xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision a8fe58ce)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60 
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67 
68 extern unsigned long _get_SP(void);
69 
70 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71 static void check_if_tm_restore_required(struct task_struct *tsk)
72 {
73 	/*
74 	 * If we are saving the current thread's registers, and the
75 	 * thread is in a transactional state, set the TIF_RESTORE_TM
76 	 * bit so that we know to restore the registers before
77 	 * returning to userspace.
78 	 */
79 	if (tsk == current && tsk->thread.regs &&
80 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81 	    !test_thread_flag(TIF_RESTORE_TM)) {
82 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 		set_thread_flag(TIF_RESTORE_TM);
84 	}
85 }
86 #else
87 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89 
90 bool strict_msr_control;
91 EXPORT_SYMBOL(strict_msr_control);
92 
93 static int __init enable_strict_msr_control(char *str)
94 {
95 	strict_msr_control = true;
96 	pr_info("Enabling strict facility control\n");
97 
98 	return 0;
99 }
100 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
101 
102 void msr_check_and_set(unsigned long bits)
103 {
104 	unsigned long oldmsr = mfmsr();
105 	unsigned long newmsr;
106 
107 	newmsr = oldmsr | bits;
108 
109 #ifdef CONFIG_VSX
110 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 		newmsr |= MSR_VSX;
112 #endif
113 
114 	if (oldmsr != newmsr)
115 		mtmsr_isync(newmsr);
116 }
117 
118 void __msr_check_and_clear(unsigned long bits)
119 {
120 	unsigned long oldmsr = mfmsr();
121 	unsigned long newmsr;
122 
123 	newmsr = oldmsr & ~bits;
124 
125 #ifdef CONFIG_VSX
126 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127 		newmsr &= ~MSR_VSX;
128 #endif
129 
130 	if (oldmsr != newmsr)
131 		mtmsr_isync(newmsr);
132 }
133 EXPORT_SYMBOL(__msr_check_and_clear);
134 
135 #ifdef CONFIG_PPC_FPU
136 void giveup_fpu(struct task_struct *tsk)
137 {
138 	check_if_tm_restore_required(tsk);
139 
140 	msr_check_and_set(MSR_FP);
141 	__giveup_fpu(tsk);
142 	msr_check_and_clear(MSR_FP);
143 }
144 EXPORT_SYMBOL(giveup_fpu);
145 
146 /*
147  * Make sure the floating-point register state in the
148  * the thread_struct is up to date for task tsk.
149  */
150 void flush_fp_to_thread(struct task_struct *tsk)
151 {
152 	if (tsk->thread.regs) {
153 		/*
154 		 * We need to disable preemption here because if we didn't,
155 		 * another process could get scheduled after the regs->msr
156 		 * test but before we have finished saving the FP registers
157 		 * to the thread_struct.  That process could take over the
158 		 * FPU, and then when we get scheduled again we would store
159 		 * bogus values for the remaining FP registers.
160 		 */
161 		preempt_disable();
162 		if (tsk->thread.regs->msr & MSR_FP) {
163 			/*
164 			 * This should only ever be called for current or
165 			 * for a stopped child process.  Since we save away
166 			 * the FP register state on context switch,
167 			 * there is something wrong if a stopped child appears
168 			 * to still have its FP state in the CPU registers.
169 			 */
170 			BUG_ON(tsk != current);
171 			giveup_fpu(tsk);
172 		}
173 		preempt_enable();
174 	}
175 }
176 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
177 
178 void enable_kernel_fp(void)
179 {
180 	WARN_ON(preemptible());
181 
182 	msr_check_and_set(MSR_FP);
183 
184 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
185 		check_if_tm_restore_required(current);
186 		__giveup_fpu(current);
187 	}
188 }
189 EXPORT_SYMBOL(enable_kernel_fp);
190 #endif /* CONFIG_PPC_FPU */
191 
192 #ifdef CONFIG_ALTIVEC
193 void giveup_altivec(struct task_struct *tsk)
194 {
195 	check_if_tm_restore_required(tsk);
196 
197 	msr_check_and_set(MSR_VEC);
198 	__giveup_altivec(tsk);
199 	msr_check_and_clear(MSR_VEC);
200 }
201 EXPORT_SYMBOL(giveup_altivec);
202 
203 void enable_kernel_altivec(void)
204 {
205 	WARN_ON(preemptible());
206 
207 	msr_check_and_set(MSR_VEC);
208 
209 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
210 		check_if_tm_restore_required(current);
211 		__giveup_altivec(current);
212 	}
213 }
214 EXPORT_SYMBOL(enable_kernel_altivec);
215 
216 /*
217  * Make sure the VMX/Altivec register state in the
218  * the thread_struct is up to date for task tsk.
219  */
220 void flush_altivec_to_thread(struct task_struct *tsk)
221 {
222 	if (tsk->thread.regs) {
223 		preempt_disable();
224 		if (tsk->thread.regs->msr & MSR_VEC) {
225 			BUG_ON(tsk != current);
226 			giveup_altivec(tsk);
227 		}
228 		preempt_enable();
229 	}
230 }
231 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
232 #endif /* CONFIG_ALTIVEC */
233 
234 #ifdef CONFIG_VSX
235 void giveup_vsx(struct task_struct *tsk)
236 {
237 	check_if_tm_restore_required(tsk);
238 
239 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
240 	if (tsk->thread.regs->msr & MSR_FP)
241 		__giveup_fpu(tsk);
242 	if (tsk->thread.regs->msr & MSR_VEC)
243 		__giveup_altivec(tsk);
244 	__giveup_vsx(tsk);
245 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
246 }
247 EXPORT_SYMBOL(giveup_vsx);
248 
249 void enable_kernel_vsx(void)
250 {
251 	WARN_ON(preemptible());
252 
253 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
254 
255 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
256 		check_if_tm_restore_required(current);
257 		if (current->thread.regs->msr & MSR_FP)
258 			__giveup_fpu(current);
259 		if (current->thread.regs->msr & MSR_VEC)
260 			__giveup_altivec(current);
261 		__giveup_vsx(current);
262 	}
263 }
264 EXPORT_SYMBOL(enable_kernel_vsx);
265 
266 void flush_vsx_to_thread(struct task_struct *tsk)
267 {
268 	if (tsk->thread.regs) {
269 		preempt_disable();
270 		if (tsk->thread.regs->msr & MSR_VSX) {
271 			BUG_ON(tsk != current);
272 			giveup_vsx(tsk);
273 		}
274 		preempt_enable();
275 	}
276 }
277 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
278 #endif /* CONFIG_VSX */
279 
280 #ifdef CONFIG_SPE
281 void giveup_spe(struct task_struct *tsk)
282 {
