xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 8ee90c5c)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66 
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69 
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76 
77 extern unsigned long _get_SP(void);
78 
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82 	/*
83 	 * If we are saving the current thread's registers, and the
84 	 * thread is in a transactional state, set the TIF_RESTORE_TM
85 	 * bit so that we know to restore the registers before
86 	 * returning to userspace.
87 	 */
88 	if (tsk == current && tsk->thread.regs &&
89 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 	    !test_thread_flag(TIF_RESTORE_TM)) {
91 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 		set_thread_flag(TIF_RESTORE_TM);
93 	}
94 }
95 
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98 	return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104 
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107 
108 static int __init enable_strict_msr_control(char *str)
109 {
110 	strict_msr_control = true;
111 	pr_info("Enabling strict facility control\n");
112 
113 	return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116 
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119 	unsigned long oldmsr = mfmsr();
120 	unsigned long newmsr;
121 
122 	newmsr = oldmsr | bits;
123 
124 #ifdef CONFIG_VSX
125 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 		newmsr |= MSR_VSX;
127 #endif
128 
129 	if (oldmsr != newmsr)
130 		mtmsr_isync(newmsr);
131 
132 	return newmsr;
133 }
134 
135 void __msr_check_and_clear(unsigned long bits)
136 {
137 	unsigned long oldmsr = mfmsr();
138 	unsigned long newmsr;
139 
140 	newmsr = oldmsr & ~bits;
141 
142 #ifdef CONFIG_VSX
143 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 		newmsr &= ~MSR_VSX;
145 #endif
146 
147 	if (oldmsr != newmsr)
148 		mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151 
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155 	unsigned long msr;
156 
157 	save_fpu(tsk);
158 	msr = tsk->thread.regs->msr;
159 	msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161 	if (cpu_has_feature(CPU_FTR_VSX))
162 		msr &= ~MSR_VSX;
163 #endif
164 	tsk->thread.regs->msr = msr;
165 }
166 
167 void giveup_fpu(struct task_struct *tsk)
168 {
169 	check_if_tm_restore_required(tsk);
170 
171 	msr_check_and_set(MSR_FP);
172 	__giveup_fpu(tsk);
173 	msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176 
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183 	if (tsk->thread.regs) {
184 		/*
185 		 * We need to disable preemption here because if we didn't,
186 		 * another process could get scheduled after the regs->msr
187 		 * test but before we have finished saving the FP registers
188 		 * to the thread_struct.  That process could take over the
189 		 * FPU, and then when we get scheduled again we would store
190 		 * bogus values for the remaining FP registers.
191 		 */
192 		preempt_disable();
193 		if (tsk->thread.regs->msr & MSR_FP) {
194 			/*
195 			 * This should only ever be called for current or
196 			 * for a stopped child process.  Since we save away
197 			 * the FP register state on context switch,
198 			 * there is something wrong if a stopped child appears
199 			 * to still have its FP state in the CPU registers.
200 			 */
201 			BUG_ON(tsk != current);
202 			giveup_fpu(tsk);
203 		}
204 		preempt_enable();
205 	}
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 
209 void enable_kernel_fp(void)
210 {
211 	unsigned long cpumsr;
212 
213 	WARN_ON(preemptible());
214 
215 	cpumsr = msr_check_and_set(MSR_FP);
216 
217 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 		check_if_tm_restore_required(current);
219 		/*
220 		 * If a thread has already been reclaimed then the
221 		 * checkpointed registers are on the CPU but have definitely
222 		 * been saved by the reclaim code. Don't need to and *cannot*
223 		 * giveup as this would save  to the 'live' structure not the
224 		 * checkpointed structure.
225 		 */
226 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 			return;
228 		__giveup_fpu(current);
229 	}
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232 
233 static int restore_fp(struct task_struct *tsk)
234 {
235 	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
236 		load_fp_state(&current->thread.fp_state);
237 		current->thread.load_fp++;
238 		return 1;
239 	}
240 	return 0;
241 }
242 #else
243 static int restore_fp(struct task_struct *tsk) { return 0; }
244 #endif /* CONFIG_PPC_FPU */
245 
246 #ifdef CONFIG_ALTIVEC
247 #define loadvec(thr) ((thr).load_vec)
248 
249 static void __giveup_altivec(struct task_struct *tsk)
250 {
251 	unsigned long msr;
252 
253 	save_altivec(tsk);
254 	msr = tsk->thread.regs->msr;
255 	msr &= ~MSR_VEC;
256 #ifdef CONFIG_VSX
257 	if (cpu_has_feature(CPU_FTR_VSX))
258 		msr &= ~MSR_VSX;
259 #endif
260 	tsk->thread.regs->msr = msr;
261 }
262 
263 void giveup_altivec(struct task_struct *tsk)
264 {
265 	check_if_tm_restore_required(tsk);
266 
267 	msr_check_and_set(MSR_VEC);
268 	__giveup_altivec(tsk);
269 	msr_check_and_clear(MSR_VEC);
270 }
271 EXPORT_SYMBOL(giveup_altivec);
272 
273 void enable_kernel_altivec(void)
274 {
275 	unsigned long cpumsr;
276 
277 	WARN_ON(preemptible());
278 
279 	cpumsr = msr_check_and_set(MSR_VEC);
280 
281 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
282 		check_if_tm_restore_required(current);
283 		/*
284 		 * If a thread has already been reclaimed then the
285 		 * checkpointed registers are on the CPU but have definitely
286 		 * been saved by the reclaim code. Don't need to and *cannot*
287 		 * giveup as this would save  to the 'live' structure not the
288 		 * checkpointed structure.
289 		 */
290 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
291 			return;
292 		__giveup_altivec(current);
293 	}
294 }
295 EXPORT_SYMBOL(enable_kernel_altivec);
296 
297 /*
298  * Make sure the VMX/Altivec register state in the
299  * the thread_struct is up to date for task tsk.
300  */
301 void flush_altivec_to_thread(struct task_struct *tsk)
302 {
303 	if (tsk->thread.regs) {
304 		preempt_disable();
305 		if (tsk->thread.regs->msr & MSR_VEC) {
306 			BUG_ON(tsk != current);
307 			giveup_altivec(tsk);
308 		}
309 		preempt_enable();
310 	}
311 }
312 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
313 
314 static int restore_altivec(struct task_struct *tsk)
315 {
316 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
317 		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
318 		load_vr_state(&tsk->thread.vr_state);
319 		tsk->thread.used_vr = 1;
320 		tsk->thread.load_vec++;
321 
322 		return 1;
323 	}
324 	return 0;
325 }
326 #else
327 #define loadvec(thr) 0
328 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
329 #endif /* CONFIG_ALTIVEC */
330 
331 #ifdef CONFIG_VSX
332 static void __giveup_vsx(struct task_struct *tsk)
333 {
334 	unsigned long msr = tsk->thread.regs->msr;
335 
336 	/*
337 	 * We should never be ssetting MSR_VSX without also setting
338 	 * MSR_FP and MSR_VEC
339 	 */
340 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
341 
342 	/* __giveup_fpu will clear MSR_VSX */
343 	if (msr & MSR_FP)
344 		__giveup_fpu(tsk);
345 	if (msr & MSR_VEC)
346 		__giveup_altivec(tsk);
347 }
348 
349 static void giveup_vsx(struct task_struct *tsk)
350 {
351 	check_if_tm_restore_required(tsk);
352 
353 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
354 	__giveup_vsx(tsk);
355 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
356 }
357 
358 void enable_kernel_vsx(void)
359 {
360 	unsigned long cpumsr;
361 
362 	WARN_ON(preemptible());
363 
364 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
365 
366 	if (current->thread.regs &&
367 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
368 		check_if_tm_restore_required(current);
369 		/*
370 		 * If a thread has already been reclaimed then the
371 		 * checkpointed registers are on the CPU but have definitely
372 		 * been saved by the reclaim code. Don't need to and *cannot*
373 		 * giveup as this would save  to the 'live' structure not the
374 		 * checkpointed structure.
