xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision a977d045)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66 
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69 
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76 
77 extern unsigned long _get_SP(void);
78 
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82 	/*
83 	 * If we are saving the current thread's registers, and the
84 	 * thread is in a transactional state, set the TIF_RESTORE_TM
85 	 * bit so that we know to restore the registers before
86 	 * returning to userspace.
87 	 */
88 	if (tsk == current && tsk->thread.regs &&
89 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 	    !test_thread_flag(TIF_RESTORE_TM)) {
91 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 		set_thread_flag(TIF_RESTORE_TM);
93 	}
94 }
95 
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98 	return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104 
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107 
108 static int __init enable_strict_msr_control(char *str)
109 {
110 	strict_msr_control = true;
111 	pr_info("Enabling strict facility control\n");
112 
113 	return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116 
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119 	unsigned long oldmsr = mfmsr();
120 	unsigned long newmsr;
121 
122 	newmsr = oldmsr | bits;
123 
124 #ifdef CONFIG_VSX
125 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 		newmsr |= MSR_VSX;
127 #endif
128 
129 	if (oldmsr != newmsr)
130 		mtmsr_isync(newmsr);
131 
132 	return newmsr;
133 }
134 
135 void __msr_check_and_clear(unsigned long bits)
136 {
137 	unsigned long oldmsr = mfmsr();
138 	unsigned long newmsr;
139 
140 	newmsr = oldmsr & ~bits;
141 
142 #ifdef CONFIG_VSX
143 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 		newmsr &= ~MSR_VSX;
145 #endif
146 
147 	if (oldmsr != newmsr)
148 		mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151 
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155 	unsigned long msr;
156 
157 	save_fpu(tsk);
158 	msr = tsk->thread.regs->msr;
159 	msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161 	if (cpu_has_feature(CPU_FTR_VSX))
162 		msr &= ~MSR_VSX;
163 #endif
164 	tsk->thread.regs->msr = msr;
165 }
166 
167 void giveup_fpu(struct task_struct *tsk)
168 {
169 	check_if_tm_restore_required(tsk);
170 
171 	msr_check_and_set(MSR_FP);
172 	__giveup_fpu(tsk);
173 	msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176 
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183 	if (tsk->thread.regs) {
184 		/*
185 		 * We need to disable preemption here because if we didn't,
186 		 * another process could get scheduled after the regs->msr
187 		 * test but before we have finished saving the FP registers
188 		 * to the thread_struct.  That process could take over the
189 		 * FPU, and then when we get scheduled again we would store
190 		 * bogus values for the remaining FP registers.
191 		 */
192 		preempt_disable();
193 		if (tsk->thread.regs->msr & MSR_FP) {
194 			/*
195 			 * This should only ever be called for current or
196 			 * for a stopped child process.  Since we save away
197 			 * the FP register state on context switch,
198 			 * there is something wrong if a stopped child appears
199 			 * to still have its FP state in the CPU registers.
200 			 */
201 			BUG_ON(tsk != current);
202 			giveup_fpu(tsk);
203 		}
204 		preempt_enable();
205 	}
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 
209 void enable_kernel_fp(void)
210 {
211 	unsigned long cpumsr;
212 
213 	WARN_ON(preemptible());
214 
215 	cpumsr = msr_check_and_set(MSR_FP);
216 
217 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 		check_if_tm_restore_required(current);
219 		/*
220 		 * If a thread has already been reclaimed then the
221 		 * checkpointed registers are on the CPU but have definitely
222 		 * been saved by the reclaim code. Don't need to and *cannot*
223 		 * giveup as this would save  to the 'live' structure not the
224 		 * checkpointed structure.
225 		 */
226 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 			return;
228 		__giveup_fpu(current);
229 	}
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232 
233 static int restore_fp(struct task_struct *tsk) {
234 	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235 		load_fp_state(&current->thread.fp_state);
236 		current->thread.load_fp++;
237 		return 1;
238 	}
239 	return 0;
240 }
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
244 
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
247 
248 static void __giveup_altivec(struct task_struct *tsk)
249 {
250 	unsigned long msr;
251 
252 	save_altivec(tsk);
253 	msr = tsk->thread.regs->msr;
254 	msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256 	if (cpu_has_feature(CPU_FTR_VSX))
257 		msr &= ~MSR_VSX;
258 #endif
259 	tsk->thread.regs->msr = msr;
260 }
261 
262 void giveup_altivec(struct task_struct *tsk)
263 {
264 	check_if_tm_restore_required(tsk);
265 
266 	msr_check_and_set(MSR_VEC);
267 	__giveup_altivec(tsk);
268 	msr_check_and_clear(MSR_VEC);
269 }
270 EXPORT_SYMBOL(giveup_altivec);
271 
272 void enable_kernel_altivec(void)
273 {
274 	unsigned long cpumsr;
275 
276 	WARN_ON(preemptible());
277 
278 	cpumsr = msr_check_and_set(MSR_VEC);
279 
280 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281 		check_if_tm_restore_required(current);
282 		/*
283 		 * If a thread has already been reclaimed then the
284 		 * checkpointed registers are on the CPU but have definitely
285 		 * been saved by the reclaim code. Don't need to and *cannot*
286 		 * giveup as this would save  to the 'live' structure not the
287 		 * checkpointed structure.
288 		 */
289 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290 			return;
291 		__giveup_altivec(current);
292 	}
293 }
294 EXPORT_SYMBOL(enable_kernel_altivec);
295 
296 /*
297  * Make sure the VMX/Altivec register state in the
298  * the thread_struct is up to date for task tsk.
299  */
300 void flush_altivec_to_thread(struct task_struct *tsk)
301 {
302 	if (tsk->thread.regs) {
303 		preempt_disable();
304 		if (tsk->thread.regs->msr & MSR_VEC) {
305 			BUG_ON(tsk != current);
306 			giveup_altivec(tsk);
307 		}
308 		preempt_enable();
309 	}
310 }
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312 
313 static int restore_altivec(struct task_struct *tsk)
314 {
315 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316 		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317 		load_vr_state(&tsk->thread.vr_state);
318 		tsk->thread.used_vr = 1;
319 		tsk->thread.load_vec++;
320 
321 		return 1;
322 	}
323 	return 0;
324 }
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
329 
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
332 {
333 	if (tsk->thread.regs->msr & MSR_FP)
334 		__giveup_fpu(tsk);
335 	if (tsk->thread.regs->msr & MSR_VEC)
336 		__giveup_altivec(tsk);
337 	tsk->thread.regs->msr &= ~MSR_VSX;
338 }
339 
340 static void giveup_vsx(struct task_struct *tsk)
341 {
342 	check_if_tm_restore_required(tsk);
343 
344 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345 	__giveup_vsx(tsk);
346 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347 }
348 
349 static void save_vsx(struct task_struct *tsk)
350 {
351 	if (tsk->thread.regs->msr & MSR_FP)
352 		save_fpu(tsk);
353 	if (tsk->thread.regs->msr & MSR_VEC)
354 		save_altivec(tsk);
355 }
356 
357 void enable_kernel_vsx(void)
358 {
359 	unsigned long cpumsr;
360 
361 	WARN_ON(preemptible());
362 
363 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
364 
365 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366 		check_if_tm_restore_required(current);
367 		/*
368 		 * If a thread has already been reclaimed then the
369 		 * checkpointed registers are on the CPU but have definitely
370 		 * been saved by the reclaim code. Don't need to and *cannot*
371 		 * giveup as this would save  to the 'live' structure not the
372 		 * checkpointed structure.
