1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 46 #include <asm/pgtable.h> 47 #include <asm/io.h> 48 #include <asm/processor.h> 49 #include <asm/mmu.h> 50 #include <asm/prom.h> 51 #include <asm/machdep.h> 52 #include <asm/time.h> 53 #include <asm/runlatch.h> 54 #include <asm/syscalls.h> 55 #include <asm/switch_to.h> 56 #include <asm/tm.h> 57 #include <asm/debug.h> 58 #ifdef CONFIG_PPC64 59 #include <asm/firmware.h> 60 #endif 61 #include <asm/code-patching.h> 62 #include <asm/exec.h> 63 #include <asm/livepatch.h> 64 #include <asm/cpu_has_feature.h> 65 #include <asm/asm-prototypes.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 static void check_if_tm_restore_required(struct task_struct *tsk) 81 { 82 /* 83 * If we are saving the current thread's registers, and the 84 * thread is in a transactional state, set the TIF_RESTORE_TM 85 * bit so that we know to restore the registers before 86 * returning to userspace. 87 */ 88 if (tsk == current && tsk->thread.regs && 89 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 90 !test_thread_flag(TIF_RESTORE_TM)) { 91 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 92 set_thread_flag(TIF_RESTORE_TM); 93 } 94 } 95 96 static inline bool msr_tm_active(unsigned long msr) 97 { 98 return MSR_TM_ACTIVE(msr); 99 } 100 #else 101 static inline bool msr_tm_active(unsigned long msr) { return false; } 102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 104 105 bool strict_msr_control; 106 EXPORT_SYMBOL(strict_msr_control); 107 108 static int __init enable_strict_msr_control(char *str) 109 { 110 strict_msr_control = true; 111 pr_info("Enabling strict facility control\n"); 112 113 return 0; 114 } 115 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 116 117 unsigned long msr_check_and_set(unsigned long bits) 118 { 119 unsigned long oldmsr = mfmsr(); 120 unsigned long newmsr; 121 122 newmsr = oldmsr | bits; 123 124 #ifdef CONFIG_VSX 125 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 126 newmsr |= MSR_VSX; 127 #endif 128 129 if (oldmsr != newmsr) 130 mtmsr_isync(newmsr); 131 132 return newmsr; 133 } 134 135 void __msr_check_and_clear(unsigned long bits) 136 { 137 unsigned long oldmsr = mfmsr(); 138 unsigned long newmsr; 139 140 newmsr = oldmsr & ~bits; 141 142 #ifdef CONFIG_VSX 143 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 144 newmsr &= ~MSR_VSX; 145 #endif 146 147 if (oldmsr != newmsr) 148 mtmsr_isync(newmsr); 149 } 150 EXPORT_SYMBOL(__msr_check_and_clear); 151 152 #ifdef CONFIG_PPC_FPU 153 void __giveup_fpu(struct task_struct *tsk) 154 { 155 unsigned long msr; 156 157 save_fpu(tsk); 158 msr = tsk->thread.regs->msr; 159 msr &= ~MSR_FP; 160 #ifdef CONFIG_VSX 161 if (cpu_has_feature(CPU_FTR_VSX)) 162 msr &= ~MSR_VSX; 163 #endif 164 tsk->thread.regs->msr = msr; 165 } 166 167 void giveup_fpu(struct task_struct *tsk) 168 { 169 check_if_tm_restore_required(tsk); 170 171 msr_check_and_set(MSR_FP); 172 __giveup_fpu(tsk); 173 msr_check_and_clear(MSR_FP); 174 } 175 EXPORT_SYMBOL(giveup_fpu); 176 177 /* 178 * Make sure the floating-point register state in the 179 * the thread_struct is up to date for task tsk. 180 */ 181 void flush_fp_to_thread(struct task_struct *tsk) 182 { 183 if (tsk->thread.regs) { 184 /* 185 * We need to disable preemption here because if we didn't, 186 * another process could get scheduled after the regs->msr 187 * test but before we have finished saving the FP registers 188 * to the thread_struct. That process could take over the 189 * FPU, and then when we get scheduled again we would store 190 * bogus values for the remaining FP registers. 191 */ 192 preempt_disable(); 193 if (tsk->thread.regs->msr & MSR_FP) { 194 /* 195 * This should only ever be called for current or 196 * for a stopped child process. Since we save away 197 * the FP register state on context switch, 198 * there is something wrong if a stopped child appears 199 * to still have its FP state in the CPU registers. 200 */ 201 BUG_ON(tsk != current); 202 giveup_fpu(tsk); 203 } 204 preempt_enable(); 205 } 206 } 207 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 208 209 void enable_kernel_fp(void) 210 { 211 unsigned long cpumsr; 212 213 WARN_ON(preemptible()); 214 215 cpumsr = msr_check_and_set(MSR_FP); 216 217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 218 check_if_tm_restore_required(current); 219 /* 220 * If a thread has already been reclaimed then the 221 * checkpointed registers are on the CPU but have definitely 222 * been saved by the reclaim code. Don't need to and *cannot* 223 * giveup as this would save to the 'live' structure not the 224 * checkpointed structure. 225 */ 226 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 227 return; 228 __giveup_fpu(current); 229 } 230 } 231 EXPORT_SYMBOL(enable_kernel_fp); 232 233 static int restore_fp(struct task_struct *tsk) { 234 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) { 235 load_fp_state(¤t->thread.fp_state); 236 current->thread.load_fp++; 237 return 1; 238 } 239 return 0; 240 } 241 #else 242 static int restore_fp(struct task_struct *tsk) { return 0; } 243 #endif /* CONFIG_PPC_FPU */ 244 245 #ifdef CONFIG_ALTIVEC 246 #define loadvec(thr) ((thr).load_vec) 247 248 static void __giveup_altivec(struct task_struct *tsk) 249 { 250 unsigned long msr; 251 252 save_altivec(tsk); 253 msr = tsk->thread.regs->msr; 254 msr &= ~MSR_VEC; 255 #ifdef CONFIG_VSX 256 if (cpu_has_feature(CPU_FTR_VSX)) 257 msr &= ~MSR_VSX; 258 #endif 259 tsk->thread.regs->msr = msr; 260 } 261 262 void giveup_altivec(struct task_struct *tsk) 263 { 264 check_if_tm_restore_required(tsk); 265 266 msr_check_and_set(MSR_VEC); 267 __giveup_altivec(tsk); 268 msr_check_and_clear(MSR_VEC); 269 } 270 EXPORT_SYMBOL(giveup_altivec); 271 272 void enable_kernel_altivec(void) 273 { 274 unsigned long cpumsr; 275 276 WARN_ON(preemptible()); 277 278 cpumsr = msr_check_and_set(MSR_VEC); 279 280 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 281 check_if_tm_restore_required(current); 282 /* 283 * If a thread has already been reclaimed then the 284 * checkpointed registers are on the CPU but have definitely 285 * been saved by the reclaim code. Don't need to and *cannot* 286 * giveup as this would save to the 'live' structure not the 287 * checkpointed structure. 