1 /* 2 * arch/ppc/kernel/process.c 3 * 4 * Derived from "arch/i386/kernel/process.c" 5 * Copyright (C) 1995 Linus Torvalds 6 * 7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 8 * Paul Mackerras (paulus@cs.anu.edu.au) 9 * 10 * PowerPC version 11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 */ 18 19 #include <linux/config.h> 20 #include <linux/errno.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/smp_lock.h> 26 #include <linux/stddef.h> 27 #include <linux/unistd.h> 28 #include <linux/ptrace.h> 29 #include <linux/slab.h> 30 #include <linux/user.h> 31 #include <linux/elf.h> 32 #include <linux/init.h> 33 #include <linux/prctl.h> 34 #include <linux/init_task.h> 35 #include <linux/module.h> 36 #include <linux/kallsyms.h> 37 #include <linux/mqueue.h> 38 #include <linux/hardirq.h> 39 #include <linux/utsname.h> 40 #include <linux/kprobes.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/uaccess.h> 44 #include <asm/system.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #ifdef CONFIG_PPC64 51 #include <asm/firmware.h> 52 #include <asm/time.h> 53 #endif 54 55 extern unsigned long _get_SP(void); 56 57 #ifndef CONFIG_SMP 58 struct task_struct *last_task_used_math = NULL; 59 struct task_struct *last_task_used_altivec = NULL; 60 struct task_struct *last_task_used_spe = NULL; 61 #endif 62 63 /* 64 * Make sure the floating-point register state in the 65 * the thread_struct is up to date for task tsk. 66 */ 67 void flush_fp_to_thread(struct task_struct *tsk) 68 { 69 if (tsk->thread.regs) { 70 /* 71 * We need to disable preemption here because if we didn't, 72 * another process could get scheduled after the regs->msr 73 * test but before we have finished saving the FP registers 74 * to the thread_struct. That process could take over the 75 * FPU, and then when we get scheduled again we would store 76 * bogus values for the remaining FP registers. 77 */ 78 preempt_disable(); 79 if (tsk->thread.regs->msr & MSR_FP) { 80 #ifdef CONFIG_SMP 81 /* 82 * This should only ever be called for current or 83 * for a stopped child process. Since we save away 84 * the FP register state on context switch on SMP, 85 * there is something wrong if a stopped child appears 86 * to still have its FP state in the CPU registers. 87 */ 88 BUG_ON(tsk != current); 89 #endif 90 giveup_fpu(current); 91 } 92 preempt_enable(); 93 } 94 } 95 96 void enable_kernel_fp(void) 97 { 98 WARN_ON(preemptible()); 99 100 #ifdef CONFIG_SMP 101 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 102 giveup_fpu(current); 103 else 104 giveup_fpu(NULL); /* just enables FP for kernel */ 105 #else 106 giveup_fpu(last_task_used_math); 107 #endif /* CONFIG_SMP */ 108 } 109 EXPORT_SYMBOL(enable_kernel_fp); 110 111 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) 112 { 113 if (!tsk->thread.regs) 114 return 0; 115 flush_fp_to_thread(current); 116 117 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); 118 119 return 1; 120 } 121 122 #ifdef CONFIG_ALTIVEC 123 void enable_kernel_altivec(void) 124 { 125 WARN_ON(preemptible()); 126 127 #ifdef CONFIG_SMP 128 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 129 giveup_altivec(current); 130 else 131 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 132 #else 133 giveup_altivec(last_task_used_altivec); 134 #endif /* CONFIG_SMP */ 135 } 136 EXPORT_SYMBOL(enable_kernel_altivec); 137 138 /* 139 * Make sure the VMX/Altivec register state in the 