xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 9125f19b)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60 
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67 
68 extern unsigned long _get_SP(void);
69 
70 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71 static void check_if_tm_restore_required(struct task_struct *tsk)
72 {
73 	/*
74 	 * If we are saving the current thread's registers, and the
75 	 * thread is in a transactional state, set the TIF_RESTORE_TM
76 	 * bit so that we know to restore the registers before
77 	 * returning to userspace.
78 	 */
79 	if (tsk == current && tsk->thread.regs &&
80 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81 	    !test_thread_flag(TIF_RESTORE_TM)) {
82 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 		set_thread_flag(TIF_RESTORE_TM);
84 	}
85 }
86 #else
87 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89 
90 bool strict_msr_control;
91 EXPORT_SYMBOL(strict_msr_control);
92 
93 static int __init enable_strict_msr_control(char *str)
94 {
95 	strict_msr_control = true;
96 	pr_info("Enabling strict facility control\n");
97 
98 	return 0;
99 }
100 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
101 
102 void msr_check_and_set(unsigned long bits)
103 {
104 	unsigned long oldmsr = mfmsr();
105 	unsigned long newmsr;
106 
107 	newmsr = oldmsr | bits;
108 
109 #ifdef CONFIG_VSX
110 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 		newmsr |= MSR_VSX;
112 #endif
113 
114 	if (oldmsr != newmsr)
115 		mtmsr_isync(newmsr);
116 }
117 
118 void __msr_check_and_clear(unsigned long bits)
119 {
120 	unsigned long oldmsr = mfmsr();
121 	unsigned long newmsr;
122 
123 	newmsr = oldmsr & ~bits;
124 
125 #ifdef CONFIG_VSX
126 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127 		newmsr &= ~MSR_VSX;
128 #endif
129 
130 	if (oldmsr != newmsr)
131 		mtmsr_isync(newmsr);
132 }
133 EXPORT_SYMBOL(__msr_check_and_clear);
134 
135 #ifdef CONFIG_PPC_FPU
136 void __giveup_fpu(struct task_struct *tsk)
137 {
138 	save_fpu(tsk);
139 	tsk->thread.regs->msr &= ~MSR_FP;
140 #ifdef CONFIG_VSX
141 	if (cpu_has_feature(CPU_FTR_VSX))
142 		tsk->thread.regs->msr &= ~MSR_VSX;
143 #endif
144 }
145 
146 void giveup_fpu(struct task_struct *tsk)
147 {
148 	check_if_tm_restore_required(tsk);
149 
150 	msr_check_and_set(MSR_FP);
151 	__giveup_fpu(tsk);
152 	msr_check_and_clear(MSR_FP);
153 }
154 EXPORT_SYMBOL(giveup_fpu);
155 
156 /*
157  * Make sure the floating-point register state in the
158  * the thread_struct is up to date for task tsk.
159  */
160 void flush_fp_to_thread(struct task_struct *tsk)
161 {
162 	if (tsk->thread.regs) {
163 		/*
164 		 * We need to disable preemption here because if we didn't,
165 		 * another process could get scheduled after the regs->msr
166 		 * test but before we have finished saving the FP registers
167 		 * to the thread_struct.  That process could take over the
168 		 * FPU, and then when we get scheduled again we would store
169 		 * bogus values for the remaining FP registers.
170 		 */
171 		preempt_disable();
172 		if (tsk->thread.regs->msr & MSR_FP) {
173 			/*
174 			 * This should only ever be called for current or
175 			 * for a stopped child process.  Since we save away
176 			 * the FP register state on context switch,
177 			 * there is something wrong if a stopped child appears
178 			 * to still have its FP state in the CPU registers.
179 			 */
180 			BUG_ON(tsk != current);
181 			giveup_fpu(tsk);
182 		}
183 		preempt_enable();
184 	}
185 }
186 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
187 
188 void enable_kernel_fp(void)
189 {
190 	WARN_ON(preemptible());
191 
192 	msr_check_and_set(MSR_FP);
193 
194 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
195 		check_if_tm_restore_required(current);
196 		__giveup_fpu(current);
197 	}
198 }
199 EXPORT_SYMBOL(enable_kernel_fp);
200 
201 static int restore_fp(struct task_struct *tsk) {
202 	if (tsk->thread.load_fp) {
203 		load_fp_state(&current->thread.fp_state);
204 		current->thread.load_fp++;
205 		return 1;
206 	}
207 	return 0;
208 }
209 #else
210 static int restore_fp(struct task_struct *tsk) { return 0; }
211 #endif /* CONFIG_PPC_FPU */
212 
213 #ifdef CONFIG_ALTIVEC
214 #define loadvec(thr) ((thr).load_vec)
215 
216 static void __giveup_altivec(struct task_struct *tsk)
217 {
218 	save_altivec(tsk);
219 	tsk->thread.regs->msr &= ~MSR_VEC;
220 #ifdef CONFIG_VSX
221 	if (cpu_has_feature(CPU_FTR_VSX))
222 		tsk->thread.regs->msr &= ~MSR_VSX;
223 #endif
224 }
225 
226 void giveup_altivec(struct task_struct *tsk)
227 {
228 	check_if_tm_restore_required(tsk);
229 
230 	msr_check_and_set(MSR_VEC);
231 	__giveup_altivec(tsk);
232 	msr_check_and_clear(MSR_VEC);
233 }
234 EXPORT_SYMBOL(giveup_altivec);
235 
236 void enable_kernel_altivec(void)
237 {
238 	WARN_ON(preemptible());
239 
240 	msr_check_and_set(MSR_VEC);
241 
242 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
243 		check_if_tm_restore_required(current);
244 		__giveup_altivec(current);
245 	}
246 }
247 EXPORT_SYMBOL(enable_kernel_altivec);
248 
249 /*
250  * Make sure the VMX/Altivec register state in the
251  * the thread_struct is up to date for task tsk.