288 */ 289 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 290 return; 291 __giveup_altivec(current); 292 } 293 } 294 EXPORT_SYMBOL(enable_kernel_altivec); 295 296 /* 297 * Make sure the VMX/Altivec register state in the 298 * the thread_struct is up to date for task tsk. 299 */ 300 void flush_altivec_to_thread(struct task_struct *tsk) 301 { 302 if (tsk->thread.regs) { 303 preempt_disable(); 304 if (tsk->thread.regs->msr & MSR_VEC) { 305 BUG_ON(tsk != current); 306 giveup_altivec(tsk); 307 } 308 preempt_enable(); 309 } 310 } 311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 312 313 static int restore_altivec(struct task_struct *tsk) 314 { 315 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 316 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) { 317 load_vr_state(&tsk->thread.vr_state); 318 tsk->thread.used_vr = 1; 319 tsk->thread.load_vec++; 320 321 return 1; 322 } 323 return 0; 324 } 325 #else 326 #define loadvec(thr) 0 327 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 328 #endif /* CONFIG_ALTIVEC */ 329 330 #ifdef CONFIG_VSX 331 static void __giveup_vsx(struct task_struct *tsk) 332 { 333 if (tsk->thread.regs->msr & MSR_FP) 334 __giveup_fpu(tsk); 335 if (tsk->thread.regs->msr & MSR_VEC) 336 __giveup_altivec(tsk); 337 tsk->thread.regs->msr &= ~MSR_VSX; 338 } 339 340 static void giveup_vsx(struct task_struct *tsk) 341 { 342 check_if_tm_restore_required(tsk); 343 344 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 345 __giveup_vsx(tsk); 346 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 347 } 348 349 static void save_vsx(struct task_struct *tsk) 350 { 351 if (tsk->thread.regs->msr & MSR_FP) 352 save_fpu(tsk); 353 if (tsk->thread.regs->msr & MSR_VEC) 354 save_altivec(tsk); 355 } 356 357 void enable_kernel_vsx(void) 358 { 359 unsigned long cpumsr; 360 361 WARN_ON(preemptible()); 362 363 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 364 365 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { 366 check_if_tm_restore_required(current); 367 /* 368 * If a thread has already been reclaimed then the 369 * checkpointed registers are on the CPU but have definitely 370 * been saved by the reclaim code. Don't need to and *cannot* 371 * giveup as this would save to the 'live' structure not the 372 * checkpointed structure. 373 */ 374 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 375 return; 376 if (current->thread.regs->msr & MSR_FP) 377 __giveup_fpu(current); 378 if (current->thread.regs->msr & MSR_VEC) 379 __giveup_altivec(current); 380 __giveup_vsx(current); 381 } 382 } 383 EXPORT_SYMBOL(enable_kernel_vsx); 384 385 void flush_vsx_to_thread(struct task_struct *tsk) 386 { 387 if (tsk->thread.regs) { 388 preempt_disable(); 389 if (tsk->thread.regs->msr & MSR_VSX) { 390 BUG_ON(tsk != current); 391 giveup_vsx(tsk); 392 } 393 preempt_enable(); 394 } 395 } 396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 397 398 static int restore_vsx(struct task_struct *tsk) 399 { 400 if (cpu_has_feature(CPU_FTR_VSX)) { 401 tsk->thread.used_vsr = 1; 402 return 1; 403 } 404 405 return 0; 406 } 407 #else 408 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 409 static inline void save_vsx(struct task_struct *tsk) { } 410 #endif /* CONFIG_VSX */ 411 412 #ifdef CONFIG_SPE 413 void giveup_spe(struct task_struct *tsk) 414 { 415 check_if_tm_restore_required(tsk); 416 417 msr_check_and_set(MSR_SPE); 418 __giveup_spe(tsk); 419 msr_check_and_clear(MSR_SPE); 420 } 421 EXPORT_SYMBOL(giveup_spe); 422 423 void enable_kernel_spe(void) 424 { 425 WARN_ON(preemptible()); 426 427 msr_check_and_set(MSR_SPE); 428 429 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 430 check_if_tm_restore_required(current); 431 __giveup_spe(current); 432 } 433 } 434 EXPORT_SYMBOL(enable_kernel_spe); 435 436 void flush_spe_to_thread(struct task_struct *tsk) 437 { 438 if (tsk->thread.regs) { 439 preempt_disable(); 440 if (tsk->thread.regs->msr & MSR_SPE) { 441 BUG_ON(tsk != current); 442 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 443 giveup_spe(tsk); 444 } 445 preempt_enable(); 446 } 447 } 448 #endif /* CONFIG_SPE */ 449 450 static unsigned long msr_all_available; 451 452 static int __init init_msr_all_available(void) 453 { 454 #ifdef CONFIG_PPC_FPU 455 msr_all_available |= MSR_FP; 456 #endif 457 #ifdef CONFIG_ALTIVEC 458 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 459 msr_all_available |= MSR_VEC; 460 #endif 461 #ifdef CONFIG_VSX 462 if (cpu_has_feature(CPU_FTR_VSX)) 463 msr_all_available |= MSR_VSX; 464 #endif 465 #ifdef CONFIG_SPE 466 if (cpu_has_feature(CPU_FTR_SPE)) 467 msr_all_available |= MSR_SPE; 468 #endif 469 470 return 0; 471 } 472 early_initcall(init_msr_all_available); 473 474 void giveup_all(struct task_struct *tsk) 475 { 476 unsigned long usermsr; 477 478 if (!tsk->thread.regs) 479 return; 480 481 usermsr = tsk->thread.regs->msr; 482 483 if ((usermsr & msr_all_available) == 0) 484 return; 485 486 msr_check_and_set(msr_all_available); 487 check_if_tm_restore_required(tsk); 488 489 #ifdef CONFIG_PPC_FPU 490 if (usermsr & MSR_FP) 491 __giveup_fpu(tsk); 492 #endif 493 #ifdef CONFIG_ALTIVEC 494 if (usermsr & MSR_VEC) 495 __giveup_altivec(tsk); 496 #endif 497 #ifdef CONFIG_VSX 498 if (usermsr & MSR_VSX) 499 __giveup_vsx(tsk); 500 #endif 501 #ifdef CONFIG_SPE 502 if (usermsr & MSR_SPE) 503 __giveup_spe(tsk); 504 #endif 505 506 msr_check_and_clear(msr_all_available); 507 } 508 EXPORT_SYMBOL(giveup_all); 509 510 void restore_math(struct pt_regs *regs) 511 { 512 unsigned long msr; 513 514 /* 515 * Syscall exit makes a similar initial check before branching 516 * to restore_math. Keep them in synch. 517 */ 518 if (!msr_tm_active(regs->msr) && 519 !current->thread.load_fp && !loadvec(current->thread)) 520 return; 521 522 msr = regs->msr; 523 msr_check_and_set(msr_all_available); 524 525 /* 526 * Only reload if the bit is not set in the user MSR, the bit BEING set 527 * indicates that the registers are hot 528 */ 529 if ((!(msr & MSR_FP)) && restore_fp(current)) 530 msr |= MSR_FP | current->thread.fpexc_mode; 531 532 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 533 msr |= MSR_VEC; 534 535 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 536 restore_vsx(current)) { 537 msr |= MSR_VSX; 538 } 539 540 msr_check_and_clear(msr_all_available); 541 542 regs->msr = msr; 543 } 544 545 void save_all(struct task_struct *tsk) 546 { 547 unsigned long usermsr; 548 549 if (!tsk->thread.regs) 550 return; 551 552 usermsr = tsk->thread.regs->msr; 553 554 if ((usermsr & msr_all_available) == 0) 555 return; 556 557 msr_check_and_set(msr_all_available); 558 559 /* 560 * Saving the way the register space is in hardware, save_vsx boils 561 * down to a save_fpu() and save_altivec() 562 */ 563 if (usermsr & MSR_VSX) { 564 save_vsx(tsk); 565 } else { 566 if (usermsr & MSR_FP) 567 save_fpu(tsk); 568 569 if (usermsr & MSR_VEC) 570 save_altivec(tsk); 571 } 572 573 if (usermsr & MSR_SPE) 574 __giveup_spe(tsk); 575 576 msr_check_and_clear(msr_all_available); 577 } 578 579 void flush_all_to_thread(struct task_struct *tsk) 580 { 581 if (tsk->thread.regs) { 582 preempt_disable(); 583 BUG_ON(tsk != current); 584 save_all(tsk); 585 586 #ifdef CONFIG_SPE 587 if (tsk->thread.regs->msr & MSR_SPE) 588 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 589 #endif 590 591 preempt_enable(); 592 } 593 } 594 EXPORT_SYMBOL(flush_all_to_thread); 595 596 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 597 void do_send_trap(struct pt_regs *regs, unsigned long address, 598 unsigned long error_code, int signal_code, int breakpt) 599 { 600 siginfo_t info; 601 602 current->thread.trap_nr = signal_code; 603 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 604 11, SIGSEGV) == NOTIFY_STOP) 605 return; 606 607 /* Deliver the signal to userspace */ 608 info.si_signo = SIGTRAP; 609 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 610 info.si_code = signal_code; 611 info.si_addr = (void __user *)address; 612 force_sig_info(SIGTRAP, &info, current); 613 } 614 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 615 void do_break (struct pt_regs *regs, unsigned long address, 616 unsigned long error_code) 617 { 618 siginfo_t info; 619 620 current->thread.trap_nr = TRAP_HWBKPT; 621 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 622 11, SIGSEGV) == NOTIFY_STOP) 623 return; 624 625 if (debugger_break_match(regs)) 626 return; 627 628 /* Clear the breakpoint */ 629 hw_breakpoint_disable(); 630 631 /* Deliver the signal to userspace */ 632 info.si_signo = SIGTRAP; 633 info.si_errno = 0; 634 info.si_code = TRAP_HWBKPT; 635 info.si_addr = (void __user *)address; 636 force_sig_info(SIGTRAP, &info, current); 637 } 638 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 639 640 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 641 642 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 643 /* 644 * Set the debug registers back to their default "safe" values. 