1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/export.h> 32 #include <linux/kallsyms.h> 33 #include <linux/mqueue.h> 34 #include <linux/hardirq.h> 35 #include <linux/utsname.h> 36 #include <linux/ftrace.h> 37 #include <linux/kernel_stat.h> 38 #include <linux/personality.h> 39 #include <linux/random.h> 40 #include <linux/hw_breakpoint.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/uaccess.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/debug.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/firmware.h> 56 #endif 57 #include <linux/kprobes.h> 58 #include <linux/kdebug.h> 59 60 extern unsigned long _get_SP(void); 61 62 #ifndef CONFIG_SMP 63 struct task_struct *last_task_used_math = NULL; 64 struct task_struct *last_task_used_altivec = NULL; 65 struct task_struct *last_task_used_vsx = NULL; 66 struct task_struct *last_task_used_spe = NULL; 67 #endif 68 69 /* 70 * Make sure the floating-point register state in the 71 * the thread_struct is up to date for task tsk. 72 */ 73 void flush_fp_to_thread(struct task_struct *tsk) 74 { 75 if (tsk->thread.regs) { 76 /* 77 * We need to disable preemption here because if we didn't, 78 * another process could get scheduled after the regs->msr 79 * test but before we have finished saving the FP registers 80 * to the thread_struct. That process could take over the 81 * FPU, and then when we get scheduled again we would store 82 * bogus values for the remaining FP registers. 83 */ 84 preempt_disable(); 85 if (tsk->thread.regs->msr & MSR_FP) { 86 #ifdef CONFIG_SMP 87 /* 88 * This should only ever be called for current or 89 * for a stopped child process. Since we save away 90 * the FP register state on context switch on SMP, 91 * there is something wrong if a stopped child appears 92 * to still have its FP state in the CPU registers. 93 */ 94 BUG_ON(tsk != current); 95 #endif 96 giveup_fpu(tsk); 97 } 98 preempt_enable(); 99 } 100 } 101 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 102 103 void enable_kernel_fp(void) 104 { 105 WARN_ON(preemptible()); 106 107 #ifdef CONFIG_SMP 108 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 109 giveup_fpu(current); 110 else 111 giveup_fpu(NULL); /* just enables FP for kernel */ 112 #else 113 giveup_fpu(last_task_used_math); 114 #endif /* CONFIG_SMP */ 115 } 116 EXPORT_SYMBOL(enable_kernel_fp); 117 118 #ifdef CONFIG_ALTIVEC 119 void enable_kernel_altivec(void) 120 { 121 WARN_ON(preemptible()); 122 123 #ifdef CONFIG_SMP 124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 125 giveup_altivec(current); 126 else 127 giveup_altivec_notask(); 128 #else 129 giveup_altivec(last_task_used_altivec); 130 #endif /* CONFIG_SMP */ 131 } 132 EXPORT_SYMBOL(enable_kernel_altivec); 133 134 /* 135 * Make sure the VMX/Altivec register state in the 136 * the thread_struct is up to date for task tsk. 137 */ 138 void flush_altivec_to_thread(struct task_struct *tsk) 139 { 140 if (tsk->thread.regs) { 141 preempt_disable(); 142 if (tsk->thread.regs->msr & MSR_VEC) { 143 #ifdef CONFIG_SMP 144 BUG_ON(tsk != current); 145 #endif 146 giveup_altivec(tsk); 147 } 148 preempt_enable(); 149 } 150 } 151 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 152 #endif /* CONFIG_ALTIVEC */ 153 154 #ifdef CONFIG_VSX 155 #if 0 156 /* not currently used, but some crazy RAID module might want to later */ 157 void enable_kernel_vsx(void) 158 { 159 WARN_ON(preemptible()); 160 161 #ifdef CONFIG_SMP 162 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) 163 giveup_vsx(current); 164 else 165 giveup_vsx(NULL); /* just enable vsx for kernel - force */ 166 #else 167 giveup_vsx(last_task_used_vsx); 168 #endif /* CONFIG_SMP */ 169 } 170 EXPORT_SYMBOL(enable_kernel_vsx); 171 #endif 172 173 void giveup_vsx(struct task_struct *tsk) 174 { 175 giveup_fpu(tsk); 176 giveup_altivec(tsk); 177 __giveup_vsx(tsk); 178 } 179 180 void flush_vsx_to_thread(struct task_struct *tsk) 181 { 182 if (tsk->thread.regs) { 183 preempt_disable(); 184 if (tsk->thread.regs->msr & MSR_VSX) { 185 #ifdef CONFIG_SMP 186 BUG_ON(tsk != current); 187 #endif 188 giveup_vsx(tsk); 189 } 190 preempt_enable(); 191 } 192 } 193 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 194 #endif /* CONFIG_VSX */ 195 196 #ifdef CONFIG_SPE 197 198 void enable_kernel_spe(void) 