283 	check_if_tm_restore_required(tsk);
284 
285 	msr_check_and_set(MSR_SPE);
286 	__giveup_spe(tsk);
287 	msr_check_and_clear(MSR_SPE);
288 }
289 EXPORT_SYMBOL(giveup_spe);
290 
291 void enable_kernel_spe(void)
292 {
293 	WARN_ON(preemptible());
294 
295 	msr_check_and_set(MSR_SPE);
296 
297 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
298 		check_if_tm_restore_required(current);
299 		__giveup_spe(current);
300 	}
301 }
302 EXPORT_SYMBOL(enable_kernel_spe);
303 
304 void flush_spe_to_thread(struct task_struct *tsk)
305 {
306 	if (tsk->thread.regs) {
307 		preempt_disable();
308 		if (tsk->thread.regs->msr & MSR_SPE) {
309 			BUG_ON(tsk != current);
310 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
311 			giveup_spe(tsk);
312 		}
313 		preempt_enable();
314 	}
315 }
316 #endif /* CONFIG_SPE */
317 
318 static unsigned long msr_all_available;
319 
320 static int __init init_msr_all_available(void)
321 {
322 #ifdef CONFIG_PPC_FPU
323 	msr_all_available |= MSR_FP;
324 #endif
325 #ifdef CONFIG_ALTIVEC
326 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
327 		msr_all_available |= MSR_VEC;
328 #endif
329 #ifdef CONFIG_VSX
330 	if (cpu_has_feature(CPU_FTR_VSX))
331 		msr_all_available |= MSR_VSX;
332 #endif
333 #ifdef CONFIG_SPE
334 	if (cpu_has_feature(CPU_FTR_SPE))
335 		msr_all_available |= MSR_SPE;
336 #endif
337 
338 	return 0;
339 }
340 early_initcall(init_msr_all_available);
341 
342 void giveup_all(struct task_struct *tsk)
343 {
344 	unsigned long usermsr;
345 
346 	if (!tsk->thread.regs)
347 		return;
348 
349 	usermsr = tsk->thread.regs->msr;
350 
351 	if ((usermsr & msr_all_available) == 0)
352 		return;
353 
354 	msr_check_and_set(msr_all_available);
355 
356 #ifdef CONFIG_PPC_FPU
357 	if (usermsr & MSR_FP)
358 		__giveup_fpu(tsk);
359 #endif
360 #ifdef CONFIG_ALTIVEC
361 	if (usermsr & MSR_VEC)
362 		__giveup_altivec(tsk);
363 #endif
364 #ifdef CONFIG_VSX
365 	if (usermsr & MSR_VSX)
366 		__giveup_vsx(tsk);
367 #endif
368 #ifdef CONFIG_SPE
369 	if (usermsr & MSR_SPE)
370 		__giveup_spe(tsk);
371 #endif
372 
373 	msr_check_and_clear(msr_all_available);
374 }
375 EXPORT_SYMBOL(giveup_all);
376 
377 void flush_all_to_thread(struct task_struct *tsk)
378 {
379 	if (tsk->thread.regs) {
380 		preempt_disable();
381 		BUG_ON(tsk != current);
382 		giveup_all(tsk);
383 
384 #ifdef CONFIG_SPE
385 		if (tsk->thread.regs->msr & MSR_SPE)
386 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
387 #endif
388 
389 		preempt_enable();
390 	}
391 }
392 EXPORT_SYMBOL(flush_all_to_thread);
393 
394 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
395 void do_send_trap(struct pt_regs *regs, unsigned long address,
396 		  unsigned long error_code, int signal_code, int breakpt)
397 {
398 	siginfo_t info;
399 
400 	current->thread.trap_nr = signal_code;
401 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
402 			11, SIGSEGV) == NOTIFY_STOP)
403 		return;
404 
405 	/* Deliver the signal to userspace */
406 	info.si_signo = SIGTRAP;
407 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
408 	info.si_code = signal_code;
409 	info.si_addr = (void __user *)address;
410 	force_sig_info(SIGTRAP, &info, current);
411 }
412 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
413 void do_break (struct pt_regs *regs, unsigned long address,
414 		    unsigned long error_code)
415 {
416 	siginfo_t info;
417 
418 	current->thread.trap_nr = TRAP_HWBKPT;
419 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
420 			11, SIGSEGV) == NOTIFY_STOP)
421 		return;
422 
423 	if (debugger_break_match(regs))
424 		return;
425 
426 	/* Clear the breakpoint */
427 	hw_breakpoint_disable();
428 
429 	/* Deliver the signal to userspace */
430 	info.si_signo = SIGTRAP;
431 	info.si_errno = 0;
432 	info.si_code = TRAP_HWBKPT;
433 	info.si_addr = (void __user *)address;
434 	force_sig_info(SIGTRAP, &info, current);
435 }
436 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
437 
438 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
439 
440 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
441 /*
442  * Set the debug registers back to their default "safe" values.
443  */
444 static void set_debug_reg_defaults(struct thread_struct *thread)
445 {
446 	thread->debug.iac1 = thread->debug.iac2 = 0;
447 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
448 	thread->debug.iac3 = thread->debug.iac4 = 0;
449 #endif
450 	thread->debug.dac1 = thread->debug.dac2 = 0;
451 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
452 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
453 #endif
454 	thread->debug.dbcr0 = 0;
455 #ifdef CONFIG_BOOKE
456 	/*
457 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
458 	 */
459 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
460 			DBCR1_IAC3US | DBCR1_IAC4US;
461 	/*
462 	 * Force Data Address Compare User/Supervisor bits to be User-only
463 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
464 	 */
465 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
466 #else
467 	thread->debug.dbcr1 = 0;
468 #endif
469 }
470 
471 static void prime_debug_regs(struct debug_reg *debug)
472 {
473 	/*
474 	 * We could have inherited MSR_DE from userspace, since
475 	 * it doesn't get cleared on exception entry.  Make sure
476 	 * MSR_DE is clear before we enable any debug events.
477 	 */
478 	mtmsr(mfmsr() & ~MSR_DE);
479 
480 	mtspr(SPRN_IAC1, debug->iac1);
481 	mtspr(SPRN_IAC2, debug->iac2);
482 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
483 	mtspr(SPRN_IAC3, debug->iac3);
484 	mtspr(SPRN_IAC4, debug->iac4);
485 #endif
486 	mtspr(SPRN_DAC1, debug->dac1);
487 	mtspr(SPRN_DAC2, debug->dac2);
488 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
489 	mtspr(SPRN_DVC1, debug->dvc1);
490 	mtspr(SPRN_DVC2, debug->dvc2);
491 #endif
492 	mtspr(SPRN_DBCR0, debug->dbcr0);
493 	mtspr(SPRN_DBCR1, debug->dbcr1);
494 #ifdef CONFIG_BOOKE
495 	mtspr(SPRN_DBCR2, debug->dbcr2);
496 #endif
497 }
498 /*
499  * Unless neither the old or new thread are making use of the
500  * debug registers, set the debug registers from the values
501  * stored in the new thread.