645 */ 646 static void set_debug_reg_defaults(struct thread_struct *thread) 647 { 648 thread->debug.iac1 = thread->debug.iac2 = 0; 649 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 650 thread->debug.iac3 = thread->debug.iac4 = 0; 651 #endif 652 thread->debug.dac1 = thread->debug.dac2 = 0; 653 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 654 thread->debug.dvc1 = thread->debug.dvc2 = 0; 655 #endif 656 thread->debug.dbcr0 = 0; 657 #ifdef CONFIG_BOOKE 658 /* 659 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 660 */ 661 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 662 DBCR1_IAC3US | DBCR1_IAC4US; 663 /* 664 * Force Data Address Compare User/Supervisor bits to be User-only 665 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 666 */ 667 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 668 #else 669 thread->debug.dbcr1 = 0; 670 #endif 671 } 672 673 static void prime_debug_regs(struct debug_reg *debug) 674 { 675 /* 676 * We could have inherited MSR_DE from userspace, since 677 * it doesn't get cleared on exception entry. Make sure 678 * MSR_DE is clear before we enable any debug events. 679 */ 680 mtmsr(mfmsr() & ~MSR_DE); 681 682 mtspr(SPRN_IAC1, debug->iac1); 683 mtspr(SPRN_IAC2, debug->iac2); 684 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 685 mtspr(SPRN_IAC3, debug->iac3); 686 mtspr(SPRN_IAC4, debug->iac4); 687 #endif 688 mtspr(SPRN_DAC1, debug->dac1); 689 mtspr(SPRN_DAC2, debug->dac2); 690 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 691 mtspr(SPRN_DVC1, debug->dvc1); 692 mtspr(SPRN_DVC2, debug->dvc2); 693 #endif 694 mtspr(SPRN_DBCR0, debug->dbcr0); 695 mtspr(SPRN_DBCR1, debug->dbcr1); 696 #ifdef CONFIG_BOOKE 697 mtspr(SPRN_DBCR2, debug->dbcr2); 698 #endif 699 } 700 /* 701 * Unless neither the old or new thread are making use of the 702 * debug registers, set the debug registers from the values 703 * stored in the new thread. 704 */ 705 void switch_booke_debug_regs(struct debug_reg *new_debug) 706 { 707 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 708 || (new_debug->dbcr0 & DBCR0_IDM)) 709 prime_debug_regs(new_debug); 710 } 711 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 712 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 713 #ifndef CONFIG_HAVE_HW_BREAKPOINT 714 static void set_debug_reg_defaults(struct thread_struct *thread) 715 { 716 thread->hw_brk.address = 0; 717 thread->hw_brk.type = 0; 718 set_breakpoint(&thread->hw_brk); 719 } 720 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 721 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 722 723 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 724 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 725 { 726 mtspr(SPRN_DAC1, dabr); 727 #ifdef CONFIG_PPC_47x 728 isync(); 729 #endif 730 return 0; 731 } 732 #elif defined(CONFIG_PPC_BOOK3S) 733 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 734 { 735 mtspr(SPRN_DABR, dabr); 736 if (cpu_has_feature(CPU_FTR_DABRX)) 737 mtspr(SPRN_DABRX, dabrx); 738 return 0; 739 } 740 #elif defined(CONFIG_PPC_8xx) 741 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 742 { 743 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 744 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 745 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 746 747 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 748 lctrl1 |= 0xa0000; 749 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 750 lctrl1 |= 0xf0000; 751 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 752 lctrl2 = 0; 753 754 mtspr(SPRN_LCTRL2, 0); 755 mtspr(SPRN_CMPE, addr); 756 mtspr(SPRN_CMPF, addr + 4); 757 mtspr(SPRN_LCTRL1, lctrl1); 758 mtspr(SPRN_LCTRL2, lctrl2); 759 760 return 0; 761 } 762 #else 763 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 764 { 765 return -EINVAL; 766 } 767 #endif 768 769 static inline int set_dabr(struct arch_hw_breakpoint *brk) 770 { 771 unsigned long dabr, dabrx; 772 773 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 774 dabrx = ((brk->type >> 3) & 0x7); 775 776 if (ppc_md.set_dabr) 777 return ppc_md.set_dabr(dabr, dabrx); 778 779 return __set_dabr(dabr, dabrx); 780 } 781 782 static inline int set_dawr(struct arch_hw_breakpoint *brk) 783 { 784 unsigned long dawr, dawrx, mrd; 785 786 dawr = brk->address; 787 788 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 789 << (63 - 58); //* read/write bits */ 790 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 791 << (63 - 59); //* translate */ 792 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 793 >> 3; //* PRIM bits */ 794 /* dawr length is stored in field MDR bits 48:53. Matches range in 795 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 796 0b111111=64DW. 797 brk->len is in bytes. 798 This aligns up to double word size, shifts and does the bias. 799 */ 800 mrd = ((brk->len + 7) >> 3) - 1; 801 dawrx |= (mrd & 0x3f) << (63 - 53); 802 803 if (ppc_md.set_dawr) 804 return ppc_md.set_dawr(dawr, dawrx); 805 mtspr(SPRN_DAWR, dawr); 806 mtspr(SPRN_DAWRX, dawrx); 807 return 0; 808 } 809 810 void __set_breakpoint(struct arch_hw_breakpoint *brk) 811 { 812 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 813 814 if (cpu_has_feature(CPU_FTR_DAWR)) 815 set_dawr(brk); 816 else 817 set_dabr(brk); 818 } 819 820 void set_breakpoint(struct arch_hw_breakpoint *brk) 821 { 822 preempt_disable(); 823 __set_breakpoint(brk); 824 preempt_enable(); 825 } 826 827 #ifdef CONFIG_PPC64 828 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 829 #endif 830 831 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 832 struct arch_hw_breakpoint *b) 833 { 834 if (a->address != b->address) 835 return false; 836 if (a->type != b->type) 837 return false; 838 if (a->len != b->len) 839 return false; 840 return true; 841 } 842 843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 844 845 static inline bool tm_enabled(struct task_struct *tsk) 846 { 847 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 848 } 849 850 static void tm_reclaim_thread(struct thread_struct *thr, 851 struct thread_info *ti, uint8_t cause) 852 { 853 /* 854 * Use the current MSR TM suspended bit to track if we have 855 * checkpointed state outstanding. 856 * On signal delivery, we'd normally reclaim the checkpointed 857 * state to obtain stack pointer (see:get_tm_stackpointer()). 858 * This will then directly return to userspace without going 859 * through __switch_to(). However, if the stack frame is bad, 860 * we need to exit this thread which calls __switch_to() which 861 * will again attempt to reclaim the already saved tm state. 