1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 #include <linux/seq_buf.h> 47 48 #include <asm/pgtable.h> 49 #include <asm/io.h> 50 #include <asm/processor.h> 51 #include <asm/mmu.h> 52 #include <asm/prom.h> 53 #include <asm/machdep.h> 54 #include <asm/time.h> 55 #include <asm/runlatch.h> 56 #include <asm/syscalls.h> 57 #include <asm/switch_to.h> 58 #include <asm/tm.h> 59 #include <asm/debug.h> 60 #ifdef CONFIG_PPC64 61 #include <asm/firmware.h> 62 #include <asm/hw_irq.h> 63 #endif 64 #include <asm/code-patching.h> 65 #include <asm/exec.h> 66 #include <asm/livepatch.h> 67 #include <asm/cpu_has_feature.h> 68 #include <asm/asm-prototypes.h> 69 #include <asm/stacktrace.h> 70 71 #include <linux/kprobes.h> 72 #include <linux/kdebug.h> 73 74 /* Transactional Memory debug */ 75 #ifdef TM_DEBUG_SW 76 #define TM_DEBUG(x...) printk(KERN_INFO x) 77 #else 78 #define TM_DEBUG(x...) do { } while(0) 79 #endif 80 81 extern unsigned long _get_SP(void); 82 83 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 84 /* 85 * Are we running in "Suspend disabled" mode? If so we have to block any 86 * sigreturn that would get us into suspended state, and we also warn in some 87 * other paths that we should never reach with suspend disabled. 88 */ 89 bool tm_suspend_disabled __ro_after_init = false; 90 91 static void check_if_tm_restore_required(struct task_struct *tsk) 92 { 93 /* 94 * If we are saving the current thread's registers, and the 95 * thread is in a transactional state, set the TIF_RESTORE_TM 96 * bit so that we know to restore the registers before 97 * returning to userspace. 98 */ 99 if (tsk == current && tsk->thread.regs && 100 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 101 !test_thread_flag(TIF_RESTORE_TM)) { 102 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 103 set_thread_flag(TIF_RESTORE_TM); 104 } 105 } 106 107 static bool tm_active_with_fp(struct task_struct *tsk) 108 { 109 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 110 (tsk->thread.ckpt_regs.msr & MSR_FP); 111 } 112 113 static bool tm_active_with_altivec(struct task_struct *tsk) 114 { 115 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 116 (tsk->thread.ckpt_regs.msr & MSR_VEC); 117 } 118 #else 119 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 120 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 121 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 123 124 bool strict_msr_control; 125 EXPORT_SYMBOL(strict_msr_control); 126 127 static int __init enable_strict_msr_control(char *str) 128 { 129 strict_msr_control = true; 130 pr_info("Enabling strict facility control\n"); 131 132 return 0; 133 } 134 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 135 136 unsigned long msr_check_and_set(unsigned long bits) 137 { 138 unsigned long oldmsr = mfmsr(); 139 unsigned long newmsr; 140 141 newmsr = oldmsr | bits; 142 143 #ifdef CONFIG_VSX 144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 145 newmsr |= MSR_VSX; 146 #endif 147 148 if (oldmsr != newmsr) 149 mtmsr_isync(newmsr); 150 151 return newmsr; 152 } 153 EXPORT_SYMBOL_GPL(msr_check_and_set); 154 155 void __msr_check_and_clear(unsigned long bits) 156 { 157 unsigned long oldmsr = mfmsr(); 158 unsigned long newmsr; 159 160 newmsr = oldmsr & ~bits; 161 162 #ifdef CONFIG_VSX 163 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 164 newmsr &= ~MSR_VSX; 165 #endif 166 167 if (oldmsr != newmsr) 168 mtmsr_isync(newmsr); 169 } 170 EXPORT_SYMBOL(__msr_check_and_clear); 171 172 #ifdef CONFIG_PPC_FPU 173 static void __giveup_fpu(struct task_struct *tsk) 174 { 175 unsigned long msr; 176 177 save_fpu(tsk); 178 msr = tsk->thread.regs->msr; 179 msr &= ~MSR_FP; 180 #ifdef CONFIG_VSX 181 if (cpu_has_feature(CPU_FTR_VSX)) 182 msr &= ~MSR_VSX; 183 #endif 184 tsk->thread.regs->msr = msr; 185 } 186 187 void giveup_fpu(struct task_struct *tsk) 188 { 189 check_if_tm_restore_required(tsk); 190 191 msr_check_and_set(MSR_FP); 192 __giveup_fpu(tsk); 193 msr_check_and_clear(MSR_FP); 194 } 195 EXPORT_SYMBOL(giveup_fpu); 196 197 /* 198 * Make sure the floating-point register state in the 199 * the thread_struct is up to date for task tsk. 200 */ 201 void flush_fp_to_thread(struct task_struct *tsk) 202 { 203 if (tsk->thread.regs) { 204 /* 205 * We need to disable preemption here because if we didn't, 206 * another process could get scheduled after the regs->msr 207 * test but before we have finished saving the FP registers 208 * to the thread_struct. That process could take over the 209 * FPU, and then when we get scheduled again we would store 210 * bogus values for the remaining FP registers. 211 */ 212 preempt_disable(); 213 if (tsk->thread.regs->msr & MSR_FP) { 214 /* 215 * This should only ever be called for current or 216 * for a stopped child process. Since we save away 217 * the FP register state on context switch, 218 * there is something wrong if a stopped child appears 219 * to still have its FP state in the CPU registers. 220 */ 221 BUG_ON(tsk != current); 222 giveup_fpu(tsk); 223 } 224 preempt_enable(); 225 } 226 } 227 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 228 229 void enable_kernel_fp(void) 230 { 231 unsigned long cpumsr; 232 233 WARN_ON(preemptible()); 234 235 cpumsr = msr_check_and_set(MSR_FP); 236 237 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 238 check_if_tm_restore_required(current); 239 /* 240 * If a thread has already been reclaimed then the 241 * checkpointed registers are on the CPU but have definitely 242 * been saved by the reclaim code. Don't need to and *cannot* 243 * giveup as this would save to the 'live' structure not the 244 * checkpointed structure. 245 */ 246 if (!MSR_TM_ACTIVE(cpumsr) && 247 MSR_TM_ACTIVE(current->thread.regs->msr)) 248 return; 249 __giveup_fpu(current); 250 } 251 } 252 EXPORT_SYMBOL(enable_kernel_fp); 253 254 static int restore_fp(struct task_struct *tsk) 255 { 256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 257 load_fp_state(¤t->thread.fp_state); 258 current->thread.load_fp++; 259 return 1; 260 } 261 return 0; 262 } 263 #else 264 static int restore_fp(struct task_struct *tsk) { return 0; } 265 #endif /* CONFIG_PPC_FPU */ 266 267 #ifdef CONFIG_ALTIVEC 268 #define loadvec(thr) ((thr).load_vec) 269 270 static void __giveup_altivec(struct task_struct *tsk) 271 { 272 unsigned long msr; 273 274 save_altivec(tsk); 275 msr = tsk->thread.regs->msr; 276 msr &= ~MSR_VEC; 277 #ifdef CONFIG_VSX 278 if (cpu_has_feature(CPU_FTR_VSX)) 279 msr &= ~MSR_VSX; 280 #endif 281 tsk->thread.regs->msr = msr; 282 } 283 284 void giveup_altivec(struct task_struct *tsk) 285 { 286 check_if_tm_restore_required(tsk); 287 288 msr_check_and_set(MSR_VEC); 289 __giveup_altivec(tsk); 290 msr_check_and_clear(MSR_VEC); 291 } 292 EXPORT_SYMBOL(giveup_altivec); 293 294 void enable_kernel_altivec(void) 295 { 296 unsigned long cpumsr; 297 298 WARN_ON(preemptible()); 299 300 cpumsr = msr_check_and_set(MSR_VEC); 301 302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 303 check_if_tm_restore_required(current); 304 /* 305 * If a thread has already been reclaimed then the 306 * checkpointed registers are on the CPU but have definitely 307 * been saved by the reclaim code. Don't need to and *cannot* 308 * giveup as this would save to the 'live' structure not the 309 * checkpointed structure. 