375 		 */
376 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
377 			return;
378 		__giveup_vsx(current);
379 	}
380 }
381 EXPORT_SYMBOL(enable_kernel_vsx);
382 
383 void flush_vsx_to_thread(struct task_struct *tsk)
384 {
385 	if (tsk->thread.regs) {
386 		preempt_disable();
387 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
388 			BUG_ON(tsk != current);
389 			giveup_vsx(tsk);
390 		}
391 		preempt_enable();
392 	}
393 }
394 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
395 
396 static int restore_vsx(struct task_struct *tsk)
397 {
398 	if (cpu_has_feature(CPU_FTR_VSX)) {
399 		tsk->thread.used_vsr = 1;
400 		return 1;
401 	}
402 
403 	return 0;
404 }
405 #else
406 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
407 #endif /* CONFIG_VSX */
408 
409 #ifdef CONFIG_SPE
410 void giveup_spe(struct task_struct *tsk)
411 {
412 	check_if_tm_restore_required(tsk);
413 
414 	msr_check_and_set(MSR_SPE);
415 	__giveup_spe(tsk);
416 	msr_check_and_clear(MSR_SPE);
417 }
418 EXPORT_SYMBOL(giveup_spe);
419 
420 void enable_kernel_spe(void)
421 {
422 	WARN_ON(preemptible());
423 
424 	msr_check_and_set(MSR_SPE);
425 
426 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427 		check_if_tm_restore_required(current);
428 		__giveup_spe(current);
429 	}
430 }
431 EXPORT_SYMBOL(enable_kernel_spe);
432 
433 void flush_spe_to_thread(struct task_struct *tsk)
434 {
435 	if (tsk->thread.regs) {
436 		preempt_disable();
437 		if (tsk->thread.regs->msr & MSR_SPE) {
438 			BUG_ON(tsk != current);
439 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440 			giveup_spe(tsk);
441 		}
442 		preempt_enable();
443 	}
444 }
445 #endif /* CONFIG_SPE */
446 
447 static unsigned long msr_all_available;
448 
449 static int __init init_msr_all_available(void)
450 {
451 #ifdef CONFIG_PPC_FPU
452 	msr_all_available |= MSR_FP;
453 #endif
454 #ifdef CONFIG_ALTIVEC
455 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
456 		msr_all_available |= MSR_VEC;
457 #endif
458 #ifdef CONFIG_VSX
459 	if (cpu_has_feature(CPU_FTR_VSX))
460 		msr_all_available |= MSR_VSX;
461 #endif
462 #ifdef CONFIG_SPE
463 	if (cpu_has_feature(CPU_FTR_SPE))
464 		msr_all_available |= MSR_SPE;
465 #endif
466 
467 	return 0;
468 }
469 early_initcall(init_msr_all_available);
470 
471 void giveup_all(struct task_struct *tsk)
472 {
473 	unsigned long usermsr;
474 
475 	if (!tsk->thread.regs)
476 		return;
477 
478 	usermsr = tsk->thread.regs->msr;
479 
480 	if ((usermsr & msr_all_available) == 0)
481 		return;
482 
483 	msr_check_and_set(msr_all_available);
484 	check_if_tm_restore_required(tsk);
485 
486 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
487 
488 #ifdef CONFIG_PPC_FPU
489 	if (usermsr & MSR_FP)
490 		__giveup_fpu(tsk);
491 #endif
492 #ifdef CONFIG_ALTIVEC
493 	if (usermsr & MSR_VEC)
494 		__giveup_altivec(tsk);
495 #endif
496 #ifdef CONFIG_SPE
497 	if (usermsr & MSR_SPE)
498 		__giveup_spe(tsk);
499 #endif
500 
501 	msr_check_and_clear(msr_all_available);
502 }
503 EXPORT_SYMBOL(giveup_all);
504 
505 void restore_math(struct pt_regs *regs)
506 {
507 	unsigned long msr;
508 
509 	if (!msr_tm_active(regs->msr) &&
510 		!current->thread.load_fp && !loadvec(current->thread))
511 		return;
512 
513 	msr = regs->msr;
514 	msr_check_and_set(msr_all_available);
515 
516 	/*
517 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
518 	 * indicates that the registers are hot
519 	 */
520 	if ((!(msr & MSR_FP)) && restore_fp(current))
521 		msr |= MSR_FP | current->thread.fpexc_mode;
522 
523 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
524 		msr |= MSR_VEC;
525 
526 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
527 			restore_vsx(current)) {
528 		msr |= MSR_VSX;
529 	}
530 
531 	msr_check_and_clear(msr_all_available);
532 
533 	regs->msr = msr;
534 }
535 
536 void save_all(struct task_struct *tsk)
537 {
538 	unsigned long usermsr;
539 
540 	if (!tsk->thread.regs)
541 		return;
542 
543 	usermsr = tsk->thread.regs->msr;
544 
545 	if ((usermsr & msr_all_available) == 0)
546 		return;
547 
548 	msr_check_and_set(msr_all_available);
549 
550 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
551 
552 	if (usermsr & MSR_FP)
553 		save_fpu(tsk);
554 
555 	if (usermsr & MSR_VEC)
556 		save_altivec(tsk);
557 
558 	if (usermsr & MSR_SPE)
559 		__giveup_spe(tsk);
560 
561 	msr_check_and_clear(msr_all_available);
562 }
563 
564 void flush_all_to_thread(struct task_struct *tsk)
565 {
566 	if (tsk->thread.regs) {
567 		preempt_disable();
568 		BUG_ON(tsk != current);
569 		save_all(tsk);
570 
571 #ifdef CONFIG_SPE
572 		if (tsk->thread.regs->msr & MSR_SPE)
573 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
574 #endif
575 
576 		preempt_enable();
577 	}
578 }
579 EXPORT_SYMBOL(flush_all_to_thread);
580 
581 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
582 void do_send_trap(struct pt_regs *regs, unsigned long address,
583 		  unsigned long error_code, int signal_code, int breakpt)
584 {
585 	siginfo_t info;
586 
587 	current->thread.trap_nr = signal_code;
588 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
589 			11, SIGSEGV) == NOTIFY_STOP)
590 		return;
591 
592 	/* Deliver the signal to userspace */
593 	info.si_signo = SIGTRAP;
594 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
595 	info.si_code = signal_code;
596 	info.si_addr = (void __user *)address;
597 	force_sig_info(SIGTRAP, &info, current);
598 }
599 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
600 void do_break (struct pt_regs *regs, unsigned long address,
601 		    unsigned long error_code)
602 {
603 	siginfo_t info;
604 
605 	current->thread.trap_nr = TRAP_HWBKPT;
606 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
607 			11, SIGSEGV) == NOTIFY_STOP)
608 		return;
609 
610 	if (debugger_break_match(regs))
611 		return;
612 
613 	/* Clear the breakpoint */
614 	hw_breakpoint_disable();
615 
616 	/* Deliver the signal to userspace */
617 	info.si_signo = SIGTRAP;
618 	info.si_errno = 0;
619 	info.si_code = TRAP_HWBKPT;
620 	info.si_addr = (void __user *)address;
621 	force_sig_info(SIGTRAP, &info, current);
622 }
623 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
624 
625 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
626 
627 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
628 /*
629  * Set the debug registers back to their default "safe" values.