502  */
503 void switch_booke_debug_regs(struct debug_reg *new_debug)
504 {
505 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
506 		|| (new_debug->dbcr0 & DBCR0_IDM))
507 			prime_debug_regs(new_debug);
508 }
509 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
510 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
511 #ifndef CONFIG_HAVE_HW_BREAKPOINT
512 static void set_debug_reg_defaults(struct thread_struct *thread)
513 {
514 	thread->hw_brk.address = 0;
515 	thread->hw_brk.type = 0;
516 	set_breakpoint(&thread->hw_brk);
517 }
518 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
519 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
520 
521 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
522 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
523 {
524 	mtspr(SPRN_DAC1, dabr);
525 #ifdef CONFIG_PPC_47x
526 	isync();
527 #endif
528 	return 0;
529 }
530 #elif defined(CONFIG_PPC_BOOK3S)
531 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
532 {
533 	mtspr(SPRN_DABR, dabr);
534 	if (cpu_has_feature(CPU_FTR_DABRX))
535 		mtspr(SPRN_DABRX, dabrx);
536 	return 0;
537 }
538 #else
539 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
540 {
541 	return -EINVAL;
542 }
543 #endif
544 
545 static inline int set_dabr(struct arch_hw_breakpoint *brk)
546 {
547 	unsigned long dabr, dabrx;
548 
549 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
550 	dabrx = ((brk->type >> 3) & 0x7);
551 
552 	if (ppc_md.set_dabr)
553 		return ppc_md.set_dabr(dabr, dabrx);
554 
555 	return __set_dabr(dabr, dabrx);
556 }
557 
558 static inline int set_dawr(struct arch_hw_breakpoint *brk)
559 {
560 	unsigned long dawr, dawrx, mrd;
561 
562 	dawr = brk->address;
563 
564 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
565 		                   << (63 - 58); //* read/write bits */
566 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
567 		                   << (63 - 59); //* translate */
568 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
569 		                   >> 3; //* PRIM bits */
570 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
571 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
572 	   0b111111=64DW.
573 	   brk->len is in bytes.
574 	   This aligns up to double word size, shifts and does the bias.
575 	*/
576 	mrd = ((brk->len + 7) >> 3) - 1;
577 	dawrx |= (mrd & 0x3f) << (63 - 53);
578 
579 	if (ppc_md.set_dawr)
580 		return ppc_md.set_dawr(dawr, dawrx);
581 	mtspr(SPRN_DAWR, dawr);
582 	mtspr(SPRN_DAWRX, dawrx);
583 	return 0;
584 }
585 
586 void __set_breakpoint(struct arch_hw_breakpoint *brk)
587 {
588 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
589 
590 	if (cpu_has_feature(CPU_FTR_DAWR))
591 		set_dawr(brk);
592 	else
593 		set_dabr(brk);
594 }
595 
596 void set_breakpoint(struct arch_hw_breakpoint *brk)
597 {
598 	preempt_disable();
599 	__set_breakpoint(brk);
600 	preempt_enable();
601 }
602 
603 #ifdef CONFIG_PPC64
604 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
605 #endif
606 
607 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
608 			      struct arch_hw_breakpoint *b)
609 {
610 	if (a->address != b->address)
611 		return false;
612 	if (a->type != b->type)
613 		return false;
614 	if (a->len != b->len)
615 		return false;
616 	return true;
617 }
618 
619 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
620 static void tm_reclaim_thread(struct thread_struct *thr,
621 			      struct thread_info *ti, uint8_t cause)
622 {
623 	unsigned long msr_diff = 0;
624 
625 	/*
626 	 * If FP/VSX registers have been already saved to the
627 	 * thread_struct, move them to the transact_fp array.
628 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
629 	 * the thread will no longer be transactional.
630 	 */
631 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
632 		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
633 		if (msr_diff & MSR_FP)
634 			memcpy(&thr->transact_fp, &thr->fp_state,
635 			       sizeof(struct thread_fp_state));
636 		if (msr_diff & MSR_VEC)
637 			memcpy(&thr->transact_vr, &thr->vr_state,
638 			       sizeof(struct thread_vr_state));
639 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
640 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
641 	}
642 
643 	/*
644 	 * Use the current MSR TM suspended bit to track if we have
645 	 * checkpointed state outstanding.
646 	 * On signal delivery, we'd normally reclaim the checkpointed
647 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
648 	 * This will then directly return to userspace without going
649 	 * through __switch_to(). However, if the stack frame is bad,
650 	 * we need to exit this thread which calls __switch_to() which
651 	 * will again attempt to reclaim the already saved tm state.
652 	 * Hence we need to check that we've not already reclaimed
653 	 * this state.
654 	 * We do this using the current MSR, rather tracking it in
655 	 * some specific thread_struct bit, as it has the additional
656 	 * benifit of checking for a potential TM bad thing exception.
657 	 */
658 	if (!MSR_TM_SUSPENDED(mfmsr()))
659 		return;
660 
661 	tm_reclaim(thr, thr->regs->msr, cause);
662 
663 	/* Having done the reclaim, we now have the checkpointed
664 	 * FP/VSX values in the registers.  These might be valid
665 	 * even if we have previously called enable_kernel_fp() or
666 	 * flush_fp_to_thread(), so update thr->regs->msr to
667 	 * indicate their current validity.
668 	 */
669 	thr->regs->msr |= msr_diff;
670 }
671 
672 void tm_reclaim_current(uint8_t cause)
673 {
674 	tm_enable();
675 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
676 }
677 
678 static inline void tm_reclaim_task(struct task_struct *tsk)
679 {
680 	/* We have to work out if we're switching from/to a task that's in the
681 	 * middle of a transaction.
682 	 *
683 	 * In switching we need to maintain a 2nd register state as
684 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
685 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
686 	 * (current) FPRs into oldtask->thread.transact_fpr[].
687 	 *
688 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
689 	 */
690 	struct thread_struct *thr = &tsk->thread;
691 
692 	if (!thr->regs)
693 		return;
694 
695 	if (!MSR_TM_ACTIVE(thr->regs->msr))
696 		goto out_and_saveregs;
697 
698 	/* Stash the original thread MSR, as giveup_fpu et al will
699 	 * modify it.  We hold onto it to see whether the task used
700 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
701 	 * ckpt_regs.msr is already set.
702 	 */
703 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
704 		thr->ckpt_regs.msr = thr->regs->msr;
705 
706 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
707 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
708 		 tsk->pid, thr->regs->nip,
709 		 thr->regs->ccr, thr->regs->msr,
710 		 thr->regs->trap);
711 
712 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
713 
714 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
715 		 tsk->pid);
716 
717 out_and_saveregs:
718 	/* Always save the regs here, even if a transaction's not active.
719 	 * This context-switches a thread's TM info SPRs.  We do it here to
720 	 * be consistent with the restore path (in recheckpoint) which
721 	 * cannot happen later in _switch().
722 	 */
723 	tm_save_sprs(thr);
724 }
725 
726 extern void __tm_recheckpoint(struct thread_struct *thread,
727 			      unsigned long orig_msr);
728 
729 void tm_recheckpoint(struct thread_struct *thread,
730 		     unsigned long orig_msr)
731 {
732 	unsigned long flags;
733 
734 	/* We really can't be interrupted here as the TEXASR registers can't
735 	 * change and later in the trecheckpoint code, we have a userspace R1.