140 * the thread_struct is up to date for task tsk. 141 */ 142 void flush_altivec_to_thread(struct task_struct *tsk) 143 { 144 if (tsk->thread.regs) { 145 preempt_disable(); 146 if (tsk->thread.regs->msr & MSR_VEC) { 147 #ifdef CONFIG_SMP 148 BUG_ON(tsk != current); 149 #endif 150 giveup_altivec(current); 151 } 152 preempt_enable(); 153 } 154 } 155 156 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) 157 { 158 flush_altivec_to_thread(current); 159 memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); 160 return 1; 161 } 162 #endif /* CONFIG_ALTIVEC */ 163 164 #ifdef CONFIG_SPE 165 166 void enable_kernel_spe(void) 167 { 168 WARN_ON(preemptible()); 169 170 #ifdef CONFIG_SMP 171 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 172 giveup_spe(current); 173 else 174 giveup_spe(NULL); /* just enable SPE for kernel - force */ 175 #else 176 giveup_spe(last_task_used_spe); 177 #endif /* __SMP __ */ 178 } 179 EXPORT_SYMBOL(enable_kernel_spe); 180 181 void flush_spe_to_thread(struct task_struct *tsk) 182 { 183 if (tsk->thread.regs) { 184 preempt_disable(); 185 if (tsk->thread.regs->msr & MSR_SPE) { 186 #ifdef CONFIG_SMP 187 BUG_ON(tsk != current); 188 #endif 189 giveup_spe(current); 190 } 191 preempt_enable(); 192 } 193 } 194 195 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) 196 { 197 flush_spe_to_thread(current); 198 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ 199 memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); 200 return 1; 201 } 202 #endif /* CONFIG_SPE */ 203 204 /* 205 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 206 * and the current task has some state, discard it. 207 */ 208 static inline void discard_lazy_cpu_state(void) 209 { 210 #ifndef CONFIG_SMP 211 preempt_disable(); 212 if (last_task_used_math == current) 213 last_task_used_math = NULL; 214 #ifdef CONFIG_ALTIVEC 215 if (last_task_used_altivec == current) 216 last_task_used_altivec = NULL; 217 #endif /* CONFIG_ALTIVEC */ 218 #ifdef CONFIG_SPE 219 if (last_task_used_spe == current) 220 last_task_used_spe = NULL; 221 #endif 222 preempt_enable(); 223 #endif /* CONFIG_SMP */ 224 } 225 226 int set_dabr(unsigned long dabr) 227 { 228 if (ppc_md.set_dabr) 229 return ppc_md.set_dabr(dabr); 230 231 mtspr(SPRN_DABR, dabr); 232 return 0; 233 } 234 235 #ifdef CONFIG_PPC64 236 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 237 static DEFINE_PER_CPU(unsigned long, current_dabr); 238 #endif 239 240 struct task_struct *__switch_to(struct task_struct *prev, 241 struct task_struct *new) 242 { 243 struct thread_struct *new_thread, *old_thread; 244 unsigned long flags; 245 struct task_struct *last; 246 247 #ifdef CONFIG_SMP 248 /* avoid complexity of lazy save/restore of fpu 249 * by just saving it every time we switch out if 250 * this task used the fpu during the last quantum. 251 * 252 * If it tries to use the fpu again, it'll trap and 253 * reload its fp regs. So we don't have to do a restore 254 * every switch, just a save. 255 * -- Cort 256 */ 257 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 258 giveup_fpu(prev); 259 #ifdef CONFIG_ALTIVEC 260 /* 261 * If the previous thread used altivec in the last quantum 262 * (thus changing altivec regs) then save them. 263 * We used to check the VRSAVE register but not all apps 264 * set it, so we don't rely on it now (and in fact we need 265 * to save & restore VSCR even if VRSAVE == 0). -- paulus 266 * 267 * On SMP we always save/restore altivec regs just to avoid the 268 * complexity of changing processors. 