630  */
631 static void set_debug_reg_defaults(struct thread_struct *thread)
632 {
633 	thread->debug.iac1 = thread->debug.iac2 = 0;
634 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
635 	thread->debug.iac3 = thread->debug.iac4 = 0;
636 #endif
637 	thread->debug.dac1 = thread->debug.dac2 = 0;
638 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
639 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
640 #endif
641 	thread->debug.dbcr0 = 0;
642 #ifdef CONFIG_BOOKE
643 	/*
644 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
645 	 */
646 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
647 			DBCR1_IAC3US | DBCR1_IAC4US;
648 	/*
649 	 * Force Data Address Compare User/Supervisor bits to be User-only
650 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
651 	 */
652 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
653 #else
654 	thread->debug.dbcr1 = 0;
655 #endif
656 }
657 
658 static void prime_debug_regs(struct debug_reg *debug)
659 {
660 	/*
661 	 * We could have inherited MSR_DE from userspace, since
662 	 * it doesn't get cleared on exception entry.  Make sure
663 	 * MSR_DE is clear before we enable any debug events.
664 	 */
665 	mtmsr(mfmsr() & ~MSR_DE);
666 
667 	mtspr(SPRN_IAC1, debug->iac1);
668 	mtspr(SPRN_IAC2, debug->iac2);
669 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
670 	mtspr(SPRN_IAC3, debug->iac3);
671 	mtspr(SPRN_IAC4, debug->iac4);
672 #endif
673 	mtspr(SPRN_DAC1, debug->dac1);
674 	mtspr(SPRN_DAC2, debug->dac2);
675 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
676 	mtspr(SPRN_DVC1, debug->dvc1);
677 	mtspr(SPRN_DVC2, debug->dvc2);
678 #endif
679 	mtspr(SPRN_DBCR0, debug->dbcr0);
680 	mtspr(SPRN_DBCR1, debug->dbcr1);
681 #ifdef CONFIG_BOOKE
682 	mtspr(SPRN_DBCR2, debug->dbcr2);
683 #endif
684 }
685 /*
686  * Unless neither the old or new thread are making use of the
687  * debug registers, set the debug registers from the values
688  * stored in the new thread.
689  */
690 void switch_booke_debug_regs(struct debug_reg *new_debug)
691 {
692 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
693 		|| (new_debug->dbcr0 & DBCR0_IDM))
694 			prime_debug_regs(new_debug);
695 }
696 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
697 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
698 #ifndef CONFIG_HAVE_HW_BREAKPOINT
699 static void set_debug_reg_defaults(struct thread_struct *thread)
700 {
701 	thread->hw_brk.address = 0;
702 	thread->hw_brk.type = 0;
703 	set_breakpoint(&thread->hw_brk);
704 }
705 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
706 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
707 
708 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
709 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
710 {
711 	mtspr(SPRN_DAC1, dabr);
712 #ifdef CONFIG_PPC_47x
713 	isync();
714 #endif
715 	return 0;
716 }
717 #elif defined(CONFIG_PPC_BOOK3S)
718 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
719 {
720 	mtspr(SPRN_DABR, dabr);
721 	if (cpu_has_feature(CPU_FTR_DABRX))
722 		mtspr(SPRN_DABRX, dabrx);
723 	return 0;
724 }
725 #elif defined(CONFIG_PPC_8xx)
726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
727 {
728 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
729 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
730 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
731 
732 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
733 		lctrl1 |= 0xa0000;
734 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
735 		lctrl1 |= 0xf0000;
736 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
737 		lctrl2 = 0;
738 
739 	mtspr(SPRN_LCTRL2, 0);
740 	mtspr(SPRN_CMPE, addr);
741 	mtspr(SPRN_CMPF, addr + 4);
742 	mtspr(SPRN_LCTRL1, lctrl1);
743 	mtspr(SPRN_LCTRL2, lctrl2);
744 
745 	return 0;
746 }
747 #else
748 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
749 {
750 	return -EINVAL;
751 }
752 #endif
753 
754 static inline int set_dabr(struct arch_hw_breakpoint *brk)
755 {
756 	unsigned long dabr, dabrx;
757 
758 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
759 	dabrx = ((brk->type >> 3) & 0x7);
760 
761 	if (ppc_md.set_dabr)
762 		return ppc_md.set_dabr(dabr, dabrx);
763 
764 	return __set_dabr(dabr, dabrx);
765 }
766 
767 static inline int set_dawr(struct arch_hw_breakpoint *brk)
768 {
769 	unsigned long dawr, dawrx, mrd;
770 
771 	dawr = brk->address;
772 
773 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
774 		                   << (63 - 58); //* read/write bits */
775 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
776 		                   << (63 - 59); //* translate */
777 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
778 		                   >> 3; //* PRIM bits */
779 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
780 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
781 	   0b111111=64DW.
782 	   brk->len is in bytes.
783 	   This aligns up to double word size, shifts and does the bias.
784 	*/
785 	mrd = ((brk->len + 7) >> 3) - 1;
786 	dawrx |= (mrd & 0x3f) << (63 - 53);
787 
788 	if (ppc_md.set_dawr)
789 		return ppc_md.set_dawr(dawr, dawrx);
790 	mtspr(SPRN_DAWR, dawr);
791 	mtspr(SPRN_DAWRX, dawrx);
792 	return 0;
793 }
794 
795 void __set_breakpoint(struct arch_hw_breakpoint *brk)
796 {
797 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
798 
799 	if (cpu_has_feature(CPU_FTR_DAWR))
800 		set_dawr(brk);
801 	else
802 		set_dabr(brk);
803 }
804 
805 void set_breakpoint(struct arch_hw_breakpoint *brk)
806 {
807 	preempt_disable();
808 	__set_breakpoint(brk);
809 	preempt_enable();
810 }
811 
812 #ifdef CONFIG_PPC64
813 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
814 #endif
815 
816 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
817 			      struct arch_hw_breakpoint *b)
818 {
819 	if (a->address != b->address)
820 		return false;
821 	if (a->type != b->type)
822 		return false;
823 	if (a->len != b->len)
824 		return false;
825 	return true;
826 }
827 
828 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
829 
830 static inline bool tm_enabled(struct task_struct *tsk)
831 {
832 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
833 }
834 
835 static void tm_reclaim_thread(struct thread_struct *thr,
836 			      struct thread_info *ti, uint8_t cause)
837 {
838 	/*
839 	 * Use the current MSR TM suspended bit to track if we have
840 	 * checkpointed state outstanding.
841 	 * On signal delivery, we'd normally reclaim the checkpointed
842 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
843 	 * This will then directly return to userspace without going
844 	 * through __switch_to(). However, if the stack frame is bad,
845 	 * we need to exit this thread which calls __switch_to() which
846 	 * will again attempt to reclaim the already saved tm state.
847 	 * Hence we need to check that we've not already reclaimed
848 	 * this state.
849 	 * We do this using the current MSR, rather tracking it in
850 	 * some specific thread_struct bit, as it has the additional
851 	 * benefit of checking for a potential TM bad thing exception.
852 	 */
853 	if (!MSR_TM_SUSPENDED(mfmsr()))
854 		return;
855 
856 	/*
857 	 * If we are in a transaction and FP is off then we can't have
858 	 * used FP inside that transaction. Hence the checkpointed
859 	 * state is the same as the live state. We need to copy the
860 	 * live state to the checkpointed state so that when the
861 	 * transaction is restored, the checkpointed state is correct
862 	 * and the aborted transaction sees the correct state. We use
863 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
864 	 * determine if it's going to write the checkpointed state or
865 	 * not. So either this will write the checkpointed registers,
866 	 * or reclaim will. Similarly for VMX.