736 	 * So let's hard disable over this region.
737 	 */
738 	local_irq_save(flags);
739 	hard_irq_disable();
740 
741 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
742 	 * before the trecheckpoint and no explosion occurs.
743 	 */
744 	tm_restore_sprs(thread);
745 
746 	__tm_recheckpoint(thread, orig_msr);
747 
748 	local_irq_restore(flags);
749 }
750 
751 static inline void tm_recheckpoint_new_task(struct task_struct *new)
752 {
753 	unsigned long msr;
754 
755 	if (!cpu_has_feature(CPU_FTR_TM))
756 		return;
757 
758 	/* Recheckpoint the registers of the thread we're about to switch to.
759 	 *
760 	 * If the task was using FP, we non-lazily reload both the original and
761 	 * the speculative FP register states.  This is because the kernel
762 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
763 	 * unavoidable later, we are unable to determine which set of FP regs
764 	 * need to be restored.
765 	 */
766 	if (!new->thread.regs)
767 		return;
768 
769 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
770 		tm_restore_sprs(&new->thread);
771 		return;
772 	}
773 	msr = new->thread.ckpt_regs.msr;
774 	/* Recheckpoint to restore original checkpointed register state. */
775 	TM_DEBUG("*** tm_recheckpoint of pid %d "
776 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
777 		 new->pid, new->thread.regs->msr, msr);
778 
779 	/* This loads the checkpointed FP/VEC state, if used */
780 	tm_recheckpoint(&new->thread, msr);
781 
782 	/* This loads the speculative FP/VEC state, if used */
783 	if (msr & MSR_FP) {
784 		do_load_up_transact_fpu(&new->thread);
785 		new->thread.regs->msr |=
786 			(MSR_FP | new->thread.fpexc_mode);
787 	}
788 #ifdef CONFIG_ALTIVEC
789 	if (msr & MSR_VEC) {
790 		do_load_up_transact_altivec(&new->thread);
791 		new->thread.regs->msr |= MSR_VEC;
792 	}
793 #endif
794 	/* We may as well turn on VSX too since all the state is restored now */
795 	if (msr & MSR_VSX)
796 		new->thread.regs->msr |= MSR_VSX;
797 
798 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
799 		 "(kernel msr 0x%lx)\n",
800 		 new->pid, mfmsr());
801 }
802 
803 static inline void __switch_to_tm(struct task_struct *prev)
804 {
805 	if (cpu_has_feature(CPU_FTR_TM)) {
806 		tm_enable();
807 		tm_reclaim_task(prev);
808 	}
809 }
810 
811 /*
812  * This is called if we are on the way out to userspace and the
813  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
814  * FP and/or vector state and does so if necessary.
815  * If userspace is inside a transaction (whether active or
816  * suspended) and FP/VMX/VSX instructions have ever been enabled
817  * inside that transaction, then we have to keep them enabled
818  * and keep the FP/VMX/VSX state loaded while ever the transaction
819  * continues.  The reason is that if we didn't, and subsequently
820  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
821  * we don't know whether it's the same transaction, and thus we
822  * don't know which of the checkpointed state and the transactional
823  * state to use.
824  */
825 void restore_tm_state(struct pt_regs *regs)
826 {
827 	unsigned long msr_diff;
828 
829 	clear_thread_flag(TIF_RESTORE_TM);
830 	if (!MSR_TM_ACTIVE(regs->msr))
831 		return;
832 
833 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
834 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
835 	if (msr_diff & MSR_FP) {
836 		msr_check_and_set(MSR_FP);
837 		load_fp_state(&current->thread.fp_state);
838 		msr_check_and_clear(MSR_FP);
839 		regs->msr |= current->thread.fpexc_mode;
840 	}
841 	if (msr_diff & MSR_VEC) {
842 		msr_check_and_set(MSR_VEC);
843 		load_vr_state(&current->thread.vr_state);
844 		msr_check_and_clear(MSR_VEC);
845 	}
846 	regs->msr |= msr_diff;
847 }
848 
849 #else
850 #define tm_recheckpoint_new_task(new)
851 #define __switch_to_tm(prev)
852 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
853 
854 static inline void save_sprs(struct thread_struct *t)
855 {
856 #ifdef CONFIG_ALTIVEC
857 	if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
858 		t->vrsave = mfspr(SPRN_VRSAVE);
859 #endif
860 #ifdef CONFIG_PPC_BOOK3S_64
861 	if (cpu_has_feature(CPU_FTR_DSCR))
862 		t->dscr = mfspr(SPRN_DSCR);
863 
864 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
865 		t->bescr = mfspr(SPRN_BESCR);
866 		t->ebbhr = mfspr(SPRN_EBBHR);
867 		t->ebbrr = mfspr(SPRN_EBBRR);
868 
869 		t->fscr = mfspr(SPRN_FSCR);
870 
871 		/*
872 		 * Note that the TAR is not available for use in the kernel.
873 		 * (To provide this, the TAR should be backed up/restored on
874 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
875 		 * this should be in pt_regs anyway (for debug).)
876 		 */
877 		t->tar = mfspr(SPRN_TAR);
878 	}
879 #endif
880 }
881 
882 static inline void restore_sprs(struct thread_struct *old_thread,
883 				struct thread_struct *new_thread)
884 {
885 #ifdef CONFIG_ALTIVEC
886 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
887 	    old_thread->vrsave != new_thread->vrsave)
888 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
889 #endif
890 #ifdef CONFIG_PPC_BOOK3S_64
891 	if (cpu_has_feature(CPU_FTR_DSCR)) {
892 		u64 dscr = get_paca()->dscr_default;
893 		u64 fscr = old_thread->fscr & ~FSCR_DSCR;
894 
895 		if (new_thread->dscr_inherit) {
896 			dscr = new_thread->dscr;
897 			fscr |= FSCR_DSCR;
898 		}
899 
900 		if (old_thread->dscr != dscr)
901 			mtspr(SPRN_DSCR, dscr);
902 
903 		if (old_thread->fscr != fscr)
904 			mtspr(SPRN_FSCR, fscr);
905 	}
906 
907 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
908 		if (old_thread->bescr != new_thread->bescr)
909 			mtspr(SPRN_BESCR, new_thread->bescr);
910 		if (old_thread->ebbhr != new_thread->ebbhr)
911 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
912 		if (old_thread->ebbrr != new_thread->ebbrr)
913 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
914 
915 		if (old_thread->tar != new_thread->tar)
916 			mtspr(SPRN_TAR, new_thread->tar);
917 	}
918 #endif
919 }
920 
921 struct task_struct *__switch_to(struct task_struct *prev,
922 	struct task_struct *new)
923 {
924 	struct thread_struct *new_thread, *old_thread;
925 	struct task_struct *last;
926 #ifdef CONFIG_PPC_BOOK3S_64
927 	struct ppc64_tlb_batch *batch;
928 #endif
929 
930 	new_thread = &new->thread;
931 	old_thread = &current->thread;
932 
933 	WARN_ON(!irqs_disabled());
934 
935 #ifdef CONFIG_PPC64
936 	/*
937 	 * Collect processor utilization data per process
938 	 */
939 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
940 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
941 		long unsigned start_tb, current_tb;
942 		start_tb = old_thread->start_tb;
943 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
944 		old_thread->accum_tb += (current_tb - start_tb);
945 		new_thread->start_tb = current_tb;
946 	}
947 #endif /* CONFIG_PPC64 */
948 
949 #ifdef CONFIG_PPC_BOOK3S_64
950 	batch = this_cpu_ptr(&ppc64_tlb_batch);
951 	if (batch->active) {
952 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
953 		if (batch->index)
954 			__flush_tlb_pending(batch);
955 		batch->active = 0;
956 	}
957 #endif /* CONFIG_PPC_BOOK3S_64 */
958 
959 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
960 	switch_booke_debug_regs(&new->thread.debug);
961 #else
962 /*
963  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
964  * schedule DABR
965  */
966 #ifndef CONFIG_HAVE_HW_BREAKPOINT
967 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
968 		__set_breakpoint(&new->thread.hw_brk);
969 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
970 #endif
971 
972 	/*
973 	 * We need to save SPRs before treclaim/trecheckpoint as these will
974 	 * change a number of them.