862 * Hence we need to check that we've not already reclaimed 863 * this state. 864 * We do this using the current MSR, rather tracking it in 865 * some specific thread_struct bit, as it has the additional 866 * benefit of checking for a potential TM bad thing exception. 867 */ 868 if (!MSR_TM_SUSPENDED(mfmsr())) 869 return; 870 871 /* 872 * If we are in a transaction and FP is off then we can't have 873 * used FP inside that transaction. Hence the checkpointed 874 * state is the same as the live state. We need to copy the 875 * live state to the checkpointed state so that when the 876 * transaction is restored, the checkpointed state is correct 877 * and the aborted transaction sees the correct state. We use 878 * ckpt_regs.msr here as that's what tm_reclaim will use to 879 * determine if it's going to write the checkpointed state or 880 * not. So either this will write the checkpointed registers, 881 * or reclaim will. Similarly for VMX. 882 */ 883 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 884 memcpy(&thr->ckfp_state, &thr->fp_state, 885 sizeof(struct thread_fp_state)); 886 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 887 memcpy(&thr->ckvr_state, &thr->vr_state, 888 sizeof(struct thread_vr_state)); 889 890 giveup_all(container_of(thr, struct task_struct, thread)); 891 892 tm_reclaim(thr, thr->ckpt_regs.msr, cause); 893 } 894 895 void tm_reclaim_current(uint8_t cause) 896 { 897 tm_enable(); 898 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 899 } 900 901 static inline void tm_reclaim_task(struct task_struct *tsk) 902 { 903 /* We have to work out if we're switching from/to a task that's in the 904 * middle of a transaction. 905 * 906 * In switching we need to maintain a 2nd register state as 907 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 908 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 909 * ckvr_state 910 * 911 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 912 */ 913 struct thread_struct *thr = &tsk->thread; 914 915 if (!thr->regs) 916 return; 917 918 if (!MSR_TM_ACTIVE(thr->regs->msr)) 919 goto out_and_saveregs; 920 921 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 922 "ccr=%lx, msr=%lx, trap=%lx)\n", 923 tsk->pid, thr->regs->nip, 924 thr->regs->ccr, thr->regs->msr, 925 thr->regs->trap); 926 927 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 928 929 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 930 tsk->pid); 931 932 out_and_saveregs: 933 /* Always save the regs here, even if a transaction's not active. 934 * This context-switches a thread's TM info SPRs. We do it here to 935 * be consistent with the restore path (in recheckpoint) which 936 * cannot happen later in _switch(). 937 */ 938 tm_save_sprs(thr); 939 } 940 941 extern void __tm_recheckpoint(struct thread_struct *thread, 942 unsigned long orig_msr); 943 944 void tm_recheckpoint(struct thread_struct *thread, 945 unsigned long orig_msr) 946 { 947 unsigned long flags; 948 949 if (!(thread->regs->msr & MSR_TM)) 950 return; 951 952 /* We really can't be interrupted here as the TEXASR registers can't 953 * change and later in the trecheckpoint code, we have a userspace R1. 954 * So let's hard disable over this region. 955 */ 956 local_irq_save(flags); 957 hard_irq_disable(); 958 959 /* The TM SPRs are restored here, so that TEXASR.FS can be set 960 * before the trecheckpoint and no explosion occurs. 961 */ 962 tm_restore_sprs(thread); 963 964 __tm_recheckpoint(thread, orig_msr); 965 966 local_irq_restore(flags); 967 } 968 969 static inline void tm_recheckpoint_new_task(struct task_struct *new) 970 { 971 unsigned long msr; 972 973 if (!cpu_has_feature(CPU_FTR_TM)) 974 return; 975 976 /* Recheckpoint the registers of the thread we're about to switch to. 977 * 978 * If the task was using FP, we non-lazily reload both the original and 979 * the speculative FP register states. This is because the kernel 980 * doesn't see if/when a TM rollback occurs, so if we take an FP 981 * unavailable later, we are unable to determine which set of FP regs 982 * need to be restored. 983 */ 984 if (!tm_enabled(new)) 985 return; 986 987 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 988 tm_restore_sprs(&new->thread); 989 return; 990 } 991 msr = new->thread.ckpt_regs.msr; 992 /* Recheckpoint to restore original checkpointed register state. */ 993 TM_DEBUG("*** tm_recheckpoint of pid %d " 994 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 995 new->pid, new->thread.regs->msr, msr); 996 997 tm_recheckpoint(&new->thread, msr); 998 999 /* 1000 * The checkpointed state has been restored but the live state has 1001 * not, ensure all the math functionality is turned off to trigger 1002 * restore_math() to reload. 1003 */ 1004 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1005 1006 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1007 "(kernel msr 0x%lx)\n", 1008 new->pid, mfmsr()); 1009 } 1010 1011 static inline void __switch_to_tm(struct task_struct *prev, 1012 struct task_struct *new) 1013 { 1014 if (cpu_has_feature(CPU_FTR_TM)) { 1015 if (tm_enabled(prev) || tm_enabled(new)) 1016 tm_enable(); 1017 1018 if (tm_enabled(prev)) { 1019 prev->thread.load_tm++; 1020 tm_reclaim_task(prev); 1021 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1022 prev->thread.regs->msr &= ~MSR_TM; 1023 } 1024 1025 tm_recheckpoint_new_task(new); 1026 } 1027 } 1028 1029 /* 1030 * This is called if we are on the way out to userspace and the 1031 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1032 * FP and/or vector state and does so if necessary. 1033 * If userspace is inside a transaction (whether active or 1034 * suspended) and FP/VMX/VSX instructions have ever been enabled 1035 * inside that transaction, then we have to keep them enabled 1036 * and keep the FP/VMX/VSX state loaded while ever the transaction 1037 * continues. The reason is that if we didn't, and subsequently 1038 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1039 * we don't know whether it's the same transaction, and thus we 1040 * don't know which of the checkpointed state and the transactional 1041 * state to use. 1042 */ 1043 void restore_tm_state(struct pt_regs *regs) 1044 { 1045 unsigned long msr_diff; 1046 1047 /* 1048 * This is the only moment we should clear TIF_RESTORE_TM as 1049 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1050 * again, anything else could lead to an incorrect ckpt_msr being 1051 * saved and therefore incorrect signal contexts. 1052 */ 1053 clear_thread_flag(TIF_RESTORE_TM); 1054 if (!MSR_TM_ACTIVE(regs->msr)) 1055 return; 1056 1057 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1058 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1059 1060 /* Ensure that restore_math() will restore */ 1061 if (msr_diff & MSR_FP) 1062 current->thread.load_fp = 1; 1063 #ifdef CONFIG_ALTIVEC 1064 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1065 current->thread.load_vec = 1; 1066 #endif 1067 restore_math(regs); 1068 1069 regs->msr |= msr_diff; 1070 } 1071 1072 #else 1073 #define tm_recheckpoint_new_task(new) 1074 #define __switch_to_tm(prev, new) 1075 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1076 1077 static inline void save_sprs(struct thread_struct *t) 1078 { 1079 #ifdef CONFIG_ALTIVEC 1080 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1081 t->vrsave = mfspr(SPRN_VRSAVE); 1082 #endif 1083 #ifdef CONFIG_PPC_BOOK3S_64 1084 if (cpu_has_feature(CPU_FTR_DSCR)) 1085 t->dscr = mfspr(SPRN_DSCR); 1086 1087 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1088 t->bescr = mfspr(SPRN_BESCR); 1089 t->ebbhr = mfspr(SPRN_EBBHR); 1090 t->ebbrr = mfspr(SPRN_EBBRR); 1091 1092 t->fscr = mfspr(SPRN_FSCR); 1093 1094 /* 1095 * Note that the TAR is not available for use in the kernel. 