373 		 */
374 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
375 			return;
376 		if (current->thread.regs->msr & MSR_FP)
377 			__giveup_fpu(current);
378 		if (current->thread.regs->msr & MSR_VEC)
379 			__giveup_altivec(current);
380 		__giveup_vsx(current);
381 	}
382 }
383 EXPORT_SYMBOL(enable_kernel_vsx);
384 
385 void flush_vsx_to_thread(struct task_struct *tsk)
386 {
387 	if (tsk->thread.regs) {
388 		preempt_disable();
389 		if (tsk->thread.regs->msr & MSR_VSX) {
390 			BUG_ON(tsk != current);
391 			giveup_vsx(tsk);
392 		}
393 		preempt_enable();
394 	}
395 }
396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397 
398 static int restore_vsx(struct task_struct *tsk)
399 {
400 	if (cpu_has_feature(CPU_FTR_VSX)) {
401 		tsk->thread.used_vsr = 1;
402 		return 1;
403 	}
404 
405 	return 0;
406 }
407 #else
408 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409 static inline void save_vsx(struct task_struct *tsk) { }
410 #endif /* CONFIG_VSX */
411 
412 #ifdef CONFIG_SPE
413 void giveup_spe(struct task_struct *tsk)
414 {
415 	check_if_tm_restore_required(tsk);
416 
417 	msr_check_and_set(MSR_SPE);
418 	__giveup_spe(tsk);
419 	msr_check_and_clear(MSR_SPE);
420 }
421 EXPORT_SYMBOL(giveup_spe);
422 
423 void enable_kernel_spe(void)
424 {
425 	WARN_ON(preemptible());
426 
427 	msr_check_and_set(MSR_SPE);
428 
429 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
430 		check_if_tm_restore_required(current);
431 		__giveup_spe(current);
432 	}
433 }
434 EXPORT_SYMBOL(enable_kernel_spe);
435 
436 void flush_spe_to_thread(struct task_struct *tsk)
437 {
438 	if (tsk->thread.regs) {
439 		preempt_disable();
440 		if (tsk->thread.regs->msr & MSR_SPE) {
441 			BUG_ON(tsk != current);
442 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443 			giveup_spe(tsk);
444 		}
445 		preempt_enable();
446 	}
447 }
448 #endif /* CONFIG_SPE */
449 
450 static unsigned long msr_all_available;
451 
452 static int __init init_msr_all_available(void)
453 {
454 #ifdef CONFIG_PPC_FPU
455 	msr_all_available |= MSR_FP;
456 #endif
457 #ifdef CONFIG_ALTIVEC
458 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
459 		msr_all_available |= MSR_VEC;
460 #endif
461 #ifdef CONFIG_VSX
462 	if (cpu_has_feature(CPU_FTR_VSX))
463 		msr_all_available |= MSR_VSX;
464 #endif
465 #ifdef CONFIG_SPE
466 	if (cpu_has_feature(CPU_FTR_SPE))
467 		msr_all_available |= MSR_SPE;
468 #endif
469 
470 	return 0;
471 }
472 early_initcall(init_msr_all_available);
473 
474 void giveup_all(struct task_struct *tsk)
475 {
476 	unsigned long usermsr;
477 
478 	if (!tsk->thread.regs)
479 		return;
480 
481 	usermsr = tsk->thread.regs->msr;
482 
483 	if ((usermsr & msr_all_available) == 0)
484 		return;
485 
486 	msr_check_and_set(msr_all_available);
487 	check_if_tm_restore_required(tsk);
488 
489 #ifdef CONFIG_PPC_FPU
490 	if (usermsr & MSR_FP)
491 		__giveup_fpu(tsk);
492 #endif
493 #ifdef CONFIG_ALTIVEC
494 	if (usermsr & MSR_VEC)
495 		__giveup_altivec(tsk);
496 #endif
497 #ifdef CONFIG_VSX
498 	if (usermsr & MSR_VSX)
499 		__giveup_vsx(tsk);
500 #endif
501 #ifdef CONFIG_SPE
502 	if (usermsr & MSR_SPE)
503 		__giveup_spe(tsk);
504 #endif
505 
506 	msr_check_and_clear(msr_all_available);
507 }
508 EXPORT_SYMBOL(giveup_all);
509 
510 void restore_math(struct pt_regs *regs)
511 {
512 	unsigned long msr;
513 
514 	/*
515 	 * Syscall exit makes a similar initial check before branching
516 	 * to restore_math. Keep them in synch.
517 	 */
518 	if (!msr_tm_active(regs->msr) &&
519 		!current->thread.load_fp && !loadvec(current->thread))
520 		return;
521 
522 	msr = regs->msr;
523 	msr_check_and_set(msr_all_available);
524 
525 	/*
526 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
527 	 * indicates that the registers are hot
528 	 */
529 	if ((!(msr & MSR_FP)) && restore_fp(current))
530 		msr |= MSR_FP | current->thread.fpexc_mode;
531 
532 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
533 		msr |= MSR_VEC;
534 
535 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
536 			restore_vsx(current)) {
537 		msr |= MSR_VSX;
538 	}
539 
540 	msr_check_and_clear(msr_all_available);
541 
542 	regs->msr = msr;
543 }
544 
545 void save_all(struct task_struct *tsk)
546 {
547 	unsigned long usermsr;
548 
549 	if (!tsk->thread.regs)
550 		return;
551 
552 	usermsr = tsk->thread.regs->msr;
553 
554 	if ((usermsr & msr_all_available) == 0)
555 		return;
556 
557 	msr_check_and_set(msr_all_available);
558 
559 	/*
560 	 * Saving the way the register space is in hardware, save_vsx boils
561 	 * down to a save_fpu() and save_altivec()
562 	 */
563 	if (usermsr & MSR_VSX) {
564 		save_vsx(tsk);
565 	} else {
566 		if (usermsr & MSR_FP)
567 			save_fpu(tsk);
568 
569 		if (usermsr & MSR_VEC)
570 			save_altivec(tsk);
571 	}
572 
573 	if (usermsr & MSR_SPE)
574 		__giveup_spe(tsk);
575 
576 	msr_check_and_clear(msr_all_available);
577 }
578 
579 void flush_all_to_thread(struct task_struct *tsk)
580 {
581 	if (tsk->thread.regs) {
582 		preempt_disable();
583 		BUG_ON(tsk != current);
584 		save_all(tsk);
585 
586 #ifdef CONFIG_SPE
587 		if (tsk->thread.regs->msr & MSR_SPE)
588 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
589 #endif
590 
591 		preempt_enable();
592 	}
593 }
594 EXPORT_SYMBOL(flush_all_to_thread);
595 
596 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
597 void do_send_trap(struct pt_regs *regs, unsigned long address,
598 		  unsigned long error_code, int signal_code, int breakpt)
599 {
600 	siginfo_t info;
601 
602 	current->thread.trap_nr = signal_code;
603 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
604 			11, SIGSEGV) == NOTIFY_STOP)
605 		return;
606 
607 	/* Deliver the signal to userspace */
608 	info.si_signo = SIGTRAP;
609 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
610 	info.si_code = signal_code;
611 	info.si_addr = (void __user *)address;
612 	force_sig_info(SIGTRAP, &info, current);
613 }
614 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
615 void do_break (struct pt_regs *regs, unsigned long address,
616 		    unsigned long error_code)
617 {
618 	siginfo_t info;
619 
620 	current->thread.trap_nr = TRAP_HWBKPT;
621 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
622 			11, SIGSEGV) == NOTIFY_STOP)
623 		return;
624 
625 	if (debugger_break_match(regs))
626 		return;
627 
628 	/* Clear the breakpoint */
629 	hw_breakpoint_disable();
630 
631 	/* Deliver the signal to userspace */
632 	info.si_signo = SIGTRAP;
633 	info.si_errno = 0;
634 	info.si_code = TRAP_HWBKPT;
635 	info.si_addr = (void __user *)address;
636 	force_sig_info(SIGTRAP, &info, current);
637 }
638 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
639 
640 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
641 
642 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
643 /*
644  * Set the debug registers back to their default "safe" values.