867 	 */
868 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
869 		memcpy(&thr->ckfp_state, &thr->fp_state,
870 		       sizeof(struct thread_fp_state));
871 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
872 		memcpy(&thr->ckvr_state, &thr->vr_state,
873 		       sizeof(struct thread_vr_state));
874 
875 	giveup_all(container_of(thr, struct task_struct, thread));
876 
877 	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
878 }
879 
880 void tm_reclaim_current(uint8_t cause)
881 {
882 	tm_enable();
883 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
884 }
885 
886 static inline void tm_reclaim_task(struct task_struct *tsk)
887 {
888 	/* We have to work out if we're switching from/to a task that's in the
889 	 * middle of a transaction.
890 	 *
891 	 * In switching we need to maintain a 2nd register state as
892 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
893 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
894 	 * ckvr_state
895 	 *
896 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
897 	 */
898 	struct thread_struct *thr = &tsk->thread;
899 
900 	if (!thr->regs)
901 		return;
902 
903 	if (!MSR_TM_ACTIVE(thr->regs->msr))
904 		goto out_and_saveregs;
905 
906 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
907 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
908 		 tsk->pid, thr->regs->nip,
909 		 thr->regs->ccr, thr->regs->msr,
910 		 thr->regs->trap);
911 
912 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
913 
914 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
915 		 tsk->pid);
916 
917 out_and_saveregs:
918 	/* Always save the regs here, even if a transaction's not active.
919 	 * This context-switches a thread's TM info SPRs.  We do it here to
920 	 * be consistent with the restore path (in recheckpoint) which
921 	 * cannot happen later in _switch().
922 	 */
923 	tm_save_sprs(thr);
924 }
925 
926 extern void __tm_recheckpoint(struct thread_struct *thread,
927 			      unsigned long orig_msr);
928 
929 void tm_recheckpoint(struct thread_struct *thread,
930 		     unsigned long orig_msr)
931 {
932 	unsigned long flags;
933 
934 	if (!(thread->regs->msr & MSR_TM))
935 		return;
936 
937 	/* We really can't be interrupted here as the TEXASR registers can't
938 	 * change and later in the trecheckpoint code, we have a userspace R1.
939 	 * So let's hard disable over this region.
940 	 */
941 	local_irq_save(flags);
942 	hard_irq_disable();
943 
944 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
945 	 * before the trecheckpoint and no explosion occurs.
946 	 */
947 	tm_restore_sprs(thread);
948 
949 	__tm_recheckpoint(thread, orig_msr);
950 
951 	local_irq_restore(flags);
952 }
953 
954 static inline void tm_recheckpoint_new_task(struct task_struct *new)
955 {
956 	unsigned long msr;
957 
958 	if (!cpu_has_feature(CPU_FTR_TM))
959 		return;
960 
961 	/* Recheckpoint the registers of the thread we're about to switch to.
962 	 *
963 	 * If the task was using FP, we non-lazily reload both the original and
964 	 * the speculative FP register states.  This is because the kernel
965 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
966 	 * unavailable later, we are unable to determine which set of FP regs
967 	 * need to be restored.
968 	 */
969 	if (!tm_enabled(new))
970 		return;
971 
972 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
973 		tm_restore_sprs(&new->thread);
974 		return;
975 	}
976 	msr = new->thread.ckpt_regs.msr;
977 	/* Recheckpoint to restore original checkpointed register state. */
978 	TM_DEBUG("*** tm_recheckpoint of pid %d "
979 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
980 		 new->pid, new->thread.regs->msr, msr);
981 
982 	tm_recheckpoint(&new->thread, msr);
983 
984 	/*
985 	 * The checkpointed state has been restored but the live state has
986 	 * not, ensure all the math functionality is turned off to trigger
987 	 * restore_math() to reload.
988 	 */
989 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
990 
991 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
992 		 "(kernel msr 0x%lx)\n",
993 		 new->pid, mfmsr());
994 }
995 
996 static inline void __switch_to_tm(struct task_struct *prev,
997 		struct task_struct *new)
998 {
999 	if (cpu_has_feature(CPU_FTR_TM)) {
1000 		if (tm_enabled(prev) || tm_enabled(new))
1001 			tm_enable();
1002 
1003 		if (tm_enabled(prev)) {
1004 			prev->thread.load_tm++;
1005 			tm_reclaim_task(prev);
1006 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1007 				prev->thread.regs->msr &= ~MSR_TM;
1008 		}
1009 
1010 		tm_recheckpoint_new_task(new);
1011 	}
1012 }
1013 
1014 /*
1015  * This is called if we are on the way out to userspace and the
1016  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1017  * FP and/or vector state and does so if necessary.
1018  * If userspace is inside a transaction (whether active or
1019  * suspended) and FP/VMX/VSX instructions have ever been enabled
1020  * inside that transaction, then we have to keep them enabled
1021  * and keep the FP/VMX/VSX state loaded while ever the transaction
1022  * continues.  The reason is that if we didn't, and subsequently
1023  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1024  * we don't know whether it's the same transaction, and thus we
1025  * don't know which of the checkpointed state and the transactional
1026  * state to use.
1027  */
1028 void restore_tm_state(struct pt_regs *regs)
1029 {
1030 	unsigned long msr_diff;
1031 
1032 	/*
1033 	 * This is the only moment we should clear TIF_RESTORE_TM as
1034 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1035 	 * again, anything else could lead to an incorrect ckpt_msr being
1036 	 * saved and therefore incorrect signal contexts.
1037 	 */
1038 	clear_thread_flag(TIF_RESTORE_TM);
1039 	if (!MSR_TM_ACTIVE(regs->msr))
1040 		return;
1041 
1042 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1043 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1044 
1045 	/* Ensure that restore_math() will restore */
1046 	if (msr_diff & MSR_FP)
1047 		current->thread.load_fp = 1;
1048 #ifdef CONFIG_ALTIVEC
1049 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1050 		current->thread.load_vec = 1;
1051 #endif
1052 	restore_math(regs);
1053 
1054 	regs->msr |= msr_diff;
1055 }
1056 
1057 #else
1058 #define tm_recheckpoint_new_task(new)
1059 #define __switch_to_tm(prev, new)
1060 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1061 
1062 static inline void save_sprs(struct thread_struct *t)
1063 {
1064 #ifdef CONFIG_ALTIVEC
1065 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1066 		t->vrsave = mfspr(SPRN_VRSAVE);
1067 #endif
1068 #ifdef CONFIG_PPC_BOOK3S_64
1069 	if (cpu_has_feature(CPU_FTR_DSCR))
1070 		t->dscr = mfspr(SPRN_DSCR);
1071 
1072 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1073 		t->bescr = mfspr(SPRN_BESCR);
1074 		t->ebbhr = mfspr(SPRN_EBBHR);
1075 		t->ebbrr = mfspr(SPRN_EBBRR);
1076 
1077 		t->fscr = mfspr(SPRN_FSCR);
1078 
1079 		/*
1080 		 * Note that the TAR is not available for use in the kernel.
1081 		 * (To provide this, the TAR should be backed up/restored on
1082 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1083 		 * this should be in pt_regs anyway (for debug).)