269 * -- Cort 270 */ 271 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 272 giveup_altivec(prev); 273 #endif /* CONFIG_ALTIVEC */ 274 #ifdef CONFIG_SPE 275 /* 276 * If the previous thread used spe in the last quantum 277 * (thus changing spe regs) then save them. 278 * 279 * On SMP we always save/restore spe regs just to avoid the 280 * complexity of changing processors. 281 */ 282 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 283 giveup_spe(prev); 284 #endif /* CONFIG_SPE */ 285 286 #else /* CONFIG_SMP */ 287 #ifdef CONFIG_ALTIVEC 288 /* Avoid the trap. On smp this this never happens since 289 * we don't set last_task_used_altivec -- Cort 290 */ 291 if (new->thread.regs && last_task_used_altivec == new) 292 new->thread.regs->msr |= MSR_VEC; 293 #endif /* CONFIG_ALTIVEC */ 294 #ifdef CONFIG_SPE 295 /* Avoid the trap. On smp this this never happens since 296 * we don't set last_task_used_spe 297 */ 298 if (new->thread.regs && last_task_used_spe == new) 299 new->thread.regs->msr |= MSR_SPE; 300 #endif /* CONFIG_SPE */ 301 302 #endif /* CONFIG_SMP */ 303 304 #ifdef CONFIG_PPC64 /* for now */ 305 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) { 306 set_dabr(new->thread.dabr); 307 __get_cpu_var(current_dabr) = new->thread.dabr; 308 } 309 310 flush_tlb_pending(); 311 #endif 312 313 new_thread = &new->thread; 314 old_thread = ¤t->thread; 315 316 #ifdef CONFIG_PPC64 317 /* 318 * Collect processor utilization data per process 319 */ 320 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 321 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 322 long unsigned start_tb, current_tb; 323 start_tb = old_thread->start_tb; 324 cu->current_tb = current_tb = mfspr(SPRN_PURR); 325 old_thread->accum_tb += (current_tb - start_tb); 326 new_thread->start_tb = current_tb; 327 } 328 #endif 329 330 local_irq_save(flags); 331 last = _switch(old_thread, new_thread); 332 333 local_irq_restore(flags); 334 335 return last; 336 } 337 338 static int instructions_to_print = 16; 339 340 #ifdef CONFIG_PPC64 341 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \ 342 (REGION_ID(pc) != VMALLOC_REGION_ID)) 343 #else 344 #define BAD_PC(pc) ((pc) < KERNELBASE) 345 #endif 346 347 static void show_instructions(struct pt_regs *regs) 348 { 349 int i; 350 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 351 sizeof(int)); 352 353 printk("Instruction dump:"); 354 355 for (i = 0; i < instructions_to_print; i++) { 356 int instr; 357 358 if (!(i % 8)) 359 printk("\n"); 360 361 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) { 362 printk("XXXXXXXX "); 363 } else { 364 if (regs->nip == pc) 365 printk("<%08x> ", instr); 366 else 367 printk("%08x ", instr); 368 } 369 370 pc += sizeof(int); 371 } 372 373 printk("\n"); 374 } 375 376 static struct regbit { 377 unsigned long bit; 378 const char *name; 379 } msr_bits[] = { 380 {MSR_EE, "EE"}, 381 {MSR_PR, "PR"}, 382 {MSR_FP, "FP"}, 383 {MSR_ME, "ME"}, 384 {MSR_IR, "IR"}, 385 {MSR_DR, "DR"}, 386 {0, NULL} 387 }; 388 389 static void printbits(unsigned long val, struct regbit *bits) 390 { 391 const char *sep = ""; 392 393 printk("<"); 394 for (; bits->bit; ++bits) 395 if (val & bits->bit) { 396 printk("%s%s", sep, bits->name); 397 sep = ","; 398 } 399 printk(">"); 400 } 401 402 #ifdef CONFIG_PPC64 403 #define REG "%016lX" 404 #define REGS_PER_LINE 4 405 #define LAST_VOLATILE 13 406 #else 407 #define REG "%08lX" 408 #define REGS_PER_LINE 8 409 #define LAST_VOLATILE 12 410 #endif 411 412 void show_regs(struct pt_regs * regs) 413 { 414 int i, trap; 415 416 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 417 regs->nip, regs->link, regs->ctr); 418 printk("REGS: %p TRAP: %04lx %s (%s)\n", 419 regs, regs->trap, print_tainted(), system_utsname.release); 420 printk("MSR: "REG" ", regs->msr); 421 printbits(regs->msr, msr_bits); 422 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer); 423 trap = TRAP(regs); 424 if (trap == 0x300 || trap == 0x600) 425 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 426 printk("TASK = %p[%d] '%s' THREAD: %p", 427 current, current->pid, current->comm, current->thread_info); 428 429 #ifdef CONFIG_SMP 430 printk(" CPU: %d", smp_processor_id()); 431 #endif /* CONFIG_SMP */ 432 433 for (i = 0; i < 32; i++) { 434 if ((i % REGS_PER_LINE) == 0) 435 printk("\n" KERN_INFO "GPR%02d: ", i); 436 printk(REG " ", regs->gpr[i]); 437 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 438 break; 439 } 440 printk("\n"); 441 #ifdef CONFIG_KALLSYMS 442 /* 443 * Lookup NIP late so we have the best change of getting the 444 * above info out without failing 445 */ 446 printk("NIP ["REG"] ", regs->nip); 447 print_symbol("%s\n", regs->nip); 448 printk("LR ["REG"] ", regs->link); 449 print_symbol("%s\n", regs->link); 450 #endif 451 show_stack(current, (unsigned long *) regs->gpr[1]); 452 if (!user_mode(regs)) 453 show_instructions(regs); 454 } 455 456 void exit_thread(void) 457 { 458 kprobe_flush_task(current); 459 discard_lazy_cpu_state(); 460 } 461 462 void flush_thread(void) 463 { 464 #ifdef CONFIG_PPC64 465 struct thread_info *t = current_thread_info(); 466 467 if (t->flags & _TIF_ABI_PENDING) 468 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT); 469 #endif 470 471 discard_lazy_cpu_state(); 472 473 #ifdef CONFIG_PPC64 /* for now */ 474 if (current->thread.dabr) { 475 current->thread.dabr = 0; 476 set_dabr(0); 477 } 478 #endif 479 } 480 481 void 482 release_thread(struct task_struct *t) 483 { 484 } 485 486 /* 487 * This gets called before we allocate a new thread and copy 488 * the current task into it. 489 */ 490 void prepare_to_copy(struct task_struct *tsk) 491 { 492 flush_fp_to_thread(current); 493 flush_altivec_to_thread(current); 494 flush_spe_to_thread(current); 495 } 496 497 /* 498 * Copy a thread.. 499 */ 500 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 501 unsigned long unused, struct task_struct *p, 502 struct pt_regs *regs) 503 { 504 struct pt_regs *childregs, *kregs; 505 extern void ret_from_fork(void); 506 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE; 507 508 CHECK_FULL_REGS(regs); 509 /* Copy registers */ 510 sp -= sizeof(struct pt_regs); 511 childregs = (struct pt_regs *) sp; 512 *childregs = *regs; 513 if ((childregs->msr & MSR_PR) == 0) { 514 /* for kernel thread, set `current' and stackptr in new task */ 515 childregs->gpr[1] = sp + sizeof(struct pt_regs); 516 #ifdef CONFIG_PPC32 517 childregs->gpr[2] = (unsigned long) p; 518 #else 519 clear_ti_thread_flag(p->thread_info, TIF_32BIT); 520 #endif 521 p->thread.regs = NULL; /* no user register state */ 522 } else { 523 childregs->gpr[1] = usp; 524 p->thread.regs = childregs; 525 if (clone_flags & CLONE_SETTLS) { 526 #ifdef CONFIG_PPC64 527 if (!test_thread_flag(TIF_32BIT)) 