252  */
253 void flush_altivec_to_thread(struct task_struct *tsk)
254 {
255 	if (tsk->thread.regs) {
256 		preempt_disable();
257 		if (tsk->thread.regs->msr & MSR_VEC) {
258 			BUG_ON(tsk != current);
259 			giveup_altivec(tsk);
260 		}
261 		preempt_enable();
262 	}
263 }
264 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
265 
266 static int restore_altivec(struct task_struct *tsk)
267 {
268 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
269 		load_vr_state(&tsk->thread.vr_state);
270 		tsk->thread.used_vr = 1;
271 		tsk->thread.load_vec++;
272 
273 		return 1;
274 	}
275 	return 0;
276 }
277 #else
278 #define loadvec(thr) 0
279 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
280 #endif /* CONFIG_ALTIVEC */
281 
282 #ifdef CONFIG_VSX
283 static void __giveup_vsx(struct task_struct *tsk)
284 {
285 	if (tsk->thread.regs->msr & MSR_FP)
286 		__giveup_fpu(tsk);
287 	if (tsk->thread.regs->msr & MSR_VEC)
288 		__giveup_altivec(tsk);
289 	tsk->thread.regs->msr &= ~MSR_VSX;
290 }
291 
292 static void giveup_vsx(struct task_struct *tsk)
293 {
294 	check_if_tm_restore_required(tsk);
295 
296 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
297 	__giveup_vsx(tsk);
298 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
299 }
300 
301 static void save_vsx(struct task_struct *tsk)
302 {
303 	if (tsk->thread.regs->msr & MSR_FP)
304 		save_fpu(tsk);
305 	if (tsk->thread.regs->msr & MSR_VEC)
306 		save_altivec(tsk);
307 }
308 
309 void enable_kernel_vsx(void)
310 {
311 	WARN_ON(preemptible());
312 
313 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
314 
315 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
316 		check_if_tm_restore_required(current);
317 		if (current->thread.regs->msr & MSR_FP)
318 			__giveup_fpu(current);
319 		if (current->thread.regs->msr & MSR_VEC)
320 			__giveup_altivec(current);
321 		__giveup_vsx(current);
322 	}
323 }
324 EXPORT_SYMBOL(enable_kernel_vsx);
325 
326 void flush_vsx_to_thread(struct task_struct *tsk)
327 {
328 	if (tsk->thread.regs) {
329 		preempt_disable();
330 		if (tsk->thread.regs->msr & MSR_VSX) {
331 			BUG_ON(tsk != current);
332 			giveup_vsx(tsk);
333 		}
334 		preempt_enable();
335 	}
336 }
337 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
338 
339 static int restore_vsx(struct task_struct *tsk)
340 {
341 	if (cpu_has_feature(CPU_FTR_VSX)) {
342 		tsk->thread.used_vsr = 1;
343 		return 1;
344 	}
345 
346 	return 0;
347 }
348 #else
349 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
350 static inline void save_vsx(struct task_struct *tsk) { }
351 #endif /* CONFIG_VSX */
352 
353 #ifdef CONFIG_SPE
354 void giveup_spe(struct task_struct *tsk)
355 {
356 	check_if_tm_restore_required(tsk);
357 
358 	msr_check_and_set(MSR_SPE);
359 	__giveup_spe(tsk);
360 	msr_check_and_clear(MSR_SPE);
361 }
362 EXPORT_SYMBOL(giveup_spe);
363 
364 void enable_kernel_spe(void)
365 {
366 	WARN_ON(preemptible());
367 
368 	msr_check_and_set(MSR_SPE);
369 
370 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
371 		check_if_tm_restore_required(current);
372 		__giveup_spe(current);
373 	}
374 }
375 EXPORT_SYMBOL(enable_kernel_spe);
376 
377 void flush_spe_to_thread(struct task_struct *tsk)
378 {
379 	if (tsk->thread.regs) {
380 		preempt_disable();
381 		if (tsk->thread.regs->msr & MSR_SPE) {
382 			BUG_ON(tsk != current);
383 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
384 			giveup_spe(tsk);
385 		}
386 		preempt_enable();
387 	}
388 }
389 #endif /* CONFIG_SPE */
390 
391 static unsigned long msr_all_available;
392 
393 static int __init init_msr_all_available(void)
394 {
395 #ifdef CONFIG_PPC_FPU
396 	msr_all_available |= MSR_FP;
397 #endif
398 #ifdef CONFIG_ALTIVEC
399 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
400 		msr_all_available |= MSR_VEC;
401 #endif
402 #ifdef CONFIG_VSX
403 	if (cpu_has_feature(CPU_FTR_VSX))
404 		msr_all_available |= MSR_VSX;
405 #endif
406 #ifdef CONFIG_SPE
407 	if (cpu_has_feature(CPU_FTR_SPE))
408 		msr_all_available |= MSR_SPE;
409 #endif
410 
411 	return 0;
412 }
413 early_initcall(init_msr_all_available);
414 
415 void giveup_all(struct task_struct *tsk)
416 {
417 	unsigned long usermsr;
418 
419 	if (!tsk->thread.regs)
420 		return;
421 
422 	usermsr = tsk->thread.regs->msr;
423 
424 	if ((usermsr & msr_all_available) == 0)
425 		return;
426 
427 	msr_check_and_set(msr_all_available);
428 
429 #ifdef CONFIG_PPC_FPU
430 	if (usermsr & MSR_FP)
431 		__giveup_fpu(tsk);
432 #endif
433 #ifdef CONFIG_ALTIVEC
434 	if (usermsr & MSR_VEC)
435 		__giveup_altivec(tsk);
436 #endif
437 #ifdef CONFIG_VSX
438 	if (usermsr & MSR_VSX)
439 		__giveup_vsx(tsk);
440 #endif
441 #ifdef CONFIG_SPE
442 	if (usermsr & MSR_SPE)
443 		__giveup_spe(tsk);
444 #endif
445 
446 	msr_check_and_clear(msr_all_available);
447 }
448 EXPORT_SYMBOL(giveup_all);
449 
450 void restore_math(struct pt_regs *regs)
451 {
452 	unsigned long msr;
453 
454 	if (!current->thread.load_fp && !loadvec(current->thread))
455 		return;
456 
457 	msr = regs->msr;
458 	msr_check_and_set(msr_all_available);
459 
460 	/*
461 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
462 	 * indicates that the registers are hot
463 	 */
464 	if ((!(msr & MSR_FP)) && restore_fp(current))
465 		msr |= MSR_FP | current->thread.fpexc_mode;
466 
467 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
468 		msr |= MSR_VEC;
469 
470 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
471 			restore_vsx(current)) {
472 		msr |= MSR_VSX;
473 	}
474 
475 	msr_check_and_clear(msr_all_available);
476 
477 	regs->msr = msr;
478 }
479 
480 void save_all(struct task_struct *tsk)
481 {
482 	unsigned long usermsr;
483 
484 	if (!tsk->thread.regs)
485 		return;
486 
487 	usermsr = tsk->thread.regs->msr;
488 
489 	if ((usermsr & msr_all_available) == 0)
490 		return;
491 
492 	msr_check_and_set(msr_all_available);
493 
494 	/*
495 	 * Saving the way the register space is in hardware, save_vsx boils
496 	 * down to a save_fpu() and save_altivec()
497 	 */
498 	if (usermsr & MSR_VSX) {
499 		save_vsx(tsk);
500 	} else {
501 		if (usermsr & MSR_FP)
502 			save_fpu(tsk);
503 
504 		if (usermsr & MSR_VEC)
505 			save_altivec(tsk);
506 	}
507 
508 	if (usermsr & MSR_SPE)
509 		__giveup_spe(tsk);
510 
511 	msr_check_and_clear(msr_all_available);
512 }
513 
514 void flush_all_to_thread(struct task_struct *tsk)
515 {
516 	if (tsk->thread.regs) {
517 		preempt_disable();
518 		BUG_ON(tsk != current);
519 		save_all(tsk);
520 
521 #ifdef CONFIG_SPE
522 		if (tsk->thread.regs->msr & MSR_SPE)
523 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
524 #endif
525 
526 		preempt_enable();
527 	}
528 }
529 EXPORT_SYMBOL(flush_all_to_thread);
530 
531 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
532 void do_send_trap(struct pt_regs *regs, unsigned long address,
533 		  unsigned long error_code, int signal_code, int breakpt)
534 {
535 	siginfo_t info;
536 
537 	current->thread.trap_nr = signal_code;
538 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
539 			11, SIGSEGV) == NOTIFY_STOP)
540 		return;
541 
542 	/* Deliver the signal to userspace */
543 	info.si_signo = SIGTRAP;
544 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
545 	info.si_code = signal_code;
546 	info.si_addr = (void __user *)address;
547 	force_sig_info(SIGTRAP, &info, current);
548 }
549 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
550 void do_break (struct pt_regs *regs, unsigned long address,
551 		    unsigned long error_code)
552 {
553 	siginfo_t info;
554 
555 	current->thread.trap_nr = TRAP_HWBKPT;
556 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
557 			11, SIGSEGV) == NOTIFY_STOP)
558 		return;
559 
560 	if (debugger_break_match(regs))
561 		return;
562 
563 	/* Clear the breakpoint */
564 	hw_breakpoint_disable();
565 
566 	/* Deliver the signal to userspace */
567 	info.si_signo = SIGTRAP;
568 	info.si_errno = 0;
569 	info.si_code = TRAP_HWBKPT;
570 	info.si_addr = (void __user *)address;
571 	force_sig_info(SIGTRAP, &info, current);
572 }
573 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
574 
575 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
576 
577 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
578 /*
579  * Set the debug registers back to their default "safe" values.
