1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/mqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/utsname.h> 35 #include <linux/ftrace.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/personality.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/uaccess.h> 41 #include <linux/elf-randomize.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #endif 58 #include <asm/code-patching.h> 59 #include <asm/exec.h> 60 #include <asm/livepatch.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/asm-prototypes.h> 63 64 #include <linux/kprobes.h> 65 #include <linux/kdebug.h> 66 67 #ifdef CONFIG_CC_STACKPROTECTOR 68 #include <linux/stackprotector.h> 69 unsigned long __stack_chk_guard __read_mostly; 70 EXPORT_SYMBOL(__stack_chk_guard); 71 #endif 72 73 /* Transactional Memory debug */ 74 #ifdef TM_DEBUG_SW 75 #define TM_DEBUG(x...) printk(KERN_INFO x) 76 #else 77 #define TM_DEBUG(x...) do { } while(0) 78 #endif 79 80 extern unsigned long _get_SP(void); 81 82 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 83 static void check_if_tm_restore_required(struct task_struct *tsk) 84 { 85 /* 86 * If we are saving the current thread's registers, and the 87 * thread is in a transactional state, set the TIF_RESTORE_TM 88 * bit so that we know to restore the registers before 89 * returning to userspace. 90 */ 91 if (tsk == current && tsk->thread.regs && 92 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 93 !test_thread_flag(TIF_RESTORE_TM)) { 94 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 95 set_thread_flag(TIF_RESTORE_TM); 96 } 97 } 98 99 static inline bool msr_tm_active(unsigned long msr) 100 { 101 return MSR_TM_ACTIVE(msr); 102 } 103 #else 104 static inline bool msr_tm_active(unsigned long msr) { return false; } 105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 107 108 bool strict_msr_control; 109 EXPORT_SYMBOL(strict_msr_control); 110 111 static int __init enable_strict_msr_control(char *str) 112 { 113 strict_msr_control = true; 114 pr_info("Enabling strict facility control\n"); 115 116 return 0; 117 } 118 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 119 120 unsigned long msr_check_and_set(unsigned long bits) 121 { 122 unsigned long oldmsr = mfmsr(); 123 unsigned long newmsr; 124 125 newmsr = oldmsr | bits; 126 127 #ifdef CONFIG_VSX 128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 129 newmsr |= MSR_VSX; 130 #endif 131 132 if (oldmsr != newmsr) 133 mtmsr_isync(newmsr); 134 135 return newmsr; 136 } 137 138 void __msr_check_and_clear(unsigned long bits) 139 { 140 unsigned long oldmsr = mfmsr(); 141 unsigned long newmsr; 142 143 newmsr = oldmsr & ~bits; 144 145 #ifdef CONFIG_VSX 146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 147 newmsr &= ~MSR_VSX; 148 #endif 149 150 if (oldmsr != newmsr) 151 mtmsr_isync(newmsr); 152 } 153 EXPORT_SYMBOL(__msr_check_and_clear); 154 155 #ifdef CONFIG_PPC_FPU 156 void __giveup_fpu(struct task_struct *tsk) 157 { 158 unsigned long msr; 159 160 save_fpu(tsk); 161 msr = tsk->thread.regs->msr; 162 msr &= ~MSR_FP; 163 #ifdef CONFIG_VSX 164 if (cpu_has_feature(CPU_FTR_VSX)) 165 msr &= ~MSR_VSX; 166 #endif 167 tsk->thread.regs->msr = msr; 168 } 169 170 void giveup_fpu(struct task_struct *tsk) 171 { 172 check_if_tm_restore_required(tsk); 173 174 msr_check_and_set(MSR_FP); 175 __giveup_fpu(tsk); 176 msr_check_and_clear(MSR_FP); 177 } 178 EXPORT_SYMBOL(giveup_fpu); 179 180 /* 181 * Make sure the floating-point register state in the 182 * the thread_struct is up to date for task tsk. 183 */ 184 void flush_fp_to_thread(struct task_struct *tsk) 185 { 186 if (tsk->thread.regs) { 187 /* 188 * We need to disable preemption here because if we didn't, 189 * another process could get scheduled after the regs->msr 190 * test but before we have finished saving the FP registers 191 * to the thread_struct. That process could take over the 192 * FPU, and then when we get scheduled again we would store 193 * bogus values for the remaining FP registers. 