975 	 */
976 	save_sprs(&prev->thread);
977 
978 	__switch_to_tm(prev);
979 
980 	/* Save FPU, Altivec, VSX and SPE state */
981 	giveup_all(prev);
982 
983 	/*
984 	 * We can't take a PMU exception inside _switch() since there is a
985 	 * window where the kernel stack SLB and the kernel stack are out
986 	 * of sync. Hard disable here.
987 	 */
988 	hard_irq_disable();
989 
990 	tm_recheckpoint_new_task(new);
991 
992 	/*
993 	 * Call restore_sprs() before calling _switch(). If we move it after
994 	 * _switch() then we miss out on calling it for new tasks. The reason
995 	 * for this is we manually create a stack frame for new tasks that
996 	 * directly returns through ret_from_fork() or
997 	 * ret_from_kernel_thread(). See copy_thread() for details.
998 	 */
999 	restore_sprs(old_thread, new_thread);
1000 
1001 	last = _switch(old_thread, new_thread);
1002 
1003 #ifdef CONFIG_PPC_BOOK3S_64
1004 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1005 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1006 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1007 		batch->active = 1;
1008 	}
1009 #endif /* CONFIG_PPC_BOOK3S_64 */
1010 
1011 	return last;
1012 }
1013 
1014 static int instructions_to_print = 16;
1015 
1016 static void show_instructions(struct pt_regs *regs)
1017 {
1018 	int i;
1019 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1020 			sizeof(int));
1021 
1022 	printk("Instruction dump:");
1023 
1024 	for (i = 0; i < instructions_to_print; i++) {
1025 		int instr;
1026 
1027 		if (!(i % 8))
1028 			printk("\n");
1029 
1030 #if !defined(CONFIG_BOOKE)
1031 		/* If executing with the IMMU off, adjust pc rather
1032 		 * than print XXXXXXXX.
1033 		 */
1034 		if (!(regs->msr & MSR_IR))
1035 			pc = (unsigned long)phys_to_virt(pc);
1036 #endif
1037 
1038 		if (!__kernel_text_address(pc) ||
1039 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1040 			printk(KERN_CONT "XXXXXXXX ");
1041 		} else {
1042 			if (regs->nip == pc)
1043 				printk(KERN_CONT "<%08x> ", instr);
1044 			else
1045 				printk(KERN_CONT "%08x ", instr);
1046 		}
1047 
1048 		pc += sizeof(int);
1049 	}
1050 
1051 	printk("\n");
1052 }
1053 
1054 struct regbit {
1055 	unsigned long bit;
1056 	const char *name;
1057 };
1058 
1059 static struct regbit msr_bits[] = {
1060 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1061 	{MSR_SF,	"SF"},
1062 	{MSR_HV,	"HV"},
1063 #endif
1064 	{MSR_VEC,	"VEC"},
1065 	{MSR_VSX,	"VSX"},
1066 #ifdef CONFIG_BOOKE
1067 	{MSR_CE,	"CE"},
1068 #endif
1069 	{MSR_EE,	"EE"},
1070 	{MSR_PR,	"PR"},
1071 	{MSR_FP,	"FP"},
1072 	{MSR_ME,	"ME"},
1073 #ifdef CONFIG_BOOKE
1074 	{MSR_DE,	"DE"},
1075 #else
1076 	{MSR_SE,	"SE"},
1077 	{MSR_BE,	"BE"},
1078 #endif
1079 	{MSR_IR,	"IR"},
1080 	{MSR_DR,	"DR"},
1081 	{MSR_PMM,	"PMM"},
1082 #ifndef CONFIG_BOOKE
1083 	{MSR_RI,	"RI"},
1084 	{MSR_LE,	"LE"},
1085 #endif
1086 	{0,		NULL}
1087 };
1088 
1089 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1090 {
1091 	const char *s = "";
1092 
1093 	for (; bits->bit; ++bits)
1094 		if (val & bits->bit) {
1095 			printk("%s%s", s, bits->name);
1096 			s = sep;
1097 		}
1098 }
1099 
1100 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1101 static struct regbit msr_tm_bits[] = {
1102 	{MSR_TS_T,	"T"},
1103 	{MSR_TS_S,	"S"},
1104 	{MSR_TM,	"E"},
1105 	{0,		NULL}
1106 };
1107 
1108 static void print_tm_bits(unsigned long val)
1109 {
1110 /*
1111  * This only prints something if at least one of the TM bit is set.