310 */ 311 if (!MSR_TM_ACTIVE(cpumsr) && 312 MSR_TM_ACTIVE(current->thread.regs->msr)) 313 return; 314 __giveup_altivec(current); 315 } 316 } 317 EXPORT_SYMBOL(enable_kernel_altivec); 318 319 /* 320 * Make sure the VMX/Altivec register state in the 321 * the thread_struct is up to date for task tsk. 322 */ 323 void flush_altivec_to_thread(struct task_struct *tsk) 324 { 325 if (tsk->thread.regs) { 326 preempt_disable(); 327 if (tsk->thread.regs->msr & MSR_VEC) { 328 BUG_ON(tsk != current); 329 giveup_altivec(tsk); 330 } 331 preempt_enable(); 332 } 333 } 334 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 335 336 static int restore_altivec(struct task_struct *tsk) 337 { 338 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 339 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 340 load_vr_state(&tsk->thread.vr_state); 341 tsk->thread.used_vr = 1; 342 tsk->thread.load_vec++; 343 344 return 1; 345 } 346 return 0; 347 } 348 #else 349 #define loadvec(thr) 0 350 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 351 #endif /* CONFIG_ALTIVEC */ 352 353 #ifdef CONFIG_VSX 354 static void __giveup_vsx(struct task_struct *tsk) 355 { 356 unsigned long msr = tsk->thread.regs->msr; 357 358 /* 359 * We should never be ssetting MSR_VSX without also setting 360 * MSR_FP and MSR_VEC 361 */ 362 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 363 364 /* __giveup_fpu will clear MSR_VSX */ 365 if (msr & MSR_FP) 366 __giveup_fpu(tsk); 367 if (msr & MSR_VEC) 368 __giveup_altivec(tsk); 369 } 370 371 static void giveup_vsx(struct task_struct *tsk) 372 { 373 check_if_tm_restore_required(tsk); 374 375 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 376 __giveup_vsx(tsk); 377 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 378 } 379 380 void enable_kernel_vsx(void) 381 { 382 unsigned long cpumsr; 383 384 WARN_ON(preemptible()); 385 386 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 387 388 if (current->thread.regs && 389 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 390 check_if_tm_restore_required(current); 391 /* 392 * If a thread has already been reclaimed then the 393 * checkpointed registers are on the CPU but have definitely 394 * been saved by the reclaim code. Don't need to and *cannot* 395 * giveup as this would save to the 'live' structure not the 396 * checkpointed structure. 397 */ 398 if (!MSR_TM_ACTIVE(cpumsr) && 399 MSR_TM_ACTIVE(current->thread.regs->msr)) 400 return; 401 __giveup_vsx(current); 402 } 403 } 404 EXPORT_SYMBOL(enable_kernel_vsx); 405 406 void flush_vsx_to_thread(struct task_struct *tsk) 407 { 408 if (tsk->thread.regs) { 409 preempt_disable(); 410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 411 BUG_ON(tsk != current); 412 giveup_vsx(tsk); 413 } 414 preempt_enable(); 415 } 416 } 417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 418 419 static int restore_vsx(struct task_struct *tsk) 420 { 421 if (cpu_has_feature(CPU_FTR_VSX)) { 422 tsk->thread.used_vsr = 1; 423 return 1; 424 } 425 426 return 0; 427 } 428 #else 429 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 430 #endif /* CONFIG_VSX */ 431 432 #ifdef CONFIG_SPE 433 void giveup_spe(struct task_struct *tsk) 434 { 435 check_if_tm_restore_required(tsk); 436 437 msr_check_and_set(MSR_SPE); 438 __giveup_spe(tsk); 439 msr_check_and_clear(MSR_SPE); 440 } 441 EXPORT_SYMBOL(giveup_spe); 442 443 void enable_kernel_spe(void) 444 { 445 WARN_ON(preemptible()); 446 447 msr_check_and_set(MSR_SPE); 448 449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 450 check_if_tm_restore_required(current); 451 __giveup_spe(current); 452 } 453 } 454 EXPORT_SYMBOL(enable_kernel_spe); 455 456 void flush_spe_to_thread(struct task_struct *tsk) 457 { 458 if (tsk->thread.regs) { 459 preempt_disable(); 460 if (tsk->thread.regs->msr & MSR_SPE) { 461 BUG_ON(tsk != current); 462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 463 giveup_spe(tsk); 464 } 465 preempt_enable(); 466 } 467 } 468 #endif /* CONFIG_SPE */ 469 470 static unsigned long msr_all_available; 471 472 static int __init init_msr_all_available(void) 473 { 474 #ifdef CONFIG_PPC_FPU 475 msr_all_available |= MSR_FP; 476 #endif 477 #ifdef CONFIG_ALTIVEC 478 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 479 msr_all_available |= MSR_VEC; 480 #endif 481 #ifdef CONFIG_VSX 482 if (cpu_has_feature(CPU_FTR_VSX)) 483 msr_all_available |= MSR_VSX; 484 #endif 485 #ifdef CONFIG_SPE 486 if (cpu_has_feature(CPU_FTR_SPE)) 487 msr_all_available |= MSR_SPE; 488 #endif 489 490 return 0; 491 } 492 early_initcall(init_msr_all_available); 493 494 void giveup_all(struct task_struct *tsk) 495 { 496 unsigned long usermsr; 497 498 if (!tsk->thread.regs) 499 return; 500 501 usermsr = tsk->thread.regs->msr; 502 503 if ((usermsr & msr_all_available) == 0) 504 return; 505 506 msr_check_and_set(msr_all_available); 507 check_if_tm_restore_required(tsk); 508 509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 510 511 #ifdef CONFIG_PPC_FPU 512 if (usermsr & MSR_FP) 513 __giveup_fpu(tsk); 514 #endif 515 #ifdef CONFIG_ALTIVEC 516 if (usermsr & MSR_VEC) 517 __giveup_altivec(tsk); 518 #endif 519 #ifdef CONFIG_SPE 520 if (usermsr & MSR_SPE) 521 __giveup_spe(tsk); 522 #endif 523 524 msr_check_and_clear(msr_all_available); 525 } 526 EXPORT_SYMBOL(giveup_all); 527 528 void restore_math(struct pt_regs *regs) 529 { 530 unsigned long msr; 531 532 if (!MSR_TM_ACTIVE(regs->msr) && 533 !current->thread.load_fp && !loadvec(current->thread)) 534 return; 535 536 msr = regs->msr; 537 msr_check_and_set(msr_all_available); 538 539 /* 540 * Only reload if the bit is not set in the user MSR, the bit BEING set 541 * indicates that the registers are hot 542 */ 543 if ((!(msr & MSR_FP)) && restore_fp(current)) 544 msr |= MSR_FP | current->thread.fpexc_mode; 545 546 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 547 msr |= MSR_VEC; 548 549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 550 restore_vsx(current)) { 551 msr |= MSR_VSX; 552 } 553 554 msr_check_and_clear(msr_all_available); 555 556 regs->msr = msr; 557 } 558 559 static void save_all(struct task_struct *tsk) 560 { 561 unsigned long usermsr; 562 563 if (!tsk->thread.regs) 564 return; 565 566 usermsr = tsk->thread.regs->msr; 567 568 if ((usermsr & msr_all_available) == 0) 569 return; 570 571 msr_check_and_set(msr_all_available); 572 573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 574 575 if (usermsr & MSR_FP) 576 save_fpu(tsk); 577 578 if (usermsr & MSR_VEC) 579 save_altivec(tsk); 580 581 if (usermsr & MSR_SPE) 582 __giveup_spe(tsk); 583 584 msr_check_and_clear(msr_all_available); 585 thread_pkey_regs_save(&tsk->thread); 586 } 587 588 void flush_all_to_thread(struct task_struct *tsk) 589 { 590 if (tsk->thread.regs) { 591 preempt_disable(); 592 BUG_ON(tsk != current); 593 #ifdef CONFIG_SPE 594 if (tsk->thread.regs->msr & MSR_SPE) 595 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 596 #endif 597 save_all(tsk); 598 599 preempt_enable(); 600 } 601 } 602 EXPORT_SYMBOL(flush_all_to_thread); 603 604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 605 void do_send_trap(struct pt_regs *regs, unsigned long address, 606 unsigned long error_code, int breakpt) 607 { 608 current->thread.trap_nr = TRAP_HWBKPT; 609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 610 11, SIGSEGV) == NOTIFY_STOP) 611 return; 612 613 /* Deliver the signal to userspace */ 614 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 615 (void __user *)address); 616 } 617 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 618 void do_break (struct pt_regs *regs, unsigned long address, 619 unsigned long error_code) 620 { 621 current->thread.trap_nr = TRAP_HWBKPT; 622 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 623 11, SIGSEGV) == NOTIFY_STOP) 624 return; 625 626 if (debugger_break_match(regs)) 627 return; 628 629 /* Clear the breakpoint */ 630 hw_breakpoint_disable(); 631 632 /* Deliver the signal to userspace */ 633 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current); 634 } 635 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 636 637 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 638 639 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 640 /* 641 * Set the debug registers back to their default "safe" values. 