580  */
581 static void set_debug_reg_defaults(struct thread_struct *thread)
582 {
583 	thread->debug.iac1 = thread->debug.iac2 = 0;
584 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
585 	thread->debug.iac3 = thread->debug.iac4 = 0;
586 #endif
587 	thread->debug.dac1 = thread->debug.dac2 = 0;
588 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
589 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
590 #endif
591 	thread->debug.dbcr0 = 0;
592 #ifdef CONFIG_BOOKE
593 	/*
594 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
595 	 */
596 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
597 			DBCR1_IAC3US | DBCR1_IAC4US;
598 	/*
599 	 * Force Data Address Compare User/Supervisor bits to be User-only
600 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
601 	 */
602 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
603 #else
604 	thread->debug.dbcr1 = 0;
605 #endif
606 }
607 
608 static void prime_debug_regs(struct debug_reg *debug)
609 {
610 	/*
611 	 * We could have inherited MSR_DE from userspace, since
612 	 * it doesn't get cleared on exception entry.  Make sure
613 	 * MSR_DE is clear before we enable any debug events.
614 	 */
615 	mtmsr(mfmsr() & ~MSR_DE);
616 
617 	mtspr(SPRN_IAC1, debug->iac1);
618 	mtspr(SPRN_IAC2, debug->iac2);
619 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
620 	mtspr(SPRN_IAC3, debug->iac3);
621 	mtspr(SPRN_IAC4, debug->iac4);
622 #endif
623 	mtspr(SPRN_DAC1, debug->dac1);
624 	mtspr(SPRN_DAC2, debug->dac2);
625 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
626 	mtspr(SPRN_DVC1, debug->dvc1);
627 	mtspr(SPRN_DVC2, debug->dvc2);
628 #endif
629 	mtspr(SPRN_DBCR0, debug->dbcr0);
630 	mtspr(SPRN_DBCR1, debug->dbcr1);
631 #ifdef CONFIG_BOOKE
632 	mtspr(SPRN_DBCR2, debug->dbcr2);
633 #endif
634 }
635 /*
636  * Unless neither the old or new thread are making use of the
637  * debug registers, set the debug registers from the values
638  * stored in the new thread.
639  */
640 void switch_booke_debug_regs(struct debug_reg *new_debug)
641 {
642 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
643 		|| (new_debug->dbcr0 & DBCR0_IDM))
644 			prime_debug_regs(new_debug);
645 }
646 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
647 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
648 #ifndef CONFIG_HAVE_HW_BREAKPOINT
649 static void set_debug_reg_defaults(struct thread_struct *thread)
650 {
651 	thread->hw_brk.address = 0;
652 	thread->hw_brk.type = 0;
653 	set_breakpoint(&thread->hw_brk);
654 }
655 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
656 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
657 
658 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
659 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
660 {
661 	mtspr(SPRN_DAC1, dabr);
662 #ifdef CONFIG_PPC_47x
663 	isync();
664 #endif
665 	return 0;
666 }
667 #elif defined(CONFIG_PPC_BOOK3S)
668 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
669 {
670 	mtspr(SPRN_DABR, dabr);
671 	if (cpu_has_feature(CPU_FTR_DABRX))
672 		mtspr(SPRN_DABRX, dabrx);
673 	return 0;
674 }
675 #else
676 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
677 {
678 	return -EINVAL;
679 }
680 #endif
681 
682 static inline int set_dabr(struct arch_hw_breakpoint *brk)
683 {
684 	unsigned long dabr, dabrx;
685 
686 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
687 	dabrx = ((brk->type >> 3) & 0x7);
688 
689 	if (ppc_md.set_dabr)
690 		return ppc_md.set_dabr(dabr, dabrx);
691 
692 	return __set_dabr(dabr, dabrx);
693 }
694 
695 static inline int set_dawr(struct arch_hw_breakpoint *brk)
696 {
697 	unsigned long dawr, dawrx, mrd;
698 
699 	dawr = brk->address;
700 
701 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
702 		                   << (63 - 58); //* read/write bits */
703 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
704 		                   << (63 - 59); //* translate */
705 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
706 		                   >> 3; //* PRIM bits */
707 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
708 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
709 	   0b111111=64DW.
710 	   brk->len is in bytes.
711 	   This aligns up to double word size, shifts and does the bias.
712 	*/
713 	mrd = ((brk->len + 7) >> 3) - 1;
714 	dawrx |= (mrd & 0x3f) << (63 - 53);
715 
716 	if (ppc_md.set_dawr)
717 		return ppc_md.set_dawr(dawr, dawrx);
718 	mtspr(SPRN_DAWR, dawr);
719 	mtspr(SPRN_DAWRX, dawrx);
720 	return 0;
721 }
722 
723 void __set_breakpoint(struct arch_hw_breakpoint *brk)
724 {
725 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
726 
727 	if (cpu_has_feature(CPU_FTR_DAWR))
728 		set_dawr(brk);
729 	else
730 		set_dabr(brk);
731 }
732 
733 void set_breakpoint(struct arch_hw_breakpoint *brk)
734 {
735 	preempt_disable();
736 	__set_breakpoint(brk);
737 	preempt_enable();
738 }
739 
740 #ifdef CONFIG_PPC64
741 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
742 #endif
743 
744 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
745 			      struct arch_hw_breakpoint *b)
746 {
747 	if (a->address != b->address)
748 		return false;
749 	if (a->type != b->type)
750 		return false;
751 	if (a->len != b->len)
752 		return false;
753 	return true;
754 }
755 
756 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
757 static void tm_reclaim_thread(struct thread_struct *thr,
758 			      struct thread_info *ti, uint8_t cause)
759 {
760 	unsigned long msr_diff = 0;
761 
762 	/*
763 	 * If FP/VSX registers have been already saved to the
764 	 * thread_struct, move them to the transact_fp array.
765 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
766 	 * the thread will no longer be transactional.
767 	 */
768 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
769 		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
770 		if (msr_diff & MSR_FP)
771 			memcpy(&thr->transact_fp, &thr->fp_state,
772 			       sizeof(struct thread_fp_state));
773 		if (msr_diff & MSR_VEC)
774 			memcpy(&thr->transact_vr, &thr->vr_state,
775 			       sizeof(struct thread_vr_state));
776 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
777 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
778 	}
779 
780 	/*
781 	 * Use the current MSR TM suspended bit to track if we have
782 	 * checkpointed state outstanding.
783 	 * On signal delivery, we'd normally reclaim the checkpointed
784 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
785 	 * This will then directly return to userspace without going
786 	 * through __switch_to(). However, if the stack frame is bad,
787 	 * we need to exit this thread which calls __switch_to() which
788 	 * will again attempt to reclaim the already saved tm state.