1096 * (To provide this, the TAR should be backed up/restored on 1097 * exception entry/exit instead, and be in pt_regs. FIXME, 1098 * this should be in pt_regs anyway (for debug).) 1099 */ 1100 t->tar = mfspr(SPRN_TAR); 1101 } 1102 #endif 1103 } 1104 1105 static inline void restore_sprs(struct thread_struct *old_thread, 1106 struct thread_struct *new_thread) 1107 { 1108 #ifdef CONFIG_ALTIVEC 1109 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1110 old_thread->vrsave != new_thread->vrsave) 1111 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1112 #endif 1113 #ifdef CONFIG_PPC_BOOK3S_64 1114 if (cpu_has_feature(CPU_FTR_DSCR)) { 1115 u64 dscr = get_paca()->dscr_default; 1116 if (new_thread->dscr_inherit) 1117 dscr = new_thread->dscr; 1118 1119 if (old_thread->dscr != dscr) 1120 mtspr(SPRN_DSCR, dscr); 1121 } 1122 1123 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1124 if (old_thread->bescr != new_thread->bescr) 1125 mtspr(SPRN_BESCR, new_thread->bescr); 1126 if (old_thread->ebbhr != new_thread->ebbhr) 1127 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1128 if (old_thread->ebbrr != new_thread->ebbrr) 1129 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1130 1131 if (old_thread->fscr != new_thread->fscr) 1132 mtspr(SPRN_FSCR, new_thread->fscr); 1133 1134 if (old_thread->tar != new_thread->tar) 1135 mtspr(SPRN_TAR, new_thread->tar); 1136 } 1137 #endif 1138 } 1139 1140 #ifdef CONFIG_PPC_BOOK3S_64 1141 #define CP_SIZE 128 1142 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1143 #endif 1144 1145 struct task_struct *__switch_to(struct task_struct *prev, 1146 struct task_struct *new) 1147 { 1148 struct thread_struct *new_thread, *old_thread; 1149 struct task_struct *last; 1150 #ifdef CONFIG_PPC_BOOK3S_64 1151 struct ppc64_tlb_batch *batch; 1152 #endif 1153 1154 new_thread = &new->thread; 1155 old_thread = ¤t->thread; 1156 1157 WARN_ON(!irqs_disabled()); 1158 1159 #ifdef CONFIG_PPC64 1160 /* 1161 * Collect processor utilization data per process 1162 */ 1163 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1164 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1165 long unsigned start_tb, current_tb; 1166 start_tb = old_thread->start_tb; 1167 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1168 old_thread->accum_tb += (current_tb - start_tb); 1169 new_thread->start_tb = current_tb; 1170 } 1171 #endif /* CONFIG_PPC64 */ 1172 1173 #ifdef CONFIG_PPC_STD_MMU_64 1174 batch = this_cpu_ptr(&ppc64_tlb_batch); 1175 if (batch->active) { 1176 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1177 if (batch->index) 1178 __flush_tlb_pending(batch); 1179 batch->active = 0; 1180 } 1181 #endif /* CONFIG_PPC_STD_MMU_64 */ 1182 1183 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1184 switch_booke_debug_regs(&new->thread.debug); 1185 #else 1186 /* 1187 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1188 * schedule DABR 1189 */ 1190 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1191 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1192 __set_breakpoint(&new->thread.hw_brk); 1193 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1194 #endif 1195 1196 /* 1197 * We need to save SPRs before treclaim/trecheckpoint as these will 1198 * change a number of them. 1199 */ 1200 save_sprs(&prev->thread); 1201 1202 /* Save FPU, Altivec, VSX and SPE state */ 1203 giveup_all(prev); 1204 1205 __switch_to_tm(prev, new); 1206 1207 if (!radix_enabled()) { 1208 /* 1209 * We can't take a PMU exception inside _switch() since there 1210 * is a window where the kernel stack SLB and the kernel stack 1211 * are out of sync. Hard disable here. 1212 */ 1213 hard_irq_disable(); 1214 } 1215 1216 /* 1217 * Call restore_sprs() before calling _switch(). If we move it after 1218 * _switch() then we miss out on calling it for new tasks. The reason 1219 * for this is we manually create a stack frame for new tasks that 1220 * directly returns through ret_from_fork() or 1221 * ret_from_kernel_thread(). See copy_thread() for details. 1222 */ 1223 restore_sprs(old_thread, new_thread); 1224 1225 last = _switch(old_thread, new_thread); 1226 1227 #ifdef CONFIG_PPC_STD_MMU_64 1228 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1229 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1230 batch = this_cpu_ptr(&ppc64_tlb_batch); 1231 batch->active = 1; 1232 } 1233 1234 if (current_thread_info()->task->thread.regs) { 1235 restore_math(current_thread_info()->task->thread.regs); 1236 1237 /* 1238 * The copy-paste buffer can only store into foreign real 1239 * addresses, so unprivileged processes can not see the 1240 * data or use it in any way unless they have foreign real 1241 * mappings. We don't have a VAS driver that allocates those 1242 * yet, so no cpabort is required. 1243 */ 1244 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { 1245 /* 1246 * DD1 allows paste into normal system memory, so we 1247 * do an unpaired copy here to clear the buffer and 1248 * prevent a covert channel being set up. 1249 * 1250 * cpabort is not used because it is quite expensive. 1251 */ 1252 asm volatile(PPC_COPY(%0, %1) 1253 : : "r"(dummy_copy_buffer), "r"(0)); 1254 } 1255 } 1256 #endif /* CONFIG_PPC_STD_MMU_64 */ 1257 1258 return last; 1259 } 1260 1261 static int instructions_to_print = 16; 1262 1263 static void show_instructions(struct pt_regs *regs) 1264 { 1265 int i; 1266 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1267 sizeof(int)); 1268 1269 printk("Instruction dump:"); 1270 1271 for (i = 0; i < instructions_to_print; i++) { 1272 int instr; 1273 1274 if (!(i % 8)) 1275 pr_cont("\n"); 1276 1277 #if !defined(CONFIG_BOOKE) 1278 /* If executing with the IMMU off, adjust pc rather 1279 * than print XXXXXXXX. 1280 */ 1281 if (!(regs->msr & MSR_IR)) 1282 pc = (unsigned long)phys_to_virt(pc); 1283 #endif 1284 1285 if (!