642 */ 643 static void set_debug_reg_defaults(struct thread_struct *thread) 644 { 645 thread->debug.iac1 = thread->debug.iac2 = 0; 646 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 647 thread->debug.iac3 = thread->debug.iac4 = 0; 648 #endif 649 thread->debug.dac1 = thread->debug.dac2 = 0; 650 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 651 thread->debug.dvc1 = thread->debug.dvc2 = 0; 652 #endif 653 thread->debug.dbcr0 = 0; 654 #ifdef CONFIG_BOOKE 655 /* 656 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 657 */ 658 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 659 DBCR1_IAC3US | DBCR1_IAC4US; 660 /* 661 * Force Data Address Compare User/Supervisor bits to be User-only 662 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 663 */ 664 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 665 #else 666 thread->debug.dbcr1 = 0; 667 #endif 668 } 669 670 static void prime_debug_regs(struct debug_reg *debug) 671 { 672 /* 673 * We could have inherited MSR_DE from userspace, since 674 * it doesn't get cleared on exception entry. Make sure 675 * MSR_DE is clear before we enable any debug events. 676 */ 677 mtmsr(mfmsr() & ~MSR_DE); 678 679 mtspr(SPRN_IAC1, debug->iac1); 680 mtspr(SPRN_IAC2, debug->iac2); 681 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 682 mtspr(SPRN_IAC3, debug->iac3); 683 mtspr(SPRN_IAC4, debug->iac4); 684 #endif 685 mtspr(SPRN_DAC1, debug->dac1); 686 mtspr(SPRN_DAC2, debug->dac2); 687 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 688 mtspr(SPRN_DVC1, debug->dvc1); 689 mtspr(SPRN_DVC2, debug->dvc2); 690 #endif 691 mtspr(SPRN_DBCR0, debug->dbcr0); 692 mtspr(SPRN_DBCR1, debug->dbcr1); 693 #ifdef CONFIG_BOOKE 694 mtspr(SPRN_DBCR2, debug->dbcr2); 695 #endif 696 } 697 /* 698 * Unless neither the old or new thread are making use of the 699 * debug registers, set the debug registers from the values 700 * stored in the new thread. 701 */ 702 void switch_booke_debug_regs(struct debug_reg *new_debug) 703 { 704 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 705 || (new_debug->dbcr0 & DBCR0_IDM)) 706 prime_debug_regs(new_debug); 707 } 708 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 709 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 710 #ifndef CONFIG_HAVE_HW_BREAKPOINT 711 static void set_breakpoint(struct arch_hw_breakpoint *brk) 712 { 713 preempt_disable(); 714 __set_breakpoint(brk); 715 preempt_enable(); 716 } 717 718 static void set_debug_reg_defaults(struct thread_struct *thread) 719 { 720 thread->hw_brk.address = 0; 721 thread->hw_brk.type = 0; 722 if (ppc_breakpoint_available()) 723 set_breakpoint(&thread->hw_brk); 724 } 725 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 726 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 727 728 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 730 { 731 mtspr(SPRN_DAC1, dabr); 732 #ifdef CONFIG_PPC_47x 733 isync(); 734 #endif 735 return 0; 736 } 737 #elif defined(CONFIG_PPC_BOOK3S) 738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 739 { 740 mtspr(SPRN_DABR, dabr); 741 if (cpu_has_feature(CPU_FTR_DABRX)) 742 mtspr(SPRN_DABRX, dabrx); 743 return 0; 744 } 745 #elif defined(CONFIG_PPC_8xx) 746 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 747 { 748 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 749 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 750 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 751 752 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 753 lctrl1 |= 0xa0000; 754 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 755 lctrl1 |= 0xf0000; 756 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 757 lctrl2 = 0; 758 759 mtspr(SPRN_LCTRL2, 0); 760 mtspr(SPRN_CMPE, addr); 761 mtspr(SPRN_CMPF, addr + 4); 762 mtspr(SPRN_LCTRL1, lctrl1); 763 mtspr(SPRN_LCTRL2, lctrl2); 764 765 return 0; 766 } 767 #else 768 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 769 { 770 return -EINVAL; 771 } 772 #endif 773 774 static inline int set_dabr(struct arch_hw_breakpoint *brk) 775 { 776 unsigned long dabr, dabrx; 777 778 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 779 dabrx = ((brk->type >> 3) & 0x7); 780 781 if (ppc_md.set_dabr) 782 return ppc_md.set_dabr(dabr, dabrx); 783 784 return __set_dabr(dabr, dabrx); 785 } 786 787 static inline int set_dawr(struct arch_hw_breakpoint *brk) 788 { 789 unsigned long dawr, dawrx, mrd; 790 791 dawr = brk->address; 792 793 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 794 << (63 - 58); //* read/write bits */ 795 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 796 << (63 - 59); //* translate */ 797 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 798 >> 3; //* PRIM bits */ 799 /* dawr length is stored in field MDR bits 48:53. Matches range in 800 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 801 0b111111=64DW. 802 brk->len is in bytes. 803 This aligns up to double word size, shifts and does the bias. 804 */ 805 mrd = ((brk->len + 7) >> 3) - 1; 806 dawrx |= (mrd & 0x3f) << (63 - 53); 807 808 if (ppc_md.set_dawr) 809 return ppc_md.set_dawr(dawr, dawrx); 810 mtspr(SPRN_DAWR, dawr); 811 mtspr(SPRN_DAWRX, dawrx); 812 return 0; 813 } 814 815 void __set_breakpoint(struct arch_hw_breakpoint *brk) 816 { 817 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 818 819 if (cpu_has_feature(CPU_FTR_DAWR)) 820 // Power8 or later 821 set_dawr(brk); 822 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 823 // Power7 or earlier 824 set_dabr(brk); 825 else 826 // Shouldn't happen due to higher level checks 827 WARN_ON_ONCE(1); 828 } 829 830 /* Check if we have DAWR or DABR hardware */ 831 bool ppc_breakpoint_available(void) 832 { 833 if (cpu_has_feature(CPU_FTR_DAWR)) 834 return true; /* POWER8 DAWR */ 835 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 836 return false; /* POWER9 with DAWR disabled */ 837 /* DABR: Everything but POWER8 and POWER9 */ 838 return true; 839 } 840 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 841 842 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 843 struct arch_hw_breakpoint *b) 844 { 845 if (a->address != b->address) 846 return false; 847 if (a->type != b->type) 848 return false; 849 if (a->len != b->len) 850 return false; 851 return true; 852 } 853 854 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 855 856 static inline bool tm_enabled(struct task_struct *tsk) 857 { 858 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 859 } 860 861 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 862 { 863 /* 864 * Use the current MSR TM suspended bit to track if we have 865 * checkpointed state outstanding. 866 * On signal delivery, we'd normally reclaim the checkpointed 867 * state to obtain stack pointer (see:get_tm_stackpointer()). 868 * This will then directly return to userspace without going 869 * through __switch_to(). However, if the stack frame is bad, 870 * we need to exit this thread which calls __switch_to() which 871 * will again attempt to reclaim the already saved tm state. 872 * Hence we need to check that we've not already reclaimed 873 * this state. 874 * We do this using the current MSR, rather tracking it in 875 * some specific thread_struct bit, as it has the additional 876 * benefit of checking for a potential TM bad thing exception. 877 */ 878 if (!MSR_TM_SUSPENDED(mfmsr())) 879 return; 880 881 giveup_all(container_of(thr, struct task_struct, thread)); 882 883 tm_reclaim(thr, cause); 884 885 /* 886 * If we are in a transaction and FP is off then we can't have 887 * used FP inside that transaction. Hence the checkpointed 888 * state is the same as the live state. We need to copy the 889 * live state to the checkpointed state so that when the 890 * transaction is restored, the checkpointed state is correct 891 * and the aborted transaction sees the correct state. We use 892 * ckpt_regs.msr here as that's what tm_reclaim will use to 893 * determine if it's going to write the checkpointed state or 894 * not. So either this will write the checkpointed registers, 895 * or reclaim will. Similarly for VMX. 896 */ 897 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 898 memcpy(&thr->ckfp_state, &thr->fp_state, 899 sizeof(struct thread_fp_state)); 900 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 901 memcpy(&thr->ckvr_state, &thr->vr_state, 902 sizeof(struct thread_vr_state)); 903 } 904 905 void tm_reclaim_current(uint8_t cause) 906 { 907 tm_enable(); 908 tm_reclaim_thread(¤t->thread, cause); 909 } 910 911 static inline void tm_reclaim_task(struct task_struct *tsk) 912 { 913 /* We have to work out if we're switching from/to a task that's in the 914 * middle of a transaction. 