645  */
646 static void set_debug_reg_defaults(struct thread_struct *thread)
647 {
648 	thread->debug.iac1 = thread->debug.iac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
650 	thread->debug.iac3 = thread->debug.iac4 = 0;
651 #endif
652 	thread->debug.dac1 = thread->debug.dac2 = 0;
653 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
654 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
655 #endif
656 	thread->debug.dbcr0 = 0;
657 #ifdef CONFIG_BOOKE
658 	/*
659 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
660 	 */
661 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
662 			DBCR1_IAC3US | DBCR1_IAC4US;
663 	/*
664 	 * Force Data Address Compare User/Supervisor bits to be User-only
665 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
666 	 */
667 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
668 #else
669 	thread->debug.dbcr1 = 0;
670 #endif
671 }
672 
673 static void prime_debug_regs(struct debug_reg *debug)
674 {
675 	/*
676 	 * We could have inherited MSR_DE from userspace, since
677 	 * it doesn't get cleared on exception entry.  Make sure
678 	 * MSR_DE is clear before we enable any debug events.
679 	 */
680 	mtmsr(mfmsr() & ~MSR_DE);
681 
682 	mtspr(SPRN_IAC1, debug->iac1);
683 	mtspr(SPRN_IAC2, debug->iac2);
684 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
685 	mtspr(SPRN_IAC3, debug->iac3);
686 	mtspr(SPRN_IAC4, debug->iac4);
687 #endif
688 	mtspr(SPRN_DAC1, debug->dac1);
689 	mtspr(SPRN_DAC2, debug->dac2);
690 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
691 	mtspr(SPRN_DVC1, debug->dvc1);
692 	mtspr(SPRN_DVC2, debug->dvc2);
693 #endif
694 	mtspr(SPRN_DBCR0, debug->dbcr0);
695 	mtspr(SPRN_DBCR1, debug->dbcr1);
696 #ifdef CONFIG_BOOKE
697 	mtspr(SPRN_DBCR2, debug->dbcr2);
698 #endif
699 }
700 /*
701  * Unless neither the old or new thread are making use of the
702  * debug registers, set the debug registers from the values
703  * stored in the new thread.
704  */
705 void switch_booke_debug_regs(struct debug_reg *new_debug)
706 {
707 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
708 		|| (new_debug->dbcr0 & DBCR0_IDM))
709 			prime_debug_regs(new_debug);
710 }
711 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
712 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
713 #ifndef CONFIG_HAVE_HW_BREAKPOINT
714 static void set_debug_reg_defaults(struct thread_struct *thread)
715 {
716 	thread->hw_brk.address = 0;
717 	thread->hw_brk.type = 0;
718 	set_breakpoint(&thread->hw_brk);
719 }
720 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
721 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
722 
723 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
724 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
725 {
726 	mtspr(SPRN_DAC1, dabr);
727 #ifdef CONFIG_PPC_47x
728 	isync();
729 #endif
730 	return 0;
731 }
732 #elif defined(CONFIG_PPC_BOOK3S)
733 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
734 {
735 	mtspr(SPRN_DABR, dabr);
736 	if (cpu_has_feature(CPU_FTR_DABRX))
737 		mtspr(SPRN_DABRX, dabrx);
738 	return 0;
739 }
740 #elif defined(CONFIG_PPC_8xx)
741 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
742 {
743 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
744 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
745 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
746 
747 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
748 		lctrl1 |= 0xa0000;
749 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
750 		lctrl1 |= 0xf0000;
751 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
752 		lctrl2 = 0;
753 
754 	mtspr(SPRN_LCTRL2, 0);
755 	mtspr(SPRN_CMPE, addr);
756 	mtspr(SPRN_CMPF, addr + 4);
757 	mtspr(SPRN_LCTRL1, lctrl1);
758 	mtspr(SPRN_LCTRL2, lctrl2);
759 
760 	return 0;
761 }
762 #else
763 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
764 {
765 	return -EINVAL;
766 }
767 #endif
768 
769 static inline int set_dabr(struct arch_hw_breakpoint *brk)
770 {
771 	unsigned long dabr, dabrx;
772 
773 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
774 	dabrx = ((brk->type >> 3) & 0x7);
775 
776 	if (ppc_md.set_dabr)
777 		return ppc_md.set_dabr(dabr, dabrx);
778 
779 	return __set_dabr(dabr, dabrx);
780 }
781 
782 static inline int set_dawr(struct arch_hw_breakpoint *brk)
783 {
784 	unsigned long dawr, dawrx, mrd;
785 
786 	dawr = brk->address;
787 
788 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
789 		                   << (63 - 58); //* read/write bits */
790 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
791 		                   << (63 - 59); //* translate */
792 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
793 		                   >> 3; //* PRIM bits */
794 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
795 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
796 	   0b111111=64DW.
797 	   brk->len is in bytes.
798 	   This aligns up to double word size, shifts and does the bias.
799 	*/
800 	mrd = ((brk->len + 7) >> 3) - 1;
801 	dawrx |= (mrd & 0x3f) << (63 - 53);
802 
803 	if (ppc_md.set_dawr)
804 		return ppc_md.set_dawr(dawr, dawrx);
805 	mtspr(SPRN_DAWR, dawr);
806 	mtspr(SPRN_DAWRX, dawrx);
807 	return 0;
808 }
809 
810 void __set_breakpoint(struct arch_hw_breakpoint *brk)
811 {
812 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
813 
814 	if (cpu_has_feature(CPU_FTR_DAWR))
815 		set_dawr(brk);
816 	else
817 		set_dabr(brk);
818 }
819 
820 void set_breakpoint(struct arch_hw_breakpoint *brk)
821 {
822 	preempt_disable();
823 	__set_breakpoint(brk);
824 	preempt_enable();
825 }
826 
827 #ifdef CONFIG_PPC64
828 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
829 #endif
830 
831 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
832 			      struct arch_hw_breakpoint *b)
833 {
834 	if (a->address != b->address)
835 		return false;
836 	if (a->type != b->type)
837 		return false;
838 	if (a->len != b->len)
839 		return false;
840 	return true;
841 }
842 
843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
844 
845 static inline bool tm_enabled(struct task_struct *tsk)
846 {
847 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
848 }
849 
850 static void tm_reclaim_thread(struct thread_struct *thr,
851 			      struct thread_info *ti, uint8_t cause)
852 {
853 	/*
854 	 * Use the current MSR TM suspended bit to track if we have
855 	 * checkpointed state outstanding.
856 	 * On signal delivery, we'd normally reclaim the checkpointed
857 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
858 	 * This will then directly return to userspace without going
859 	 * through __switch_to(). However, if the stack frame is bad,
860 	 * we need to exit this thread which calls __switch_to() which
861 	 * will again attempt to reclaim the already saved tm state.
862 	 * Hence we need to check that we've not already reclaimed
863 	 * this state.
864 	 * We do this using the current MSR, rather tracking it in
865 	 * some specific thread_struct bit, as it has the additional
866 	 * benefit of checking for a potential TM bad thing exception.
867 	 */
868 	if (!MSR_TM_SUSPENDED(mfmsr()))
869 		return;
870 
871 	/*
872 	 * If we are in a transaction and FP is off then we can't have
873 	 * used FP inside that transaction. Hence the checkpointed
874 	 * state is the same as the live state. We need to copy the
875 	 * live state to the checkpointed state so that when the
876 	 * transaction is restored, the checkpointed state is correct
877 	 * and the aborted transaction sees the correct state. We use
878 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
879 	 * determine if it's going to write the checkpointed state or
880 	 * not. So either this will write the checkpointed registers,
881 	 * or reclaim will. Similarly for VMX.