789 	 * Hence we need to check that we've not already reclaimed
790 	 * this state.
791 	 * We do this using the current MSR, rather tracking it in
792 	 * some specific thread_struct bit, as it has the additional
793 	 * benifit of checking for a potential TM bad thing exception.
794 	 */
795 	if (!MSR_TM_SUSPENDED(mfmsr()))
796 		return;
797 
798 	tm_reclaim(thr, thr->regs->msr, cause);
799 
800 	/* Having done the reclaim, we now have the checkpointed
801 	 * FP/VSX values in the registers.  These might be valid
802 	 * even if we have previously called enable_kernel_fp() or
803 	 * flush_fp_to_thread(), so update thr->regs->msr to
804 	 * indicate their current validity.
805 	 */
806 	thr->regs->msr |= msr_diff;
807 }
808 
809 void tm_reclaim_current(uint8_t cause)
810 {
811 	tm_enable();
812 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
813 }
814 
815 static inline void tm_reclaim_task(struct task_struct *tsk)
816 {
817 	/* We have to work out if we're switching from/to a task that's in the
818 	 * middle of a transaction.
819 	 *
820 	 * In switching we need to maintain a 2nd register state as
821 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
822 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
823 	 * (current) FPRs into oldtask->thread.transact_fpr[].
824 	 *
825 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
826 	 */
827 	struct thread_struct *thr = &tsk->thread;
828 
829 	if (!thr->regs)
830 		return;
831 
832 	if (!MSR_TM_ACTIVE(thr->regs->msr))
833 		goto out_and_saveregs;
834 
835 	/* Stash the original thread MSR, as giveup_fpu et al will
836 	 * modify it.  We hold onto it to see whether the task used
837 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
838 	 * ckpt_regs.msr is already set.
839 	 */
840 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
841 		thr->ckpt_regs.msr = thr->regs->msr;
842 
843 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
844 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
845 		 tsk->pid, thr->regs->nip,
846 		 thr->regs->ccr, thr->regs->msr,
847 		 thr->regs->trap);
848 
849 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
850 
851 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
852 		 tsk->pid);
853 
854 out_and_saveregs:
855 	/* Always save the regs here, even if a transaction's not active.
856 	 * This context-switches a thread's TM info SPRs.  We do it here to
857 	 * be consistent with the restore path (in recheckpoint) which
858 	 * cannot happen later in _switch().
859 	 */
860 	tm_save_sprs(thr);
861 }
862 
863 extern void __tm_recheckpoint(struct thread_struct *thread,
864 			      unsigned long orig_msr);
865 
866 void tm_recheckpoint(struct thread_struct *thread,
867 		     unsigned long orig_msr)
868 {
869 	unsigned long flags;
870 
871 	/* We really can't be interrupted here as the TEXASR registers can't
872 	 * change and later in the trecheckpoint code, we have a userspace R1.
873 	 * So let's hard disable over this region.
874 	 */
875 	local_irq_save(flags);
876 	hard_irq_disable();
877 
878 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
879 	 * before the trecheckpoint and no explosion occurs.
880 	 */
881 	tm_restore_sprs(thread);
882 
883 	__tm_recheckpoint(thread, orig_msr);
884 
885 	local_irq_restore(flags);
886 }
887 
888 static inline void tm_recheckpoint_new_task(struct task_struct *new)
889 {
890 	unsigned long msr;
891 
892 	if (!cpu_has_feature(CPU_FTR_TM))
893 		return;
894 
895 	/* Recheckpoint the registers of the thread we're about to switch to.
896 	 *
897 	 * If the task was using FP, we non-lazily reload both the original and
898 	 * the speculative FP register states.  This is because the kernel
899 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
900 	 * unavoidable later, we are unable to determine which set of FP regs
901 	 * need to be restored.
902 	 */
903 	if (!new->thread.regs)
904 		return;
905 
906 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
907 		tm_restore_sprs(&new->thread);
908 		return;
909 	}
910 	msr = new->thread.ckpt_regs.msr;
911 	/* Recheckpoint to restore original checkpointed register state. */
912 	TM_DEBUG("*** tm_recheckpoint of pid %d "
913 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
914 		 new->pid, new->thread.regs->msr, msr);
915 
916 	/* This loads the checkpointed FP/VEC state, if used */
917 	tm_recheckpoint(&new->thread, msr);
918 
919 	/* This loads the speculative FP/VEC state, if used */
920 	if (msr & MSR_FP) {
921 		do_load_up_transact_fpu(&new->thread);
922 		new->thread.regs->msr |=
923 			(MSR_FP | new->thread.fpexc_mode);
924 	}
925 #ifdef CONFIG_ALTIVEC
926 	if (msr & MSR_VEC) {
927 		do_load_up_transact_altivec(&new->thread);
928 		new->thread.regs->msr |= MSR_VEC;
929 	}
930 #endif
931 	/* We may as well turn on VSX too since all the state is restored now */
932 	if (msr & MSR_VSX)
933 		new->thread.regs->msr |= MSR_VSX;
934 
935 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
936 		 "(kernel msr 0x%lx)\n",
937 		 new->pid, mfmsr());
938 }
939 
940 static inline void __switch_to_tm(struct task_struct *prev)
941 {
942 	if (cpu_has_feature(CPU_FTR_TM)) {
943 		tm_enable();
944 		tm_reclaim_task(prev);
945 	}
946 }
947 
948 /*
949  * This is called if we are on the way out to userspace and the
950  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
951  * FP and/or vector state and does so if necessary.
952  * If userspace is inside a transaction (whether active or
953  * suspended) and FP/VMX/VSX instructions have ever been enabled
954  * inside that transaction, then we have to keep them enabled
955  * and keep the FP/VMX/VSX state loaded while ever the transaction
956  * continues.  The reason is that if we didn't, and subsequently
957  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
958  * we don't know whether it's the same transaction, and thus we
959  * don't know which of the checkpointed state and the transactional
960  * state to use.
961  */
962 void restore_tm_state(struct pt_regs *regs)
963 {
964 	unsigned long msr_diff;
965 
966 	clear_thread_flag(TIF_RESTORE_TM);
967 	if (!MSR_TM_ACTIVE(regs->msr))
968 		return;
969 
970 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
971 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
972 
973 	restore_math(regs);
974 
975 	regs->msr |= msr_diff;
976 }
977 
978 #else
979 #define tm_recheckpoint_new_task(new)
980 #define __switch_to_tm(prev)
981 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
982 
983 static inline void save_sprs(struct thread_struct *t)
984 {
985 #ifdef CONFIG_ALTIVEC
986 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
987 		t->vrsave = mfspr(SPRN_VRSAVE);
988 #endif
989 #ifdef CONFIG_PPC_BOOK3S_64
990 	if (cpu_has_feature(CPU_FTR_DSCR))
991 		t->dscr = mfspr(SPRN_DSCR);
992 
993 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
994 		t->bescr = mfspr(SPRN_BESCR);
995 		t->ebbhr = mfspr(SPRN_EBBHR);
996 		t->ebbrr = mfspr(SPRN_EBBRR);
997 
998 		t->fscr = mfspr(SPRN_FSCR);
999 
1000 		/*
1001 		 * Note that the TAR is not available for use in the kernel.
1002 		 * (To provide this, the TAR should be backed up/restored on
1003 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1004 		 * this should be in pt_regs anyway (for debug).)