199 { 200 WARN_ON(preemptible()); 201 202 #ifdef CONFIG_SMP 203 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 204 giveup_spe(current); 205 else 206 giveup_spe(NULL); /* just enable SPE for kernel - force */ 207 #else 208 giveup_spe(last_task_used_spe); 209 #endif /* __SMP __ */ 210 } 211 EXPORT_SYMBOL(enable_kernel_spe); 212 213 void flush_spe_to_thread(struct task_struct *tsk) 214 { 215 if (tsk->thread.regs) { 216 preempt_disable(); 217 if (tsk->thread.regs->msr & MSR_SPE) { 218 #ifdef CONFIG_SMP 219 BUG_ON(tsk != current); 220 #endif 221 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 222 giveup_spe(tsk); 223 } 224 preempt_enable(); 225 } 226 } 227 #endif /* CONFIG_SPE */ 228 229 #ifndef CONFIG_SMP 230 /* 231 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 232 * and the current task has some state, discard it. 233 */ 234 void discard_lazy_cpu_state(void) 235 { 236 preempt_disable(); 237 if (last_task_used_math == current) 238 last_task_used_math = NULL; 239 #ifdef CONFIG_ALTIVEC 240 if (last_task_used_altivec == current) 241 last_task_used_altivec = NULL; 242 #endif /* CONFIG_ALTIVEC */ 243 #ifdef CONFIG_VSX 244 if (last_task_used_vsx == current) 245 last_task_used_vsx = NULL; 246 #endif /* CONFIG_VSX */ 247 #ifdef CONFIG_SPE 248 if (last_task_used_spe == current) 249 last_task_used_spe = NULL; 250 #endif 251 preempt_enable(); 252 } 253 #endif /* CONFIG_SMP */ 254 255 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 256 void do_send_trap(struct pt_regs *regs, unsigned long address, 257 unsigned long error_code, int signal_code, int breakpt) 258 { 259 siginfo_t info; 260 261 current->thread.trap_nr = signal_code; 262 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 263 11, SIGSEGV) == NOTIFY_STOP) 264 return; 265 266 /* Deliver the signal to userspace */ 267 info.si_signo = SIGTRAP; 268 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 269 info.si_code = signal_code; 270 info.si_addr = (void __user *)address; 271 force_sig_info(SIGTRAP, &info, current); 272 } 273 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 274 void do_dabr(struct pt_regs *regs, unsigned long address, 275 unsigned long error_code) 276 { 277 siginfo_t info; 278 279 current->thread.trap_nr = TRAP_HWBKPT; 280 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 281 11, SIGSEGV) == NOTIFY_STOP) 282 return; 283 284 if (debugger_dabr_match(regs)) 285 return; 286 287 /* Clear the DABR */ 288 set_dabr(0, 0); 289 290 /* Deliver the signal to userspace */ 291 info.si_signo = SIGTRAP; 292 info.si_errno = 0; 293 info.si_code = TRAP_HWBKPT; 294 info.si_addr = (void __user *)address; 295 force_sig_info(SIGTRAP, &info, current); 296 } 297 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 298 299 static DEFINE_PER_CPU(unsigned long, current_dabr); 300 301 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 302 /* 303 * Set the debug registers back to their default "safe" values. 304 */ 305 static void set_debug_reg_defaults(struct thread_struct *thread) 306 { 307 thread->iac1 = thread->iac2 = 0; 308 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 309 thread->iac3 = thread->iac4 = 0; 310 #endif 311 thread->dac1 = thread->dac2 = 0; 312 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 313 thread->dvc1 = thread->dvc2 = 0; 314 #endif 315 thread->dbcr0 = 0; 316 #ifdef CONFIG_BOOKE 317 /* 318 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 319 */ 320 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \ 321 DBCR1_IAC3US | DBCR1_IAC4US; 322 /* 323 * Force Data Address Compare User/Supervisor bits to be User-only 324 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 325 */ 326 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 327 #else 328 thread->dbcr1 = 0; 329 #endif 330 } 331 332 static void prime_debug_regs(struct thread_struct *thread) 333 { 334 mtspr(SPRN_IAC1, thread->iac1); 335 mtspr(SPRN_IAC2, thread->iac2); 336 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 337 mtspr(SPRN_IAC3, thread->iac3); 338 mtspr(SPRN_IAC4, thread->iac4); 339 #endif 340 mtspr(SPRN_DAC1, thread->dac1); 341 mtspr(SPRN_DAC2, thread->dac2); 342 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 343 mtspr(SPRN_DVC1, thread->dvc1); 344 mtspr(SPRN_DVC2, thread->dvc2); 345 #endif 346 mtspr(SPRN_DBCR0, thread->dbcr0); 347 mtspr(SPRN_DBCR1, thread->dbcr1); 348 #ifdef CONFIG_BOOKE 349 mtspr(SPRN_DBCR2, thread->dbcr2); 350 #endif 351 } 352 /* 353 * Unless neither the old or new thread are making use of the 354 * debug registers, set the debug registers from the values 355 * stored in the new thread. 