1084 		 */
1085 		t->tar = mfspr(SPRN_TAR);
1086 	}
1087 #endif
1088 }
1089 
1090 static inline void restore_sprs(struct thread_struct *old_thread,
1091 				struct thread_struct *new_thread)
1092 {
1093 #ifdef CONFIG_ALTIVEC
1094 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1095 	    old_thread->vrsave != new_thread->vrsave)
1096 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1097 #endif
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1100 		u64 dscr = get_paca()->dscr_default;
1101 		if (new_thread->dscr_inherit)
1102 			dscr = new_thread->dscr;
1103 
1104 		if (old_thread->dscr != dscr)
1105 			mtspr(SPRN_DSCR, dscr);
1106 	}
1107 
1108 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1109 		if (old_thread->bescr != new_thread->bescr)
1110 			mtspr(SPRN_BESCR, new_thread->bescr);
1111 		if (old_thread->ebbhr != new_thread->ebbhr)
1112 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1113 		if (old_thread->ebbrr != new_thread->ebbrr)
1114 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1115 
1116 		if (old_thread->fscr != new_thread->fscr)
1117 			mtspr(SPRN_FSCR, new_thread->fscr);
1118 
1119 		if (old_thread->tar != new_thread->tar)
1120 			mtspr(SPRN_TAR, new_thread->tar);
1121 	}
1122 #endif
1123 }
1124 
1125 #ifdef CONFIG_PPC_BOOK3S_64
1126 #define CP_SIZE 128
1127 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1128 #endif
1129 
1130 struct task_struct *__switch_to(struct task_struct *prev,
1131 	struct task_struct *new)
1132 {
1133 	struct thread_struct *new_thread, *old_thread;
1134 	struct task_struct *last;
1135 #ifdef CONFIG_PPC_BOOK3S_64
1136 	struct ppc64_tlb_batch *batch;
1137 #endif
1138 
1139 	new_thread = &new->thread;
1140 	old_thread = &current->thread;
1141 
1142 	WARN_ON(!irqs_disabled());
1143 
1144 #ifdef CONFIG_PPC64
1145 	/*
1146 	 * Collect processor utilization data per process
1147 	 */
1148 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1149 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1150 		long unsigned start_tb, current_tb;
1151 		start_tb = old_thread->start_tb;
1152 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1153 		old_thread->accum_tb += (current_tb - start_tb);
1154 		new_thread->start_tb = current_tb;
1155 	}
1156 #endif /* CONFIG_PPC64 */
1157 
1158 #ifdef CONFIG_PPC_STD_MMU_64
1159 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1160 	if (batch->active) {
1161 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1162 		if (batch->index)
1163 			__flush_tlb_pending(batch);
1164 		batch->active = 0;
1165 	}
1166 #endif /* CONFIG_PPC_STD_MMU_64 */
1167 
1168 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1169 	switch_booke_debug_regs(&new->thread.debug);
1170 #else
1171 /*
1172  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1173  * schedule DABR
1174  */
1175 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1176 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1177 		__set_breakpoint(&new->thread.hw_brk);
1178 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1179 #endif
1180 
1181 	/*
1182 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1183 	 * change a number of them.
1184 	 */
1185 	save_sprs(&prev->thread);
1186 
1187 	/* Save FPU, Altivec, VSX and SPE state */
1188 	giveup_all(prev);
1189 
1190 	__switch_to_tm(prev, new);
1191 
1192 	if (!radix_enabled()) {
1193 		/*
1194 		 * We can't take a PMU exception inside _switch() since there
1195 		 * is a window where the kernel stack SLB and the kernel stack
1196 		 * are out of sync. Hard disable here.
1197 		 */
1198 		hard_irq_disable();
1199 	}
1200 
1201 	/*
1202 	 * Call restore_sprs() before calling _switch(). If we move it after
1203 	 * _switch() then we miss out on calling it for new tasks. The reason
1204 	 * for this is we manually create a stack frame for new tasks that
1205 	 * directly returns through ret_from_fork() or
1206 	 * ret_from_kernel_thread(). See copy_thread() for details.
1207 	 */
1208 	restore_sprs(old_thread, new_thread);
1209 
1210 	last = _switch(old_thread, new_thread);
1211 
1212 #ifdef CONFIG_PPC_STD_MMU_64
1213 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1214 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1215 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1216 		batch->active = 1;
1217 	}
1218 
1219 	if (current_thread_info()->task->thread.regs) {
1220 		restore_math(current_thread_info()->task->thread.regs);
1221 
1222 		/*
1223 		 * The copy-paste buffer can only store into foreign real
1224 		 * addresses, so unprivileged processes can not see the
1225 		 * data or use it in any way unless they have foreign real
1226 		 * mappings. We don't have a VAS driver that allocates those
1227 		 * yet, so no cpabort is required.
1228 		 */
1229 		if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1230 			/*
1231 			 * DD1 allows paste into normal system memory, so we
1232 			 * do an unpaired copy here to clear the buffer and
1233 			 * prevent a covert channel being set up.
1234 			 *
1235 			 * cpabort is not used because it is quite expensive.
1236 			 */
1237 			asm volatile(PPC_COPY(%0, %1)
1238 					: : "r"(dummy_copy_buffer), "r"(0));
1239 		}
1240 	}
1241 #endif /* CONFIG_PPC_STD_MMU_64 */
1242 
1243 	return last;
1244 }
1245 
1246 static int instructions_to_print = 16;
1247 
1248 static void show_instructions(struct pt_regs *regs)
1249 {
1250 	int i;
1251 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1252 			sizeof(int));
1253 
1254 	printk("Instruction dump:");
1255 
1256 	for (i = 0; i < instructions_to_print; i++) {
1257 		int instr;
1258 
1259 		if (!(i % 8))
1260 			pr_cont("\n");
1261 
1262 #if !defined(CONFIG_BOOKE)
1263 		/* If executing with the IMMU off, adjust pc rather
1264 		 * than print XXXXXXXX.
1265 		 */
1266 		if (!(regs->msr & MSR_IR))
1267 			pc = (unsigned long)phys_to_virt(pc);
1268 #endif
1269 
1270 		if (!__kernel_text_address(pc) ||
1271 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1272 			pr_cont("XXXXXXXX ");
1273 		} else {
1274 			if (regs->nip == pc)
1275 				pr_cont("<%08x> ", instr);
1276 			else
1277 				pr_cont("%08x ", instr);
1278 		}
1279 
1280 		pc += sizeof(int);
1281 	}
1282 
1283 	pr_cont("\n");
1284 }
1285 
1286 struct regbit {
1287 	unsigned long bit;
1288 	const char *name;
1289 };
1290 
1291 static struct regbit msr_bits[] = {
1292 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1293 	{MSR_SF,	"SF"},
1294 	{MSR_HV,	"HV"},
1295 #endif
1296 	{MSR_VEC,	"VEC"},
1297 	{MSR_VSX,	"VSX"},
1298 #ifdef CONFIG_BOOKE
1299 	{MSR_CE,	"CE"},
1300 #endif
1301 	{MSR_EE,	"EE"},
1302 	{MSR_PR,	"PR"},
1303 	{MSR_FP,	"FP"},
1304 	{MSR_ME,	"ME"},
1305 #ifdef CONFIG_BOOKE
1306 	{MSR_DE,	"DE"},
1307 #else
1308 	{MSR_SE,	"SE"},
1309 	{MSR_BE,	"BE"},
1310 #endif
1311 	{MSR_IR,	"IR"},
1312 	{MSR_DR,	"DR"},
1313 	{MSR_PMM,	"PMM"},
1314 #ifndef CONFIG_BOOKE
1315 	{MSR_RI,	"RI"},
1316 	{MSR_LE,	"LE"},
1317 #endif
1318 	{0,		NULL}
1319 };
1320 
1321 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1322 {
1323 	const char *s = "";
1324 
1325 	for (; bits->bit; ++bits)
1326 		if (val & bits->bit) {
1327 			pr_cont("%s%s", s, bits->name);
1328 			s = sep;
1329 		}
1330 }
1331 
1332 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1333 static struct regbit msr_tm_bits[] = {
1334 	{MSR_TS_T,	"T"},
1335 	{MSR_TS_S,	"S"},
1336 	{MSR_TM,	"E"},
1337 	{0,		NULL}
1338 };
1339 
1340 static void print_tm_bits(unsigned long val)
1341 {
1342 /*
1343  * This only prints something if at least one of the TM bit is set.