1005 		 */
1006 		t->tar = mfspr(SPRN_TAR);
1007 	}
1008 #endif
1009 }
1010 
1011 static inline void restore_sprs(struct thread_struct *old_thread,
1012 				struct thread_struct *new_thread)
1013 {
1014 #ifdef CONFIG_ALTIVEC
1015 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1016 	    old_thread->vrsave != new_thread->vrsave)
1017 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1018 #endif
1019 #ifdef CONFIG_PPC_BOOK3S_64
1020 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1021 		u64 dscr = get_paca()->dscr_default;
1022 		u64 fscr = old_thread->fscr & ~FSCR_DSCR;
1023 
1024 		if (new_thread->dscr_inherit) {
1025 			dscr = new_thread->dscr;
1026 			fscr |= FSCR_DSCR;
1027 		}
1028 
1029 		if (old_thread->dscr != dscr)
1030 			mtspr(SPRN_DSCR, dscr);
1031 
1032 		if (old_thread->fscr != fscr)
1033 			mtspr(SPRN_FSCR, fscr);
1034 	}
1035 
1036 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1037 		if (old_thread->bescr != new_thread->bescr)
1038 			mtspr(SPRN_BESCR, new_thread->bescr);
1039 		if (old_thread->ebbhr != new_thread->ebbhr)
1040 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1041 		if (old_thread->ebbrr != new_thread->ebbrr)
1042 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1043 
1044 		if (old_thread->tar != new_thread->tar)
1045 			mtspr(SPRN_TAR, new_thread->tar);
1046 	}
1047 #endif
1048 }
1049 
1050 struct task_struct *__switch_to(struct task_struct *prev,
1051 	struct task_struct *new)
1052 {
1053 	struct thread_struct *new_thread, *old_thread;
1054 	struct task_struct *last;
1055 #ifdef CONFIG_PPC_BOOK3S_64
1056 	struct ppc64_tlb_batch *batch;
1057 #endif
1058 
1059 	new_thread = &new->thread;
1060 	old_thread = &current->thread;
1061 
1062 	WARN_ON(!irqs_disabled());
1063 
1064 #ifdef CONFIG_PPC64
1065 	/*
1066 	 * Collect processor utilization data per process
1067 	 */
1068 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1069 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1070 		long unsigned start_tb, current_tb;
1071 		start_tb = old_thread->start_tb;
1072 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1073 		old_thread->accum_tb += (current_tb - start_tb);
1074 		new_thread->start_tb = current_tb;
1075 	}
1076 #endif /* CONFIG_PPC64 */
1077 
1078 #ifdef CONFIG_PPC_BOOK3S_64
1079 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1080 	if (batch->active) {
1081 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1082 		if (batch->index)
1083 			__flush_tlb_pending(batch);
1084 		batch->active = 0;
1085 	}
1086 #endif /* CONFIG_PPC_BOOK3S_64 */
1087 
1088 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1089 	switch_booke_debug_regs(&new->thread.debug);
1090 #else
1091 /*
1092  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1093  * schedule DABR
1094  */
1095 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1096 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1097 		__set_breakpoint(&new->thread.hw_brk);
1098 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1099 #endif
1100 
1101 	/*
1102 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1103 	 * change a number of them.
1104 	 */
1105 	save_sprs(&prev->thread);
1106 
1107 	__switch_to_tm(prev);
1108 
1109 	/* Save FPU, Altivec, VSX and SPE state */
1110 	giveup_all(prev);
1111 
1112 	/*
1113 	 * We can't take a PMU exception inside _switch() since there is a
1114 	 * window where the kernel stack SLB and the kernel stack are out
1115 	 * of sync. Hard disable here.
1116 	 */
1117 	hard_irq_disable();
1118 
1119 	tm_recheckpoint_new_task(new);
1120 
1121 	/*
1122 	 * Call restore_sprs() before calling _switch(). If we move it after
1123 	 * _switch() then we miss out on calling it for new tasks. The reason
1124 	 * for this is we manually create a stack frame for new tasks that
1125 	 * directly returns through ret_from_fork() or
1126 	 * ret_from_kernel_thread(). See copy_thread() for details.
1127 	 */
1128 	restore_sprs(old_thread, new_thread);
1129 
1130 	last = _switch(old_thread, new_thread);
1131 
1132 #ifdef CONFIG_PPC_BOOK3S_64
1133 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1134 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1135 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1136 		batch->active = 1;
1137 	}
1138 
1139 	if (current_thread_info()->task->thread.regs)
1140 		restore_math(current_thread_info()->task->thread.regs);
1141 
1142 #endif /* CONFIG_PPC_BOOK3S_64 */
1143 
1144 	return last;
1145 }
1146 
1147 static int instructions_to_print = 16;
1148 
1149 static void show_instructions(struct pt_regs *regs)
1150 {
1151 	int i;
1152 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1153 			sizeof(int));
1154 
1155 	printk("Instruction dump:");
1156 
1157 	for (i = 0; i < instructions_to_print; i++) {
1158 		int instr;
1159 
1160 		if (!(i % 8))
1161 			printk("\n");
1162 
1163 #if !defined(CONFIG_BOOKE)
1164 		/* If executing with the IMMU off, adjust pc rather
1165 		 * than print XXXXXXXX.
1166 		 */
1167 		if (!(regs->msr & MSR_IR))
1168 			pc = (unsigned long)phys_to_virt(pc);
1169 #endif
1170 
1171 		if (!__kernel_text_address(pc) ||
1172 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1173 			printk(KERN_CONT "XXXXXXXX ");
1174 		} else {
1175 			if (regs->nip == pc)
1176 				printk(KERN_CONT "<%08x> ", instr);
1177 			else
1178 				printk(KERN_CONT "%08x ", instr);
1179 		}
1180 
1181 		pc += sizeof(int);
1182 	}
1183 
1184 	printk("\n");
1185 }
1186 
1187 struct regbit {
1188 	unsigned long bit;
1189 	const char *name;
1190 };
1191 
1192 static struct regbit msr_bits[] = {
1193 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1194 	{MSR_SF,	"SF"},
1195 	{MSR_HV,	"HV"},
1196 #endif
1197 	{MSR_VEC,	"VEC"},
1198 	{MSR_VSX,	"VSX"},
1199 #ifdef CONFIG_BOOKE
1200 	{MSR_CE,	"CE"},
1201 #endif
1202 	{MSR_EE,	"EE"},
1203 	{MSR_PR,	"PR"},
1204 	{MSR_FP,	"FP"},
1205 	{MSR_ME,	"ME"},
1206 #ifdef CONFIG_BOOKE
1207 	{MSR_DE,	"DE"},
1208 #else
1209 	{MSR_SE,	"SE"},
1210 	{MSR_BE,	"BE"},
1211 #endif
1212 	{MSR_IR,	"IR"},
1213 	{MSR_DR,	"DR"},
1214 	{MSR_PMM,	"PMM"},
1215 #ifndef CONFIG_BOOKE
1216 	{MSR_RI,	"RI"},
1217 	{MSR_LE,	"LE"},
1218 #endif
1219 	{0,		NULL}
1220 };
1221 
1222 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1223 {
1224 	const char *s = "";
1225 
1226 	for (; bits->bit; ++bits)
1227 		if (val & bits->bit) {
1228 			printk("%s%s", s, bits->name);
1229 			s = sep;
1230 		}
1231 }
1232 
1233 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1234 static struct regbit msr_tm_bits[] = {
1235 	{MSR_TS_T,	"T"},
1236 	{MSR_TS_S,	"S"},
1237 	{MSR_TM,	"E"},
1238 	{0,		NULL}
1239 };
1240 
1241 static void print_tm_bits(unsigned long val)
1242 {
1243 /*
1244  * This only prints something if at least one of the TM bit is set.