356 */ 357 static void switch_booke_debug_regs(struct thread_struct *new_thread) 358 { 359 if ((current->thread.dbcr0 & DBCR0_IDM) 360 || (new_thread->dbcr0 & DBCR0_IDM)) 361 prime_debug_regs(new_thread); 362 } 363 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 364 #ifndef CONFIG_HAVE_HW_BREAKPOINT 365 static void set_debug_reg_defaults(struct thread_struct *thread) 366 { 367 if (thread->dabr) { 368 thread->dabr = 0; 369 thread->dabrx = 0; 370 set_dabr(0, 0); 371 } 372 } 373 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 374 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 375 376 int set_dabr(unsigned long dabr, unsigned long dabrx) 377 { 378 __get_cpu_var(current_dabr) = dabr; 379 380 if (ppc_md.set_dabr) 381 return ppc_md.set_dabr(dabr, dabrx); 382 383 /* XXX should we have a CPU_FTR_HAS_DABR ? */ 384 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 385 mtspr(SPRN_DAC1, dabr); 386 #ifdef CONFIG_PPC_47x 387 isync(); 388 #endif 389 #elif defined(CONFIG_PPC_BOOK3S) 390 mtspr(SPRN_DABR, dabr); 391 mtspr(SPRN_DABRX, dabrx); 392 #endif 393 return 0; 394 } 395 396 #ifdef CONFIG_PPC64 397 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 398 #endif 399 400 struct task_struct *__switch_to(struct task_struct *prev, 401 struct task_struct *new) 402 { 403 struct thread_struct *new_thread, *old_thread; 404 unsigned long flags; 405 struct task_struct *last; 406 #ifdef CONFIG_PPC_BOOK3S_64 407 struct ppc64_tlb_batch *batch; 408 #endif 409 410 #ifdef CONFIG_SMP 411 /* avoid complexity of lazy save/restore of fpu 412 * by just saving it every time we switch out if 413 * this task used the fpu during the last quantum. 414 * 415 * If it tries to use the fpu again, it'll trap and 416 * reload its fp regs. So we don't have to do a restore 417 * every switch, just a save. 418 * -- Cort 419 */ 420 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 421 giveup_fpu(prev); 422 #ifdef CONFIG_ALTIVEC 423 /* 424 * If the previous thread used altivec in the last quantum 425 * (thus changing altivec regs) then save them. 426 * We used to check the VRSAVE register but not all apps 427 * set it, so we don't rely on it now (and in fact we need 428 * to save & restore VSCR even if VRSAVE == 0). -- paulus 429 * 430 * On SMP we always save/restore altivec regs just to avoid the 431 * complexity of changing processors. 432 * -- Cort 433 */ 434 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 435 giveup_altivec(prev); 436 #endif /* CONFIG_ALTIVEC */ 437 #ifdef CONFIG_VSX 438 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) 439 /* VMX and FPU registers are already save here */ 440 __giveup_vsx(prev); 441 #endif /* CONFIG_VSX */ 442 #ifdef CONFIG_SPE 443 /* 444 * If the previous thread used spe in the last quantum 445 * (thus changing spe regs) then save them. 446 * 447 * On SMP we always save/restore spe regs just to avoid the 448 * complexity of changing processors. 449 */ 450 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 451 giveup_spe(prev); 452 #endif /* CONFIG_SPE */ 453 454 #else /* CONFIG_SMP */ 455 #ifdef CONFIG_ALTIVEC 456 /* Avoid the trap. On smp this this never happens since 457 * we don't set last_task_used_altivec -- Cort 458 */ 459 if (new->thread.regs && last_task_used_altivec == new) 460 new->thread.regs->msr |= MSR_VEC; 461 #endif /* CONFIG_ALTIVEC */ 462 #ifdef CONFIG_VSX 463 if (new->thread.regs && last_task_used_vsx == new) 464 new->thread.regs->msr |= MSR_VSX; 465 #endif /* CONFIG_VSX */ 466 #ifdef CONFIG_SPE 467 /* Avoid the trap. On smp this this never happens since 468 * we don't set last_task_used_spe 469 */ 470 if (new->thread.regs && last_task_used_spe == new) 471 new->thread.regs->msr |= MSR_SPE; 472 #endif /* CONFIG_SPE */ 473 474 #endif /* CONFIG_SMP */ 475 476 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 477 switch_booke_debug_regs(&new->thread); 478 #else 479 /* 480 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 