1344  * Inside the TM[], the output means:
1345  *   E: Enabled		(bit 32)
1346  *   S: Suspended	(bit 33)
1347  *   T: Transactional	(bit 34)
1348  */
1349 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1350 		pr_cont(",TM[");
1351 		print_bits(val, msr_tm_bits, "");
1352 		pr_cont("]");
1353 	}
1354 }
1355 #else
1356 static void print_tm_bits(unsigned long val) {}
1357 #endif
1358 
1359 static void print_msr_bits(unsigned long val)
1360 {
1361 	pr_cont("<");
1362 	print_bits(val, msr_bits, ",");
1363 	print_tm_bits(val);
1364 	pr_cont(">");
1365 }
1366 
1367 #ifdef CONFIG_PPC64
1368 #define REG		"%016lx"
1369 #define REGS_PER_LINE	4
1370 #define LAST_VOLATILE	13
1371 #else
1372 #define REG		"%08lx"
1373 #define REGS_PER_LINE	8
1374 #define LAST_VOLATILE	12
1375 #endif
1376 
1377 void show_regs(struct pt_regs * regs)
1378 {
1379 	int i, trap;
1380 
1381 	show_regs_print_info(KERN_DEFAULT);
1382 
1383 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1384 	       regs->nip, regs->link, regs->ctr);
1385 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1386 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1387 	printk("MSR:  "REG" ", regs->msr);
1388 	print_msr_bits(regs->msr);
1389 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1390 	trap = TRAP(regs);
1391 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1392 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1393 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1394 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1395 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1396 #else
1397 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1398 #endif
1399 #ifdef CONFIG_PPC64
1400 	pr_cont("SOFTE: %ld ", regs->softe);
1401 #endif
1402 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1403 	if (MSR_TM_ACTIVE(regs->msr))
1404 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1405 #endif
1406 
1407 	for (i = 0;  i < 32;  i++) {
1408 		if ((i % REGS_PER_LINE) == 0)
1409 			pr_cont("\nGPR%02d: ", i);
1410 		pr_cont(REG " ", regs->gpr[i]);
1411 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1412 			break;
1413 	}
1414 	pr_cont("\n");
1415 #ifdef CONFIG_KALLSYMS
1416 	/*
1417 	 * Lookup NIP late so we have the best change of getting the
1418 	 * above info out without failing
1419 	 */
1420 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1421 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1422 #endif
1423 	show_stack(current, (unsigned long *) regs->gpr[1]);
1424 	if (!user_mode(regs))
1425 		show_instructions(regs);
1426 }
1427 
1428 void flush_thread(void)
1429 {
1430 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1431 	flush_ptrace_hw_breakpoint(current);
1432 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1433 	set_debug_reg_defaults(&current->thread);
1434 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1435 }
1436 
1437 void
1438 release_thread(struct task_struct *t)
1439 {
1440 }
1441 
1442 /*
1443  * this gets called so that we can store coprocessor state into memory and
1444  * copy the current task into the new thread.
1445  */
1446 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1447 {
1448 	flush_all_to_thread(src);
1449 	/*
1450 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1451 	 * flush but it removes the checkpointed state from the current CPU and
1452 	 * transitions the CPU out of TM mode.  Hence we need to call
1453 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1454 	 * checkpointed state back and the TM mode.
1455 	 *
1456 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1457 	 * dst is only important for __switch_to()
1458 	 */
1459 	__switch_to_tm(src, src);
1460 
1461 	*dst = *src;
1462 
1463 	clear_task_ebb(dst);
1464 
1465 	return 0;
1466 }
1467 
1468 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1469 {
1470 #ifdef CONFIG_PPC_STD_MMU_64
1471 	unsigned long sp_vsid;
1472 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1473 
1474 	if (radix_enabled())
1475 		return;
1476 
1477 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1478 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1479 			<< SLB_VSID_SHIFT_1T;
1480 	else
1481 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1482 			<< SLB_VSID_SHIFT;
1483 	sp_vsid |= SLB_VSID_KERNEL | llp;
1484 	p->thread.ksp_vsid = sp_vsid;
1485 #endif
1486 }
1487 
1488 /*
1489  * Copy a thread..
1490  */
1491 
1492 /*
1493  * Copy architecture-specific thread state
1494  */
1495 int copy_thread(unsigned long clone_flags, unsigned long usp,
1496 		unsigned long kthread_arg, struct task_struct *p)
1497 {
1498 	struct pt_regs *childregs, *kregs;
1499 	extern void ret_from_fork(void);
1500 	extern void ret_from_kernel_thread(void);
1501 	void (*f)(void);
1502 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1503 	struct thread_info *ti = task_thread_info(p);
1504 
1505 	klp_init_thread_info(ti);
1506 
1507 	/* Copy registers */
1508 	sp -= sizeof(struct pt_regs);
1509 	childregs = (struct pt_regs *) sp;
1510 	if (unlikely(p->flags & PF_KTHREAD)) {
1511 		/* kernel thread */
1512 		memset(childregs, 0, sizeof(struct pt_regs));
1513 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1514 		/* function */
1515 		if (usp)
1516 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1517 #ifdef CONFIG_PPC64
1518 		clear_tsk_thread_flag(p, TIF_32BIT);
1519 		childregs->softe = 1;
1520 #endif
1521 		childregs->gpr[15] = kthread_arg;
1522 		p->thread.regs = NULL;	/* no user register state */
1523 		ti->flags |= _TIF_RESTOREALL;
1524 		f = ret_from_kernel_thread;
1525 	} else {
1526 		/* user thread */
1527 		struct pt_regs *regs = current_pt_regs();
1528 		CHECK_FULL_REGS(regs);
1529 		*childregs = *regs;
1530 		if (usp)
1531 			childregs->gpr[1] = usp;
1532 		p->thread.regs = childregs;
1533 		childregs->gpr[3] = 0;  /* Result from fork() */
1534 		if (clone_flags & CLONE_SETTLS) {
1535 #ifdef CONFIG_PPC64
1536 			if (!is_32bit_task())
1537 				childregs->gpr[13] = childregs->gpr[6];
1538 			else
1539 #endif
1540 				childregs->gpr[2] = childregs->gpr[6];
1541 		}
1542 
1543 		f = ret_from_fork;
1544 	}
1545 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1546 	sp -= STACK_FRAME_OVERHEAD;
1547 
1548 	/*
1549 	 * The way this works is that at some point in the future
1550 	 * some task will call _switch to switch to the new task.
1551 	 * That will pop off the stack frame created below and start
1552 	 * the new task running at ret_from_fork.  The new task will
1553 	 * do some house keeping and then return from the fork or clone
1554 	 * system call, using the stack frame created above.
1555 	 */
1556 	((unsigned long *)sp)[0] = 0;
1557 	sp -= sizeof(struct pt_regs);
1558 	kregs = (struct pt_regs *) sp;
1559 	sp -= STACK_FRAME_OVERHEAD;
1560 	p->thread.ksp = sp;
1561 #ifdef CONFIG_PPC32
1562 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1563 				_ALIGN_UP(sizeof(struct thread_info), 16);
1564 #endif
1565 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1566 	p->thread.ptrace_bps[0] = NULL;
1567 #endif
1568 
1569 	p->thread.fp_save_area = NULL;
1570 #ifdef CONFIG_ALTIVEC
1571 	p->thread.vr_save_area = NULL;
1572 #endif
1573 
1574 	setup_ksp_vsid(p, sp);
1575 
1576 #ifdef CONFIG_PPC64
1577 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1578 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1579 		p->thread.dscr = mfspr(SPRN_DSCR);
1580 	}
1581 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1582 		p->thread.ppr = INIT_PPR;
1583 #endif
1584 	kregs->nip = ppc_function_entry(f);
1585 	return 0;
1586 }
1587 
1588 /*
1589  * Set up a thread for executing a new program
1590  */
1591 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1592 {
1593 #ifdef CONFIG_PPC64
1594 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1595 #endif
1596 
1597 	/*
1598 	 * If we exec out of a kernel thread then thread.regs will not be
1599 	 * set.  Do it now.