194 */ 195 preempt_disable(); 196 if (tsk->thread.regs->msr & MSR_FP) { 197 /* 198 * This should only ever be called for current or 199 * for a stopped child process. Since we save away 200 * the FP register state on context switch, 201 * there is something wrong if a stopped child appears 202 * to still have its FP state in the CPU registers. 203 */ 204 BUG_ON(tsk != current); 205 giveup_fpu(tsk); 206 } 207 preempt_enable(); 208 } 209 } 210 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 211 212 void enable_kernel_fp(void) 213 { 214 unsigned long cpumsr; 215 216 WARN_ON(preemptible()); 217 218 cpumsr = msr_check_and_set(MSR_FP); 219 220 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 221 check_if_tm_restore_required(current); 222 /* 223 * If a thread has already been reclaimed then the 224 * checkpointed registers are on the CPU but have definitely 225 * been saved by the reclaim code. Don't need to and *cannot* 226 * giveup as this would save to the 'live' structure not the 227 * checkpointed structure. 228 */ 229 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 230 return; 231 __giveup_fpu(current); 232 } 233 } 234 EXPORT_SYMBOL(enable_kernel_fp); 235 236 static int restore_fp(struct task_struct *tsk) { 237 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) { 238 load_fp_state(¤t->thread.fp_state); 239 current->thread.load_fp++; 240 return 1; 241 } 242 return 0; 243 } 244 #else 245 static int restore_fp(struct task_struct *tsk) { return 0; } 246 #endif /* CONFIG_PPC_FPU */ 247 248 #ifdef CONFIG_ALTIVEC 249 #define loadvec(thr) ((thr).load_vec) 250 251 static void __giveup_altivec(struct task_struct *tsk) 252 { 253 unsigned long msr; 254 255 save_altivec(tsk); 256 msr = tsk->thread.regs->msr; 257 msr &= ~MSR_VEC; 258 #ifdef CONFIG_VSX 259 if (cpu_has_feature(CPU_FTR_VSX)) 260 msr &= ~MSR_VSX; 261 #endif 262 tsk->thread.regs->msr = msr; 263 } 264 265 void giveup_altivec(struct task_struct *tsk) 266 { 267 check_if_tm_restore_required(tsk); 268 269 msr_check_and_set(MSR_VEC); 270 __giveup_altivec(tsk); 271 msr_check_and_clear(MSR_VEC); 272 } 273 EXPORT_SYMBOL(giveup_altivec); 274 275 void enable_kernel_altivec(void) 276 { 277 unsigned long cpumsr; 278 279 WARN_ON(preemptible()); 280 281 cpumsr = msr_check_and_set(MSR_VEC); 282 283 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 284 check_if_tm_restore_required(current); 285 /* 286 * If a thread has already been reclaimed then the 287 * checkpointed registers are on the CPU but have definitely 288 * been saved by the reclaim code. Don't need to and *cannot* 289 * giveup as this would save to the 'live' structure not the 290 * checkpointed structure. 291 */ 292 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 293 return; 294 __giveup_altivec(current); 295 } 296 } 297 EXPORT_SYMBOL(enable_kernel_altivec); 298 299 /* 300 * Make sure the VMX/Altivec register state in the 301 * the thread_struct is up to date for task tsk. 302 */ 303 void flush_altivec_to_thread(struct task_struct *tsk) 304 { 305 if (tsk->thread.regs) { 306 preempt_disable(); 307 if (tsk->thread.regs->msr & MSR_VEC) { 308 BUG_ON(tsk != current); 309 giveup_altivec(tsk); 310 } 311 preempt_enable(); 312 } 313 } 314 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 315 316 static int restore_altivec(struct task_struct *tsk) 317 { 318 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 319 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) { 320 load_vr_state(&tsk->thread.vr_state); 321 tsk->thread.used_vr = 1; 322 tsk->thread.load_vec++; 323 324 return 1; 325 } 326 return 0; 327 } 328 #else 329 #define loadvec(thr) 0 330 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 331 #endif /* CONFIG_ALTIVEC */ 332 333 #ifdef CONFIG_VSX 334 static void __giveup_vsx(struct task_struct *tsk) 335 { 336 if (tsk->thread.regs->msr & MSR_FP) 337 __giveup_fpu(tsk); 338 if (tsk->thread.regs->msr & MSR_VEC) 339 __giveup_altivec(tsk); 340 tsk->thread.regs->msr &= ~MSR_VSX; 341 } 342 343 static void giveup_vsx(struct task_struct *tsk) 344 { 345 check_if_tm_restore_required(tsk); 346 347 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 348 __giveup_vsx(tsk); 349 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 350 } 351 352 static void save_vsx(struct task_struct *tsk) 353 { 354 if (tsk->thread.regs->msr & MSR_FP) 355 save_fpu(tsk); 356 if (tsk->thread.regs->msr & MSR_VEC) 357 save_altivec(tsk); 358 } 359 360 void enable_kernel_vsx(void) 361 { 362 unsigned long cpumsr; 363 364 WARN_ON(preemptible()); 365 366 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 367 368 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { 369 check_if_tm_restore_required(current); 370 /* 371 * If a thread has already been reclaimed then the 372 * checkpointed registers are on the CPU but have definitely 373 * been saved by the reclaim code. Don't need to and *cannot* 374 * giveup as this would save to the 'live' structure not the 375 * checkpointed structure. 376 */ 377 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 378 return; 379 if (current->thread.regs->msr & MSR_FP) 380 __giveup_fpu(current); 381 if (current->thread.regs->msr & MSR_VEC) 382 __giveup_altivec(current); 383 __giveup_vsx(current); 384 } 385 } 386 EXPORT_SYMBOL(enable_kernel_vsx); 387 388 void flush_vsx_to_thread(struct task_struct *tsk) 389 { 390 if (tsk->thread.regs) { 391 preempt_disable(); 392 if (tsk->thread.regs->msr & MSR_VSX) { 393 BUG_ON(tsk != current); 394 giveup_vsx(tsk); 395 } 396 preempt_enable(); 397 } 398 } 399 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 400 401 static int restore_vsx(struct task_struct *tsk) 402 { 403 if (cpu_has_feature(CPU_FTR_VSX)) { 404 tsk->thread.used_vsr = 1; 405 return 1; 406 } 407 408 return 0; 409 } 410 #else 411 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 412 static inline void save_vsx(struct task_struct *tsk) { } 413 #endif /* CONFIG_VSX */ 414 415 #ifdef CONFIG_SPE 416 void giveup_spe(struct task_struct *tsk) 417 { 418 check_if_tm_restore_required(tsk); 419 420 msr_check_and_set(MSR_SPE); 421 __giveup_spe(tsk); 422 msr_check_and_clear(MSR_SPE); 423 } 424 EXPORT_SYMBOL(giveup_spe); 425 426 void enable_kernel_spe(void) 427 { 428 WARN_ON(preemptible()); 429 430 msr_check_and_set(MSR_SPE); 431 432 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 433 check_if_tm_restore_required(current); 434 __giveup_spe(current); 435 } 436 } 437 EXPORT_SYMBOL(enable_kernel_spe); 438 439 void flush_spe_to_thread(struct task_struct *tsk) 440 { 441 if (tsk->thread.regs) { 442 preempt_disable(); 443 if (tsk->thread.regs->msr & MSR_SPE) { 444 BUG_ON(tsk != current); 445 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 446 giveup_spe(tsk); 447 } 448 preempt_enable(); 449 } 450 } 451 #endif /* CONFIG_SPE */ 452 453 static unsigned long msr_all_available; 454 455 static int __init init_msr_all_available(void) 456 { 457 #ifdef CONFIG_PPC_FPU 458 msr_all_available |= MSR_FP; 459 #endif 460 #ifdef CONFIG_ALTIVEC 461 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 462 msr_all_available |= MSR_VEC; 463 #endif 464 #ifdef CONFIG_VSX 465 if (cpu_has_feature(CPU_FTR_VSX)) 466 msr_all_available |= MSR_VSX; 467 #endif 468 #ifdef CONFIG_SPE 469 if (cpu_has_feature(CPU_FTR_SPE)) 470 msr_all_available |= MSR_SPE; 471 #endif 472 473 return 0; 474 } 475 early_initcall(init_msr_all_available); 476 477 void