__kernel_text_address(pc) || 1286 probe_kernel_address((unsigned int __user *)pc, instr)) { 1287 pr_cont("XXXXXXXX "); 1288 } else { 1289 if (regs->nip == pc) 1290 pr_cont("<%08x> ", instr); 1291 else 1292 pr_cont("%08x ", instr); 1293 } 1294 1295 pc += sizeof(int); 1296 } 1297 1298 pr_cont("\n"); 1299 } 1300 1301 struct regbit { 1302 unsigned long bit; 1303 const char *name; 1304 }; 1305 1306 static struct regbit msr_bits[] = { 1307 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1308 {MSR_SF, "SF"}, 1309 {MSR_HV, "HV"}, 1310 #endif 1311 {MSR_VEC, "VEC"}, 1312 {MSR_VSX, "VSX"}, 1313 #ifdef CONFIG_BOOKE 1314 {MSR_CE, "CE"}, 1315 #endif 1316 {MSR_EE, "EE"}, 1317 {MSR_PR, "PR"}, 1318 {MSR_FP, "FP"}, 1319 {MSR_ME, "ME"}, 1320 #ifdef CONFIG_BOOKE 1321 {MSR_DE, "DE"}, 1322 #else 1323 {MSR_SE, "SE"}, 1324 {MSR_BE, "BE"}, 1325 #endif 1326 {MSR_IR, "IR"}, 1327 {MSR_DR, "DR"}, 1328 {MSR_PMM, "PMM"}, 1329 #ifndef CONFIG_BOOKE 1330 {MSR_RI, "RI"}, 1331 {MSR_LE, "LE"}, 1332 #endif 1333 {0, NULL} 1334 }; 1335 1336 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1337 { 1338 const char *s = ""; 1339 1340 for (; bits->bit; ++bits) 1341 if (val & bits->bit) { 1342 pr_cont("%s%s", s, bits->name); 1343 s = sep; 1344 } 1345 } 1346 1347 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1348 static struct regbit msr_tm_bits[] = { 1349 {MSR_TS_T, "T"}, 1350 {MSR_TS_S, "S"}, 1351 {MSR_TM, "E"}, 1352 {0, NULL} 1353 }; 1354 1355 static void print_tm_bits(unsigned long val) 1356 { 1357 /* 1358 * This only prints something if at least one of the TM bit is set. 1359 * Inside the TM[], the output means: 1360 * E: Enabled (bit 32) 1361 * S: Suspended (bit 33) 1362 * T: Transactional (bit 34) 1363 */ 1364 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1365 pr_cont(",TM["); 1366 print_bits(val, msr_tm_bits, ""); 1367 pr_cont("]"); 1368 } 1369 } 1370 #else 1371 static void print_tm_bits(unsigned long val) {} 1372 #endif 1373 1374 static void print_msr_bits(unsigned long val) 1375 { 1376 pr_cont("<"); 1377 print_bits(val, msr_bits, ","); 1378 print_tm_bits(val); 1379 pr_cont(">"); 1380 } 1381 1382 #ifdef CONFIG_PPC64 1383 #define REG "%016lx" 1384 #define REGS_PER_LINE 4 1385 #define LAST_VOLATILE 13 1386 #else 1387 #define REG "%08lx" 1388 #define REGS_PER_LINE 8 1389 #define LAST_VOLATILE 12 1390 #endif 1391 1392 void show_regs(struct pt_regs * regs) 1393 { 1394 int i, trap; 1395 1396 show_regs_print_info(KERN_DEFAULT); 1397 1398 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1399 regs->nip, regs->link, regs->ctr); 1400 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1401 regs, regs->trap, print_tainted(), init_utsname()->release); 1402 printk("MSR: "REG" ", regs->msr); 1403 print_msr_bits(regs->msr); 1404 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1405 trap = TRAP(regs); 1406 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1407 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1408 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1409 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1410 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1411 #else 1412 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1413 #endif 1414 #ifdef CONFIG_PPC64 1415 pr_cont("SOFTE: %ld ", regs->softe); 1416 #endif 1417 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1418 if (MSR_TM_ACTIVE(regs->msr)) 1419 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1420 #endif 1421 1422 for (i = 0; i < 32; i++) { 1423 if ((i % REGS_PER_LINE) == 0) 1424 pr_cont("\nGPR%02d: ", i); 1425 pr_cont(REG " ", regs->gpr[i]); 1426 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1427 break; 1428 } 1429 pr_cont("\n"); 1430 #ifdef CONFIG_KALLSYMS 1431 /* 1432 * Lookup NIP late so we have the best change of getting the 1433 * above info out without failing 1434 */ 1435 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1436 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1437 #endif 1438 show_stack(current, (unsigned long *) regs->gpr[1]); 1439 if (!user_mode(regs)) 1440 show_instructions(regs); 1441 } 1442 1443 void flush_thread(void) 1444 { 1445 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1446 flush_ptrace_hw_breakpoint(current); 1447 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1448 set_debug_reg_defaults(¤t->thread); 1449 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1450 } 1451 1452 void 1453 release_thread(struct task_struct *t) 1454 { 1455 } 1456 1457 /* 1458 * this gets called so that we can store coprocessor state into memory and 1459 * copy the current task into the new thread. 1460 */ 1461 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1462 { 1463 flush_all_to_thread(src); 1464 /* 1465 * Flush TM state out so we can copy it. __switch_to_tm() does this 1466 * flush but it removes the checkpointed state from the current CPU and 1467 * transitions the CPU out of TM mode. Hence we need to call 1468 * tm_recheckpoint_new_task() (on the same task) to restore the 1469 * checkpointed state back and the TM mode. 1470 * 1471 * Can't pass dst because it isn't ready. Doesn't matter, passing 1472 * dst is only important for __switch_to() 1473 */ 1474 __switch_to_tm(src, src); 1475 1476 *dst = *src; 1477 1478 clear_task_ebb(dst); 1479 1480 return 0; 1481 } 1482 1483 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1484 { 1485 #ifdef CONFIG_PPC_STD_MMU_64 1486 unsigned long sp_vsid; 1487 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1488 1489 if (radix_enabled()) 1490 return; 1491 1492 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1493 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1494 << SLB_VSID_SHIFT_1T; 1495 else 1496 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1497 << SLB_VSID_SHIFT; 1498 sp_vsid |= SLB_VSID_KERNEL | llp; 1499 p->thread.ksp_vsid = sp_vsid; 1500 #endif 1501 } 1502 1503 /* 1504 * Copy a thread.. 1505 */ 1506 1507 /* 1508 * Copy architecture-specific thread state 1509 */ 1510 int copy_thread(unsigned long clone_flags, unsigned long usp, 1511 unsigned long kthread_arg, struct task_struct *p) 1512 { 1513 struct pt_regs *childregs, *kregs; 1514 extern void ret_from_fork(void); 1515 extern void ret_from_kernel_thread(void); 1516 void (*f)(void); 1517 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1518 struct thread_info *ti = task_thread_info(p); 1519 1520 klp_init_thread_info(ti); 1521 1522 /* Copy registers */ 1523 sp -= sizeof(struct pt_regs); 1524 childregs = (struct pt_regs *) sp; 1525 if (unlikely(p->flags & PF_KTHREAD)) { 1526 /* kernel thread */ 1527 memset(childregs, 0, sizeof(struct pt_regs)); 1528 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1529 /* function */ 1530 if (usp) 1531 childregs->gpr[14] = ppc_function_entry((void *)usp); 1532 #ifdef CONFIG_PPC64 1533 clear_tsk_thread_flag(p, TIF_32BIT); 1534 childregs->softe = 1; 1535 #endif 1536 childregs->gpr[15] = kthread_arg; 1537 p->thread.regs = NULL; /* no user register state */ 1538 ti->flags |= _TIF_RESTOREALL; 1539 f = ret_from_kernel_thread; 1540 } else { 1541 /* user thread */ 1542 struct pt_regs *regs = current_pt_regs(); 1543 CHECK_FULL_REGS(regs); 1544 *childregs = *regs; 1545 if (usp) 1546 childregs->gpr[1] = usp; 1547 p->thread.regs = childregs; 1548 childregs->gpr[3] = 0; /* Result from fork() */ 1549 if (clone_flags & CLONE_SETTLS) { 1550 #ifdef CONFIG_PPC64 1551 if (!is_32bit_task()) 1552 childregs->gpr[13] = childregs->gpr[6]; 1553 else 1554 #endif 1555 childregs->gpr[2] = childregs->gpr[6]; 1556 } 1557 1558 f = ret_from_fork; 1559 } 1560 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1561 sp -= STACK_FRAME_OVERHEAD; 1562 1563 /* 1564 * The way this works is that at some point in the future 1565 * some task will call _switch to switch to the new task. 1566 * That will pop off the stack frame created below and start 1567 * the new task running at ret_from_fork. The new task will 1568 * do some house keeping and then return from the fork or clone 1569 * system call, using the stack frame created above. 