915 * 916 * In switching we need to maintain a 2nd register state as 917 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 918 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 919 * ckvr_state 920 * 921 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 922 */ 923 struct thread_struct *thr = &tsk->thread; 924 925 if (!thr->regs) 926 return; 927 928 if (!MSR_TM_ACTIVE(thr->regs->msr)) 929 goto out_and_saveregs; 930 931 WARN_ON(tm_suspend_disabled); 932 933 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 934 "ccr=%lx, msr=%lx, trap=%lx)\n", 935 tsk->pid, thr->regs->nip, 936 thr->regs->ccr, thr->regs->msr, 937 thr->regs->trap); 938 939 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 940 941 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 942 tsk->pid); 943 944 out_and_saveregs: 945 /* Always save the regs here, even if a transaction's not active. 946 * This context-switches a thread's TM info SPRs. We do it here to 947 * be consistent with the restore path (in recheckpoint) which 948 * cannot happen later in _switch(). 949 */ 950 tm_save_sprs(thr); 951 } 952 953 extern void __tm_recheckpoint(struct thread_struct *thread); 954 955 void tm_recheckpoint(struct thread_struct *thread) 956 { 957 unsigned long flags; 958 959 if (!(thread->regs->msr & MSR_TM)) 960 return; 961 962 /* We really can't be interrupted here as the TEXASR registers can't 963 * change and later in the trecheckpoint code, we have a userspace R1. 964 * So let's hard disable over this region. 965 */ 966 local_irq_save(flags); 967 hard_irq_disable(); 968 969 /* The TM SPRs are restored here, so that TEXASR.FS can be set 970 * before the trecheckpoint and no explosion occurs. 971 */ 972 tm_restore_sprs(thread); 973 974 __tm_recheckpoint(thread); 975 976 local_irq_restore(flags); 977 } 978 979 static inline void tm_recheckpoint_new_task(struct task_struct *new) 980 { 981 if (!cpu_has_feature(CPU_FTR_TM)) 982 return; 983 984 /* Recheckpoint the registers of the thread we're about to switch to. 985 * 986 * If the task was using FP, we non-lazily reload both the original and 987 * the speculative FP register states. This is because the kernel 988 * doesn't see if/when a TM rollback occurs, so if we take an FP 989 * unavailable later, we are unable to determine which set of FP regs 990 * need to be restored. 991 */ 992 if (!tm_enabled(new)) 993 return; 994 995 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 996 tm_restore_sprs(&new->thread); 997 return; 998 } 999 /* Recheckpoint to restore original checkpointed register state. */ 1000 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1001 new->pid, new->thread.regs->msr); 1002 1003 tm_recheckpoint(&new->thread); 1004 1005 /* 1006 * The checkpointed state has been restored but the live state has 1007 * not, ensure all the math functionality is turned off to trigger 1008 * restore_math() to reload. 1009 */ 1010 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1011 1012 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1013 "(kernel msr 0x%lx)\n", 1014 new->pid, mfmsr()); 1015 } 1016 1017 static inline void __switch_to_tm(struct task_struct *prev, 1018 struct task_struct *new) 1019 { 1020 if (cpu_has_feature(CPU_FTR_TM)) { 1021 if (tm_enabled(prev) || tm_enabled(new)) 1022 tm_enable(); 1023 1024 if (tm_enabled(prev)) { 1025 prev->thread.load_tm++; 1026 tm_reclaim_task(prev); 1027 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1028 prev->thread.regs->msr &= ~MSR_TM; 1029 } 1030 1031 tm_recheckpoint_new_task(new); 1032 } 1033 } 1034 1035 /* 1036 * This is called if we are on the way out to userspace and the 1037 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1038 * FP and/or vector state and does so if necessary. 1039 * If userspace is inside a transaction (whether active or 1040 * suspended) and FP/VMX/VSX instructions have ever been enabled 1041 * inside that transaction, then we have to keep them enabled 1042 * and keep the FP/VMX/VSX state loaded while ever the transaction 1043 * continues. The reason is that if we didn't, and subsequently 1044 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1045 * we don't know whether it's the same transaction, and thus we 1046 * don't know which of the checkpointed state and the transactional 1047 * state to use. 1048 */ 1049 void restore_tm_state(struct pt_regs *regs) 1050 { 1051 unsigned long msr_diff; 1052 1053 /* 1054 * This is the only moment we should clear TIF_RESTORE_TM as 1055 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1056 * again, anything else could lead to an incorrect ckpt_msr being 1057 * saved and therefore incorrect signal contexts. 1058 */ 1059 clear_thread_flag(TIF_RESTORE_TM); 1060 if (!MSR_TM_ACTIVE(regs->msr)) 1061 return; 1062 1063 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1064 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1065 1066 /* Ensure that restore_math() will restore */ 1067 if (msr_diff & MSR_FP) 1068 current->thread.load_fp = 1; 1069 #ifdef CONFIG_ALTIVEC 1070 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1071 current->thread.load_vec = 1; 1072 #endif 1073 restore_math(regs); 1074 1075 regs->msr |= msr_diff; 1076 } 1077 1078 #else 1079 #define tm_recheckpoint_new_task(new) 1080 #define __switch_to_tm(prev, new) 1081 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1082 1083 static inline void save_sprs(struct thread_struct *t) 1084 { 1085 #ifdef CONFIG_ALTIVEC 1086 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1087 t->vrsave = mfspr(SPRN_VRSAVE); 1088 #endif 1089 #ifdef CONFIG_PPC_BOOK3S_64 1090 if (cpu_has_feature(CPU_FTR_DSCR)) 1091 t->dscr = mfspr(SPRN_DSCR); 1092 1093 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1094 t->bescr = mfspr(SPRN_BESCR); 1095 t->ebbhr = mfspr(SPRN_EBBHR); 1096 t->ebbrr = mfspr(SPRN_EBBRR); 1097 1098 t->fscr = mfspr(SPRN_FSCR); 1099 1100 /* 1101 * Note that the TAR is not available for use in the kernel. 1102 * (To provide this, the TAR should be backed up/restored on 1103 * exception entry/exit instead, and be in pt_regs. FIXME, 1104 * this should be in pt_regs anyway (for debug).) 