882 	 */
883 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
884 		memcpy(&thr->ckfp_state, &thr->fp_state,
885 		       sizeof(struct thread_fp_state));
886 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
887 		memcpy(&thr->ckvr_state, &thr->vr_state,
888 		       sizeof(struct thread_vr_state));
889 
890 	giveup_all(container_of(thr, struct task_struct, thread));
891 
892 	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
893 }
894 
895 void tm_reclaim_current(uint8_t cause)
896 {
897 	tm_enable();
898 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
899 }
900 
901 static inline void tm_reclaim_task(struct task_struct *tsk)
902 {
903 	/* We have to work out if we're switching from/to a task that's in the
904 	 * middle of a transaction.
905 	 *
906 	 * In switching we need to maintain a 2nd register state as
907 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
908 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
909 	 * ckvr_state
910 	 *
911 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
912 	 */
913 	struct thread_struct *thr = &tsk->thread;
914 
915 	if (!thr->regs)
916 		return;
917 
918 	if (!MSR_TM_ACTIVE(thr->regs->msr))
919 		goto out_and_saveregs;
920 
921 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
922 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
923 		 tsk->pid, thr->regs->nip,
924 		 thr->regs->ccr, thr->regs->msr,
925 		 thr->regs->trap);
926 
927 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
928 
929 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
930 		 tsk->pid);
931 
932 out_and_saveregs:
933 	/* Always save the regs here, even if a transaction's not active.
934 	 * This context-switches a thread's TM info SPRs.  We do it here to
935 	 * be consistent with the restore path (in recheckpoint) which
936 	 * cannot happen later in _switch().
937 	 */
938 	tm_save_sprs(thr);
939 }
940 
941 extern void __tm_recheckpoint(struct thread_struct *thread,
942 			      unsigned long orig_msr);
943 
944 void tm_recheckpoint(struct thread_struct *thread,
945 		     unsigned long orig_msr)
946 {
947 	unsigned long flags;
948 
949 	if (!(thread->regs->msr & MSR_TM))
950 		return;
951 
952 	/* We really can't be interrupted here as the TEXASR registers can't
953 	 * change and later in the trecheckpoint code, we have a userspace R1.
954 	 * So let's hard disable over this region.
955 	 */
956 	local_irq_save(flags);
957 	hard_irq_disable();
958 
959 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
960 	 * before the trecheckpoint and no explosion occurs.
961 	 */
962 	tm_restore_sprs(thread);
963 
964 	__tm_recheckpoint(thread, orig_msr);
965 
966 	local_irq_restore(flags);
967 }
968 
969 static inline void tm_recheckpoint_new_task(struct task_struct *new)
970 {
971 	unsigned long msr;
972 
973 	if (!cpu_has_feature(CPU_FTR_TM))
974 		return;
975 
976 	/* Recheckpoint the registers of the thread we're about to switch to.
977 	 *
978 	 * If the task was using FP, we non-lazily reload both the original and
979 	 * the speculative FP register states.  This is because the kernel
980 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
981 	 * unavailable later, we are unable to determine which set of FP regs
982 	 * need to be restored.
983 	 */
984 	if (!tm_enabled(new))
985 		return;
986 
987 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
988 		tm_restore_sprs(&new->thread);
989 		return;
990 	}
991 	msr = new->thread.ckpt_regs.msr;
992 	/* Recheckpoint to restore original checkpointed register state. */
993 	TM_DEBUG("*** tm_recheckpoint of pid %d "
994 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
995 		 new->pid, new->thread.regs->msr, msr);
996 
997 	tm_recheckpoint(&new->thread, msr);
998 
999 	/*
1000 	 * The checkpointed state has been restored but the live state has
1001 	 * not, ensure all the math functionality is turned off to trigger
1002 	 * restore_math() to reload.
1003 	 */
1004 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1005 
1006 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1007 		 "(kernel msr 0x%lx)\n",
1008 		 new->pid, mfmsr());
1009 }
1010 
1011 static inline void __switch_to_tm(struct task_struct *prev,
1012 		struct task_struct *new)
1013 {
1014 	if (cpu_has_feature(CPU_FTR_TM)) {
1015 		if (tm_enabled(prev) || tm_enabled(new))
1016 			tm_enable();
1017 
1018 		if (tm_enabled(prev)) {
1019 			prev->thread.load_tm++;
1020 			tm_reclaim_task(prev);
1021 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1022 				prev->thread.regs->msr &= ~MSR_TM;
1023 		}
1024 
1025 		tm_recheckpoint_new_task(new);
1026 	}
1027 }
1028 
1029 /*
1030  * This is called if we are on the way out to userspace and the
1031  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1032  * FP and/or vector state and does so if necessary.
1033  * If userspace is inside a transaction (whether active or
1034  * suspended) and FP/VMX/VSX instructions have ever been enabled
1035  * inside that transaction, then we have to keep them enabled
1036  * and keep the FP/VMX/VSX state loaded while ever the transaction
1037  * continues.  The reason is that if we didn't, and subsequently
1038  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1039  * we don't know whether it's the same transaction, and thus we
1040  * don't know which of the checkpointed state and the transactional
1041  * state to use.
1042  */
1043 void restore_tm_state(struct pt_regs *regs)
1044 {
1045 	unsigned long msr_diff;
1046 
1047 	/*
1048 	 * This is the only moment we should clear TIF_RESTORE_TM as
1049 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1050 	 * again, anything else could lead to an incorrect ckpt_msr being
1051 	 * saved and therefore incorrect signal contexts.
1052 	 */
1053 	clear_thread_flag(TIF_RESTORE_TM);
1054 	if (!MSR_TM_ACTIVE(regs->msr))
1055 		return;
1056 
1057 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1058 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1059 
1060 	/* Ensure that restore_math() will restore */
1061 	if (msr_diff & MSR_FP)
1062 		current->thread.load_fp = 1;
1063 #ifdef CONFIG_ALTIVEC
1064 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1065 		current->thread.load_vec = 1;
1066 #endif
1067 	restore_math(regs);
1068 
1069 	regs->msr |= msr_diff;
1070 }
1071 
1072 #else
1073 #define tm_recheckpoint_new_task(new)
1074 #define __switch_to_tm(prev, new)
1075 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1076 
1077 static inline void save_sprs(struct thread_struct *t)
1078 {
1079 #ifdef CONFIG_ALTIVEC
1080 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1081 		t->vrsave = mfspr(SPRN_VRSAVE);
1082 #endif
1083 #ifdef CONFIG_PPC_BOOK3S_64
1084 	if (cpu_has_feature(CPU_FTR_DSCR))
1085 		t->dscr = mfspr(SPRN_DSCR);
1086 
1087 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1088 		t->bescr = mfspr(SPRN_BESCR);
1089 		t->ebbhr = mfspr(SPRN_EBBHR);
1090 		t->ebbrr = mfspr(SPRN_EBBRR);
1091 
1092 		t->fscr = mfspr(SPRN_FSCR);
1093 
1094 		/*
1095 		 * Note that the TAR is not available for use in the kernel.
1096 		 * (To provide this, the TAR should be backed up/restored on
1097 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1098 		 * this should be in pt_regs anyway (for debug).)