1112  * Inside the TM[], the output means:
1113  *   E: Enabled		(bit 32)
1114  *   S: Suspended	(bit 33)
1115  *   T: Transactional	(bit 34)
1116  */
1117 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1118 		printk(",TM[");
1119 		print_bits(val, msr_tm_bits, "");
1120 		printk("]");
1121 	}
1122 }
1123 #else
1124 static void print_tm_bits(unsigned long val) {}
1125 #endif
1126 
1127 static void print_msr_bits(unsigned long val)
1128 {
1129 	printk("<");
1130 	print_bits(val, msr_bits, ",");
1131 	print_tm_bits(val);
1132 	printk(">");
1133 }
1134 
1135 #ifdef CONFIG_PPC64
1136 #define REG		"%016lx"
1137 #define REGS_PER_LINE	4
1138 #define LAST_VOLATILE	13
1139 #else
1140 #define REG		"%08lx"
1141 #define REGS_PER_LINE	8
1142 #define LAST_VOLATILE	12
1143 #endif
1144 
1145 void show_regs(struct pt_regs * regs)
1146 {
1147 	int i, trap;
1148 
1149 	show_regs_print_info(KERN_DEFAULT);
1150 
1151 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1152 	       regs->nip, regs->link, regs->ctr);
1153 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1154 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1155 	printk("MSR: "REG" ", regs->msr);
1156 	print_msr_bits(regs->msr);
1157 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1158 	trap = TRAP(regs);
1159 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1160 		printk("CFAR: "REG" ", regs->orig_gpr3);
1161 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1162 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1163 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1164 #else
1165 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1166 #endif
1167 #ifdef CONFIG_PPC64
1168 	printk("SOFTE: %ld ", regs->softe);
1169 #endif
1170 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1171 	if (MSR_TM_ACTIVE(regs->msr))
1172 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1173 #endif
1174 
1175 	for (i = 0;  i < 32;  i++) {
1176 		if ((i % REGS_PER_LINE) == 0)
1177 			printk("\nGPR%02d: ", i);
1178 		printk(REG " ", regs->gpr[i]);
1179 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1180 			break;
1181 	}
1182 	printk("\n");
1183 #ifdef CONFIG_KALLSYMS
1184 	/*
1185 	 * Lookup NIP late so we have the best change of getting the
1186 	 * above info out without failing
1187 	 */
1188 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1189 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1190 #endif
1191 	show_stack(current, (unsigned long *) regs->gpr[1]);
1192 	if (!user_mode(regs))
1193 		show_instructions(regs);
1194 }
1195 
1196 void exit_thread(void)
1197 {
1198 }
1199 
1200 void flush_thread(void)
1201 {
1202 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1203 	flush_ptrace_hw_breakpoint(current);
1204 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1205 	set_debug_reg_defaults(&current->thread);
1206 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1207 }
1208 
1209 void
1210 release_thread(struct task_struct *t)
1211 {
1212 }
1213 
1214 /*
1215  * this gets called so that we can store coprocessor state into memory and
1216  * copy the current task into the new thread.
1217  */
1218 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1219 {
1220 	flush_all_to_thread(src);
1221 	/*
1222 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1223 	 * flush but it removes the checkpointed state from the current CPU and
1224 	 * transitions the CPU out of TM mode.  Hence we need to call
1225 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1226 	 * checkpointed state back and the TM mode.
1227 	 */
1228 	__switch_to_tm(src);
1229 	tm_recheckpoint_new_task(src);
1230 
1231 	*dst = *src;
1232 
1233 	clear_task_ebb(dst);
1234 
1235 	return 0;
1236 }
1237 
1238 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1239 {
1240 #ifdef CONFIG_PPC_STD_MMU_64
1241 	unsigned long sp_vsid;
1242 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1243 
1244 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1245 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1246 			<< SLB_VSID_SHIFT_1T;
1247 	else
1248 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1249 			<< SLB_VSID_SHIFT;
1250 	sp_vsid |= SLB_VSID_KERNEL | llp;
1251 	p->thread.ksp_vsid = sp_vsid;
1252 #endif
1253 }
1254 
1255 /*
1256  * Copy a thread..
1257  */
1258 
1259 /*
1260  * Copy architecture-specific thread state
1261  */
1262 int copy_thread(unsigned long clone_flags, unsigned long usp,
1263 		unsigned long kthread_arg, struct task_struct *p)
1264 {
1265 	struct pt_regs *childregs, *kregs;
1266 	extern void ret_from_fork(void);
1267 	extern void ret_from_kernel_thread(void);
1268 	void (*f)(void);
1269 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1270 
1271 	/* Copy registers */
1272 	sp -= sizeof(struct pt_regs);
1273 	childregs = (struct pt_regs *) sp;
1274 	if (unlikely(p->flags & PF_KTHREAD)) {
1275 		/* kernel thread */
1276 		struct thread_info *ti = (void *)task_stack_page(p);
1277 		memset(childregs, 0, sizeof(struct pt_regs));
1278 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1279 		/* function */
1280 		if (usp)
1281 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1282 #ifdef CONFIG_PPC64
1283 		clear_tsk_thread_flag(p, TIF_32BIT);
1284 		childregs->softe = 1;
1285 #endif
1286 		childregs->gpr[15] = kthread_arg;
1287 		p->thread.regs = NULL;	/* no user register state */
1288 		ti->flags |= _TIF_RESTOREALL;
1289 		f = ret_from_kernel_thread;
1290 	} else {
1291 		/* user thread */
1292 		struct pt_regs *regs = current_pt_regs();
1293 		CHECK_FULL_REGS(regs);
1294 		*childregs = *regs;
1295 		if (usp)
1296 			childregs->gpr[1] = usp;
1297 		p->thread.regs = childregs;
1298 		childregs->gpr[3] = 0;  /* Result from fork() */
1299 		if (clone_flags & CLONE_SETTLS) {
1300 #ifdef CONFIG_PPC64
1301 			if (!is_32bit_task())
1302 				childregs->gpr[13] = childregs->gpr[6];
1303 			else
1304 #endif
1305 				childregs->gpr[2] = childregs->gpr[6];
1306 		}
1307 
1308 		f = ret_from_fork;
1309 	}
1310 	sp -= STACK_FRAME_OVERHEAD;
1311 
1312 	/*
1313 	 * The way this works is that at some point in the future
1314 	 * some task will call _switch to switch to the new task.
1315 	 * That will pop off the stack frame created below and start
1316 	 * the new task running at ret_from_fork.  The new task will
1317 	 * do some house keeping and then return from the fork or clone
1318 	 * system call, using the stack frame created above.
1319 	 */
1320 	((unsigned long *)sp)[0] = 0;
1321 	sp -= sizeof(struct pt_regs);
1322 	kregs = (struct pt_regs *) sp;
1323 	sp -= STACK_FRAME_OVERHEAD;
1324 	p->thread.ksp = sp;
1325 #ifdef CONFIG_PPC32
1326 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1327 				_ALIGN_UP(sizeof(struct thread_info), 16);
1328 #endif
1329 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1330 	p->thread.ptrace_bps[0] = NULL;
1331 #endif
1332 
1333 	p->thread.fp_save_area = NULL;
1334 #ifdef CONFIG_ALTIVEC
1335 	p->thread.vr_save_area = NULL;
1336 #endif
1337 
1338 	setup_ksp_vsid(p, sp);
1339 
1340 #ifdef CONFIG_PPC64
1341 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1342 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1343 		p->thread.dscr = mfspr(SPRN_DSCR);
1344 	}
1345 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1346 		p->thread.ppr = INIT_PPR;
1347 #endif
1348 	kregs->nip = ppc_function_entry(f);
1349 	return 0;
1350 }
1351 
1352 /*
1353  * Set up a thread for executing a new program
1354  */
1355 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1356 {
1357 #ifdef CONFIG_PPC64
1358 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1359 #endif
1360 
1361 	/*
1362 	 * If we exec out of a kernel thread then thread.regs will not be
1363 	 * set.  Do it now.