giveup_all(struct task_struct *tsk) 478 { 479 unsigned long usermsr; 480 481 if (!tsk->thread.regs) 482 return; 483 484 usermsr = tsk->thread.regs->msr; 485 486 if ((usermsr & msr_all_available) == 0) 487 return; 488 489 msr_check_and_set(msr_all_available); 490 check_if_tm_restore_required(tsk); 491 492 #ifdef CONFIG_PPC_FPU 493 if (usermsr & MSR_FP) 494 __giveup_fpu(tsk); 495 #endif 496 #ifdef CONFIG_ALTIVEC 497 if (usermsr & MSR_VEC) 498 __giveup_altivec(tsk); 499 #endif 500 #ifdef CONFIG_VSX 501 if (usermsr & MSR_VSX) 502 __giveup_vsx(tsk); 503 #endif 504 #ifdef CONFIG_SPE 505 if (usermsr & MSR_SPE) 506 __giveup_spe(tsk); 507 #endif 508 509 msr_check_and_clear(msr_all_available); 510 } 511 EXPORT_SYMBOL(giveup_all); 512 513 void restore_math(struct pt_regs *regs) 514 { 515 unsigned long msr; 516 517 if (!msr_tm_active(regs->msr) && 518 !current->thread.load_fp && !loadvec(current->thread)) 519 return; 520 521 msr = regs->msr; 522 msr_check_and_set(msr_all_available); 523 524 /* 525 * Only reload if the bit is not set in the user MSR, the bit BEING set 526 * indicates that the registers are hot 527 */ 528 if ((!(msr & MSR_FP)) && restore_fp(current)) 529 msr |= MSR_FP | current->thread.fpexc_mode; 530 531 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 532 msr |= MSR_VEC; 533 534 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 535 restore_vsx(current)) { 536 msr |= MSR_VSX; 537 } 538 539 msr_check_and_clear(msr_all_available); 540 541 regs->msr = msr; 542 } 543 544 void save_all(struct task_struct *tsk) 545 { 546 unsigned long usermsr; 547 548 if (!tsk->thread.regs) 549 return; 550 551 usermsr = tsk->thread.regs->msr; 552 553 if ((usermsr & msr_all_available) == 0) 554 return; 555 556 msr_check_and_set(msr_all_available); 557 558 /* 559 * Saving the way the register space is in hardware, save_vsx boils 560 * down to a save_fpu() and save_altivec() 561 */ 562 if (usermsr & MSR_VSX) { 563 save_vsx(tsk); 564 } else { 565 if (usermsr & MSR_FP) 566 save_fpu(tsk); 567 568 if (usermsr & MSR_VEC) 569 save_altivec(tsk); 570 } 571 572 if (usermsr & MSR_SPE) 573 __giveup_spe(tsk); 574 575 msr_check_and_clear(msr_all_available); 576 } 577 578 void flush_all_to_thread(struct task_struct *tsk) 579 { 580 if (tsk->thread.regs) { 581 preempt_disable(); 582 BUG_ON(tsk != current); 583 save_all(tsk); 584 585 #ifdef CONFIG_SPE 586 if (tsk->thread.regs->msr & MSR_SPE) 587 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 588 #endif 589 590 preempt_enable(); 591 } 592 } 593 EXPORT_SYMBOL(flush_all_to_thread); 594 595 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 596 void do_send_trap(struct pt_regs *regs, unsigned long address, 597 unsigned long error_code, int signal_code, int breakpt) 598 { 599 siginfo_t info; 600 601 current->thread.trap_nr = signal_code; 602 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 603 11, SIGSEGV) == NOTIFY_STOP) 604 return; 605 606 /* Deliver the signal to userspace */ 607 info.si_signo = SIGTRAP; 608 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 609 info.si_code = signal_code; 610 info.si_addr = (void __user *)address; 611 force_sig_info(SIGTRAP, &info, current); 612 } 613 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 614 void do_break (struct pt_regs *regs, unsigned long address, 615 unsigned long error_code) 616 { 617 siginfo_t info; 618 619 current->thread.trap_nr = TRAP_HWBKPT; 620 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 621 11, SIGSEGV) == NOTIFY_STOP) 622 return; 623 624 if (debugger_break_match(regs)) 625 return; 626 627 /* Clear the breakpoint */ 628 hw_breakpoint_disable(); 629 630 /* Deliver the signal to userspace */ 631 info.si_signo = SIGTRAP; 632 info.si_errno = 0; 633 info.si_code = TRAP_HWBKPT; 634 info.si_addr = (void __user *)address; 635 force_sig_info(SIGTRAP, &info, current); 636 } 637 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 638 639 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 640 641 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 642 /* 643 * Set the debug registers back to their default "safe" values. 