1050 	/*
1051 	 * Lookup NIP late so we have the best change of getting the
1052 	 * above info out without failing
1053 	 */
1054 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1055 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1056 #endif
1057 	show_stack(current, (unsigned long *) regs->gpr[1]);
1058 	if (!user_mode(regs))
1059 		show_instructions(regs);
1060 }
1061 
1062 void exit_thread(void)
1063 {
1064 	discard_lazy_cpu_state();
1065 }
1066 
1067 void flush_thread(void)
1068 {
1069 	discard_lazy_cpu_state();
1070 
1071 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1072 	flush_ptrace_hw_breakpoint(current);
1073 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1074 	set_debug_reg_defaults(&current->thread);
1075 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1076 }
1077 
1078 void
1079 release_thread(struct task_struct *t)
1080 {
1081 }
1082 
1083 /*
1084  * this gets called so that we can store coprocessor state into memory and
1085  * copy the current task into the new thread.
1086  */
1087 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1088 {
1089 	flush_fp_to_thread(src);
1090 	flush_altivec_to_thread(src);
1091 	flush_vsx_to_thread(src);
1092 	flush_spe_to_thread(src);
1093 	/*
1094 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1095 	 * flush but it removes the checkpointed state from the current CPU and
1096 	 * transitions the CPU out of TM mode.  Hence we need to call
1097 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1098 	 * checkpointed state back and the TM mode.
1099 	 */
1100 	__switch_to_tm(src);
1101 	tm_recheckpoint_new_task(src);
1102 
1103 	*dst = *src;
1104 
1105 	clear_task_ebb(dst);
1106 
1107 	return 0;
1108 }
1109 
1110 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1111 {
1112 #ifdef CONFIG_PPC_STD_MMU_64
1113 	unsigned long sp_vsid;
1114 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1115 
1116 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1117 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1118 			<< SLB_VSID_SHIFT_1T;
1119 	else
1120 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1121 			<< SLB_VSID_SHIFT;
1122 	sp_vsid |= SLB_VSID_KERNEL | llp;
1123 	p->thread.ksp_vsid = sp_vsid;
1124 #endif
1125 }
1126 
1127 /*
1128  * Copy a thread..
1129  */
1130 
1131 /*
1132  * Copy architecture-specific thread state
1133  */
1134 int copy_thread(unsigned long clone_flags, unsigned long usp,
1135 		unsigned long kthread_arg, struct task_struct *p)
1136 {
1137 	struct pt_regs *childregs, *kregs;
1138 	extern void ret_from_fork(void);
1139 	extern void ret_from_kernel_thread(void);
1140 	void (*f)(void);
1141 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1142 
1143 	/* Copy registers */
1144 	sp -= sizeof(struct pt_regs);
1145 	childregs = (struct pt_regs *) sp;
1146 	if (unlikely(p->flags & PF_KTHREAD)) {
1147 		/* kernel thread */
1148 		struct thread_info *ti = (void *)task_stack_page(p);
1149 		memset(childregs, 0, sizeof(struct pt_regs));
1150 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1151 		/* function */
1152 		if (usp)
1153 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1154 #ifdef CONFIG_PPC64
1155 		clear_tsk_thread_flag(p, TIF_32BIT);
1156 		childregs->softe = 1;
1157 #endif
1158 		childregs->gpr[15] = kthread_arg;
1159 		p->thread.regs = NULL;	/* no user register state */
1160 		ti->flags |= _TIF_RESTOREALL;
1161 		f = ret_from_kernel_thread;
1162 	} else {
1163 		/* user thread */
1164 		struct pt_regs *regs = current_pt_regs();
1165 		CHECK_FULL_REGS(regs);
1166 		*childregs = *regs;
1167 		if (usp)
1168 			childregs->gpr[1] = usp;
1169 		p->thread.regs = childregs;
1170 		childregs->gpr[3] = 0;  /* Result from fork() */
1171 		if (clone_flags & CLONE_SETTLS) {
1172 #ifdef CONFIG_PPC64
1173 			if (!is_32bit_task())
1174 				childregs->gpr[13] = childregs->gpr[6];
1175 			else
1176 #endif
1177 				childregs->gpr[2] = childregs->gpr[6];
1178 		}
1179 
1180 		f = ret_from_fork;
1181 	}
1182 	sp -= STACK_FRAME_OVERHEAD;
1183 
1184 	/*
1185 	 * The way this works is that at some point in the future
1186 	 * some task will call _switch to switch to the new task.