1099 		 */
1100 		t->tar = mfspr(SPRN_TAR);
1101 	}
1102 #endif
1103 }
1104 
1105 static inline void restore_sprs(struct thread_struct *old_thread,
1106 				struct thread_struct *new_thread)
1107 {
1108 #ifdef CONFIG_ALTIVEC
1109 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1110 	    old_thread->vrsave != new_thread->vrsave)
1111 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1112 #endif
1113 #ifdef CONFIG_PPC_BOOK3S_64
1114 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1115 		u64 dscr = get_paca()->dscr_default;
1116 		if (new_thread->dscr_inherit)
1117 			dscr = new_thread->dscr;
1118 
1119 		if (old_thread->dscr != dscr)
1120 			mtspr(SPRN_DSCR, dscr);
1121 	}
1122 
1123 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1124 		if (old_thread->bescr != new_thread->bescr)
1125 			mtspr(SPRN_BESCR, new_thread->bescr);
1126 		if (old_thread->ebbhr != new_thread->ebbhr)
1127 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1128 		if (old_thread->ebbrr != new_thread->ebbrr)
1129 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1130 
1131 		if (old_thread->fscr != new_thread->fscr)
1132 			mtspr(SPRN_FSCR, new_thread->fscr);
1133 
1134 		if (old_thread->tar != new_thread->tar)
1135 			mtspr(SPRN_TAR, new_thread->tar);
1136 	}
1137 #endif
1138 }
1139 
1140 #ifdef CONFIG_PPC_BOOK3S_64
1141 #define CP_SIZE 128
1142 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1143 #endif
1144 
1145 struct task_struct *__switch_to(struct task_struct *prev,
1146 	struct task_struct *new)
1147 {
1148 	struct thread_struct *new_thread, *old_thread;
1149 	struct task_struct *last;
1150 #ifdef CONFIG_PPC_BOOK3S_64
1151 	struct ppc64_tlb_batch *batch;
1152 #endif
1153 
1154 	new_thread = &new->thread;
1155 	old_thread = &current->thread;
1156 
1157 	WARN_ON(!irqs_disabled());
1158 
1159 #ifdef CONFIG_PPC64
1160 	/*
1161 	 * Collect processor utilization data per process
1162 	 */
1163 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1164 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1165 		long unsigned start_tb, current_tb;
1166 		start_tb = old_thread->start_tb;
1167 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1168 		old_thread->accum_tb += (current_tb - start_tb);
1169 		new_thread->start_tb = current_tb;
1170 	}
1171 #endif /* CONFIG_PPC64 */
1172 
1173 #ifdef CONFIG_PPC_STD_MMU_64
1174 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1175 	if (batch->active) {
1176 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1177 		if (batch->index)
1178 			__flush_tlb_pending(batch);
1179 		batch->active = 0;
1180 	}
1181 #endif /* CONFIG_PPC_STD_MMU_64 */
1182 
1183 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1184 	switch_booke_debug_regs(&new->thread.debug);
1185 #else
1186 /*
1187  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1188  * schedule DABR
1189  */
1190 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1191 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1192 		__set_breakpoint(&new->thread.hw_brk);
1193 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1194 #endif
1195 
1196 	/*
1197 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1198 	 * change a number of them.
1199 	 */
1200 	save_sprs(&prev->thread);
1201 
1202 	/* Save FPU, Altivec, VSX and SPE state */
1203 	giveup_all(prev);
1204 
1205 	__switch_to_tm(prev, new);
1206 
1207 	if (!radix_enabled()) {
1208 		/*
1209 		 * We can't take a PMU exception inside _switch() since there
1210 		 * is a window where the kernel stack SLB and the kernel stack
1211 		 * are out of sync. Hard disable here.
1212 		 */
1213 		hard_irq_disable();
1214 	}
1215 
1216 	/*
1217 	 * Call restore_sprs() before calling _switch(). If we move it after
1218 	 * _switch() then we miss out on calling it for new tasks. The reason
1219 	 * for this is we manually create a stack frame for new tasks that
1220 	 * directly returns through ret_from_fork() or
1221 	 * ret_from_kernel_thread(). See copy_thread() for details.
1222 	 */
1223 	restore_sprs(old_thread, new_thread);
1224 
1225 	last = _switch(old_thread, new_thread);
1226 
1227 #ifdef CONFIG_PPC_STD_MMU_64
1228 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1229 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1230 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1231 		batch->active = 1;
1232 	}
1233 
1234 	if (current_thread_info()->task->thread.regs) {
1235 		restore_math(current_thread_info()->task->thread.regs);
1236 
1237 		/*
1238 		 * The copy-paste buffer can only store into foreign real
1239 		 * addresses, so unprivileged processes can not see the
1240 		 * data or use it in any way unless they have foreign real
1241 		 * mappings. We don't have a VAS driver that allocates those
1242 		 * yet, so no cpabort is required.
1243 		 */
1244 		if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1245 			/*
1246 			 * DD1 allows paste into normal system memory, so we
1247 			 * do an unpaired copy here to clear the buffer and
1248 			 * prevent a covert channel being set up.
1249 			 *
1250 			 * cpabort is not used because it is quite expensive.
1251 			 */
1252 			asm volatile(PPC_COPY(%0, %1)
1253 					: : "r"(dummy_copy_buffer), "r"(0));
1254 		}
1255 	}
1256 #endif /* CONFIG_PPC_STD_MMU_64 */
1257 
1258 	return last;
1259 }
1260 
1261 static int instructions_to_print = 16;
1262 
1263 static void show_instructions(struct pt_regs *regs)
1264 {
1265 	int i;
1266 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1267 			sizeof(int));
1268 
1269 	printk("Instruction dump:");
1270 
1271 	for (i = 0; i < instructions_to_print; i++) {
1272 		int instr;
1273 
1274 		if (!(i % 8))
1275 			pr_cont("\n");
1276 
1277 #if !defined(CONFIG_BOOKE)
1278 		/* If executing with the IMMU off, adjust pc rather
1279 		 * than print XXXXXXXX.
1280 		 */
1281 		if (!(regs->msr & MSR_IR))
1282 			pc = (unsigned long)phys_to_virt(pc);
1283 #endif
1284 
1285 		if (!__kernel_text_address(pc) ||
1286 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1287 			pr_cont("XXXXXXXX ");
1288 		} else {
1289 			if (regs->nip == pc)
1290 				pr_cont("<%08x> ", instr);
1291 			else
1292 				pr_cont("%08x ", instr);
1293 		}
1294 
1295 		pc += sizeof(int);
1296 	}
1297 
1298 	pr_cont("\n");
1299 }
1300 
1301 struct regbit {
1302 	unsigned long bit;
1303 	const char *name;
1304 };
1305 
1306 static struct regbit msr_bits[] = {
1307 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1308 	{MSR_SF,	"SF"},
1309 	{MSR_HV,	"HV"},
1310 #endif
1311 	{MSR_VEC,	"VEC"},
1312 	{MSR_VSX,	"VSX"},
1313 #ifdef CONFIG_BOOKE
1314 	{MSR_CE,	"CE"},
1315 #endif
1316 	{MSR_EE,	"EE"},
1317 	{MSR_PR,	"PR"},
1318 	{MSR_FP,	"FP"},
1319 	{MSR_ME,	"ME"},
1320 #ifdef CONFIG_BOOKE
1321 	{MSR_DE,	"DE"},
1322 #else
1323 	{MSR_SE,	"SE"},
1324 	{MSR_BE,	"BE"},
1325 #endif
1326 	{MSR_IR,	"IR"},
1327 	{MSR_DR,	"DR"},
1328 	{MSR_PMM,	"PMM"},
1329 #ifndef CONFIG_BOOKE
1330 	{MSR_RI,	"RI"},
1331 	{MSR_LE,	"LE"},
1332 #endif
1333 	{0,		NULL}
1334 };
1335 
1336 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1337 {
1338 	const char *s = "";
1339 
1340 	for (; bits->bit; ++bits)
1341 		if (val & bits->bit) {
1342 			pr_cont("%s%s", s, bits->name);
1343 			s = sep;
1344 		}
1345 }
1346 
1347 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1348 static struct regbit msr_tm_bits[] = {
1349 	{MSR_TS_T,	"T"},
1350 	{MSR_TS_S,	"S"},
1351 	{MSR_TM,	"E"},
1352 	{0,		NULL}
1353 };
1354 
1355 static void print_tm_bits(unsigned long val)
1356 {
1357 /*
1358  * This only prints something if at least one of the TM bit is set.