1105 */ 1106 t->tar = mfspr(SPRN_TAR); 1107 } 1108 #endif 1109 1110 thread_pkey_regs_save(t); 1111 } 1112 1113 static inline void restore_sprs(struct thread_struct *old_thread, 1114 struct thread_struct *new_thread) 1115 { 1116 #ifdef CONFIG_ALTIVEC 1117 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1118 old_thread->vrsave != new_thread->vrsave) 1119 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1120 #endif 1121 #ifdef CONFIG_PPC_BOOK3S_64 1122 if (cpu_has_feature(CPU_FTR_DSCR)) { 1123 u64 dscr = get_paca()->dscr_default; 1124 if (new_thread->dscr_inherit) 1125 dscr = new_thread->dscr; 1126 1127 if (old_thread->dscr != dscr) 1128 mtspr(SPRN_DSCR, dscr); 1129 } 1130 1131 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1132 if (old_thread->bescr != new_thread->bescr) 1133 mtspr(SPRN_BESCR, new_thread->bescr); 1134 if (old_thread->ebbhr != new_thread->ebbhr) 1135 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1136 if (old_thread->ebbrr != new_thread->ebbrr) 1137 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1138 1139 if (old_thread->fscr != new_thread->fscr) 1140 mtspr(SPRN_FSCR, new_thread->fscr); 1141 1142 if (old_thread->tar != new_thread->tar) 1143 mtspr(SPRN_TAR, new_thread->tar); 1144 } 1145 1146 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1147 old_thread->tidr != new_thread->tidr) 1148 mtspr(SPRN_TIDR, new_thread->tidr); 1149 #endif 1150 1151 thread_pkey_regs_restore(new_thread, old_thread); 1152 } 1153 1154 #ifdef CONFIG_PPC_BOOK3S_64 1155 #define CP_SIZE 128 1156 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1157 #endif 1158 1159 struct task_struct *__switch_to(struct task_struct *prev, 1160 struct task_struct *new) 1161 { 1162 struct thread_struct *new_thread, *old_thread; 1163 struct task_struct *last; 1164 #ifdef CONFIG_PPC_BOOK3S_64 1165 struct ppc64_tlb_batch *batch; 1166 #endif 1167 1168 new_thread = &new->thread; 1169 old_thread = ¤t->thread; 1170 1171 WARN_ON(!irqs_disabled()); 1172 1173 #ifdef CONFIG_PPC_BOOK3S_64 1174 batch = this_cpu_ptr(&ppc64_tlb_batch); 1175 if (batch->active) { 1176 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1177 if (batch->index) 1178 __flush_tlb_pending(batch); 1179 batch->active = 0; 1180 } 1181 #endif /* CONFIG_PPC_BOOK3S_64 */ 1182 1183 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1184 switch_booke_debug_regs(&new->thread.debug); 1185 #else 1186 /* 1187 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1188 * schedule DABR 1189 */ 1190 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1191 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1192 __set_breakpoint(&new->thread.hw_brk); 1193 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1194 #endif 1195 1196 /* 1197 * We need to save SPRs before treclaim/trecheckpoint as these will 1198 * change a number of them. 1199 */ 1200 save_sprs(&prev->thread); 1201 1202 /* Save FPU, Altivec, VSX and SPE state */ 1203 giveup_all(prev); 1204 1205 __switch_to_tm(prev, new); 1206 1207 if (!radix_enabled()) { 1208 /* 1209 * We can't take a PMU exception inside _switch() since there 1210 * is a window where the kernel stack SLB and the kernel stack 1211 * are out of sync. Hard disable here. 1212 */ 1213 hard_irq_disable(); 1214 } 1215 1216 /* 1217 * Call restore_sprs() before calling _switch(). If we move it after 1218 * _switch() then we miss out on calling it for new tasks. The reason 1219 * for this is we manually create a stack frame for new tasks that 1220 * directly returns through ret_from_fork() or 1221 * ret_from_kernel_thread(). See copy_thread() for details. 1222 */ 1223 restore_sprs(old_thread, new_thread); 1224 1225 last = _switch(old_thread, new_thread); 1226 1227 #ifdef CONFIG_PPC_BOOK3S_64 1228 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1229 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1230 batch = this_cpu_ptr(&ppc64_tlb_batch); 1231 batch->active = 1; 1232 } 1233 1234 if (current_thread_info()->task->thread.regs) { 1235 restore_math(current_thread_info()->task->thread.regs); 1236 1237 /* 1238 * The copy-paste buffer can only store into foreign real 1239 * addresses, so unprivileged processes can not see the 1240 * data or use it in any way unless they have foreign real 1241 * mappings. If the new process has the foreign real address 1242 * mappings, we must issue a cp_abort to clear any state and 1243 * prevent snooping, corruption or a covert channel. 1244 */ 1245 if (current_thread_info()->task->thread.used_vas) 1246 asm volatile(PPC_CP_ABORT); 1247 } 1248 #endif /* CONFIG_PPC_BOOK3S_64 */ 1249 1250 return last; 1251 } 1252 1253 #define NR_INSN_TO_PRINT 16 1254 1255 static void show_instructions(struct pt_regs *regs) 1256 { 1257 int i; 1258 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1259 1260 printk("Instruction dump:"); 1261 1262 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1263 int instr; 1264 1265 if (!(i % 8)) 1266 pr_cont("\n"); 1267 1268 #if !defined(CONFIG_BOOKE) 1269 /* If executing with the IMMU off, adjust pc rather 1270 * than print XXXXXXXX. 1271 */ 1272 if (!(regs->msr & MSR_IR)) 1273 pc = (unsigned long)phys_to_virt(pc); 1274 #endif 1275 1276 if (!__kernel_text_address(pc) || 1277 probe_kernel_address((const void *)pc, instr)) { 1278 pr_cont("XXXXXXXX "); 1279 } else { 1280 if (regs->nip == pc) 1281 pr_cont("<%08x> ", instr); 1282 else 1283 pr_cont("%08x ", instr); 1284 } 1285 1286 pc += sizeof(int); 1287 } 1288 1289 pr_cont("\n"); 1290 } 1291 1292 void show_user_instructions(struct pt_regs *regs) 1293 { 1294 unsigned long pc; 1295 int n = NR_INSN_TO_PRINT; 1296 struct seq_buf s; 1297 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1298 1299 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1300 1301 /* 1302 * Make sure the NIP points at userspace, not kernel text/data or 1303 * elsewhere. 1304 */ 1305 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1306 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1307 current->comm, current->pid); 1308 return; 1309 } 1310 1311 seq_buf_init(&s, buf, sizeof(buf)); 1312 1313 while (n) { 1314 int i; 1315 1316 seq_buf_clear(&s); 1317 1318 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1319 int instr; 1320 1321 if (probe_kernel_address((const void *)pc, instr)) { 1322 seq_buf_printf(&s, "XXXXXXXX "); 1323 continue; 1324 } 1325 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1326 } 1327 1328 if (!seq_buf_has_overflowed(&s)) 1329 pr_info("%s[%d]: code: %s\n", current->comm, 1330 current->pid, s.buffer); 1331 } 1332 } 1333 1334 struct regbit { 1335 unsigned long bit; 1336 const char *name; 1337 }; 1338 1339 static struct regbit msr_bits[] = { 1340 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1341 {MSR_SF, "SF"}, 1342 {MSR_HV, "HV"}, 1343 #endif 1344 {MSR_VEC, "VEC"}, 1345 {MSR_VSX, "VSX"}, 1346 #ifdef CONFIG_BOOKE 1347 {MSR_CE, "CE"}, 1348 #endif 1349 {MSR_EE, "EE"}, 1350 {MSR_PR, "PR"}, 1351 {MSR_FP, "FP"}, 1352 {MSR_ME, "ME"}, 1353 #ifdef CONFIG_BOOKE 1354 {MSR_DE, "DE"}, 1355 #else 1356 {MSR_SE, "SE"}, 1357 {MSR_BE, "BE"}, 1358 #endif 1359 {MSR_IR, "IR"}, 1360 {MSR_DR, "DR"}, 1361 {MSR_PMM, "PMM"}, 1362 #ifndef CONFIG_BOOKE 1363 {MSR_RI, "RI"}, 1364 {MSR_LE, "LE"}, 1365 #endif 1366 {0, NULL} 1367 }; 1368 1369 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1370 { 1371 const char *s = ""; 1372 1373 for (; bits->bit; ++bits) 1374 if (val & bits->bit) { 1375 pr_cont("%s%s", s, bits->name); 1376 s = sep; 1377 } 1378 } 1379 1380 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1381 static struct regbit msr_tm_bits[] = { 1382 {MSR_TS_T, "T"}, 1383 {MSR_TS_S, "S"}, 1384 {MSR_TM, "E"}, 1385 {0, NULL} 1386 }; 1387 1388 static void print_tm_bits(unsigned long val) 1389 { 1390 /* 1391 * This only prints something if at least one of the TM bit is set. 1392 * Inside the TM[], the output means: 1393 * E: Enabled (bit 32) 1394 * S: Suspended (bit 33) 1395 * T: Transactional (bit 34) 1396 */ 1397 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1398 pr_cont(",TM["); 1399 print_bits(val, msr_tm_bits, ""); 1400 pr_cont("]"); 1401 } 1402 } 1403 #else 1404 static void print_tm_bits(unsigned long val) {} 1405 #endif 1406 1407 static void print_msr_bits(unsigned long val) 1408 { 1409 pr_cont("<"); 1410 print_bits(val, msr_bits, ","); 1411 print_tm_bits(val); 1412 pr_cont(">"); 1413 } 1414 1415 #ifdef CONFIG_PPC64 1416 #define REG "%016lx" 1417 #define REGS_PER_LINE 4 1418 #define LAST_VOLATILE 13 1419 #else 1420 #define REG "%08lx" 1421 #define REGS_PER_LINE 8 1422 #define LAST_VOLATILE 12 1423 #endif 1424 1425 void show_regs(struct pt_regs * regs) 1426 { 1427 int i, trap; 1428 1429 show_regs_print_info(KERN_DEFAULT); 1430 1431 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1432 regs->nip, regs->link, regs->ctr); 1433 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1434 regs, regs->trap, print_tainted(), init_utsname()->release); 1435 printk("MSR: "REG" ", regs->msr); 1436 print_msr_bits(regs->msr); 1437 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1438 