1187 	 * That will pop off the stack frame created below and start
1188 	 * the new task running at ret_from_fork.  The new task will
1189 	 * do some house keeping and then return from the fork or clone
1190 	 * system call, using the stack frame created above.
1191 	 */
1192 	((unsigned long *)sp)[0] = 0;
1193 	sp -= sizeof(struct pt_regs);
1194 	kregs = (struct pt_regs *) sp;
1195 	sp -= STACK_FRAME_OVERHEAD;
1196 	p->thread.ksp = sp;
1197 #ifdef CONFIG_PPC32
1198 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1199 				_ALIGN_UP(sizeof(struct thread_info), 16);
1200 #endif
1201 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1202 	p->thread.ptrace_bps[0] = NULL;
1203 #endif
1204 
1205 	p->thread.fp_save_area = NULL;
1206 #ifdef CONFIG_ALTIVEC
1207 	p->thread.vr_save_area = NULL;
1208 #endif
1209 
1210 	setup_ksp_vsid(p, sp);
1211 
1212 #ifdef CONFIG_PPC64
1213 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1214 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1215 		p->thread.dscr = current->thread.dscr;
1216 	}
1217 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1218 		p->thread.ppr = INIT_PPR;
1219 #endif
1220 	kregs->nip = ppc_function_entry(f);
1221 	return 0;
1222 }
1223 
1224 /*
1225  * Set up a thread for executing a new program
1226  */
1227 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1228 {
1229 #ifdef CONFIG_PPC64
1230 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1231 #endif
1232 
1233 	/*
1234 	 * If we exec out of a kernel thread then thread.regs will not be
1235 	 * set.  Do it now.
1236 	 */
1237 	if (!current->thread.regs) {
1238 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1239 		current->thread.regs = regs - 1;
1240 	}
1241 
1242 	memset(regs->gpr, 0, sizeof(regs->gpr));
1243 	regs->ctr = 0;
1244 	regs->link = 0;
1245 	regs->xer = 0;
1246 	regs->ccr = 0;
1247 	regs->gpr[1] = sp;
1248 
1249 	/*
1250 	 * We have just cleared all the nonvolatile GPRs, so make
1251 	 * FULL_REGS(regs) return true.  This is necessary to allow
1252 	 * ptrace to examine the thread immediately after exec.
1253 	 */
1254 	regs->trap &= ~1UL;
1255 
1256 #ifdef CONFIG_PPC32
1257 	regs->mq = 0;
1258 	regs->nip = start;
1259 	regs->msr = MSR_USER;
1260 #else
1261 	if (!is_32bit_task()) {
1262 		unsigned long entry;
1263 
1264 		if (is_elf2_task()) {
1265 			/* Look ma, no function descriptors! */
1266 			entry = start;
1267 
1268 			/*
1269 			 * Ulrich says:
1270 			 *   The latest iteration of the ABI requires that when
1271 			 *   calling a function (at its global entry point),
1272 			 *   the caller must ensure r12 holds the entry point
1273 			 *   address (so that the function can quickly
1274 			 *   establish addressability).
1275 			 */
1276 			regs->gpr[12] = start;
1277 			/* Make sure that's restored on entry to userspace. */
1278 			set_thread_flag(TIF_RESTOREALL);
1279 		} else {
1280 			unsigned long toc;
1281 
1282 			/* start is a relocated pointer to the function
1283 			 * descriptor for the elf _start routine.  The first
1284 			 * entry in the function descriptor is the entry
1285 			 * address of _start and the second entry is the TOC
1286 			 * value we need to use.