1600 	 */
1601 	if (!current->thread.regs) {
1602 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1603 		current->thread.regs = regs - 1;
1604 	}
1605 
1606 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1607 	/*
1608 	 * Clear any transactional state, we're exec()ing. The cause is
1609 	 * not important as there will never be a recheckpoint so it's not
1610 	 * user visible.
1611 	 */
1612 	if (MSR_TM_SUSPENDED(mfmsr()))
1613 		tm_reclaim_current(0);
1614 #endif
1615 
1616 	memset(regs->gpr, 0, sizeof(regs->gpr));
1617 	regs->ctr = 0;
1618 	regs->link = 0;
1619 	regs->xer = 0;
1620 	regs->ccr = 0;
1621 	regs->gpr[1] = sp;
1622 
1623 	/*
1624 	 * We have just cleared all the nonvolatile GPRs, so make
1625 	 * FULL_REGS(regs) return true.  This is necessary to allow
1626 	 * ptrace to examine the thread immediately after exec.
1627 	 */
1628 	regs->trap &= ~1UL;
1629 
1630 #ifdef CONFIG_PPC32
1631 	regs->mq = 0;
1632 	regs->nip = start;
1633 	regs->msr = MSR_USER;
1634 #else
1635 	if (!is_32bit_task()) {
1636 		unsigned long entry;
1637 
1638 		if (is_elf2_task()) {
1639 			/* Look ma, no function descriptors! */
1640 			entry = start;
1641 
1642 			/*
1643 			 * Ulrich says:
1644 			 *   The latest iteration of the ABI requires that when
1645 			 *   calling a function (at its global entry point),
1646 			 *   the caller must ensure r12 holds the entry point
1647 			 *   address (so that the function can quickly
1648 			 *   establish addressability).
1649 			 */
1650 			regs->gpr[12] = start;
1651 			/* Make sure that's restored on entry to userspace. */
1652 			set_thread_flag(TIF_RESTOREALL);
1653 		} else {
1654 			unsigned long toc;
1655 
1656 			/* start is a relocated pointer to the function
1657 			 * descriptor for the elf _start routine.  The first
1658 			 * entry in the function descriptor is the entry
1659 			 * address of _start and the second entry is the TOC
1660 			 * value we need to use.
1661 			 */
1662 			__get_user(entry, (unsigned long __user *)start);
1663 			__get_user(toc, (unsigned long __user *)start+1);
1664 
1665 			/* Check whether the e_entry function descriptor entries
1666 			 * need to be relocated before we can use them.
1667 			 */
1668 			if (load_addr != 0) {
1669 				entry += load_addr;
1670 				toc   += load_addr;
1671 			}
1672 			regs->gpr[2] = toc;
1673 		}
1674 		regs->nip = entry;
1675 		regs->msr = MSR_USER64;
1676 	} else {
1677 		regs->nip = start;
1678 		regs->gpr[2] = 0;
1679 		regs->msr = MSR_USER32;
1680 	}
1681 #endif
1682 #ifdef CONFIG_VSX
1683 	current->thread.used_vsr = 0;
1684 #endif
1685 	current->thread.load_fp = 0;
1686 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1687 	current->thread.fp_save_area = NULL;
1688 #ifdef CONFIG_ALTIVEC
1689 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1690 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1691 	current->thread.vr_save_area = NULL;
1692 	current->thread.vrsave = 0;
1693 	current->thread.used_vr = 0;
1694 	current->thread.load_vec = 0;
1695 #endif /* CONFIG_ALTIVEC */
1696 #ifdef CONFIG_SPE
1697 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1698 	current->thread.acc = 0;
1699 	current->thread.spefscr = 0;
1700 	current->thread.used_spe = 0;
1701 #endif /* CONFIG_SPE */
1702 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1703 	current->thread.tm_tfhar = 0;
1704 	current->thread.tm_texasr = 0;
1705 	current->thread.tm_tfiar = 0;
1706 	current->thread.load_tm = 0;
1707 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1708 }
1709 EXPORT_SYMBOL(start_thread);
1710 
1711 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1712 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1713 
1714 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1715 {
1716 	struct pt_regs *regs = tsk->thread.regs;
1717 
1718 	/* This is a bit hairy.  If we are an SPE enabled  processor
1719 	 * (have embedded fp) we store the IEEE exception enable flags in
1720 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1721 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1722 	if (val & PR_FP_EXC_SW_ENABLE) {
1723 #ifdef CONFIG_SPE
1724 		if (cpu_has_feature(CPU_FTR_SPE)) {
1725 			/*
1726 			 * When the sticky exception bits are set
1727 			 * directly by userspace, it must call prctl
1728 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1729 			 * in the existing prctl settings) or
1730 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1731 			 * the bits being set).  <fenv.h> functions
1732 			 * saving and restoring the whole
1733 			 * floating-point environment need to do so
1734 			 * anyway to restore the prctl settings from
1735 			 * the saved environment.
1736 			 */
1737 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1738 			tsk->thread.fpexc_mode = val &
1739 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1740 			return 0;
1741 		} else {
1742 			return -EINVAL;
1743 		}
1744 #else
1745 		return -EINVAL;
1746 #endif
1747 	}
1748 
1749 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1750 	 * __pack_fe01 use do not overlap with bits used for
1751 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1752 	 * on CONFIG_SPE implementations are reserved so writing to
1753 	 * them does not change anything */
1754 	if (val > PR_FP_EXC_PRECISE)
1755 		return -EINVAL;
1756 	tsk->thread.fpexc_mode = __pack_fe01(val);
1757 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1758 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1759 			| tsk->thread.fpexc_mode;
1760 	return 0;
1761 }
1762 
1763 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1764 {
1765 	unsigned int val;
1766 
1767 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1768 #ifdef CONFIG_SPE
1769 		if (cpu_has_feature(CPU_FTR_SPE)) {
1770 			/*
1771 			 * When the sticky exception bits are set
1772 			 * directly by userspace, it must call prctl
1773 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1774 			 * in the existing prctl settings) or
1775 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1776 			 * the bits being set).  <fenv.h> functions
1777 			 * saving and restoring the whole
1778 			 * floating-point environment need to do so
1779 			 * anyway to restore the prctl settings from
1780 			 * the saved environment.