trap = TRAP(regs); 1439 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1440 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1441 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1442 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1443 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1444 #else 1445 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1446 #endif 1447 #ifdef CONFIG_PPC64 1448 pr_cont("IRQMASK: %lx ", regs->softe); 1449 #endif 1450 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1451 if (MSR_TM_ACTIVE(regs->msr)) 1452 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1453 #endif 1454 1455 for (i = 0; i < 32; i++) { 1456 if ((i % REGS_PER_LINE) == 0) 1457 pr_cont("\nGPR%02d: ", i); 1458 pr_cont(REG " ", regs->gpr[i]); 1459 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1460 break; 1461 } 1462 pr_cont("\n"); 1463 #ifdef CONFIG_KALLSYMS 1464 /* 1465 * Lookup NIP late so we have the best change of getting the 1466 * above info out without failing 1467 */ 1468 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1469 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1470 #endif 1471 show_stack(current, (unsigned long *) regs->gpr[1]); 1472 if (!user_mode(regs)) 1473 show_instructions(regs); 1474 } 1475 1476 void flush_thread(void) 1477 { 1478 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1479 flush_ptrace_hw_breakpoint(current); 1480 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1481 set_debug_reg_defaults(¤t->thread); 1482 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1483 } 1484 1485 #ifdef CONFIG_PPC_BOOK3S_64 1486 void arch_setup_new_exec(void) 1487 { 1488 if (radix_enabled()) 1489 return; 1490 hash__setup_new_exec(); 1491 } 1492 #endif 1493 1494 int set_thread_uses_vas(void) 1495 { 1496 #ifdef CONFIG_PPC_BOOK3S_64 1497 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1498 return -EINVAL; 1499 1500 current->thread.used_vas = 1; 1501 1502 /* 1503 * Even a process that has no foreign real address mapping can use 1504 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1505 * to clear any pending COPY and prevent a covert channel. 1506 * 1507 * __switch_to() will issue CP_ABORT on future context switches. 1508 */ 1509 asm volatile(PPC_CP_ABORT); 1510 1511 #endif /* CONFIG_PPC_BOOK3S_64 */ 1512 return 0; 1513 } 1514 1515 #ifdef CONFIG_PPC64 1516 /** 1517 * Assign a TIDR (thread ID) for task @t and set it in the thread 1518 * structure. For now, we only support setting TIDR for 'current' task. 1519 * 1520 * Since the TID value is a truncated form of it PID, it is possible 1521 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1522 * that 2 threads share the same TID and are waiting, one of the following 1523 * cases will happen: 1524 * 1525 * 1. The correct thread is running, the wrong thread is not 1526 * In this situation, the correct thread is woken and proceeds to pass it's 1527 * condition check. 1528 * 1529 * 2. Neither threads are running 1530 * In this situation, neither thread will be woken. When scheduled, the waiting 1531 * threads will execute either a wait, which will return immediately, followed 1532 * by a condition check, which will pass for the correct thread and fail 1533 * for the wrong thread, or they will execute the condition check immediately. 1534 * 1535 * 3. The wrong thread is running, the correct thread is not 1536 * The wrong thread will be woken, but will fail it's condition check and 1537 * re-execute wait. The correct thread, when scheduled, will execute either 1538 * it's condition check (which will pass), or wait, which returns immediately 1539 * when called the first time after the thread is scheduled, followed by it's 1540 * condition check (which will pass). 1541 * 1542 * 4. Both threads are running 1543 * Both threads will be woken. The wrong thread will fail it's condition check 1544 * and execute another wait, while the correct thread will pass it's condition 1545 * check. 1546 * 1547 * @t: the task to set the thread ID for 1548 */ 1549 int set_thread_tidr(struct task_struct *t) 1550 { 1551 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1552 return -EINVAL; 1553 1554 if (t != current) 1555 return -EINVAL; 1556 1557 if (t->thread.tidr) 1558 return 0; 1559 1560 t->thread.tidr = (u16)task_pid_nr(t); 1561 mtspr(SPRN_TIDR, t->thread.tidr); 1562 1563 return 0; 1564 } 1565 EXPORT_SYMBOL_GPL(set_thread_tidr); 1566 1567 #endif /* CONFIG_PPC64 */ 1568 1569 void 1570 release_thread(struct task_struct *t) 1571 { 1572 } 1573 1574 /* 1575 * this gets called so that we can store coprocessor state into memory and 1576 * copy the current task into the new thread. 1577 */ 1578 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1579 { 1580 flush_all_to_thread(src); 1581 /* 1582 * Flush TM state out so we can copy it. __switch_to_tm() does this 1583 * flush but it removes the checkpointed state from the current CPU and 1584 * transitions the CPU out of TM mode. Hence we need to call 1585 * tm_recheckpoint_new_task() (on the same task) to restore the 1586 * checkpointed state back and the TM mode. 1587 * 1588 * Can't pass dst because it isn't ready. Doesn't matter, passing 1589 * dst is only important for __switch_to() 1590 */ 1591 __switch_to_tm(src, src); 1592 1593 *dst = *src; 1594 1595 clear_task_ebb(dst); 1596 1597 return 0; 1598 } 1599 1600 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1601 { 1602 #ifdef CONFIG_PPC_BOOK3S_64 1603 unsigned long sp_vsid; 1604 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1605 1606 if (radix_enabled()) 1607 return; 1608 1609 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1610 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1611 << SLB_VSID_SHIFT_1T; 1612 else 1613 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1614 << SLB_VSID_SHIFT; 1615 sp_vsid |= SLB_VSID_KERNEL | llp; 1616 p->thread.ksp_vsid = sp_vsid; 1617 #endif 1618 } 1619 1620 /* 1621 * Copy a thread.. 1622 */ 1623 1624 /* 1625 * Copy architecture-specific thread state 1626 */ 1627 int copy_thread(unsigned long clone_flags, unsigned long usp, 1628 unsigned long kthread_arg, struct task_struct *p) 1629 { 1630 struct pt_regs *childregs, *kregs; 1631 extern void ret_from_fork(void); 1632 extern void ret_from_kernel_thread(void); 1633 void (*f)(void); 1634 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1635 struct thread_info *ti = task_thread_info(p); 1636 1637 klp_init_thread_info(ti); 1638 1639 /* Copy registers */ 1640 sp -= sizeof(struct pt_regs); 1641 childregs = (struct pt_regs *) sp; 1642 if (unlikely(p->flags & PF_KTHREAD)) { 1643 /* kernel thread */ 1644 memset(childregs, 0, sizeof(struct pt_regs)); 1645 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1646 /* function */ 1647 if (usp) 1648 childregs->gpr[14] = ppc_function_entry((void *)usp); 1649 #ifdef CONFIG_PPC64 1650 clear_tsk_thread_flag(p, TIF_32BIT); 1651 childregs->softe = IRQS_ENABLED; 1652 #endif 1653 childregs->gpr[15] = kthread_arg; 1654 p->thread.regs = NULL; /* no user register state */ 1655 ti->flags |= _TIF_RESTOREALL; 1656 f = ret_from_kernel_thread; 1657 } else { 1658 /* user thread */ 1659 struct pt_regs *regs = current_pt_regs(); 1660 CHECK_FULL_REGS(regs); 1661 *childregs = *regs; 1662 if (usp) 1663 childregs->gpr[1] = usp; 1664 p->thread.regs = childregs; 1665 childregs->gpr[3] = 0; /* Result from fork() */ 1666 if (clone_flags & CLONE_SETTLS) { 1667 #ifdef CONFIG_PPC64 1668 if (!is_32bit_task()) 1669 childregs->gpr[13] = childregs->gpr[6]; 1670 else 1671 #endif 1672 childregs->gpr[2] = childregs->gpr[6]; 1673 } 1674 1675 f = ret_from_fork; 1676 } 1677 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1678 sp -= STACK_FRAME_OVERHEAD; 1679 1680 /* 1681 * The way this works is that at some point in the future 1682 * some task will call _switch to switch to the new task. 1683 * That will pop off the stack frame created below and start 1684 * the new task running at ret_from_fork. The new task will 1685 * do some house keeping and then return from the fork or clone 1686 * system call, using the stack frame created above. 