1287 			 */
1288 			__get_user(entry, (unsigned long __user *)start);
1289 			__get_user(toc, (unsigned long __user *)start+1);
1290 
1291 			/* Check whether the e_entry function descriptor entries
1292 			 * need to be relocated before we can use them.
1293 			 */
1294 			if (load_addr != 0) {
1295 				entry += load_addr;
1296 				toc   += load_addr;
1297 			}
1298 			regs->gpr[2] = toc;
1299 		}
1300 		regs->nip = entry;
1301 		regs->msr = MSR_USER64;
1302 	} else {
1303 		regs->nip = start;
1304 		regs->gpr[2] = 0;
1305 		regs->msr = MSR_USER32;
1306 	}
1307 #endif
1308 	discard_lazy_cpu_state();
1309 #ifdef CONFIG_VSX
1310 	current->thread.used_vsr = 0;
1311 #endif
1312 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1313 	current->thread.fp_save_area = NULL;
1314 #ifdef CONFIG_ALTIVEC
1315 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1316 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1317 	current->thread.vr_save_area = NULL;
1318 	current->thread.vrsave = 0;
1319 	current->thread.used_vr = 0;
1320 #endif /* CONFIG_ALTIVEC */
1321 #ifdef CONFIG_SPE
1322 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1323 	current->thread.acc = 0;
1324 	current->thread.spefscr = 0;
1325 	current->thread.used_spe = 0;
1326 #endif /* CONFIG_SPE */
1327 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1328 	if (cpu_has_feature(CPU_FTR_TM))
1329 		regs->msr |= MSR_TM;
1330 	current->thread.tm_tfhar = 0;
1331 	current->thread.tm_texasr = 0;
1332 	current->thread.tm_tfiar = 0;
1333 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1334 }
1335 EXPORT_SYMBOL(start_thread);
1336 
1337 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1338 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1339 
1340 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1341 {
1342 	struct pt_regs *regs = tsk->thread.regs;
1343 
1344 	/* This is a bit hairy.  If we are an SPE enabled  processor
1345 	 * (have embedded fp) we store the IEEE exception enable flags in
1346 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1347 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1348 	if (val & PR_FP_EXC_SW_ENABLE) {
1349 #ifdef CONFIG_SPE
1350 		if (cpu_has_feature(CPU_FTR_SPE)) {
1351 			/*
1352 			 * When the sticky exception bits are set
1353 			 * directly by userspace, it must call prctl
1354 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1355 			 * in the existing prctl settings) or
1356 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1357 			 * the bits being set).  <fenv.h> functions
1358 			 * saving and restoring the whole
1359 			 * floating-point environment need to do so
1360 			 * anyway to restore the prctl settings from
1361 			 * the saved environment.
1362 			 */
1363 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1364 			tsk->thread.fpexc_mode = val &
1365 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1366 			return 0;
1367 		} else {
1368 			return -EINVAL;
1369 		}
1370 #else
1371 		return -EINVAL;
1372 #endif
1373 	}
1374 
1375 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1376 	 * __pack_fe01 use do not overlap with bits used for
1377 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1378 	 * on CONFIG_SPE implementations are reserved so writing to
1379 	 * them does not change anything */
1380 	if (val > PR_FP_EXC_PRECISE)
1381 		return -EINVAL;
1382 	tsk->thread.fpexc_mode = __pack_fe01(val);
1383 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1384 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1385 			| tsk->thread.fpexc_mode;
1386 	return 0;
1387 }
1388 
1389 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1390 {
1391 	unsigned int val;
1392 
1393 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1394 #ifdef CONFIG_SPE
1395 		if (cpu_has_feature(CPU_FTR_SPE)) {
1396 			/*
1397 			 * When the sticky exception bits are set
1398 			 * directly by userspace, it must call prctl
1399 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1400 			 * in the existing prctl settings) or
1401 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1402 			 * the bits being set).  <fenv.h> functions
1403 			 * saving and restoring the whole
1404 			 * floating-point environment need to do so
1405 			 * anyway to restore the prctl settings from
1406 			 * the saved environment.