528 childregs->gpr[13] = childregs->gpr[6]; 529 else 530 #endif 531 childregs->gpr[2] = childregs->gpr[6]; 532 } 533 } 534 childregs->gpr[3] = 0; /* Result from fork() */ 535 sp -= STACK_FRAME_OVERHEAD; 536 537 /* 538 * The way this works is that at some point in the future 539 * some task will call _switch to switch to the new task. 540 * That will pop off the stack frame created below and start 541 * the new task running at ret_from_fork. The new task will 542 * do some house keeping and then return from the fork or clone 543 * system call, using the stack frame created above. 544 */ 545 sp -= sizeof(struct pt_regs); 546 kregs = (struct pt_regs *) sp; 547 sp -= STACK_FRAME_OVERHEAD; 548 p->thread.ksp = sp; 549 550 #ifdef CONFIG_PPC64 551 if (cpu_has_feature(CPU_FTR_SLB)) { 552 unsigned long sp_vsid = get_kernel_vsid(sp); 553 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 554 555 sp_vsid <<= SLB_VSID_SHIFT; 556 sp_vsid |= SLB_VSID_KERNEL | llp; 557 p->thread.ksp_vsid = sp_vsid; 558 } 559 560 /* 561 * The PPC64 ABI makes use of a TOC to contain function 562 * pointers. The function (ret_from_except) is actually a pointer 563 * to the TOC entry. The first entry is a pointer to the actual 564 * function. 565 */ 566 kregs->nip = *((unsigned long *)ret_from_fork); 567 #else 568 kregs->nip = (unsigned long)ret_from_fork; 569 p->thread.last_syscall = -1; 570 #endif 571 572 return 0; 573 } 574 575 /* 576 * Set up a thread for executing a new program 577 */ 578 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 579 { 580 #ifdef CONFIG_PPC64 581 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 582 #endif 583 584 set_fs(USER_DS); 585 586 /* 587 * If we exec out of a kernel thread then thread.regs will not be 588 * set. Do it now. 589 */ 590 if (!current->thread.regs) { 591 unsigned long childregs = (unsigned long)current->thread_info + 592 THREAD_SIZE; 593 childregs -= sizeof(struct pt_regs); 594 current->thread.regs = (struct pt_regs *)childregs; 595 } 596 597 memset(regs->gpr, 0, sizeof(regs->gpr)); 598 regs->ctr = 0; 599 regs->link = 0; 600 regs->xer = 0; 601 regs->ccr = 0; 602 regs->gpr[1] = sp; 603 604 #ifdef CONFIG_PPC32 605 regs->mq = 0; 606 regs->nip = start; 607 regs->msr = MSR_USER; 608 #else 609 if (!test_thread_flag(TIF_32BIT)) { 610 unsigned long entry, toc; 611 612 /* start is a relocated pointer to the function descriptor for 613 * the elf _start routine. The first entry in the function 614 * descriptor is the entry address of _start and the second 615 * entry is the TOC value we need to use. 616 */ 617 __get_user(entry, (unsigned long __user *)start); 618 __get_user(toc, (unsigned long __user *)start+1); 619 620 /* Check whether the e_entry function descriptor entries 621 * need to be relocated before we can use them. 622 */ 623 if (load_addr != 0) { 624 entry += load_addr; 625 toc += load_addr; 626 } 627 regs->nip = entry; 628 regs->gpr[2] = toc; 629 regs->msr = MSR_USER64; 630 } else { 631 regs->nip = start; 632 regs->gpr[2] = 0; 633 regs->msr = MSR_USER32; 634 } 635 #endif 636 637 discard_lazy_cpu_state(); 638 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 639 current->thread.fpscr.val = 0; 640 #ifdef CONFIG_ALTIVEC 641 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 642 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 643 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 644 current->thread.vrsave = 0; 645 