1364 	 */
1365 	if (!current->thread.regs) {
1366 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1367 		current->thread.regs = regs - 1;
1368 	}
1369 
1370 	memset(regs->gpr, 0, sizeof(regs->gpr));
1371 	regs->ctr = 0;
1372 	regs->link = 0;
1373 	regs->xer = 0;
1374 	regs->ccr = 0;
1375 	regs->gpr[1] = sp;
1376 
1377 	/*
1378 	 * We have just cleared all the nonvolatile GPRs, so make
1379 	 * FULL_REGS(regs) return true.  This is necessary to allow
1380 	 * ptrace to examine the thread immediately after exec.
1381 	 */
1382 	regs->trap &= ~1UL;
1383 
1384 #ifdef CONFIG_PPC32
1385 	regs->mq = 0;
1386 	regs->nip = start;
1387 	regs->msr = MSR_USER;
1388 #else
1389 	if (!is_32bit_task()) {
1390 		unsigned long entry;
1391 
1392 		if (is_elf2_task()) {
1393 			/* Look ma, no function descriptors! */
1394 			entry = start;
1395 
1396 			/*
1397 			 * Ulrich says:
1398 			 *   The latest iteration of the ABI requires that when
1399 			 *   calling a function (at its global entry point),
1400 			 *   the caller must ensure r12 holds the entry point
1401 			 *   address (so that the function can quickly
1402 			 *   establish addressability).
1403 			 */
1404 			regs->gpr[12] = start;
1405 			/* Make sure that's restored on entry to userspace. */
1406 			set_thread_flag(TIF_RESTOREALL);
1407 		} else {
1408 			unsigned long toc;
1409 
1410 			/* start is a relocated pointer to the function
1411 			 * descriptor for the elf _start routine.  The first
1412 			 * entry in the function descriptor is the entry
1413 			 * address of _start and the second entry is the TOC
1414 			 * value we need to use.
1415 			 */
1416 			__get_user(entry, (unsigned long __user *)start);
1417 			__get_user(toc, (unsigned long __user *)start+1);
1418 
1419 			/* Check whether the e_entry function descriptor entries
1420 			 * need to be relocated before we can use them.
1421 			 */
1422 			if (load_addr != 0) {
1423 				entry += load_addr;
1424 				toc   += load_addr;
1425 			}
1426 			regs->gpr[2] = toc;
1427 		}
1428 		regs->nip = entry;
1429 		regs->msr = MSR_USER64;
1430 	} else {
1431 		regs->nip = start;
1432 		regs->gpr[2] = 0;
1433 		regs->msr = MSR_USER32;
1434 	}
1435 #endif
1436 #ifdef CONFIG_VSX
1437 	current->thread.used_vsr = 0;
1438 #endif
1439 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1440 	current->thread.fp_save_area = NULL;
1441 #ifdef CONFIG_ALTIVEC
1442 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1443 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1444 	current->thread.vr_save_area = NULL;
1445 	current->thread.vrsave = 0;
1446 	current->thread.used_vr = 0;
1447 #endif /* CONFIG_ALTIVEC */
1448 #ifdef CONFIG_SPE
1449 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1450 	current->thread.acc = 0;
1451 	current->thread.spefscr = 0;
1452 	current->thread.used_spe = 0;
1453 #endif /* CONFIG_SPE */
1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1455 	if (cpu_has_feature(CPU_FTR_TM))
1456 		regs->msr |= MSR_TM;
1457 	current->thread.tm_tfhar = 0;
1458 	current->thread.tm_texasr = 0;
1459 	current->thread.tm_tfiar = 0;
1460 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1461 }
1462 EXPORT_SYMBOL(start_thread);
1463 
1464 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1465 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1466 
1467 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1468 {
1469 	struct pt_regs *regs = tsk->thread.regs;
1470 
1471 	/* This is a bit hairy.  If we are an SPE enabled  processor
1472 	 * (have embedded fp) we store the IEEE exception enable flags in
1473 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1474 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1475 	if (val & PR_FP_EXC_SW_ENABLE) {
1476 #ifdef CONFIG_SPE
1477 		if (cpu_has_feature(CPU_FTR_SPE)) {
1478 			/*
1479 			 * When the sticky exception bits are set
1480 			 * directly by userspace, it must call prctl
1481 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1482 			 * in the existing prctl settings) or
1483 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1484 			 * the bits being set).  <fenv.h> functions
1485 			 * saving and restoring the whole
1486 			 * floating-point environment need to do so
1487 			 * anyway to restore the prctl settings from
1488 			 * the saved environment.
1489 			 */
1490 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1491 			tsk->thread.fpexc_mode = val &
1492 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1493 			return 0;
1494 		} else {
1495 			return -EINVAL;
1496 		}
1497 #else
1498 		return -EINVAL;
1499 #endif
1500 	}
1501 
1502 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1503 	 * __pack_fe01 use do not overlap with bits used for
1504 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1505 	 * on CONFIG_SPE implementations are reserved so writing to
1506 	 * them does not change anything */
1507 	if (val > PR_FP_EXC_PRECISE)
1508 		return -EINVAL;
1509 	tsk->thread.fpexc_mode = __pack_fe01(val);
1510 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1511 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1512 			| tsk->thread.fpexc_mode;
1513 	return 0;
1514 }
1515 
1516 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1517 {
1518 	unsigned int val;
1519 
1520 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1521 #ifdef CONFIG_SPE
1522 		if (cpu_has_feature(CPU_FTR_SPE)) {
1523 			/*
1524 			 * When the sticky exception bits are set
1525 			 * directly by userspace, it must call prctl
1526 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1527 			 * in the existing prctl settings) or
1528 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1529 			 * the bits being set).  <fenv.h> functions
1530 			 * saving and restoring the whole
1531 			 * floating-point environment need to do so
1532 			 * anyway to restore the prctl settings from
1533 			 * the saved environment.
1534 			 */
1535 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1536 			val = tsk->thread.fpexc_mode;
1537 		} else
1538 			return -EINVAL;
1539 #else
1540 		return -EINVAL;
1541 #endif
1542 	else
1543 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1544 	return put_user(val, (unsigned int __user *) adr);
1545 }
1546 
1547 int set_endian(struct task_struct *tsk, unsigned int val)
1548 {
1549 	struct pt_regs *regs = tsk->thread.regs;
1550 
1551 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1552 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1553 		return -EINVAL;
1554 
1555 	if (regs == NULL)
1556 		return -EINVAL;
1557 
1558 	if (val == PR_ENDIAN_BIG)
1559 		regs->msr &= ~MSR_LE;
1560 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1561 		regs->msr |= MSR_LE;
1562 	else
1563 		return -EINVAL;
1564 
1565 	return 0;
1566 }
1567 
1568 int get_endian(struct task_struct *tsk, unsigned long adr)
1569 {
1570 	struct pt_regs *regs = tsk->thread.regs;
1571 	unsigned int val;
1572 
1573 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1574 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1575 		return -EINVAL;
1576 
1577 	if (regs == NULL)
1578 		return -EINVAL;
1579 
1580 	if (regs->msr & MSR_LE) {
1581 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1582 			val = PR_ENDIAN_LITTLE;
1583 		else
1584 			val = PR_ENDIAN_PPC_LITTLE;
1585 	} else
1586 		val = PR_ENDIAN_BIG;
1587 
1588 	return put_user(val, (unsigned int __user *)adr);
1589 }
1590 
1591 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1592 {
1593 	tsk->thread.align_ctl = val;
1594 	return 0;
1595 }
1596 
1597 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1598 {
1599 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1600 }
1601 
1602 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1603 				  unsigned long nbytes)
1604 {
1605 	unsigned long stack_page;
1606 	unsigned long cpu = task_cpu(p);
1607 
1608 	/*
1609 	 * Avoid crashing if the stack has overflowed and corrupted
1610 	 * task_cpu(p), which is in the thread_info struct.