1359  * Inside the TM[], the output means:
1360  *   E: Enabled		(bit 32)
1361  *   S: Suspended	(bit 33)
1362  *   T: Transactional	(bit 34)
1363  */
1364 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1365 		pr_cont(",TM[");
1366 		print_bits(val, msr_tm_bits, "");
1367 		pr_cont("]");
1368 	}
1369 }
1370 #else
1371 static void print_tm_bits(unsigned long val) {}
1372 #endif
1373 
1374 static void print_msr_bits(unsigned long val)
1375 {
1376 	pr_cont("<");
1377 	print_bits(val, msr_bits, ",");
1378 	print_tm_bits(val);
1379 	pr_cont(">");
1380 }
1381 
1382 #ifdef CONFIG_PPC64
1383 #define REG		"%016lx"
1384 #define REGS_PER_LINE	4
1385 #define LAST_VOLATILE	13
1386 #else
1387 #define REG		"%08lx"
1388 #define REGS_PER_LINE	8
1389 #define LAST_VOLATILE	12
1390 #endif
1391 
1392 void show_regs(struct pt_regs * regs)
1393 {
1394 	int i, trap;
1395 
1396 	show_regs_print_info(KERN_DEFAULT);
1397 
1398 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1399 	       regs->nip, regs->link, regs->ctr);
1400 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1401 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1402 	printk("MSR: "REG" ", regs->msr);
1403 	print_msr_bits(regs->msr);
1404 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1405 	trap = TRAP(regs);
1406 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1407 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1408 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1409 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1410 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1411 #else
1412 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1413 #endif
1414 #ifdef CONFIG_PPC64
1415 	pr_cont("SOFTE: %ld ", regs->softe);
1416 #endif
1417 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1418 	if (MSR_TM_ACTIVE(regs->msr))
1419 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1420 #endif
1421 
1422 	for (i = 0;  i < 32;  i++) {
1423 		if ((i % REGS_PER_LINE) == 0)
1424 			pr_cont("\nGPR%02d: ", i);
1425 		pr_cont(REG " ", regs->gpr[i]);
1426 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1427 			break;
1428 	}
1429 	pr_cont("\n");
1430 #ifdef CONFIG_KALLSYMS
1431 	/*
1432 	 * Lookup NIP late so we have the best change of getting the
1433 	 * above info out without failing
1434 	 */
1435 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1436 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1437 #endif
1438 	show_stack(current, (unsigned long *) regs->gpr[1]);
1439 	if (!user_mode(regs))
1440 		show_instructions(regs);
1441 }
1442 
1443 void flush_thread(void)
1444 {
1445 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1446 	flush_ptrace_hw_breakpoint(current);
1447 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1448 	set_debug_reg_defaults(&current->thread);
1449 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1450 }
1451 
1452 void
1453 release_thread(struct task_struct *t)
1454 {
1455 }
1456 
1457 /*
1458  * this gets called so that we can store coprocessor state into memory and
1459  * copy the current task into the new thread.
1460  */
1461 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1462 {
1463 	flush_all_to_thread(src);
1464 	/*
1465 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1466 	 * flush but it removes the checkpointed state from the current CPU and
1467 	 * transitions the CPU out of TM mode.  Hence we need to call
1468 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1469 	 * checkpointed state back and the TM mode.
1470 	 *
1471 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1472 	 * dst is only important for __switch_to()
1473 	 */
1474 	__switch_to_tm(src, src);
1475 
1476 	*dst = *src;
1477 
1478 	clear_task_ebb(dst);
1479 
1480 	return 0;
1481 }
1482 
1483 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1484 {
1485 #ifdef CONFIG_PPC_STD_MMU_64
1486 	unsigned long sp_vsid;
1487 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1488 
1489 	if (radix_enabled())
1490 		return;
1491 
1492 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1493 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1494 			<< SLB_VSID_SHIFT_1T;
1495 	else
1496 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1497 			<< SLB_VSID_SHIFT;
1498 	sp_vsid |= SLB_VSID_KERNEL | llp;
1499 	p->thread.ksp_vsid = sp_vsid;
1500 #endif
1501 }
1502 
1503 /*
1504  * Copy a thread..
1505  */
1506 
1507 /*
1508  * Copy architecture-specific thread state
1509  */
1510 int copy_thread(unsigned long clone_flags, unsigned long usp,
1511 		unsigned long kthread_arg, struct task_struct *p)
1512 {
1513 	struct pt_regs *childregs, *kregs;
1514 	extern void ret_from_fork(void);
1515 	extern void ret_from_kernel_thread(void);
1516 	void (*f)(void);
1517 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1518 	struct thread_info *ti = task_thread_info(p);
1519 
1520 	klp_init_thread_info(ti);
1521 
1522 	/* Copy registers */
1523 	sp -= sizeof(struct pt_regs);
1524 	childregs = (struct pt_regs *) sp;
1525 	if (unlikely(p->flags & PF_KTHREAD)) {
1526 		/* kernel thread */
1527 		memset(childregs, 0, sizeof(struct pt_regs));
1528 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1529 		/* function */
1530 		if (usp)
1531 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1532 #ifdef CONFIG_PPC64
1533 		clear_tsk_thread_flag(p, TIF_32BIT);
1534 		childregs->softe = 1;
1535 #endif
1536 		childregs->gpr[15] = kthread_arg;
1537 		p->thread.regs = NULL;	/* no user register state */
1538 		ti->flags |= _TIF_RESTOREALL;
1539 		f = ret_from_kernel_thread;
1540 	} else {
1541 		/* user thread */
1542 		struct pt_regs *regs = current_pt_regs();
1543 		CHECK_FULL_REGS(regs);
1544 		*childregs = *regs;
1545 		if (usp)
1546 			childregs->gpr[1] = usp;
1547 		p->thread.regs = childregs;
1548 		childregs->gpr[3] = 0;  /* Result from fork() */
1549 		if (clone_flags & CLONE_SETTLS) {
1550 #ifdef CONFIG_PPC64
1551 			if (!is_32bit_task())
1552 				childregs->gpr[13] = childregs->gpr[6];
1553 			else
1554 #endif
1555 				childregs->gpr[2] = childregs->gpr[6];
1556 		}
1557 
1558 		f = ret_from_fork;
1559 	}
1560 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1561 	sp -= STACK_FRAME_OVERHEAD;
1562 
1563 	/*
1564 	 * The way this works is that at some point in the future
1565 	 * some task will call _switch to switch to the new task.
1566 	 * That will pop off the stack frame created below and start
1567 	 * the new task running at ret_from_fork.  The new task will
1568 	 * do some house keeping and then return from the fork or clone
1569 	 * system call, using the stack frame created above.