1245  * Inside the TM[], the output means:
1246  *   E: Enabled		(bit 32)
1247  *   S: Suspended	(bit 33)
1248  *   T: Transactional	(bit 34)
1249  */
1250 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1251 		printk(",TM[");
1252 		print_bits(val, msr_tm_bits, "");
1253 		printk("]");
1254 	}
1255 }
1256 #else
1257 static void print_tm_bits(unsigned long val) {}
1258 #endif
1259 
1260 static void print_msr_bits(unsigned long val)
1261 {
1262 	printk("<");
1263 	print_bits(val, msr_bits, ",");
1264 	print_tm_bits(val);
1265 	printk(">");
1266 }
1267 
1268 #ifdef CONFIG_PPC64
1269 #define REG		"%016lx"
1270 #define REGS_PER_LINE	4
1271 #define LAST_VOLATILE	13
1272 #else
1273 #define REG		"%08lx"
1274 #define REGS_PER_LINE	8
1275 #define LAST_VOLATILE	12
1276 #endif
1277 
1278 void show_regs(struct pt_regs * regs)
1279 {
1280 	int i, trap;
1281 
1282 	show_regs_print_info(KERN_DEFAULT);
1283 
1284 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1285 	       regs->nip, regs->link, regs->ctr);
1286 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1287 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1288 	printk("MSR: "REG" ", regs->msr);
1289 	print_msr_bits(regs->msr);
1290 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1291 	trap = TRAP(regs);
1292 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1293 		printk("CFAR: "REG" ", regs->orig_gpr3);
1294 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1295 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1296 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1297 #else
1298 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1299 #endif
1300 #ifdef CONFIG_PPC64
1301 	printk("SOFTE: %ld ", regs->softe);
1302 #endif
1303 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304 	if (MSR_TM_ACTIVE(regs->msr))
1305 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1306 #endif
1307 
1308 	for (i = 0;  i < 32;  i++) {
1309 		if ((i % REGS_PER_LINE) == 0)
1310 			printk("\nGPR%02d: ", i);
1311 		printk(REG " ", regs->gpr[i]);
1312 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1313 			break;
1314 	}
1315 	printk("\n");
1316 #ifdef CONFIG_KALLSYMS
1317 	/*
1318 	 * Lookup NIP late so we have the best change of getting the
1319 	 * above info out without failing
1320 	 */
1321 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1322 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1323 #endif
1324 	show_stack(current, (unsigned long *) regs->gpr[1]);
1325 	if (!user_mode(regs))
1326 		show_instructions(regs);
1327 }
1328 
1329 void exit_thread(void)
1330 {
1331 }
1332 
1333 void flush_thread(void)
1334 {
1335 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1336 	flush_ptrace_hw_breakpoint(current);
1337 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1338 	set_debug_reg_defaults(&current->thread);
1339 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1340 }
1341 
1342 void
1343 release_thread(struct task_struct *t)
1344 {
1345 }
1346 
1347 /*
1348  * this gets called so that we can store coprocessor state into memory and
1349  * copy the current task into the new thread.
1350  */
1351 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1352 {
1353 	flush_all_to_thread(src);
1354 	/*
1355 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1356 	 * flush but it removes the checkpointed state from the current CPU and
1357 	 * transitions the CPU out of TM mode.  Hence we need to call
1358 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1359 	 * checkpointed state back and the TM mode.
1360 	 */
1361 	__switch_to_tm(src);
1362 	tm_recheckpoint_new_task(src);
1363 
1364 	*dst = *src;
1365 
1366 	clear_task_ebb(dst);
1367 
1368 	return 0;
1369 }
1370 
1371 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1372 {
1373 #ifdef CONFIG_PPC_STD_MMU_64
1374 	unsigned long sp_vsid;
1375 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1376 
1377 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1378 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1379 			<< SLB_VSID_SHIFT_1T;
1380 	else
1381 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1382 			<< SLB_VSID_SHIFT;
1383 	sp_vsid |= SLB_VSID_KERNEL | llp;
1384 	p->thread.ksp_vsid = sp_vsid;
1385 #endif
1386 }
1387 
1388 /*
1389  * Copy a thread..
1390  */
1391 
1392 /*
1393  * Copy architecture-specific thread state
1394  */
1395 int copy_thread(unsigned long clone_flags, unsigned long usp,
1396 		unsigned long kthread_arg, struct task_struct *p)
1397 {
1398 	struct pt_regs *childregs, *kregs;
1399 	extern void ret_from_fork(void);
1400 	extern void ret_from_kernel_thread(void);
1401 	void (*f)(void);
1402 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1403 
1404 	/* Copy registers */
1405 	sp -= sizeof(struct pt_regs);
1406 	childregs = (struct pt_regs *) sp;
1407 	if (unlikely(p->flags & PF_KTHREAD)) {
1408 		/* kernel thread */
1409 		struct thread_info *ti = (void *)task_stack_page(p);
1410 		memset(childregs, 0, sizeof(struct pt_regs));
1411 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1412 		/* function */
1413 		if (usp)
1414 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1415 #ifdef CONFIG_PPC64
1416 		clear_tsk_thread_flag(p, TIF_32BIT);
1417 		childregs->softe = 1;
1418 #endif
1419 		childregs->gpr[15] = kthread_arg;
1420 		p->thread.regs = NULL;	/* no user register state */
1421 		ti->flags |= _TIF_RESTOREALL;
1422 		f = ret_from_kernel_thread;
1423 	} else {
1424 		/* user thread */
1425 		struct pt_regs *regs = current_pt_regs();
1426 		CHECK_FULL_REGS(regs);
1427 		*childregs = *regs;
1428 		if (usp)
1429 			childregs->gpr[1] = usp;
1430 		p->thread.regs = childregs;
1431 		childregs->gpr[3] = 0;  /* Result from fork() */
1432 		if (clone_flags & CLONE_SETTLS) {
1433 #ifdef CONFIG_PPC64
1434 			if (!is_32bit_task())
1435 				childregs->gpr[13] = childregs->gpr[6];
1436 			else
1437 #endif
1438 				childregs->gpr[2] = childregs->gpr[6];
1439 		}
1440 
1441 		f = ret_from_fork;
1442 	}
1443 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1444 	sp -= STACK_FRAME_OVERHEAD;
1445 
1446 	/*
1447 	 * The way this works is that at some point in the future
1448 	 * some task will call _switch to switch to the new task.
1449 	 * That will pop off the stack frame created below and start
1450 	 * the new task running at ret_from_fork.  The new task will
1451 	 * do some house keeping and then return from the fork or clone
1452 	 * system call, using the stack frame created above.