1687 */ 1688 ((unsigned long *)sp)[0] = 0; 1689 sp -= sizeof(struct pt_regs); 1690 kregs = (struct pt_regs *) sp; 1691 sp -= STACK_FRAME_OVERHEAD; 1692 p->thread.ksp = sp; 1693 #ifdef CONFIG_PPC32 1694 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1695 _ALIGN_UP(sizeof(struct thread_info), 16); 1696 #endif 1697 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1698 p->thread.ptrace_bps[0] = NULL; 1699 #endif 1700 1701 p->thread.fp_save_area = NULL; 1702 #ifdef CONFIG_ALTIVEC 1703 p->thread.vr_save_area = NULL; 1704 #endif 1705 1706 setup_ksp_vsid(p, sp); 1707 1708 #ifdef CONFIG_PPC64 1709 if (cpu_has_feature(CPU_FTR_DSCR)) { 1710 p->thread.dscr_inherit = current->thread.dscr_inherit; 1711 p->thread.dscr = mfspr(SPRN_DSCR); 1712 } 1713 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1714 childregs->ppr = DEFAULT_PPR; 1715 1716 p->thread.tidr = 0; 1717 #endif 1718 kregs->nip = ppc_function_entry(f); 1719 return 0; 1720 } 1721 1722 void preload_new_slb_context(unsigned long start, unsigned long sp); 1723 1724 /* 1725 * Set up a thread for executing a new program 1726 */ 1727 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1728 { 1729 #ifdef CONFIG_PPC64 1730 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1731 1732 #ifdef CONFIG_PPC_BOOK3S_64 1733 preload_new_slb_context(start, sp); 1734 #endif 1735 #endif 1736 1737 /* 1738 * If we exec out of a kernel thread then thread.regs will not be 1739 * set. Do it now. 1740 */ 1741 if (!current->thread.regs) { 1742 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1743 current->thread.regs = regs - 1; 1744 } 1745 1746 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1747 /* 1748 * Clear any transactional state, we're exec()ing. The cause is 1749 * not important as there will never be a recheckpoint so it's not 1750 * user visible. 1751 */ 1752 if (MSR_TM_SUSPENDED(mfmsr())) 1753 tm_reclaim_current(0); 1754 #endif 1755 1756 memset(regs->gpr, 0, sizeof(regs->gpr)); 1757 regs->ctr = 0; 1758 regs->link = 0; 1759 regs->xer = 0; 1760 regs->ccr = 0; 1761 regs->gpr[1] = sp; 1762 1763 /* 1764 * We have just cleared all the nonvolatile GPRs, so make 1765 * FULL_REGS(regs) return true. This is necessary to allow 1766 * ptrace to examine the thread immediately after exec. 1767 */ 1768 regs->trap &= ~1UL; 1769 1770 #ifdef CONFIG_PPC32 1771 regs->mq = 0; 1772 regs->nip = start; 1773 regs->msr = MSR_USER; 1774 #else 1775 if (!is_32bit_task()) { 1776 unsigned long entry; 1777 1778 if (is_elf2_task()) { 1779 /* Look ma, no function descriptors! */ 1780 entry = start; 1781 1782 /* 1783 * Ulrich says: 1784 * The latest iteration of the ABI requires that when 1785 * calling a function (at its global entry point), 1786 * the caller must ensure r12 holds the entry point 1787 * address (so that the function can quickly 1788 * establish addressability). 1789 */ 1790 regs->gpr[12] = start; 1791 /* Make sure that's restored on entry to userspace. */ 1792 set_thread_flag(TIF_RESTOREALL); 1793 } else { 1794 unsigned long toc; 1795 1796 /* start is a relocated pointer to the function 1797 * descriptor for the elf _start routine. The first 1798 * entry in the function descriptor is the entry 1799 * address of _start and the second entry is the TOC 1800 * value we need to use. 1801 */ 1802 __get_user(entry, (unsigned long __user *)start); 1803 __get_user(toc, (unsigned long __user *)start+1); 1804 1805 /* Check whether the e_entry function descriptor entries 1806 * need to be relocated before we can use them. 1807 */ 1808 if (load_addr != 0) { 1809 entry += load_addr; 1810 toc += load_addr; 1811 } 1812 regs->gpr[2] = toc; 1813 } 1814 regs->nip = entry; 1815 regs->msr = MSR_USER64; 1816 } else { 1817 regs->nip = start; 1818 regs->gpr[2] = 0; 1819 regs->msr = MSR_USER32; 1820 } 1821 #endif 1822 #ifdef CONFIG_VSX 1823 current->thread.used_vsr = 0; 1824 #endif 1825 current->thread.load_slb = 0; 1826 current->thread.load_fp = 0; 1827 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1828 current->thread.fp_save_area = NULL; 1829 #ifdef CONFIG_ALTIVEC 1830 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1831 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1832 current->thread.vr_save_area = NULL; 1833 current->thread.vrsave = 0; 1834 current->thread.used_vr = 0; 1835 current->thread.load_vec = 0; 1836 #endif /* CONFIG_ALTIVEC */ 1837 #ifdef CONFIG_SPE 1838 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1839 current->thread.acc = 0; 1840 current->thread.spefscr = 0; 1841 current->thread.used_spe = 0; 1842 #endif /* CONFIG_SPE */ 1843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1844 current->thread.tm_tfhar = 0; 1845 current->thread.tm_texasr = 0; 1846 current->thread.tm_tfiar = 0; 1847 current->thread.load_tm = 0; 1848 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1849 1850 thread_pkey_regs_init(¤t->thread); 1851 } 1852 EXPORT_SYMBOL(start_thread); 1853 1854 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1855 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1856 1857 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1858 { 1859 struct pt_regs *regs = tsk->thread.regs; 1860 1861 /* This is a bit hairy. If we are an SPE enabled processor 1862 * (have embedded fp) we store the IEEE exception enable flags in 1863 * fpexc_mode. fpexc_mode is also used for setting FP exception 1864 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1865 if (val & PR_FP_EXC_SW_ENABLE) { 1866 #ifdef CONFIG_SPE 1867 if (cpu_has_feature(CPU_FTR_SPE)) { 1868 /* 1869 * When the sticky exception bits are set 1870 * directly by userspace, it must call prctl 1871 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1872 * in the existing prctl settings) or 1873 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1874 * the bits being set). <fenv.h> functions 1875 * saving and restoring the whole 1876 * floating-point environment need to do so 1877 * anyway to restore the prctl settings from 1878 * the saved environment. 1879 */ 1880 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1881 tsk->thread.fpexc_mode = val & 1882 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1883 return 0; 1884 } else { 1885 return -EINVAL; 1886 } 1887 #else 1888 return -EINVAL; 1889 #endif 1890 } 1891 1892 /* on a CONFIG_SPE this does not hurt us. The bits that 1893 * __pack_fe01 use do not overlap with bits used for 1894 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1895 * on CONFIG_SPE implementations are reserved so writing to 1896 * them does not change anything */ 1897 if (val > PR_FP_EXC_PRECISE) 1898 return -EINVAL; 1899 tsk->thread.fpexc_mode = __pack_fe01(val); 1900 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1901 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1902 | tsk->thread.fpexc_mode; 1903 return 0; 1904 } 1905 1906 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1907 { 1908 unsigned int val; 1909 1910 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1911 #ifdef CONFIG_SPE 1912 if (cpu_has_feature(CPU_FTR_SPE)) { 1913 /* 1914 * When the sticky exception bits are set 1915 * directly by userspace, it must call prctl 1916 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1917 * in the existing prctl settings) or 1918 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1919 * the bits being set). <fenv.h> functions 1920 * saving and restoring the whole 1921 * floating-point environment need to do so 1922 * anyway to restore the prctl settings from 1923 * the saved environment. 