1407 			 */
1408 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1409 			val = tsk->thread.fpexc_mode;
1410 		} else
1411 			return -EINVAL;
1412 #else
1413 		return -EINVAL;
1414 #endif
1415 	else
1416 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1417 	return put_user(val, (unsigned int __user *) adr);
1418 }
1419 
1420 int set_endian(struct task_struct *tsk, unsigned int val)
1421 {
1422 	struct pt_regs *regs = tsk->thread.regs;
1423 
1424 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1425 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1426 		return -EINVAL;
1427 
1428 	if (regs == NULL)
1429 		return -EINVAL;
1430 
1431 	if (val == PR_ENDIAN_BIG)
1432 		regs->msr &= ~MSR_LE;
1433 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1434 		regs->msr |= MSR_LE;
1435 	else
1436 		return -EINVAL;
1437 
1438 	return 0;
1439 }
1440 
1441 int get_endian(struct task_struct *tsk, unsigned long adr)
1442 {
1443 	struct pt_regs *regs = tsk->thread.regs;
1444 	unsigned int val;
1445 
1446 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1447 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1448 		return -EINVAL;
1449 
1450 	if (regs == NULL)
1451 		return -EINVAL;
1452 
1453 	if (regs->msr & MSR_LE) {
1454 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1455 			val = PR_ENDIAN_LITTLE;
1456 		else
1457 			val = PR_ENDIAN_PPC_LITTLE;
1458 	} else
1459 		val = PR_ENDIAN_BIG;
1460 
1461 	return put_user(val, (unsigned int __user *)adr);
1462 }
1463 
1464 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1465 {
1466 	tsk->thread.align_ctl = val;
1467 	return 0;
1468 }
1469 
1470 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1471 {
1472 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1473 }
1474 
1475 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1476 				  unsigned long nbytes)
1477 {
1478 	unsigned long stack_page;
1479 	unsigned long cpu = task_cpu(p);
1480 
1481 	/*
1482 	 * Avoid crashing if the stack has overflowed and corrupted
1483 	 * task_cpu(p), which is in the thread_info struct.
1484 	 */
1485 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1486 		stack_page = (unsigned long) hardirq_ctx[cpu];
1487 		if (sp >= stack_page + sizeof(struct thread_struct)
1488 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1489 			return 1;
1490 
1491 		stack_page = (unsigned long) softirq_ctx[cpu];
1492 		if (sp >= stack_page + sizeof(struct thread_struct)
1493 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1494 			return 1;
1495 	}
1496 	return 0;
1497 }
1498 
1499 int validate_sp(unsigned long sp, struct task_struct *p,
1500 		       unsigned long nbytes)
1501 {
1502 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1503 
1504 	if (sp >= stack_page + sizeof(struct thread_struct)
1505 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1506 		return 1;
1507 
1508 	return valid_irq_stack(sp, p, nbytes);
1509 }
1510 
1511 EXPORT_SYMBOL(validate_sp);
1512 
1513 unsigned long get_wchan(struct task_struct *p)
1514 {
1515 	unsigned long ip, sp;
1516 	int count = 0;
1517 
1518 	if (!p || p == current || p->state == TASK_RUNNING)
1519 		return 0;
1520 
1521 	sp = p->thread.ksp;
1522 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1523 		return 0;
1524 
1525 	do {
1526 		sp = *(unsigned long *)sp;
1527 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1528 			return 0;
1529 		if (count > 0) {
1530 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1531 			if (!in_sched_functions(ip))
1532 				return ip;
1533 		}
1534 	} while (count++ < 16);
1535 	return 0;
1536 }
1537 
1538 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1539 
1540 void show_stack(struct task_struct *tsk, unsigned long *stack)
1541 {
1542 	unsigned long sp, ip, lr, newsp;
1543 	int count = 0;
1544 	int firstframe = 1;
1545 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1546 	int curr_frame = current->curr_ret_stack;
1547 	extern void return_to_handler(void);
1548 	unsigned long rth = (unsigned long)return_to_handler;
1549 #endif
1550 
1551 	sp = (unsigned long) stack;
1552 	if (tsk == NULL)
1553 		tsk = current;
1554 	if (sp == 0) {
1555 		if (tsk == current)
1556 			sp = current_stack_pointer();
1557 		else
1558 			sp = tsk->thread.ksp;
1559 	}
1560 
1561 	lr = 0;
1562 	printk("Call Trace:\n");
1563 	do {
1564 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1565 			return;
1566 
1567 		stack = (unsigned long *) sp;
1568 		newsp = stack[0];
1569 		ip = stack[STACK_FRAME_LR_SAVE];
1570 		if (!firstframe || ip != lr) {
1571 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1572 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1573 			if ((ip == rth) && curr_frame >= 0) {
1574 				printk(" (%pS)",
1575 				       (void *)current->ret_stack[curr_frame].ret);
1576 				curr_frame--;
1577 			}
1578 #endif
1579 			if (firstframe)
1580 				printk(" (unreliable)");
1581 			printk("\n");
1582 		}
1583 		firstframe = 0;
1584 
1585 		/*
1586 		 * See if this is an exception frame.