1453 	 */
1454 	((unsigned long *)sp)[0] = 0;
1455 	sp -= sizeof(struct pt_regs);
1456 	kregs = (struct pt_regs *) sp;
1457 	sp -= STACK_FRAME_OVERHEAD;
1458 	p->thread.ksp = sp;
1459 #ifdef CONFIG_PPC32
1460 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1461 				_ALIGN_UP(sizeof(struct thread_info), 16);
1462 #endif
1463 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1464 	p->thread.ptrace_bps[0] = NULL;
1465 #endif
1466 
1467 	p->thread.fp_save_area = NULL;
1468 #ifdef CONFIG_ALTIVEC
1469 	p->thread.vr_save_area = NULL;
1470 #endif
1471 
1472 	setup_ksp_vsid(p, sp);
1473 
1474 #ifdef CONFIG_PPC64
1475 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1476 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1477 		p->thread.dscr = mfspr(SPRN_DSCR);
1478 	}
1479 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1480 		p->thread.ppr = INIT_PPR;
1481 #endif
1482 	kregs->nip = ppc_function_entry(f);
1483 	return 0;
1484 }
1485 
1486 /*
1487  * Set up a thread for executing a new program
1488  */
1489 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1490 {
1491 #ifdef CONFIG_PPC64
1492 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1493 #endif
1494 
1495 	/*
1496 	 * If we exec out of a kernel thread then thread.regs will not be
1497 	 * set.  Do it now.
1498 	 */
1499 	if (!current->thread.regs) {
1500 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1501 		current->thread.regs = regs - 1;
1502 	}
1503 
1504 	memset(regs->gpr, 0, sizeof(regs->gpr));
1505 	regs->ctr = 0;
1506 	regs->link = 0;
1507 	regs->xer = 0;
1508 	regs->ccr = 0;
1509 	regs->gpr[1] = sp;
1510 
1511 	/*
1512 	 * We have just cleared all the nonvolatile GPRs, so make
1513 	 * FULL_REGS(regs) return true.  This is necessary to allow
1514 	 * ptrace to examine the thread immediately after exec.
1515 	 */
1516 	regs->trap &= ~1UL;
1517 
1518 #ifdef CONFIG_PPC32
1519 	regs->mq = 0;
1520 	regs->nip = start;
1521 	regs->msr = MSR_USER;
1522 #else
1523 	if (!is_32bit_task()) {
1524 		unsigned long entry;
1525 
1526 		if (is_elf2_task()) {
1527 			/* Look ma, no function descriptors! */
1528 			entry = start;
1529 
1530 			/*
1531 			 * Ulrich says:
1532 			 *   The latest iteration of the ABI requires that when
1533 			 *   calling a function (at its global entry point),
1534 			 *   the caller must ensure r12 holds the entry point
1535 			 *   address (so that the function can quickly
1536 			 *   establish addressability).
1537 			 */
1538 			regs->gpr[12] = start;
1539 			/* Make sure that's restored on entry to userspace. */
1540 			set_thread_flag(TIF_RESTOREALL);
1541 		} else {
1542 			unsigned long toc;
1543 
1544 			/* start is a relocated pointer to the function
1545 			 * descriptor for the elf _start routine.  The first
1546 			 * entry in the function descriptor is the entry
1547 			 * address of _start and the second entry is the TOC
1548 			 * value we need to use.
1549 			 */
1550 			__get_user(entry, (unsigned long __user *)start);
1551 			__get_user(toc, (unsigned long __user *)start+1);
1552 
1553 			/* Check whether the e_entry function descriptor entries
1554 			 * need to be relocated before we can use them.
1555 			 */
1556 			if (load_addr != 0) {
1557 				entry += load_addr;
1558 				toc   += load_addr;
1559 			}
1560 			regs->gpr[2] = toc;
1561 		}
1562 		regs->nip = entry;
1563 		regs->msr = MSR_USER64;
1564 	} else {
1565 		regs->nip = start;
1566 		regs->gpr[2] = 0;
1567 		regs->msr = MSR_USER32;
1568 	}
1569 #endif
1570 #ifdef CONFIG_VSX
1571 	current->thread.used_vsr = 0;
1572 #endif
1573 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1574 	current->thread.fp_save_area = NULL;
1575 #ifdef CONFIG_ALTIVEC
1576 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1577 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1578 	current->thread.vr_save_area = NULL;
1579 	current->thread.vrsave = 0;
1580 	current->thread.used_vr = 0;
1581 #endif /* CONFIG_ALTIVEC */
1582 #ifdef CONFIG_SPE
1583 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1584 	current->thread.acc = 0;
1585 	current->thread.spefscr = 0;
1586 	current->thread.used_spe = 0;
1587 #endif /* CONFIG_SPE */
1588 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1589 	if (cpu_has_feature(CPU_FTR_TM))
1590 		regs->msr |= MSR_TM;
1591 	current->thread.tm_tfhar = 0;
1592 	current->thread.tm_texasr = 0;
1593 	current->thread.tm_tfiar = 0;
1594 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1595 }
1596 EXPORT_SYMBOL(start_thread);
1597 
1598 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1599 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1600 
1601 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1602 {
1603 	struct pt_regs *regs = tsk->thread.regs;
1604 
1605 	/* This is a bit hairy.  If we are an SPE enabled  processor
1606 	 * (have embedded fp) we store the IEEE exception enable flags in
1607 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1608 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1609 	if (val & PR_FP_EXC_SW_ENABLE) {
1610 #ifdef CONFIG_SPE
1611 		if (cpu_has_feature(CPU_FTR_SPE)) {
1612 			/*
1613 			 * When the sticky exception bits are set
1614 			 * directly by userspace, it must call prctl
1615 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1616 			 * in the existing prctl settings) or
1617 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1618 			 * the bits being set).  <fenv.h> functions
1619 			 * saving and restoring the whole
1620 			 * floating-point environment need to do so
1621 			 * anyway to restore the prctl settings from
1622 			 * the saved environment.
1623 			 */
1624 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1625 			tsk->thread.fpexc_mode = val &
1626 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1627 			return 0;
1628 		} else {
1629 			return -EINVAL;
1630 		}
1631 #else
1632 		return -EINVAL;
1633 #endif
1634 	}
1635 
1636 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1637 	 * __pack_fe01 use do not overlap with bits used for
1638 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1639 	 * on CONFIG_SPE implementations are reserved so writing to
1640 	 * them does not change anything */
1641 	if (val > PR_FP_EXC_PRECISE)
1642 		return -EINVAL;
1643 	tsk->thread.fpexc_mode = __pack_fe01(val);
1644 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1645 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1646 			| tsk->thread.fpexc_mode;
1647 	return 0;
1648 }
1649 
1650 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1651 {
1652 	unsigned int val;
1653 
1654 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1655 #ifdef CONFIG_SPE
1656 		if (cpu_has_feature(CPU_FTR_SPE)) {
1657 			/*
1658 			 * When the sticky exception bits are set
1659 			 * directly by userspace, it must call prctl
1660 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1661 			 * in the existing prctl settings) or
1662 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1663 			 * the bits being set).  <fenv.h> functions
1664 			 * saving and restoring the whole
1665 			 * floating-point environment need to do so
1666 			 * anyway to restore the prctl settings from
1667 			 * the saved environment.