1924 */ 1925 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1926 val = tsk->thread.fpexc_mode; 1927 } else 1928 return -EINVAL; 1929 #else 1930 return -EINVAL; 1931 #endif 1932 else 1933 val = __unpack_fe01(tsk->thread.fpexc_mode); 1934 return put_user(val, (unsigned int __user *) adr); 1935 } 1936 1937 int set_endian(struct task_struct *tsk, unsigned int val) 1938 { 1939 struct pt_regs *regs = tsk->thread.regs; 1940 1941 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1942 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1943 return -EINVAL; 1944 1945 if (regs == NULL) 1946 return -EINVAL; 1947 1948 if (val == PR_ENDIAN_BIG) 1949 regs->msr &= ~MSR_LE; 1950 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1951 regs->msr |= MSR_LE; 1952 else 1953 return -EINVAL; 1954 1955 return 0; 1956 } 1957 1958 int get_endian(struct task_struct *tsk, unsigned long adr) 1959 { 1960 struct pt_regs *regs = tsk->thread.regs; 1961 unsigned int val; 1962 1963 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1964 !cpu_has_feature(CPU_FTR_REAL_LE)) 1965 return -EINVAL; 1966 1967 if (regs == NULL) 1968 return -EINVAL; 1969 1970 if (regs->msr & MSR_LE) { 1971 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1972 val = PR_ENDIAN_LITTLE; 1973 else 1974 val = PR_ENDIAN_PPC_LITTLE; 1975 } else 1976 val = PR_ENDIAN_BIG; 1977 1978 return put_user(val, (unsigned int __user *)adr); 1979 } 1980 1981 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1982 { 1983 tsk->thread.align_ctl = val; 1984 return 0; 1985 } 1986 1987 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1988 { 1989 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1990 } 1991 1992 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1993 unsigned long nbytes) 1994 { 1995 unsigned long stack_page; 1996 unsigned long cpu = task_cpu(p); 1997 1998 /* 1999 * Avoid crashing if the stack has overflowed and corrupted 2000 * task_cpu(p), which is in the thread_info struct. 2001 */ 2002 if (cpu < NR_CPUS && cpu_possible(cpu)) { 2003 stack_page = (unsigned long) hardirq_ctx[cpu]; 2004 if (sp >= stack_page + sizeof(struct thread_struct) 2005 && sp <= stack_page + THREAD_SIZE - nbytes) 2006 return 1; 2007 2008 stack_page = (unsigned long) softirq_ctx[cpu]; 2009 if (sp >= stack_page + sizeof(struct thread_struct) 2010 && sp <= stack_page + THREAD_SIZE - nbytes) 2011 return 1; 2012 } 2013 return 0; 2014 } 2015 2016 int validate_sp(unsigned long sp, struct task_struct *p, 2017 unsigned long nbytes) 2018 { 2019 unsigned long stack_page = (unsigned long)task_stack_page(p); 2020 2021 if (sp >= stack_page + sizeof(struct thread_struct) 2022 && sp <= stack_page + THREAD_SIZE - nbytes) 2023 return 1; 2024 2025 return valid_irq_stack(sp, p, nbytes); 2026 } 2027 2028 EXPORT_SYMBOL(validate_sp); 2029 2030 unsigned long get_wchan(struct task_struct *p) 2031 { 2032 unsigned long ip, sp; 2033 int count = 0; 2034 2035 if (!p || p == current || p->state == TASK_RUNNING) 2036 return 0; 2037 2038 sp = p->thread.ksp; 2039 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2040 return 0; 2041 2042 do { 2043 sp = *(unsigned long *)sp; 2044 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2045 p->state == TASK_RUNNING) 2046 return 0; 2047 if (count > 0) { 2048 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2049 if (!in_sched_functions(ip)) 2050 return ip; 2051 } 2052 } while (count++ < 16); 2053 return 0; 2054 } 2055 2056 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2057 2058 void show_stack(struct task_struct *tsk, unsigned long *stack) 2059 { 2060 unsigned long sp, ip, lr, newsp; 2061 int count = 0; 2062 int firstframe = 1; 2063 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2064 struct ftrace_ret_stack *ret_stack; 2065 extern void return_to_handler(void); 2066 unsigned long rth = (unsigned long)return_to_handler; 2067 int curr_frame = 0; 2068 #endif 2069 2070 sp = (unsigned long) stack; 2071 if (tsk == NULL) 2072 tsk = current; 2073 if (sp == 0) { 2074 if (tsk == current) 2075 sp = current_stack_pointer(); 2076 else 2077 sp = tsk->thread.ksp; 2078 } 2079 2080 lr = 0; 2081 printk("Call Trace:\n"); 2082 do { 2083 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2084 return; 2085 2086 stack = (unsigned long *) sp; 2087 newsp = stack[0]; 2088 ip = stack[STACK_FRAME_LR_SAVE]; 2089 if (!firstframe || ip != lr) { 2090 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2091 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2092 if ((ip == rth) && curr_frame >= 0) { 2093 ret_stack = ftrace_graph_get_ret_stack(current, 2094 curr_frame++); 2095 if (ret_stack) 2096 pr_cont(" (%pS)", 2097 (void *)ret_stack->ret); 2098 else 2099 curr_frame = -1; 2100 } 2101 #endif 2102 if (firstframe) 2103 pr_cont(" (unreliable)"); 2104 pr_cont("\n"); 2105 } 2106 firstframe = 0; 2107 2108 /* 2109 * See if this is an exception frame. 2110 * We look for the "regshere" marker in the current frame. 2111 */ 2112 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2113 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2114 struct pt_regs *regs = (struct pt_regs *) 2115 (sp + STACK_FRAME_OVERHEAD); 2116 lr = regs->link; 2117 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2118 regs->trap, (void *)regs->nip, (void *)lr); 2119 firstframe = 1; 2120 } 2121 2122 sp = newsp; 2123 } while (count++ < kstack_depth_to_print); 2124 } 2125 2126 #ifdef CONFIG_PPC64 2127 /* Called with hard IRQs off */ 2128 void notrace __ppc64_runlatch_on(void) 2129 { 2130 struct thread_info *ti = current_thread_info(); 2131 2132 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2133 /* 2134 * Least significant bit (RUN) is the only writable bit of 2135 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2136 * earliest ISA where this is the case, but it's convenient. 2137 */ 2138 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2139 } else { 2140 unsigned long ctrl; 2141 2142 /* 2143 * Some architectures (e.g., Cell) have writable fields other 2144 * than RUN, so do the read-modify-write. 2145 */ 2146 ctrl = mfspr(SPRN_CTRLF); 2147 ctrl |= CTRL_RUNLATCH; 2148 mtspr(SPRN_CTRLT, ctrl); 2149 } 2150 2151 ti->local_flags |= _TLF_RUNLATCH; 2152 } 2153 2154 /* Called with hard IRQs off */ 2155 void notrace __ppc64_runlatch_off(void) 2156 { 2157 struct thread_info *ti = current_thread_info(); 2158 2159 ti->local_flags &= ~_TLF_RUNLATCH; 2160 2161 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2162 mtspr(SPRN_CTRLT, 0); 2163 } else { 2164 unsigned long ctrl; 2165 2166 ctrl = mfspr(SPRN_CTRLF); 2167 ctrl &= ~CTRL_RUNLATCH; 2168 mtspr(SPRN_CTRLT, ctrl); 2169 } 2170 } 2171 #endif /* CONFIG_PPC64 */ 2172 2173 unsigned long arch_align_stack(unsigned long sp) 2174 { 2175 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2176 sp -= get_random_int() & ~PAGE_MASK; 2177 return sp & ~0xf; 2178 } 2179 2180 static inline unsigned long brk_rnd(void) 2181 { 2182 unsigned long rnd = 0; 2183 2184 /* 8MB for 32bit, 1GB for 64bit */ 2185 if (is_32bit_task()) 2186 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2187 else 2188 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2189 2190 return rnd << PAGE_SHIFT; 2191 } 2192 2193 unsigned long arch_randomize_brk(struct mm_struct *mm) 2194 { 2195 unsigned long base = mm->brk; 2196 unsigned long ret; 2197 2198 #ifdef CONFIG_PPC_BOOK3S_64 2199 /* 2200 * If we are using 1TB segments and we are allowed to randomise 2201 * the heap, we can put it above 1TB so it is backed by a 1TB 2202 * segment. Otherwise the heap will be in the bottom 1TB 2203 * which always uses 256MB segments and this may result in a 2204 * performance penalty. We don't need to worry about radix. For 2205 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2206 */ 2207 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2208 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2209 #endif 2210 2211 ret = PAGE_ALIGN(base + brk_rnd()); 2212 2213 if (ret < mm->brk) 2214 return mm->brk; 2215 2216 return ret; 2217 } 2218 2219