1587 		 * We look for the "regshere" marker in the current frame.
1588 		 */
1589 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1590 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1591 			struct pt_regs *regs = (struct pt_regs *)
1592 				(sp + STACK_FRAME_OVERHEAD);
1593 			lr = regs->link;
1594 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1595 			       regs->trap, (void *)regs->nip, (void *)lr);
1596 			firstframe = 1;
1597 		}
1598 
1599 		sp = newsp;
1600 	} while (count++ < kstack_depth_to_print);
1601 }
1602 
1603 #ifdef CONFIG_PPC64
1604 /* Called with hard IRQs off */
1605 void notrace __ppc64_runlatch_on(void)
1606 {
1607 	struct thread_info *ti = current_thread_info();
1608 	unsigned long ctrl;
1609 
1610 	ctrl = mfspr(SPRN_CTRLF);
1611 	ctrl |= CTRL_RUNLATCH;
1612 	mtspr(SPRN_CTRLT, ctrl);
1613 
1614 	ti->local_flags |= _TLF_RUNLATCH;
1615 }
1616 
1617 /* Called with hard IRQs off */
1618 void notrace __ppc64_runlatch_off(void)
1619 {
1620 	struct thread_info *ti = current_thread_info();
1621 	unsigned long ctrl;
1622 
1623 	ti->local_flags &= ~_TLF_RUNLATCH;
1624 
1625 	ctrl = mfspr(SPRN_CTRLF);
1626 	ctrl &= ~CTRL_RUNLATCH;
1627 	mtspr(SPRN_CTRLT, ctrl);
1628 }
1629 #endif /* CONFIG_PPC64 */
1630 
1631 unsigned long arch_align_stack(unsigned long sp)
1632 {
1633 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1634 		sp -= get_random_int() & ~PAGE_MASK;
1635 	return sp & ~0xf;
1636 }
1637 
1638 static inline unsigned long brk_rnd(void)
1639 {
1640         unsigned long rnd = 0;
1641 
1642 	/* 8MB for 32bit, 1GB for 64bit */
1643 	if (is_32bit_task())
1644 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1645 	else
1646 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1647 
1648 	return rnd << PAGE_SHIFT;
1649 }
1650 
1651 unsigned long arch_randomize_brk(struct mm_struct *mm)
1652 {
1653 	unsigned long base = mm->brk;
1654 	unsigned long ret;
1655 
1656 #ifdef CONFIG_PPC_STD_MMU_64
1657 	/*
1658 	 * If we are using 1TB segments and we are allowed to randomise
1659 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1660 	 * segment. Otherwise the heap will be in the bottom 1TB
1661 	 * which always uses 256MB segments and this may result in a
1662 	 * performance penalty.
1663 	 */
1664 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1665 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1666 #endif
1667 
1668 	ret = PAGE_ALIGN(base + brk_rnd());
1669 
1670 	if (ret < mm->brk)
1671 		return mm->brk;
1672 
1673 	return ret;
1674 }
1675 
1676