1781 			 */
1782 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1783 			val = tsk->thread.fpexc_mode;
1784 		} else
1785 			return -EINVAL;
1786 #else
1787 		return -EINVAL;
1788 #endif
1789 	else
1790 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1791 	return put_user(val, (unsigned int __user *) adr);
1792 }
1793 
1794 int set_endian(struct task_struct *tsk, unsigned int val)
1795 {
1796 	struct pt_regs *regs = tsk->thread.regs;
1797 
1798 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1799 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1800 		return -EINVAL;
1801 
1802 	if (regs == NULL)
1803 		return -EINVAL;
1804 
1805 	if (val == PR_ENDIAN_BIG)
1806 		regs->msr &= ~MSR_LE;
1807 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1808 		regs->msr |= MSR_LE;
1809 	else
1810 		return -EINVAL;
1811 
1812 	return 0;
1813 }
1814 
1815 int get_endian(struct task_struct *tsk, unsigned long adr)
1816 {
1817 	struct pt_regs *regs = tsk->thread.regs;
1818 	unsigned int val;
1819 
1820 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1821 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1822 		return -EINVAL;
1823 
1824 	if (regs == NULL)
1825 		return -EINVAL;
1826 
1827 	if (regs->msr & MSR_LE) {
1828 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1829 			val = PR_ENDIAN_LITTLE;
1830 		else
1831 			val = PR_ENDIAN_PPC_LITTLE;
1832 	} else
1833 		val = PR_ENDIAN_BIG;
1834 
1835 	return put_user(val, (unsigned int __user *)adr);
1836 }
1837 
1838 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1839 {
1840 	tsk->thread.align_ctl = val;
1841 	return 0;
1842 }
1843 
1844 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1845 {
1846 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1847 }
1848 
1849 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1850 				  unsigned long nbytes)
1851 {
1852 	unsigned long stack_page;
1853 	unsigned long cpu = task_cpu(p);
1854 
1855 	/*
1856 	 * Avoid crashing if the stack has overflowed and corrupted
1857 	 * task_cpu(p), which is in the thread_info struct.
1858 	 */
1859 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1860 		stack_page = (unsigned long) hardirq_ctx[cpu];
1861 		if (sp >= stack_page + sizeof(struct thread_struct)
1862 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1863 			return 1;
1864 
1865 		stack_page = (unsigned long) softirq_ctx[cpu];
1866 		if (sp >= stack_page + sizeof(struct thread_struct)
1867 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1868 			return 1;
1869 	}
1870 	return 0;
1871 }
1872 
1873 int validate_sp(unsigned long sp, struct task_struct *p,
1874 		       unsigned long nbytes)
1875 {
1876 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1877 
1878 	if (sp >= stack_page + sizeof(struct thread_struct)
1879 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1880 		return 1;
1881 
1882 	return valid_irq_stack(sp, p, nbytes);
1883 }
1884 
1885 EXPORT_SYMBOL(validate_sp);
1886 
1887 unsigned long get_wchan(struct task_struct *p)
1888 {
1889 	unsigned long ip, sp;
1890 	int count = 0;
1891 
1892 	if (!p || p == current || p->state == TASK_RUNNING)
1893 		return 0;
1894 
1895 	sp = p->thread.ksp;
1896 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1897 		return 0;
1898 
1899 	do {
1900 		sp = *(unsigned long *)sp;
1901 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1902 			return 0;
1903 		if (count > 0) {
1904 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1905 			if (!in_sched_functions(ip))
1906 				return ip;
1907 		}
1908 	} while (count++ < 16);
1909 	return 0;
1910 }
1911 
1912 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1913 
1914 void show_stack(struct task_struct *tsk, unsigned long *stack)
1915 {
1916 	unsigned long sp, ip, lr, newsp;
1917 	int count = 0;
1918 	int firstframe = 1;
1919 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1920 	int curr_frame = current->curr_ret_stack;
1921 	extern void return_to_handler(void);
1922 	unsigned long rth = (unsigned long)return_to_handler;
1923 #endif
1924 
1925 	sp = (unsigned long) stack;
1926 	if (tsk == NULL)
1927 		tsk = current;
1928 	if (sp == 0) {
1929 		if (tsk == current)
1930 			sp = current_stack_pointer();
1931 		else
1932 			sp = tsk->thread.ksp;
1933 	}
1934 
1935 	lr = 0;
1936 	printk("Call Trace:\n");
1937 	do {
1938 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1939 			return;
1940 
1941 		stack = (unsigned long *) sp;
1942 		newsp = stack[0];
1943 		ip = stack[STACK_FRAME_LR_SAVE];
1944 		if (!firstframe || ip != lr) {
1945 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1946 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1947 			if ((ip == rth) && curr_frame >= 0) {
1948 				pr_cont(" (%pS)",
1949 				       (void *)current->ret_stack[curr_frame].ret);
1950 				curr_frame--;
1951 			}
1952 #endif
1953 			if (firstframe)
1954 				pr_cont(" (unreliable)");
1955 			pr_cont("\n");
1956 		}
1957 		firstframe = 0;
1958 
1959 		/*
1960 		 * See if this is an exception frame.
1961 		 * We look for the "regshere" marker in the current frame.
1962 		 */
1963 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1964 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1965 			struct pt_regs *regs = (struct pt_regs *)
1966 				(sp + STACK_FRAME_OVERHEAD);
1967 			lr = regs->link;
1968 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1969 			       regs->trap, (void *)regs->nip, (void *)lr);
1970 			firstframe = 1;
1971 		}
1972 
1973 		sp = newsp;
1974 	} while (count++ < kstack_depth_to_print);
1975 }
1976 
1977 #ifdef CONFIG_PPC64
1978 /* Called with hard IRQs off */
1979 void notrace __ppc64_runlatch_on(void)
1980 {
1981 	struct thread_info *ti = current_thread_info();
1982 
1983 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
1984 		/*
1985 		 * Least significant bit (RUN) is the only writable bit of
1986 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
1987 		 * earliest ISA where this is the case, but it's convenient.
1988 		 */
1989 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
1990 	} else {
1991 		unsigned long ctrl;
1992 
1993 		/*
1994 		 * Some architectures (e.g., Cell) have writable fields other
1995 		 * than RUN, so do the read-modify-write.
1996 		 */
1997 		ctrl = mfspr(SPRN_CTRLF);
1998 		ctrl |= CTRL_RUNLATCH;
1999 		mtspr(SPRN_CTRLT, ctrl);
2000 	}
2001 
2002 	ti->local_flags |= _TLF_RUNLATCH;
2003 }
2004 
2005 /* Called with hard IRQs off */
2006 void notrace __ppc64_runlatch_off(void)
2007 {
2008 	struct thread_info *ti = current_thread_info();
2009 
2010 	ti->local_flags &= ~_TLF_RUNLATCH;
2011 
2012 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2013 		mtspr(SPRN_CTRLT, 0);
2014 	} else {
2015 		unsigned long ctrl;
2016 
2017 		ctrl = mfspr(SPRN_CTRLF);
2018 		ctrl &= ~CTRL_RUNLATCH;
2019 		mtspr(SPRN_CTRLT, ctrl);
2020 	}
2021 }
2022 #endif /* CONFIG_PPC64 */
2023 
2024 unsigned long arch_align_stack(unsigned long sp)
2025 {
2026 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2027 		sp -= get_random_int() & ~PAGE_MASK;
2028 	return sp & ~0xf;
2029 }
2030 
2031 static inline unsigned long brk_rnd(void)
2032 {
2033         unsigned long rnd = 0;
2034 
2035 	/* 8MB for 32bit, 1GB for 64bit */
2036 	if (is_32bit_task())
2037 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2038 	else
2039 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2040 
2041 	return rnd << PAGE_SHIFT;
2042 }
2043 
2044 unsigned long arch_randomize_brk(struct mm_struct *mm)
2045 {
2046 	unsigned long base = mm->brk;
2047 	unsigned long ret;
2048 
2049 #ifdef CONFIG_PPC_STD_MMU_64
2050 	/*
2051 	 * If we are using 1TB segments and we are allowed to randomise
2052 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2053 	 * segment. Otherwise the heap will be in the bottom 1TB
2054 	 * which always uses 256MB segments and this may result in a
2055 	 * performance penalty. We don't need to worry about radix. For
2056 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2057 	 */
2058 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2059 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2060 #endif
2061 
2062 	ret = PAGE_ALIGN(base + brk_rnd());
2063 
2064 	if (ret < mm->brk)
2065 		return mm->brk;
2066 
2067 	return ret;
2068 }
2069 
2070