481 * schedule DABR 482 */ 483 #ifndef CONFIG_HAVE_HW_BREAKPOINT 484 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) 485 set_dabr(new->thread.dabr, new->thread.dabrx); 486 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 487 #endif 488 489 490 new_thread = &new->thread; 491 old_thread = ¤t->thread; 492 493 #ifdef CONFIG_PPC64 494 /* 495 * Collect processor utilization data per process 496 */ 497 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 498 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 499 long unsigned start_tb, current_tb; 500 start_tb = old_thread->start_tb; 501 cu->current_tb = current_tb = mfspr(SPRN_PURR); 502 old_thread->accum_tb += (current_tb - start_tb); 503 new_thread->start_tb = current_tb; 504 } 505 #endif /* CONFIG_PPC64 */ 506 507 #ifdef CONFIG_PPC_BOOK3S_64 508 batch = &__get_cpu_var(ppc64_tlb_batch); 509 if (batch->active) { 510 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 511 if (batch->index) 512 __flush_tlb_pending(batch); 513 batch->active = 0; 514 } 515 #endif /* CONFIG_PPC_BOOK3S_64 */ 516 517 local_irq_save(flags); 518 519 /* 520 * We can't take a PMU exception inside _switch() since there is a 521 * window where the kernel stack SLB and the kernel stack are out 522 * of sync. Hard disable here. 523 */ 524 hard_irq_disable(); 525 last = _switch(old_thread, new_thread); 526 527 #ifdef CONFIG_PPC_BOOK3S_64 528 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 529 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 530 batch = &__get_cpu_var(ppc64_tlb_batch); 531 batch->active = 1; 532 } 533 #endif /* CONFIG_PPC_BOOK3S_64 */ 534 535 local_irq_restore(flags); 536 537 return last; 538 } 539 540 static int instructions_to_print = 16; 541 542 static void show_instructions(struct pt_regs *regs) 543 { 544 int i; 545 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 546 sizeof(int)); 547 548 printk("Instruction dump:"); 549 550 for (i = 0; i < instructions_to_print; i++) { 551 int instr; 552 553 if (!(i % 8)) 554 printk("\n"); 555 556 #if !defined(CONFIG_BOOKE) 557 /* If executing with the IMMU off, adjust pc rather 558 * than print XXXXXXXX. 559 */ 560 if (!(regs->msr & MSR_IR)) 561 pc = (unsigned long)phys_to_virt(pc); 562 #endif 563 564 /* We use __get_user here *only* to avoid an OOPS on a 565 * bad address because the pc *should* only be a 566 * kernel address. 567 */ 568 if (!__kernel_text_address(pc) || 569 __get_user(instr, (unsigned int __user *)pc)) { 570 printk(KERN_CONT "XXXXXXXX "); 571 } else { 572 if (regs->nip == pc) 573 printk(KERN_CONT "<%08x> ", instr); 574 else 575 printk(KERN_CONT "%08x ", instr); 576 } 577 578 pc += sizeof(int); 579 } 580 581 printk("\n"); 582 } 583 584 static struct regbit { 585 unsigned long bit; 586 const char *name; 587 } msr_bits[] = { 588 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 589 {MSR_SF, "SF"}, 590 {MSR_HV, "HV"}, 591 #endif 592 {MSR_VEC, "VEC"}, 593 {MSR_VSX, "VSX"}, 594 #ifdef CONFIG_BOOKE 595 {MSR_CE, "CE"}, 596 #endif 597 {MSR_EE, "EE"}, 598 {MSR_PR, "PR"}, 599 {MSR_FP, "FP"}, 600 {MSR_ME, "ME"}, 601 #ifdef CONFIG_BOOKE 602 {MSR_DE, "DE"}, 603 #else 604 {MSR_SE, "SE"}, 605 {MSR_BE, "BE"}, 606 #endif 607 {MSR_IR, "IR"}, 608 {MSR_DR, "DR"}, 609 {MSR_PMM, "PMM"}, 610 #ifndef CONFIG_BOOKE 611 {MSR_RI, "RI"}, 612 {MSR_LE, "LE"}, 613 #endif 614 {0, NULL} 615 }; 616 617 static void printbits(unsigned long val, struct regbit *bits) 618 { 619 const char *sep = ""; 620 621 printk("<"); 622 for (; bits->bit; ++bits) 623 if (val & bits->bit) { 624 printk("%s%s", sep, bits->name); 625 sep = ","; 626 } 627 printk(">"); 628 } 629 630 #ifdef CONFIG_PPC64 631 #define REG "%016lx" 632 #define REGS_PER_LINE 4 633 #define LAST_VOLATILE 13 634 #else 635 #define REG "%08lx" 636 #define REGS_PER_LINE 8 637 #define LAST_VOLATILE 12 638 #endif 639 640 void show_regs(struct pt_regs * regs) 641 { 642 int i, trap; 643 644 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 645 regs->nip, regs->link, regs->ctr); 646 printk("REGS: %p TRAP: %04lx %s (%s)\n", 647 regs, regs->trap, print_tainted(), init_utsname()->release); 648 printk("MSR: "REG" ", regs->msr); 649 printbits(regs->msr, msr_bits); 650 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 651 #ifdef CONFIG_PPC64 652 printk("SOFTE: %ld\n", regs->softe); 653 #endif 654 trap = TRAP(regs); 655 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 656 printk("CFAR: "REG"\n", regs->orig_gpr3); 657 if (trap == 0x300 || trap == 0x600) 658 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 659 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); 660 #else 661 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr); 662 #endif 663 printk("TASK = %p[%d] '%s' THREAD: %p", 664 current, task_pid_nr(current), current->comm, task_thread_info(current)); 665 666 #ifdef CONFIG_SMP 667 printk(" CPU: %d", raw_smp_processor_id()); 668 #endif /* CONFIG_SMP */ 669 670 for (i = 0; i < 32; i++) { 671 if ((i % REGS_PER_LINE) == 0) 672 printk("\nGPR%02d: ", i); 673 printk(REG " ", regs->gpr[i]); 674 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 675 break; 676 } 677 printk("\n"); 678 #ifdef CONFIG_KALLSYMS 679 /* 680 * Lookup NIP late so we have the best change of getting the 681 * above info out without failing 682 */ 683 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 684 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 685 #endif 686 show_stack(current, (unsigned long *) regs->gpr[1]); 687 if (!user_mode(regs)) 688 show_instructions(regs); 689 } 690 691 void exit_thread(void) 692 { 693 discard_lazy_cpu_state(); 694 } 695 696 void flush_thread(void) 697 { 698 discard_lazy_cpu_state(); 699 700 #ifdef CONFIG_HAVE_HW_BREAKPOINT 701 flush_ptrace_hw_breakpoint(current); 702 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 703 set_debug_reg_defaults(¤t->thread); 704 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 705 } 706 707 void 708 release_thread(struct task_struct *t) 709 { 710 } 711 712 /* 713 * this gets called so that we can store coprocessor state into memory and 714 * copy the current task into the new thread. 715 */ 716 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 717 { 718 flush_fp_to_thread(src); 719 flush_altivec_to_thread(src); 720 flush_vsx_to_thread(src); 721 flush_spe_to_thread(src); 722 #ifdef CONFIG_HAVE_HW_BREAKPOINT 723 flush_ptrace_hw_breakpoint(src); 724 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 725 726 *dst = *src; 727 return 0; 728 } 729 730 /* 731 * Copy a thread.. 732 */ 733 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */ 734 735 int copy_thread(unsigned long clone_flags, unsigned long usp, 736 unsigned long arg, struct task_struct *p) 737 { 738 struct pt_regs *childregs, *kregs; 739 extern void ret_from_fork(void); 740 extern void ret_from_kernel_thread(void); 741 void (*f)(void); 742 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 743 744 /* Copy registers */ 745 sp -= sizeof(struct pt_regs); 746 childregs = (struct pt_regs *) sp; 747 if (unlikely(p->flags & PF_KTHREAD)) { 748 struct thread_info *ti = (void *)task_stack_page(p); 749 memset(childregs, 0, sizeof(struct pt_regs)); 750 childregs->gpr[1] = sp + sizeof(struct pt_regs); 751 childregs->gpr[14] = usp; /* function */ 752 #ifdef CONFIG_PPC64 753 clear_tsk_thread_flag(p, TIF_32BIT); 754 childregs->softe = 1; 755 #endif 756 childregs->gpr[15] = arg; 757 p->thread.regs = NULL; /* no user register state */ 758 ti->flags |= _TIF_RESTOREALL; 759 f = ret_from_kernel_thread; 760 } else { 761 struct pt_regs *regs = current_pt_regs(); 762 CHECK_FULL_REGS(regs); 763 *childregs = *regs; 764 if (usp) 765 childregs->gpr[1] = usp; 766 p->thread.regs = childregs; 767 childregs->gpr[3] = 0; /* Result from fork() */ 768 if (clone_flags & CLONE_SETTLS) { 769 #ifdef CONFIG_PPC64 770 if (!is_32bit_task()) 771 childregs->gpr[13] = childregs->gpr[6]; 772 else 773 #endif 774 childregs->gpr[2] = childregs->gpr[6]; 775 } 776 777 f = ret_from_fork; 778 } 779 sp -= STACK_FRAME_OVERHEAD; 780 781 /* 782 * The way this works is that at some point in the future 783 * some task will call _switch to switch to the new task. 784 * That will pop off the stack frame created below and start 785 * the new task running at ret_from_fork. The new task will 786 * do some house keeping and then return from the fork or clone 787 * system call, using the stack frame created above. 