1570 */ 1571 ((unsigned long *)sp)[0] = 0; 1572 sp -= sizeof(struct pt_regs); 1573 kregs = (struct pt_regs *) sp; 1574 sp -= STACK_FRAME_OVERHEAD; 1575 p->thread.ksp = sp; 1576 #ifdef CONFIG_PPC32 1577 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1578 _ALIGN_UP(sizeof(struct thread_info), 16); 1579 #endif 1580 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1581 p->thread.ptrace_bps[0] = NULL; 1582 #endif 1583 1584 p->thread.fp_save_area = NULL; 1585 #ifdef CONFIG_ALTIVEC 1586 p->thread.vr_save_area = NULL; 1587 #endif 1588 1589 setup_ksp_vsid(p, sp); 1590 1591 #ifdef CONFIG_PPC64 1592 if (cpu_has_feature(CPU_FTR_DSCR)) { 1593 p->thread.dscr_inherit = current->thread.dscr_inherit; 1594 p->thread.dscr = mfspr(SPRN_DSCR); 1595 } 1596 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1597 p->thread.ppr = INIT_PPR; 1598 #endif 1599 kregs->nip = ppc_function_entry(f); 1600 return 0; 1601 } 1602 1603 /* 1604 * Set up a thread for executing a new program 1605 */ 1606 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1607 { 1608 #ifdef CONFIG_PPC64 1609 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1610 #endif 1611 1612 /* 1613 * If we exec out of a kernel thread then thread.regs will not be 1614 * set. Do it now. 1615 */ 1616 if (!current->thread.regs) { 1617 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1618 current->thread.regs = regs - 1; 1619 } 1620 1621 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1622 /* 1623 * Clear any transactional state, we're exec()ing. The cause is 1624 * not important as there will never be a recheckpoint so it's not 1625 * user visible. 1626 */ 1627 if (MSR_TM_SUSPENDED(mfmsr())) 1628 tm_reclaim_current(0); 1629 #endif 1630 1631 memset(regs->gpr, 0, sizeof(regs->gpr)); 1632 regs->ctr = 0; 1633 regs->link = 0; 1634 regs->xer = 0; 1635 regs->ccr = 0; 1636 regs->gpr[1] = sp; 1637 1638 /* 1639 * We have just cleared all the nonvolatile GPRs, so make 1640 * FULL_REGS(regs) return true. This is necessary to allow 1641 * ptrace to examine the thread immediately after exec. 1642 */ 1643 regs->trap &= ~1UL; 1644 1645 #ifdef CONFIG_PPC32 1646 regs->mq = 0; 1647 regs->nip = start; 1648 regs->msr = MSR_USER; 1649 #else 1650 if (!is_32bit_task()) { 1651 unsigned long entry; 1652 1653 if (is_elf2_task()) { 1654 /* Look ma, no function descriptors! */ 1655 entry = start; 1656 1657 /* 1658 * Ulrich says: 1659 * The latest iteration of the ABI requires that when 1660 * calling a function (at its global entry point), 1661 * the caller must ensure r12 holds the entry point 1662 * address (so that the function can quickly 1663 * establish addressability). 1664 */ 1665 regs->gpr[12] = start; 1666 /* Make sure that's restored on entry to userspace. */ 1667 set_thread_flag(TIF_RESTOREALL); 1668 } else { 1669 unsigned long toc; 1670 1671 /* start is a relocated pointer to the function 1672 * descriptor for the elf _start routine. The first 1673 * entry in the function descriptor is the entry 1674 * address of _start and the second entry is the TOC 1675 * value we need to use. 1676 */ 1677 __get_user(entry, (unsigned long __user *)start); 1678 __get_user(toc, (unsigned long __user *)start+1); 1679 1680 /* Check whether the e_entry function descriptor entries 1681 * need to be relocated before we can use them. 1682 */ 1683 if (load_addr != 0) { 1684 entry += load_addr; 1685 toc += load_addr; 1686 } 1687 regs->gpr[2] = toc; 1688 } 1689 regs->nip = entry; 1690 regs->msr = MSR_USER64; 1691 } else { 1692 regs->nip = start; 1693 regs->gpr[2] = 0; 1694 regs->msr = MSR_USER32; 1695 } 1696 #endif 1697 #ifdef CONFIG_VSX 1698 current->thread.used_vsr = 0; 1699 #endif 1700 current->thread.load_fp = 0; 1701 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1702 current->thread.fp_save_area = NULL; 1703 #ifdef CONFIG_ALTIVEC 1704 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1705 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1706 current->thread.vr_save_area = NULL; 1707 current->thread.vrsave = 0; 1708 current->thread.used_vr = 0; 1709 current->thread.load_vec = 0; 1710 #endif /* CONFIG_ALTIVEC */ 1711 #ifdef CONFIG_SPE 1712 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1713 current->thread.acc = 0; 1714 current->thread.spefscr = 0; 1715 current->thread.used_spe = 0; 1716 #endif /* CONFIG_SPE */ 1717 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1718 current->thread.tm_tfhar = 0; 1719 current->thread.tm_texasr = 0; 1720 current->thread.tm_tfiar = 0; 1721 current->thread.load_tm = 0; 1722 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1723 } 1724 EXPORT_SYMBOL(start_thread); 1725 1726 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1727 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1728 1729 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1730 { 1731 struct pt_regs *regs = tsk->thread.regs; 1732 1733 /* This is a bit hairy. If we are an SPE enabled processor 1734 * (have embedded fp) we store the IEEE exception enable flags in 1735 * fpexc_mode. fpexc_mode is also used for setting FP exception 1736 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1737 if (val & PR_FP_EXC_SW_ENABLE) { 1738 #ifdef CONFIG_SPE 1739 if (cpu_has_feature(CPU_FTR_SPE)) { 1740 /* 1741 * When the sticky exception bits are set 1742 * directly by userspace, it must call prctl 1743 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1744 * in the existing prctl settings) or 1745 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1746 * the bits being set). <fenv.h> functions 1747 * saving and restoring the whole 1748 * floating-point environment need to do so 1749 * anyway to restore the prctl settings from 1750 * the saved environment. 1751 */ 1752 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1753 tsk->thread.fpexc_mode = val & 1754 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1755 return 0; 1756 } else { 1757 return -EINVAL; 1758 } 1759 #else 1760 return -EINVAL; 1761 #endif 1762 } 1763 1764 /* on a CONFIG_SPE this does not hurt us. The bits that 1765 * __pack_fe01 use do not overlap with bits used for 1766 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1767 * on CONFIG_SPE implementations are reserved so writing to 1768 * them does not change anything */ 1769 if (val > PR_FP_EXC_PRECISE) 1770 return -EINVAL; 1771 tsk->thread.fpexc_mode = __pack_fe01(val); 1772 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1773 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1774 | tsk->thread.fpexc_mode; 1775 return 0; 1776 } 1777 1778 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1779 { 1780 unsigned int val; 1781 1782 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1783 #ifdef CONFIG_SPE 1784 if (cpu_has_feature(CPU_FTR_SPE)) { 1785 /* 1786 * When the sticky exception bits are set 1787 * directly by userspace, it must call prctl 1788 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1789 * in the existing prctl settings) or 1790 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1791 * the bits being set). <fenv.h> functions 1792 * saving and restoring the whole 1793 * floating-point environment need to do so 1794 * anyway to restore the prctl settings from 1795 * the saved environment. 