current->thread.used_vr = 0; 646 #endif /* CONFIG_ALTIVEC */ 647 #ifdef CONFIG_SPE 648 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 649 current->thread.acc = 0; 650 current->thread.spefscr = 0; 651 current->thread.used_spe = 0; 652 #endif /* CONFIG_SPE */ 653 } 654 655 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 656 | PR_FP_EXC_RES | PR_FP_EXC_INV) 657 658 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 659 { 660 struct pt_regs *regs = tsk->thread.regs; 661 662 /* This is a bit hairy. If we are an SPE enabled processor 663 * (have embedded fp) we store the IEEE exception enable flags in 664 * fpexc_mode. fpexc_mode is also used for setting FP exception 665 * mode (asyn, precise, disabled) for 'Classic' FP. */ 666 if (val & PR_FP_EXC_SW_ENABLE) { 667 #ifdef CONFIG_SPE 668 tsk->thread.fpexc_mode = val & 669 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 670 return 0; 671 #else 672 return -EINVAL; 673 #endif 674 } 675 676 /* on a CONFIG_SPE this does not hurt us. The bits that 677 * __pack_fe01 use do not overlap with bits used for 678 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 679 * on CONFIG_SPE implementations are reserved so writing to 680 * them does not change anything */ 681 if (val > PR_FP_EXC_PRECISE) 682 return -EINVAL; 683 tsk->thread.fpexc_mode = __pack_fe01(val); 684 if (regs != NULL && (regs->msr & MSR_FP) != 0) 685 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 686 | tsk->thread.fpexc_mode; 687 return 0; 688 } 689 690 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 691 { 692 unsigned int val; 693 694 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 695 #ifdef CONFIG_SPE 696 val = tsk->thread.fpexc_mode; 697 #else 698 return -EINVAL; 699 #endif 700 else 701 val = __unpack_fe01(tsk->thread.fpexc_mode); 702 return put_user(val, (unsigned int __user *) adr); 703 } 704 705 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 706 707 int sys_clone(unsigned long clone_flags, unsigned long usp, 708 int __user *parent_tidp, void __user *child_threadptr, 709 int __user *child_tidp, int p6, 710 struct pt_regs *regs) 711 { 712 CHECK_FULL_REGS(regs); 713 if (usp == 0) 714 usp = regs->gpr[1]; /* stack pointer for child */ 715 #ifdef CONFIG_PPC64 716 if (test_thread_flag(TIF_32BIT)) { 717 parent_tidp = TRUNC_PTR(parent_tidp); 718 child_tidp = TRUNC_PTR(child_tidp); 719 } 720 #endif 721 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 722 } 723 724 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 725 unsigned long p4, unsigned long p5, unsigned long p6, 726 struct pt_regs *regs) 727 { 728 CHECK_FULL_REGS(regs); 729 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 730 } 731 732 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 733 unsigned long p4, unsigned long p5, unsigned long p6, 734 struct pt_regs *regs) 735 { 736 CHECK_FULL_REGS(regs); 737 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 738 regs, 0, NULL, NULL); 739 } 740 741 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 742 unsigned long a3, unsigned long a4, unsigned long a5, 743 struct pt_regs *regs) 744 { 745 int error; 746 char *filename; 747 748 filename = getname((char __user *) a0); 749 error = PTR_ERR(filename); 750 if (IS_ERR(filename)) 751 goto out; 752 flush_fp_to_thread(current); 753 flush_altivec_to_thread(current); 754 flush_spe_to_thread(current); 755 error = do_execve(filename, (char __user * __user *) a1, 756 (char __user * __user *) a2, regs); 757 if (error == 0) { 758 task_lock(current); 759 current->ptrace &= ~PT_DTRACE; 760 task_unlock(current); 761 } 762 putname(filename); 763 out: 764 return error; 765 } 766 767 static int validate_sp(unsigned long sp, struct task_struct *p, 768 unsigned long nbytes) 769 { 770 unsigned long stack_page = (unsigned long)p->thread_info; 771 772 if (sp >= stack_page + sizeof(struct thread_struct) 773 && sp <= stack_page + THREAD_SIZE - nbytes) 774 return 1; 775 776 #ifdef CONFIG_IRQSTACKS 777 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)]; 778 if (sp >= stack_page + sizeof(struct thread_struct) 779 && sp <= stack_page + THREAD_SIZE - nbytes) 780 return 1; 781 782 stack_page = (unsigned long) softirq_ctx[task_cpu(p)]; 783 if (sp >= stack_page + sizeof(struct thread_struct) 784 && sp <= stack_page + THREAD_SIZE - nbytes) 785 return 1; 786 #endif 787 788 return 0; 789 } 790 791 #ifdef CONFIG_PPC64 792 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */ 793 #define FRAME_LR_SAVE 2 794 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288) 795 #define REGS_MARKER 0x7265677368657265ul 796 #define FRAME_MARKER 12 797 #else 798 #define MIN_STACK_FRAME 16 799 #define FRAME_LR_SAVE 1 800 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) 801 #define REGS_MARKER 0x72656773ul 802 #define FRAME_MARKER 2 803 #endif 804 805 unsigned long get_wchan(struct task_struct *p) 806 { 807 unsigned long ip, sp; 808 int count = 0; 809 810 if (!p || p == current || p->state == TASK_RUNNING) 811 return 0; 812 813 sp = p->thread.ksp; 814 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 815 return 0; 816 817 do { 818 sp = *(unsigned long *)sp; 819 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 820 return 0; 821 if (count > 0) { 822 ip = ((unsigned long *)sp)[FRAME_LR_SAVE]; 823 if (!in_sched_functions(ip)) 824 return ip; 825 } 826 } while (count++ < 16); 827 return 0; 828 } 829 EXPORT_SYMBOL(get_wchan); 830 831 static int kstack_depth_to_print = 64; 832 833 void show_stack(struct task_struct *tsk, unsigned long *stack) 834 { 835 unsigned long sp, ip, lr, newsp; 836 int count = 0; 837 int firstframe = 1; 838 839 sp = (unsigned long) stack; 840 if (tsk == NULL) 841 tsk = current; 842 if (sp == 0) { 843 if (tsk == current) 844 asm("mr %0,1" : "=r" (sp)); 845 else 846 sp = tsk->thread.ksp; 847 } 848 849 lr = 0; 850 printk("Call Trace:\n"); 851 do { 852 if (!validate_sp(sp, tsk, MIN_STACK_FRAME)) 853 return; 854 855 stack = (unsigned long *) sp; 856 newsp = stack[0]; 857 ip = stack[FRAME_LR_SAVE]; 858 if (!firstframe || ip != lr) { 859 printk("["REG"] ["REG"] ", sp, ip); 860 print_symbol("%s", ip); 861 if (firstframe) 862 printk(" (unreliable)"); 863 printk("\n"); 864 } 865 firstframe = 0; 866 867 /* 868 * See if this is an exception frame. 869 * We look for the "regshere" marker in the current frame. 870 */ 871 if (validate_sp(sp, tsk, INT_FRAME_SIZE) 872 && stack[FRAME_MARKER] == REGS_MARKER) { 873 struct pt_regs *regs = (struct pt_regs *) 874 (sp + STACK_FRAME_OVERHEAD); 875 printk("--- Exception: %lx", regs->trap); 876 print_symbol(" at %s\n", regs->nip); 877 lr = regs->link; 878 print_symbol(" LR = %s\n", lr); 879 firstframe = 1; 880 } 881 882 sp = newsp; 883 } while (count++ < kstack_depth_to_print); 884 } 885 886 void dump_stack(void) 887 { 888 show_stack(current, NULL); 889 } 890 EXPORT_SYMBOL(dump_stack); 891