1611 	 */
1612 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1613 		stack_page = (unsigned long) hardirq_ctx[cpu];
1614 		if (sp >= stack_page + sizeof(struct thread_struct)
1615 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1616 			return 1;
1617 
1618 		stack_page = (unsigned long) softirq_ctx[cpu];
1619 		if (sp >= stack_page + sizeof(struct thread_struct)
1620 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1621 			return 1;
1622 	}
1623 	return 0;
1624 }
1625 
1626 int validate_sp(unsigned long sp, struct task_struct *p,
1627 		       unsigned long nbytes)
1628 {
1629 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1630 
1631 	if (sp >= stack_page + sizeof(struct thread_struct)
1632 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1633 		return 1;
1634 
1635 	return valid_irq_stack(sp, p, nbytes);
1636 }
1637 
1638 EXPORT_SYMBOL(validate_sp);
1639 
1640 unsigned long get_wchan(struct task_struct *p)
1641 {
1642 	unsigned long ip, sp;
1643 	int count = 0;
1644 
1645 	if (!p || p == current || p->state == TASK_RUNNING)
1646 		return 0;
1647 
1648 	sp = p->thread.ksp;
1649 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1650 		return 0;
1651 
1652 	do {
1653 		sp = *(unsigned long *)sp;
1654 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1655 			return 0;
1656 		if (count > 0) {
1657 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1658 			if (!in_sched_functions(ip))
1659 				return ip;
1660 		}
1661 	} while (count++ < 16);
1662 	return 0;
1663 }
1664 
1665 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1666 
1667 void show_stack(struct task_struct *tsk, unsigned long *stack)
1668 {
1669 	unsigned long sp, ip, lr, newsp;
1670 	int count = 0;
1671 	int firstframe = 1;
1672 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1673 	int curr_frame = current->curr_ret_stack;
1674 	extern void return_to_handler(void);
1675 	unsigned long rth = (unsigned long)return_to_handler;
1676 #endif
1677 
1678 	sp = (unsigned long) stack;
1679 	if (tsk == NULL)
1680 		tsk = current;
1681 	if (sp == 0) {
1682 		if (tsk == current)
1683 			sp = current_stack_pointer();
1684 		else
1685 			sp = tsk->thread.ksp;
1686 	}
1687 
1688 	lr = 0;
1689 	printk("Call Trace:\n");
1690 	do {
1691 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1692 			return;
1693 
1694 		stack = (unsigned long *) sp;
1695 		newsp = stack[0];
1696 		ip = stack[STACK_FRAME_LR_SAVE];
1697 		if (!firstframe || ip != lr) {
1698 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1699 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1700 			if ((ip == rth) && curr_frame >= 0) {
1701 				printk(" (%pS)",
1702 				       (void *)current->ret_stack[curr_frame].ret);
1703 				curr_frame--;
1704 			}
1705 #endif
1706 			if (firstframe)
1707 				printk(" (unreliable)");
1708 			printk("\n");
1709 		}
1710 		firstframe = 0;
1711 
1712 		/*
1713 		 * See if this is an exception frame.
1714 		 * We look for the "regshere" marker in the current frame.
1715 		 */
1716 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1717 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1718 			struct pt_regs *regs = (struct pt_regs *)
1719 				(sp + STACK_FRAME_OVERHEAD);
1720 			lr = regs->link;
1721 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1722 			       regs->trap, (void *)regs->nip, (void *)lr);
1723 			firstframe = 1;
1724 		}
1725 
1726 		sp = newsp;
1727 	} while (count++ < kstack_depth_to_print);
1728 }
1729 
1730 #ifdef CONFIG_PPC64
1731 /* Called with hard IRQs off */
1732 void notrace __ppc64_runlatch_on(void)
1733 {
1734 	struct thread_info *ti = current_thread_info();
1735 	unsigned long ctrl;
1736 
1737 	ctrl = mfspr(SPRN_CTRLF);
1738 	ctrl |= CTRL_RUNLATCH;
1739 	mtspr(SPRN_CTRLT, ctrl);
1740 
1741 	ti->local_flags |= _TLF_RUNLATCH;
1742 }
1743 
1744 /* Called with hard IRQs off */
1745 void notrace __ppc64_runlatch_off(void)
1746 {
1747 	struct thread_info *ti = current_thread_info();
1748 	unsigned long ctrl;
1749 
1750 	ti->local_flags &= ~_TLF_RUNLATCH;
1751 
1752 	ctrl = mfspr(SPRN_CTRLF);
1753 	ctrl &= ~CTRL_RUNLATCH;
1754 	mtspr(SPRN_CTRLT, ctrl);
1755 }
1756 #endif /* CONFIG_PPC64 */
1757 
1758 unsigned long arch_align_stack(unsigned long sp)
1759 {
1760 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1761 		sp -= get_random_int() & ~PAGE_MASK;
1762 	return sp & ~0xf;
1763 }
1764 
1765 static inline unsigned long brk_rnd(void)
1766 {
1767         unsigned long rnd = 0;
1768 
1769 	/* 8MB for 32bit, 1GB for 64bit */
1770 	if (is_32bit_task())
1771 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1772 	else
1773 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1774 
1775 	return rnd << PAGE_SHIFT;
1776 }
1777 
1778 unsigned long arch_randomize_brk(struct mm_struct *mm)
1779 {
1780 	unsigned long base = mm->brk;
1781 	unsigned long ret;
1782 
1783 #ifdef CONFIG_PPC_STD_MMU_64
1784 	/*
1785 	 * If we are using 1TB segments and we are allowed to randomise
1786 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1787 	 * segment. Otherwise the heap will be in the bottom 1TB
1788 	 * which always uses 256MB segments and this may result in a
1789 	 * performance penalty.
1790 	 */
1791 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1792 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1793 #endif
1794 
1795 	ret = PAGE_ALIGN(base + brk_rnd());
1796 
1797 	if (ret < mm->brk)
1798 		return mm->brk;
1799 
1800 	return ret;
1801 }
1802 
1803