1796 */ 1797 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1798 val = tsk->thread.fpexc_mode; 1799 } else 1800 return -EINVAL; 1801 #else 1802 return -EINVAL; 1803 #endif 1804 else 1805 val = __unpack_fe01(tsk->thread.fpexc_mode); 1806 return put_user(val, (unsigned int __user *) adr); 1807 } 1808 1809 int set_endian(struct task_struct *tsk, unsigned int val) 1810 { 1811 struct pt_regs *regs = tsk->thread.regs; 1812 1813 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1814 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1815 return -EINVAL; 1816 1817 if (regs == NULL) 1818 return -EINVAL; 1819 1820 if (val == PR_ENDIAN_BIG) 1821 regs->msr &= ~MSR_LE; 1822 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1823 regs->msr |= MSR_LE; 1824 else 1825 return -EINVAL; 1826 1827 return 0; 1828 } 1829 1830 int get_endian(struct task_struct *tsk, unsigned long adr) 1831 { 1832 struct pt_regs *regs = tsk->thread.regs; 1833 unsigned int val; 1834 1835 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1836 !cpu_has_feature(CPU_FTR_REAL_LE)) 1837 return -EINVAL; 1838 1839 if (regs == NULL) 1840 return -EINVAL; 1841 1842 if (regs->msr & MSR_LE) { 1843 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1844 val = PR_ENDIAN_LITTLE; 1845 else 1846 val = PR_ENDIAN_PPC_LITTLE; 1847 } else 1848 val = PR_ENDIAN_BIG; 1849 1850 return put_user(val, (unsigned int __user *)adr); 1851 } 1852 1853 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1854 { 1855 tsk->thread.align_ctl = val; 1856 return 0; 1857 } 1858 1859 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1860 { 1861 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1862 } 1863 1864 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1865 unsigned long nbytes) 1866 { 1867 unsigned long stack_page; 1868 unsigned long cpu = task_cpu(p); 1869 1870 /* 1871 * Avoid crashing if the stack has overflowed and corrupted 1872 * task_cpu(p), which is in the thread_info struct. 1873 */ 1874 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1875 stack_page = (unsigned long) hardirq_ctx[cpu]; 1876 if (sp >= stack_page + sizeof(struct thread_struct) 1877 && sp <= stack_page + THREAD_SIZE - nbytes) 1878 return 1; 1879 1880 stack_page = (unsigned long) softirq_ctx[cpu]; 1881 if (sp >= stack_page + sizeof(struct thread_struct) 1882 && sp <= stack_page + THREAD_SIZE - nbytes) 1883 return 1; 1884 } 1885 return 0; 1886 } 1887 1888 int validate_sp(unsigned long sp, struct task_struct *p, 1889 unsigned long nbytes) 1890 { 1891 unsigned long stack_page = (unsigned long)task_stack_page(p); 1892 1893 if (sp >= stack_page + sizeof(struct thread_struct) 1894 && sp <= stack_page + THREAD_SIZE - nbytes) 1895 return 1; 1896 1897 return valid_irq_stack(sp, p, nbytes); 1898 } 1899 1900 EXPORT_SYMBOL(validate_sp); 1901 1902 unsigned long get_wchan(struct task_struct *p) 1903 { 1904 unsigned long ip, sp; 1905 int count = 0; 1906 1907 if (!p || p == current || p->state == TASK_RUNNING) 1908 return 0; 1909 1910 sp = p->thread.ksp; 1911 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1912 return 0; 1913 1914 do { 1915 sp = *(unsigned long *)sp; 1916 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1917 return 0; 1918 if (count > 0) { 1919 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1920 if (!in_sched_functions(ip)) 1921 return ip; 1922 } 1923 } while (count++ < 16); 1924 return 0; 1925 } 1926 1927 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1928 1929 void show_stack(struct task_struct *tsk, unsigned long *stack) 1930 { 1931 unsigned long sp, ip, lr, newsp; 1932 int count = 0; 1933 int firstframe = 1; 1934 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1935 int curr_frame = current->curr_ret_stack; 1936 extern void return_to_handler(void); 1937 unsigned long rth = (unsigned long)return_to_handler; 1938 #endif 1939 1940 sp = (unsigned long) stack; 1941 if (tsk == NULL) 1942 tsk = current; 1943 if (sp == 0) { 1944 if (tsk == current) 1945 sp = current_stack_pointer(); 1946 else 1947 sp = tsk->thread.ksp; 1948 } 1949 1950 lr = 0; 1951 printk("Call Trace:\n"); 1952 do { 1953 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1954 return; 1955 1956 stack = (unsigned long *) sp; 1957 newsp = stack[0]; 1958 ip = stack[STACK_FRAME_LR_SAVE]; 1959 if (!firstframe || ip != lr) { 1960 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1961 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1962 if ((ip == rth) && curr_frame >= 0) { 1963 pr_cont(" (%pS)", 1964 (void *)current->ret_stack[curr_frame].ret); 1965 curr_frame--; 1966 } 1967 #endif 1968 if (firstframe) 1969 pr_cont(" (unreliable)"); 1970 pr_cont("\n"); 1971 } 1972 firstframe = 0; 1973 1974 /* 1975 * See if this is an exception frame. 1976 * We look for the "regshere" marker in the current frame. 1977 */ 1978 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1979 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1980 struct pt_regs *regs = (struct pt_regs *) 1981 (sp + STACK_FRAME_OVERHEAD); 1982 lr = regs->link; 1983 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1984 regs->trap, (void *)regs->nip, (void *)lr); 1985 firstframe = 1; 1986 } 1987 1988 sp = newsp; 1989 } while (count++ < kstack_depth_to_print); 1990 } 1991 1992 #ifdef CONFIG_PPC64 1993 /* Called with hard IRQs off */ 1994 void notrace __ppc64_runlatch_on(void) 1995 { 1996 struct thread_info *ti = current_thread_info(); 1997 unsigned long ctrl; 1998 1999 ctrl = mfspr(SPRN_CTRLF); 2000 ctrl |= CTRL_RUNLATCH; 2001 mtspr(SPRN_CTRLT, ctrl); 2002 2003 ti->local_flags |= _TLF_RUNLATCH; 2004 } 2005 2006 /* Called with hard IRQs off */ 2007 void notrace __ppc64_runlatch_off(void) 2008 { 2009 struct thread_info *ti = current_thread_info(); 2010 unsigned long ctrl; 2011 2012 ti->local_flags &= ~_TLF_RUNLATCH; 2013 2014 ctrl = mfspr(SPRN_CTRLF); 2015 ctrl &= ~CTRL_RUNLATCH; 2016 mtspr(SPRN_CTRLT, ctrl); 2017 } 2018 #endif /* CONFIG_PPC64 */ 2019 2020 unsigned long arch_align_stack(unsigned long sp) 2021 { 2022 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2023 sp -= get_random_int() & ~PAGE_MASK; 2024 return sp & ~0xf; 2025 } 2026 2027 static inline unsigned long brk_rnd(void) 2028 { 2029 unsigned long rnd = 0; 2030 2031 /* 8MB for 32bit, 1GB for 64bit */ 2032 if (is_32bit_task()) 2033 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2034 else 2035 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2036 2037 return rnd << PAGE_SHIFT; 2038 } 2039 2040 unsigned long arch_randomize_brk(struct mm_struct *mm) 2041 { 2042 unsigned long base = mm->brk; 2043 unsigned long ret; 2044 2045 #ifdef CONFIG_PPC_STD_MMU_64 2046 /* 2047 * If we are using 1TB segments and we are allowed to randomise 2048 * the heap, we can put it above 1TB so it is backed by a 1TB 2049 * segment. Otherwise the heap will be in the bottom 1TB 2050 * which always uses 256MB segments and this may result in a 2051 * performance penalty. We don't need to worry about radix. For 2052 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2053 */ 2054 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2055 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2056 #endif 2057 2058 ret = PAGE_ALIGN(base + brk_rnd()); 2059 2060 if (ret < mm->brk) 2061 return mm->brk; 2062 2063 return ret; 2064 } 2065 2066