788 */ 789 sp -= sizeof(struct pt_regs); 790 kregs = (struct pt_regs *) sp; 791 sp -= STACK_FRAME_OVERHEAD; 792 p->thread.ksp = sp; 793 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 794 _ALIGN_UP(sizeof(struct thread_info), 16); 795 796 #ifdef CONFIG_PPC_STD_MMU_64 797 if (mmu_has_feature(MMU_FTR_SLB)) { 798 unsigned long sp_vsid; 799 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 800 801 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 802 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 803 << SLB_VSID_SHIFT_1T; 804 else 805 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 806 << SLB_VSID_SHIFT; 807 sp_vsid |= SLB_VSID_KERNEL | llp; 808 p->thread.ksp_vsid = sp_vsid; 809 } 810 #endif /* CONFIG_PPC_STD_MMU_64 */ 811 #ifdef CONFIG_PPC64 812 if (cpu_has_feature(CPU_FTR_DSCR)) { 813 p->thread.dscr_inherit = current->thread.dscr_inherit; 814 p->thread.dscr = current->thread.dscr; 815 } 816 #endif 817 /* 818 * The PPC64 ABI makes use of a TOC to contain function 819 * pointers. The function (ret_from_except) is actually a pointer 820 * to the TOC entry. The first entry is a pointer to the actual 821 * function. 822 */ 823 #ifdef CONFIG_PPC64 824 kregs->nip = *((unsigned long *)f); 825 #else 826 kregs->nip = (unsigned long)f; 827 #endif 828 return 0; 829 } 830 831 /* 832 * Set up a thread for executing a new program 833 */ 834 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 835 { 836 #ifdef CONFIG_PPC64 837 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 838 #endif 839 840 /* 841 * If we exec out of a kernel thread then thread.regs will not be 842 * set. Do it now. 843 */ 844 if (!current->thread.regs) { 845 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 846 current->thread.regs = regs - 1; 847 } 848 849 memset(regs->gpr, 0, sizeof(regs->gpr)); 850 regs->ctr = 0; 851 regs->link = 0; 852 regs->xer = 0; 853 regs->ccr = 0; 854 regs->gpr[1] = sp; 855 856 /* 857 * We have just cleared all the nonvolatile GPRs, so make 858 * FULL_REGS(regs) return true. This is necessary to allow 859 * ptrace to examine the thread immediately after exec. 860 */ 861 regs->trap &= ~1UL; 862 863 #ifdef CONFIG_PPC32 864 regs->mq = 0; 865 regs->nip = start; 866 regs->msr = MSR_USER; 867 #else 868 if (!is_32bit_task()) { 869 unsigned long entry, toc; 870 871 /* start is a relocated pointer to the function descriptor for 872 * the elf _start routine. The first entry in the function 873 * descriptor is the entry address of _start and the second 874 * entry is the TOC value we need to use. 875 */ 876 __get_user(entry, (unsigned long __user *)start); 877 __get_user(toc, (unsigned long __user *)start+1); 878 879 /* Check whether the e_entry function descriptor entries 880 * need to be relocated before we can use them. 881 */ 882 if (load_addr != 0) { 883 entry += load_addr; 884 toc += load_addr; 885 } 886 regs->nip = entry; 887 regs->gpr[2] = toc; 888 regs->msr = MSR_USER64; 889 } else { 890 regs->nip = start; 891 regs->gpr[2] = 0; 892 regs->msr = MSR_USER32; 893 } 894 #endif 895 896 discard_lazy_cpu_state(); 897 #ifdef CONFIG_VSX 898 current->thread.used_vsr = 0; 899 #endif 900 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 901 current->thread.fpscr.val = 0; 902 #ifdef CONFIG_ALTIVEC 903 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 904 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 905 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 906 current->thread.vrsave = 0; 907 current->thread.used_vr = 0; 908 #endif /* CONFIG_ALTIVEC */ 909 #ifdef CONFIG_SPE 910 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 911 current->thread.acc = 0; 912 current->thread.spefscr = 0; 913 current->thread.used_spe = 0; 914 #endif /* CONFIG_SPE */ 915 } 916 917 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 918 | PR_FP_EXC_RES | PR_FP_EXC_INV) 919 920 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 921 { 922 struct pt_regs *regs = tsk->thread.regs; 923 924 /* This is a bit hairy. If we are an SPE enabled processor 925 * (have embedded fp) we store the IEEE exception enable flags in 926 * fpexc_mode. fpexc_mode is also used for setting FP exception 927 * mode (asyn, precise, disabled) for 'Classic' FP. */ 928 if (val & PR_FP_EXC_SW_ENABLE) { 929 #ifdef CONFIG_SPE 930 if (cpu_has_feature(CPU_FTR_SPE)) { 931 tsk->thread.fpexc_mode = val & 932 