1570 	 */
1571 	((unsigned long *)sp)[0] = 0;
1572 	sp -= sizeof(struct pt_regs);
1573 	kregs = (struct pt_regs *) sp;
1574 	sp -= STACK_FRAME_OVERHEAD;
1575 	p->thread.ksp = sp;
1576 #ifdef CONFIG_PPC32
1577 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1578 				_ALIGN_UP(sizeof(struct thread_info), 16);
1579 #endif
1580 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1581 	p->thread.ptrace_bps[0] = NULL;
1582 #endif
1583 
1584 	p->thread.fp_save_area = NULL;
1585 #ifdef CONFIG_ALTIVEC
1586 	p->thread.vr_save_area = NULL;
1587 #endif
1588 
1589 	setup_ksp_vsid(p, sp);
1590 
1591 #ifdef CONFIG_PPC64
1592 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1593 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1594 		p->thread.dscr = mfspr(SPRN_DSCR);
1595 	}
1596 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1597 		p->thread.ppr = INIT_PPR;
1598 #endif
1599 	kregs->nip = ppc_function_entry(f);
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Set up a thread for executing a new program
1605  */
1606 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1607 {
1608 #ifdef CONFIG_PPC64
1609 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1610 #endif
1611 
1612 	/*
1613 	 * If we exec out of a kernel thread then thread.regs will not be
1614 	 * set.  Do it now.
1615 	 */
1616 	if (!current->thread.regs) {
1617 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1618 		current->thread.regs = regs - 1;
1619 	}
1620 
1621 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1622 	/*
1623 	 * Clear any transactional state, we're exec()ing. The cause is
1624 	 * not important as there will never be a recheckpoint so it's not
1625 	 * user visible.
1626 	 */
1627 	if (MSR_TM_SUSPENDED(mfmsr()))
1628 		tm_reclaim_current(0);
1629 #endif
1630 
1631 	memset(regs->gpr, 0, sizeof(regs->gpr));
1632 	regs->ctr = 0;
1633 	regs->link = 0;
1634 	regs->xer = 0;
1635 	regs->ccr = 0;
1636 	regs->gpr[1] = sp;
1637 
1638 	/*
1639 	 * We have just cleared all the nonvolatile GPRs, so make
1640 	 * FULL_REGS(regs) return true.  This is necessary to allow
1641 	 * ptrace to examine the thread immediately after exec.
1642 	 */
1643 	regs->trap &= ~1UL;
1644 
1645 #ifdef CONFIG_PPC32
1646 	regs->mq = 0;
1647 	regs->nip = start;
1648 	regs->msr = MSR_USER;
1649 #else
1650 	if (!is_32bit_task()) {
1651 		unsigned long entry;
1652 
1653 		if (is_elf2_task()) {
1654 			/* Look ma, no function descriptors! */
1655 			entry = start;
1656 
1657 			/*
1658 			 * Ulrich says:
1659 			 *   The latest iteration of the ABI requires that when
1660 			 *   calling a function (at its global entry point),
1661 			 *   the caller must ensure r12 holds the entry point
1662 			 *   address (so that the function can quickly
1663 			 *   establish addressability).
1664 			 */
1665 			regs->gpr[12] = start;
1666 			/* Make sure that's restored on entry to userspace. */
1667 			set_thread_flag(TIF_RESTOREALL);
1668 		} else {
1669 			unsigned long toc;
1670 
1671 			/* start is a relocated pointer to the function
1672 			 * descriptor for the elf _start routine.  The first
1673 			 * entry in the function descriptor is the entry
1674 			 * address of _start and the second entry is the TOC
1675 			 * value we need to use.
1676 			 */
1677 			__get_user(entry, (unsigned long __user *)start);
1678 			__get_user(toc, (unsigned long __user *)start+1);
1679 
1680 			/* Check whether the e_entry function descriptor entries
1681 			 * need to be relocated before we can use them.
1682 			 */
1683 			if (load_addr != 0) {
1684 				entry += load_addr;
1685 				toc   += load_addr;
1686 			}
1687 			regs->gpr[2] = toc;
1688 		}
1689 		regs->nip = entry;
1690 		regs->msr = MSR_USER64;
1691 	} else {
1692 		regs->nip = start;
1693 		regs->gpr[2] = 0;
1694 		regs->msr = MSR_USER32;
1695 	}
1696 #endif
1697 #ifdef CONFIG_VSX
1698 	current->thread.used_vsr = 0;
1699 #endif
1700 	current->thread.load_fp = 0;
1701 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1702 	current->thread.fp_save_area = NULL;
1703 #ifdef CONFIG_ALTIVEC
1704 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1705 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1706 	current->thread.vr_save_area = NULL;
1707 	current->thread.vrsave = 0;
1708 	current->thread.used_vr = 0;
1709 	current->thread.load_vec = 0;
1710 #endif /* CONFIG_ALTIVEC */
1711 #ifdef CONFIG_SPE
1712 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1713 	current->thread.acc = 0;
1714 	current->thread.spefscr = 0;
1715 	current->thread.used_spe = 0;
1716 #endif /* CONFIG_SPE */
1717 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1718 	current->thread.tm_tfhar = 0;
1719 	current->thread.tm_texasr = 0;
1720 	current->thread.tm_tfiar = 0;
1721 	current->thread.load_tm = 0;
1722 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1723 }
1724 EXPORT_SYMBOL(start_thread);
1725 
1726 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1727 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1728 
1729 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1730 {
1731 	struct pt_regs *regs = tsk->thread.regs;
1732 
1733 	/* This is a bit hairy.  If we are an SPE enabled  processor
1734 	 * (have embedded fp) we store the IEEE exception enable flags in
1735 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1736 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1737 	if (val & PR_FP_EXC_SW_ENABLE) {
1738 #ifdef CONFIG_SPE
1739 		if (cpu_has_feature(CPU_FTR_SPE)) {
1740 			/*
1741 			 * When the sticky exception bits are set
1742 			 * directly by userspace, it must call prctl
1743 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1744 			 * in the existing prctl settings) or
1745 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1746 			 * the bits being set).  <fenv.h> functions
1747 			 * saving and restoring the whole
1748 			 * floating-point environment need to do so
1749 			 * anyway to restore the prctl settings from
1750 			 * the saved environment.
1751 			 */
1752 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1753 			tsk->thread.fpexc_mode = val &
1754 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1755 			return 0;
1756 		} else {
1757 			return -EINVAL;
1758 		}
1759 #else
1760 		return -EINVAL;
1761 #endif
1762 	}
1763 
1764 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1765 	 * __pack_fe01 use do not overlap with bits used for
1766 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1767 	 * on CONFIG_SPE implementations are reserved so writing to
1768 	 * them does not change anything */
1769 	if (val > PR_FP_EXC_PRECISE)
1770 		return -EINVAL;
1771 	tsk->thread.fpexc_mode = __pack_fe01(val);
1772 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1773 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1774 			| tsk->thread.fpexc_mode;
1775 	return 0;
1776 }
1777 
1778 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1779 {
1780 	unsigned int val;
1781 
1782 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1783 #ifdef CONFIG_SPE
1784 		if (cpu_has_feature(CPU_FTR_SPE)) {
1785 			/*
1786 			 * When the sticky exception bits are set
1787 			 * directly by userspace, it must call prctl
1788 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1789 			 * in the existing prctl settings) or
1790 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1791 			 * the bits being set).  <fenv.h> functions
1792 			 * saving and restoring the whole
1793 			 * floating-point environment need to do so
1794 			 * anyway to restore the prctl settings from
1795 			 * the saved environment.