1668 			 */
1669 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1670 			val = tsk->thread.fpexc_mode;
1671 		} else
1672 			return -EINVAL;
1673 #else
1674 		return -EINVAL;
1675 #endif
1676 	else
1677 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1678 	return put_user(val, (unsigned int __user *) adr);
1679 }
1680 
1681 int set_endian(struct task_struct *tsk, unsigned int val)
1682 {
1683 	struct pt_regs *regs = tsk->thread.regs;
1684 
1685 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1686 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1687 		return -EINVAL;
1688 
1689 	if (regs == NULL)
1690 		return -EINVAL;
1691 
1692 	if (val == PR_ENDIAN_BIG)
1693 		regs->msr &= ~MSR_LE;
1694 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1695 		regs->msr |= MSR_LE;
1696 	else
1697 		return -EINVAL;
1698 
1699 	return 0;
1700 }
1701 
1702 int get_endian(struct task_struct *tsk, unsigned long adr)
1703 {
1704 	struct pt_regs *regs = tsk->thread.regs;
1705 	unsigned int val;
1706 
1707 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1708 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1709 		return -EINVAL;
1710 
1711 	if (regs == NULL)
1712 		return -EINVAL;
1713 
1714 	if (regs->msr & MSR_LE) {
1715 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1716 			val = PR_ENDIAN_LITTLE;
1717 		else
1718 			val = PR_ENDIAN_PPC_LITTLE;
1719 	} else
1720 		val = PR_ENDIAN_BIG;
1721 
1722 	return put_user(val, (unsigned int __user *)adr);
1723 }
1724 
1725 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1726 {
1727 	tsk->thread.align_ctl = val;
1728 	return 0;
1729 }
1730 
1731 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1732 {
1733 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1734 }
1735 
1736 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1737 				  unsigned long nbytes)
1738 {
1739 	unsigned long stack_page;
1740 	unsigned long cpu = task_cpu(p);
1741 
1742 	/*
1743 	 * Avoid crashing if the stack has overflowed and corrupted
1744 	 * task_cpu(p), which is in the thread_info struct.
1745 	 */
1746 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1747 		stack_page = (unsigned long) hardirq_ctx[cpu];
1748 		if (sp >= stack_page + sizeof(struct thread_struct)
1749 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1750 			return 1;
1751 
1752 		stack_page = (unsigned long) softirq_ctx[cpu];
1753 		if (sp >= stack_page + sizeof(struct thread_struct)
1754 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1755 			return 1;
1756 	}
1757 	return 0;
1758 }
1759 
1760 int validate_sp(unsigned long sp, struct task_struct *p,
1761 		       unsigned long nbytes)
1762 {
1763 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1764 
1765 	if (sp >= stack_page + sizeof(struct thread_struct)
1766 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1767 		return 1;
1768 
1769 	return valid_irq_stack(sp, p, nbytes);
1770 }
1771 
1772 EXPORT_SYMBOL(validate_sp);
1773 
1774 unsigned long get_wchan(struct task_struct *p)
1775 {
1776 	unsigned long ip, sp;
1777 	int count = 0;
1778 
1779 	if (!p || p == current || p->state == TASK_RUNNING)
1780 		return 0;
1781 
1782 	sp = p->thread.ksp;
1783 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1784 		return 0;
1785 
1786 	do {
1787 		sp = *(unsigned long *)sp;
1788 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1789 			return 0;
1790 		if (count > 0) {
1791 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1792 			if (!in_sched_functions(ip))
1793 				return ip;
1794 		}
1795 	} while (count++ < 16);
1796 	return 0;
1797 }
1798 
1799 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1800 
1801 void show_stack(struct task_struct *tsk, unsigned long *stack)
1802 {
1803 	unsigned long sp, ip, lr, newsp;
1804 	int count = 0;
1805 	int firstframe = 1;
1806 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1807 	int curr_frame = current->curr_ret_stack;
1808 	extern void return_to_handler(void);
1809 	unsigned long rth = (unsigned long)return_to_handler;
1810 #endif
1811 
1812 	sp = (unsigned long) stack;
1813 	if (tsk == NULL)
1814 		tsk = current;
1815 	if (sp == 0) {
1816 		if (tsk == current)
1817 			sp = current_stack_pointer();
1818 		else
1819 			sp = tsk->thread.ksp;
1820 	}
1821 
1822 	lr = 0;
1823 	printk("Call Trace:\n");
1824 	do {
1825 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1826 			return;
1827 
1828 		stack = (unsigned long *) sp;
1829 		newsp = stack[0];
1830 		ip = stack[STACK_FRAME_LR_SAVE];
1831 		if (!firstframe || ip != lr) {
1832 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1833 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1834 			if ((ip == rth) && curr_frame >= 0) {
1835 				printk(" (%pS)",
1836 				       (void *)current->ret_stack[curr_frame].ret);
1837 				curr_frame--;
1838 			}
1839 #endif
1840 			if (firstframe)
1841 				printk(" (unreliable)");
1842 			printk("\n");
1843 		}
1844 		firstframe = 0;
1845 
1846 		/*
1847 		 * See if this is an exception frame.
1848 		 * We look for the "regshere" marker in the current frame.
1849 		 */
1850 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1851 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1852 			struct pt_regs *regs = (struct pt_regs *)
1853 				(sp + STACK_FRAME_OVERHEAD);
1854 			lr = regs->link;
1855 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1856 			       regs->trap, (void *)regs->nip, (void *)lr);
1857 			firstframe = 1;
1858 		}
1859 
1860 		sp = newsp;
1861 	} while (count++ < kstack_depth_to_print);
1862 }
1863 
1864 #ifdef CONFIG_PPC64
1865 /* Called with hard IRQs off */
1866 void notrace __ppc64_runlatch_on(void)
1867 {
1868 	struct thread_info *ti = current_thread_info();
1869 	unsigned long ctrl;
1870 
1871 	ctrl = mfspr(SPRN_CTRLF);
1872 	ctrl |= CTRL_RUNLATCH;
1873 	mtspr(SPRN_CTRLT, ctrl);
1874 
1875 	ti->local_flags |= _TLF_RUNLATCH;
1876 }
1877 
1878 /* Called with hard IRQs off */
1879 void notrace __ppc64_runlatch_off(void)
1880 {
1881 	struct thread_info *ti = current_thread_info();
1882 	unsigned long ctrl;
1883 
1884 	ti->local_flags &= ~_TLF_RUNLATCH;
1885 
1886 	ctrl = mfspr(SPRN_CTRLF);
1887 	ctrl &= ~CTRL_RUNLATCH;
1888 	mtspr(SPRN_CTRLT, ctrl);
1889 }
1890 #endif /* CONFIG_PPC64 */
1891 
1892 unsigned long arch_align_stack(unsigned long sp)
1893 {
1894 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1895 		sp -= get_random_int() & ~PAGE_MASK;
1896 	return sp & ~0xf;
1897 }
1898 
1899 static inline unsigned long brk_rnd(void)
1900 {
1901         unsigned long rnd = 0;
1902 
1903 	/* 8MB for 32bit, 1GB for 64bit */
1904 	if (is_32bit_task())
1905 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1906 	else
1907 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1908 
1909 	return rnd << PAGE_SHIFT;
1910 }
1911 
1912 unsigned long arch_randomize_brk(struct mm_struct *mm)
1913 {
1914 	unsigned long base = mm->brk;
1915 	unsigned long ret;
1916 
1917 #ifdef CONFIG_PPC_STD_MMU_64
1918 	/*
1919 	 * If we are using 1TB segments and we are allowed to randomise
1920 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1921 	 * segment. Otherwise the heap will be in the bottom 1TB
1922 	 * which always uses 256MB segments and this may result in a
1923 	 * performance penalty.
1924 	 */
1925 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1926 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1927 #endif
1928 
1929 	ret = PAGE_ALIGN(base + brk_rnd());
1930 
1931 	if (ret < mm->brk)
1932 		return mm->brk;
1933 
1934 	return ret;
1935 }
1936 
1937