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 933 return 0; 934 } else { 935 return -EINVAL; 936 } 937 #else 938 return -EINVAL; 939 #endif 940 } 941 942 /* on a CONFIG_SPE this does not hurt us. The bits that 943 * __pack_fe01 use do not overlap with bits used for 944 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 945 * on CONFIG_SPE implementations are reserved so writing to 946 * them does not change anything */ 947 if (val > PR_FP_EXC_PRECISE) 948 return -EINVAL; 949 tsk->thread.fpexc_mode = __pack_fe01(val); 950 if (regs != NULL && (regs->msr & MSR_FP) != 0) 951 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 952 | tsk->thread.fpexc_mode; 953 return 0; 954 } 955 956 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 957 { 958 unsigned int val; 959 960 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 961 #ifdef CONFIG_SPE 962 if (cpu_has_feature(CPU_FTR_SPE)) 963 val = tsk->thread.fpexc_mode; 964 else 965 return -EINVAL; 966 #else 967 return -EINVAL; 968 #endif 969 else 970 val = __unpack_fe01(tsk->thread.fpexc_mode); 971 return put_user(val, (unsigned int __user *) adr); 972 } 973 974 int set_endian(struct task_struct *tsk, unsigned int val) 975 { 976 struct pt_regs *regs = tsk->thread.regs; 977 978 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 979 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 980 return -EINVAL; 981 982 if (regs == NULL) 983 return -EINVAL; 984 985 if (val == PR_ENDIAN_BIG) 986 regs->msr &= ~MSR_LE; 987 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 988 regs->msr |= MSR_LE; 989 else 990 return -EINVAL; 991 992 return 0; 993 } 994 995 int get_endian(struct task_struct *tsk, unsigned long adr) 996 { 997 struct pt_regs *regs = tsk->thread.regs; 998 unsigned int val; 999 1000 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1001 !cpu_has_feature(CPU_FTR_REAL_LE)) 1002 return -EINVAL; 1003 1004 if (regs == NULL) 1005 return -EINVAL; 1006 1007 if (regs->msr & MSR_LE) { 1008 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1009 val = PR_ENDIAN_LITTLE; 1010 else 1011 val = PR_ENDIAN_PPC_LITTLE; 1012 } else 1013 val = PR_ENDIAN_BIG; 1014 1015 return put_user(val, (unsigned int __user *)adr); 1016 } 1017 1018 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1019 { 1020 tsk->thread.align_ctl = val; 1021 return 0; 1022 } 1023 1024 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1025 { 1026 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1027 } 1028 1029 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1030 unsigned long nbytes) 1031 { 1032 unsigned long stack_page; 1033 unsigned long cpu = task_cpu(p); 1034 1035 /* 1036 * Avoid crashing if the stack has overflowed and corrupted 1037 * task_cpu(p), which is in the thread_info struct. 1038 */ 1039 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1040 stack_page = (unsigned long) hardirq_ctx[cpu]; 1041 if (sp >= stack_page + sizeof(struct thread_struct) 1042 && sp <= stack_page + THREAD_SIZE - nbytes) 1043 return 1; 1044 1045 stack_page = (unsigned long) softirq_ctx[cpu]; 1046 if (sp >= stack_page + sizeof(struct thread_struct) 1047 && sp <= stack_page + THREAD_SIZE - nbytes) 1048 return 1; 1049 } 1050 return 0; 1051 } 1052 1053 int validate_sp(unsigned long sp, struct task_struct *p, 1054 unsigned long nbytes) 1055 { 1056 unsigned long stack_page = (unsigned long)task_stack_page(p); 1057 1058 if (sp >= stack_page + sizeof(struct thread_struct) 1059 && sp <= stack_page + THREAD_SIZE - nbytes) 1060 return 1; 1061 1062 return valid_irq_stack(sp, p, nbytes); 1063 } 1064 1065 EXPORT_SYMBOL(validate_sp); 1066 1067 unsigned long get_wchan(struct task_struct *p) 1068 { 1069 unsigned long ip, sp; 1070 int count = 0; 1071 1072 if (!p || p == current || p->state == TASK_RUNNING) 1073 return 0; 1074 1075 sp = p->thread.ksp; 1076 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1077 return 0; 1078 1079 do { 1080 sp = *(unsigned long *)sp; 1081 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1082 return 0; 1083 if (count > 0) { 1084 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1085 if (!in_sched_functions(ip)) 1086 return ip; 1087 } 1088 } while (count++ < 16); 1089 return 0; 1090 } 1091 1092 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1093 