1796 			 */
1797 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1798 			val = tsk->thread.fpexc_mode;
1799 		} else
1800 			return -EINVAL;
1801 #else
1802 		return -EINVAL;
1803 #endif
1804 	else
1805 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1806 	return put_user(val, (unsigned int __user *) adr);
1807 }
1808 
1809 int set_endian(struct task_struct *tsk, unsigned int val)
1810 {
1811 	struct pt_regs *regs = tsk->thread.regs;
1812 
1813 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1814 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1815 		return -EINVAL;
1816 
1817 	if (regs == NULL)
1818 		return -EINVAL;
1819 
1820 	if (val == PR_ENDIAN_BIG)
1821 		regs->msr &= ~MSR_LE;
1822 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1823 		regs->msr |= MSR_LE;
1824 	else
1825 		return -EINVAL;
1826 
1827 	return 0;
1828 }
1829 
1830 int get_endian(struct task_struct *tsk, unsigned long adr)
1831 {
1832 	struct pt_regs *regs = tsk->thread.regs;
1833 	unsigned int val;
1834 
1835 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1836 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1837 		return -EINVAL;
1838 
1839 	if (regs == NULL)
1840 		return -EINVAL;
1841 
1842 	if (regs->msr & MSR_LE) {
1843 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1844 			val = PR_ENDIAN_LITTLE;
1845 		else
1846 			val = PR_ENDIAN_PPC_LITTLE;
1847 	} else
1848 		val = PR_ENDIAN_BIG;
1849 
1850 	return put_user(val, (unsigned int __user *)adr);
1851 }
1852 
1853 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1854 {
1855 	tsk->thread.align_ctl = val;
1856 	return 0;
1857 }
1858 
1859 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1860 {
1861 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1862 }
1863 
1864 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1865 				  unsigned long nbytes)
1866 {
1867 	unsigned long stack_page;
1868 	unsigned long cpu = task_cpu(p);
1869 
1870 	/*
1871 	 * Avoid crashing if the stack has overflowed and corrupted
1872 	 * task_cpu(p), which is in the thread_info struct.
1873 	 */
1874 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1875 		stack_page = (unsigned long) hardirq_ctx[cpu];
1876 		if (sp >= stack_page + sizeof(struct thread_struct)
1877 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1878 			return 1;
1879 
1880 		stack_page = (unsigned long) softirq_ctx[cpu];
1881 		if (sp >= stack_page + sizeof(struct thread_struct)
1882 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1883 			return 1;
1884 	}
1885 	return 0;
1886 }
1887 
1888 int validate_sp(unsigned long sp, struct task_struct *p,
1889 		       unsigned long nbytes)
1890 {
1891 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1892 
1893 	if (sp >= stack_page + sizeof(struct thread_struct)
1894 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1895 		return 1;
1896 
1897 	return valid_irq_stack(sp, p, nbytes);
1898 }
1899 
1900 EXPORT_SYMBOL(validate_sp);
1901 
1902 unsigned long get_wchan(struct task_struct *p)
1903 {
1904 	unsigned long ip, sp;
1905 	int count = 0;
1906 
1907 	if (!p || p == current || p->state == TASK_RUNNING)
1908 		return 0;
1909 
1910 	sp = p->thread.ksp;
1911 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1912 		return 0;
1913 
1914 	do {
1915 		sp = *(unsigned long *)sp;
1916 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1917 			return 0;
1918 		if (count > 0) {
1919 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1920 			if (!in_sched_functions(ip))
1921 				return ip;
1922 		}
1923 	} while (count++ < 16);
1924 	return 0;
1925 }
1926 
1927 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1928 
1929 void show_stack(struct task_struct *tsk, unsigned long *stack)
1930 {
1931 	unsigned long sp, ip, lr, newsp;
1932 	int count = 0;
1933 	int firstframe = 1;
1934 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1935 	int curr_frame = current->curr_ret_stack;
1936 	extern void return_to_handler(void);
1937 	unsigned long rth = (unsigned long)return_to_handler;
1938 #endif
1939 
1940 	sp = (unsigned long) stack;
1941 	if (tsk == NULL)
1942 		tsk = current;
1943 	if (sp == 0) {
1944 		if (tsk == current)
1945 			sp = current_stack_pointer();
1946 		else
1947 			sp = tsk->thread.ksp;
1948 	}
1949 
1950 	lr = 0;
1951 	printk("Call Trace:\n");
1952 	do {
1953 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1954 			return;
1955 
1956 		stack = (unsigned long *) sp;
1957 		newsp = stack[0];
1958 		ip = stack[STACK_FRAME_LR_SAVE];
1959 		if (!firstframe || ip != lr) {
1960 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1961 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1962 			if ((ip == rth) && curr_frame >= 0) {
1963 				pr_cont(" (%pS)",
1964 				       (void *)current->ret_stack[curr_frame].ret);
1965 				curr_frame--;
1966 			}
1967 #endif
1968 			if (firstframe)
1969 				pr_cont(" (unreliable)");
1970 			pr_cont("\n");
1971 		}
1972 		firstframe = 0;
1973 
1974 		/*
1975 		 * See if this is an exception frame.
1976 		 * We look for the "regshere" marker in the current frame.
1977 		 */
1978 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1979 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1980 			struct pt_regs *regs = (struct pt_regs *)
1981 				(sp + STACK_FRAME_OVERHEAD);
1982 			lr = regs->link;
1983 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1984 			       regs->trap, (void *)regs->nip, (void *)lr);
1985 			firstframe = 1;
1986 		}
1987 
1988 		sp = newsp;
1989 	} while (count++ < kstack_depth_to_print);
1990 }
1991 
1992 #ifdef CONFIG_PPC64
1993 /* Called with hard IRQs off */
1994 void notrace __ppc64_runlatch_on(void)
1995 {
1996 	struct thread_info *ti = current_thread_info();
1997 	unsigned long ctrl;
1998 
1999 	ctrl = mfspr(SPRN_CTRLF);
2000 	ctrl |= CTRL_RUNLATCH;
2001 	mtspr(SPRN_CTRLT, ctrl);
2002 
2003 	ti->local_flags |= _TLF_RUNLATCH;
2004 }
2005 
2006 /* Called with hard IRQs off */
2007 void notrace __ppc64_runlatch_off(void)
2008 {
2009 	struct thread_info *ti = current_thread_info();
2010 	unsigned long ctrl;
2011 
2012 	ti->local_flags &= ~_TLF_RUNLATCH;
2013 
2014 	ctrl = mfspr(SPRN_CTRLF);
2015 	ctrl &= ~CTRL_RUNLATCH;
2016 	mtspr(SPRN_CTRLT, ctrl);
2017 }
2018 #endif /* CONFIG_PPC64 */
2019 
2020 unsigned long arch_align_stack(unsigned long sp)
2021 {
2022 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2023 		sp -= get_random_int() & ~PAGE_MASK;
2024 	return sp & ~0xf;
2025 }
2026 
2027 static inline unsigned long brk_rnd(void)
2028 {
2029         unsigned long rnd = 0;
2030 
2031 	/* 8MB for 32bit, 1GB for 64bit */
2032 	if (is_32bit_task())
2033 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2034 	else
2035 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2036 
2037 	return rnd << PAGE_SHIFT;
2038 }
2039 
2040 unsigned long arch_randomize_brk(struct mm_struct *mm)
2041 {
2042 	unsigned long base = mm->brk;
2043 	unsigned long ret;
2044 
2045 #ifdef CONFIG_PPC_STD_MMU_64
2046 	/*
2047 	 * If we are using 1TB segments and we are allowed to randomise
2048 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2049 	 * segment. Otherwise the heap will be in the bottom 1TB
2050 	 * which always uses 256MB segments and this may result in a
2051 	 * performance penalty. We don't need to worry about radix. For
2052 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2053 	 */
2054 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2055 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2056 #endif
2057 
2058 	ret = PAGE_ALIGN(base + brk_rnd());
2059 
2060 	if (ret < mm->brk)
2061 		return mm->brk;
2062 
2063 	return ret;
2064 }
2065 
2066