1094 void show_stack(struct task_struct *tsk, unsigned long *stack) 1095 { 1096 unsigned long sp, ip, lr, newsp; 1097 int count = 0; 1098 int firstframe = 1; 1099 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1100 int curr_frame = current->curr_ret_stack; 1101 extern void return_to_handler(void); 1102 unsigned long rth = (unsigned long)return_to_handler; 1103 unsigned long mrth = -1; 1104 #ifdef CONFIG_PPC64 1105 extern void mod_return_to_handler(void); 1106 rth = *(unsigned long *)rth; 1107 mrth = (unsigned long)mod_return_to_handler; 1108 mrth = *(unsigned long *)mrth; 1109 #endif 1110 #endif 1111 1112 sp = (unsigned long) stack; 1113 if (tsk == NULL) 1114 tsk = current; 1115 if (sp == 0) { 1116 if (tsk == current) 1117 asm("mr %0,1" : "=r" (sp)); 1118 else 1119 sp = tsk->thread.ksp; 1120 } 1121 1122 lr = 0; 1123 printk("Call Trace:\n"); 1124 do { 1125 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1126 return; 1127 1128 stack = (unsigned long *) sp; 1129 newsp = stack[0]; 1130 ip = stack[STACK_FRAME_LR_SAVE]; 1131 if (!firstframe || ip != lr) { 1132 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1133 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1134 if ((ip == rth || ip == mrth) && curr_frame >= 0) { 1135 printk(" (%pS)", 1136 (void *)current->ret_stack[curr_frame].ret); 1137 curr_frame--; 1138 } 1139 #endif 1140 if (firstframe) 1141 printk(" (unreliable)"); 1142 printk("\n"); 1143 } 1144 firstframe = 0; 1145 1146 /* 1147 * See if this is an exception frame. 1148 * We look for the "regshere" marker in the current frame. 1149 */ 1150 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1151 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1152 struct pt_regs *regs = (struct pt_regs *) 1153 (sp + STACK_FRAME_OVERHEAD); 1154 lr = regs->link; 1155 printk("--- Exception: %lx at %pS\n LR = %pS\n", 1156 regs->trap, (void *)regs->nip, (void *)lr); 1157 firstframe = 1; 1158 } 1159 1160 sp = newsp; 1161 } while (count++ < kstack_depth_to_print); 1162 } 1163 1164 void dump_stack(void) 1165 { 1166 show_stack(current, NULL); 1167 } 1168 EXPORT_SYMBOL(dump_stack); 1169 1170 #ifdef CONFIG_PPC64 1171 /* Called with hard IRQs off */ 1172 void __ppc64_runlatch_on(void) 1173 { 1174 struct thread_info *ti = current_thread_info(); 1175 unsigned long ctrl; 1176 1177 ctrl = mfspr(SPRN_CTRLF); 1178 ctrl |= CTRL_RUNLATCH; 1179 mtspr(SPRN_CTRLT, ctrl); 1180 1181 ti->local_flags |= _TLF_RUNLATCH; 1182 } 1183 1184 /* Called with hard IRQs off */ 1185 void __ppc64_runlatch_off(void) 1186 { 1187 struct thread_info *ti = current_thread_info(); 1188 unsigned long ctrl; 1189 1190 ti->local_flags &= ~_TLF_RUNLATCH; 1191 1192 ctrl = mfspr(SPRN_CTRLF); 1193 ctrl &= ~CTRL_RUNLATCH; 1194 mtspr(SPRN_CTRLT, ctrl); 1195 } 1196 #endif /* CONFIG_PPC64 */ 1197 1198 unsigned long arch_align_stack(unsigned long sp) 1199 { 1200 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1201 sp -= get_random_int() & ~PAGE_MASK; 1202 return sp & ~0xf; 1203 } 1204 1205 static inline unsigned long brk_rnd(void) 1206 { 1207 unsigned long rnd = 0; 1208 1209 /* 8MB for 32bit, 1GB for 64bit */ 1210 if (is_32bit_task()) 1211 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT))); 1212 else 1213 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT))); 1214 1215 return rnd << PAGE_SHIFT; 1216 } 1217 1218 unsigned long arch_randomize_brk(struct mm_struct *mm) 1219 { 1220 unsigned long base = mm->brk; 1221 unsigned long ret; 1222 1223 #ifdef CONFIG_PPC_STD_MMU_64 1224 /* 1225 * If we are using 1TB segments and we are allowed to randomise 1226 * the heap, we can put it above 1TB so it is backed by a 1TB 1227 * segment. Otherwise the heap will be in the bottom 1TB 1228 * which always uses 256MB segments and this may result in a 1229 * performance penalty. 1230 */ 1231 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1232 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1233 #endif 1234 1235 ret = PAGE_ALIGN(base + brk_rnd()); 1236 1237 if (ret < mm->brk) 1238 return mm->brk; 1239 1240 return ret; 1241 } 1242 1243 unsigned long randomize_et_dyn(unsigned long base) 1244 { 1245 unsigned long ret = PAGE_ALIGN(base + brk_rnd()); 1246 1247 if (ret < base) 1248 return base; 1249 1250 return ret; 1251 } 1252