644 */ 645 static void set_debug_reg_defaults(struct thread_struct *thread) 646 { 647 thread->debug.iac1 = thread->debug.iac2 = 0; 648 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 649 thread->debug.iac3 = thread->debug.iac4 = 0; 650 #endif 651 thread->debug.dac1 = thread->debug.dac2 = 0; 652 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 653 thread->debug.dvc1 = thread->debug.dvc2 = 0; 654 #endif 655 thread->debug.dbcr0 = 0; 656 #ifdef CONFIG_BOOKE 657 /* 658 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 659 */ 660 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 661 DBCR1_IAC3US | DBCR1_IAC4US; 662 /* 663 * Force Data Address Compare User/Supervisor bits to be User-only 664 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 665 */ 666 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 667 #else 668 thread->debug.dbcr1 = 0; 669 #endif 670 } 671 672 static void prime_debug_regs(struct debug_reg *debug) 673 { 674 /* 675 * We could have inherited MSR_DE from userspace, since 676 * it doesn't get cleared on exception entry. Make sure 677 * MSR_DE is clear before we enable any debug events. 678 */ 679 mtmsr(mfmsr() & ~MSR_DE); 680 681 mtspr(SPRN_IAC1, debug->iac1); 682 mtspr(SPRN_IAC2, debug->iac2); 683 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 684 mtspr(SPRN_IAC3, debug->iac3); 685 mtspr(SPRN_IAC4, debug->iac4); 686 #endif 687 mtspr(SPRN_DAC1, debug->dac1); 688 mtspr(SPRN_DAC2, debug->dac2); 689 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 690 mtspr(SPRN_DVC1, debug->dvc1); 691 mtspr(SPRN_DVC2, debug->dvc2); 692 #endif 693 mtspr(SPRN_DBCR0, debug->dbcr0); 694 mtspr(SPRN_DBCR1, debug->dbcr1); 695 #ifdef CONFIG_BOOKE 696 mtspr(SPRN_DBCR2, debug->dbcr2); 697 #endif 698 } 699 /* 700 * Unless neither the old or new thread are making use of the 701 * debug registers, set the debug registers from the values 702 * stored in the new thread. 703 */ 704 void switch_booke_debug_regs(struct debug_reg *new_debug) 705 { 706 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 707 || (new_debug->dbcr0 & DBCR0_IDM)) 708 prime_debug_regs(new_debug); 709 } 710 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 711 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 712 #ifndef CONFIG_HAVE_HW_BREAKPOINT 713 static void set_debug_reg_defaults(struct thread_struct *thread) 714 { 715 thread->hw_brk.address = 0; 716 thread->hw_brk.type = 0; 717 set_breakpoint(&thread->hw_brk); 718 } 719 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 720 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 721 722 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 723 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 724 { 725 mtspr(SPRN_DAC1, dabr); 726 #ifdef CONFIG_PPC_47x 727 isync(); 728 #endif 729 return 0; 730 } 731 #elif defined(CONFIG_PPC_BOOK3S) 732 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 733 { 734 mtspr(SPRN_DABR, dabr); 735 if (cpu_has_feature(CPU_FTR_DABRX)) 736 mtspr(SPRN_DABRX, dabrx); 737 return 0; 738 } 739 #else 740 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 741 { 742 return -EINVAL; 743 } 744 #endif 745 746 static inline int set_dabr(struct arch_hw_breakpoint *brk) 747 { 748 unsigned long dabr, dabrx; 749 750 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 751 dabrx = ((brk->type >> 3) & 0x7); 752 753 if (ppc_md.set_dabr) 754 return ppc_md.set_dabr(dabr, dabrx); 755 756 return __set_dabr(dabr, dabrx); 757 } 758 759 static inline int set_dawr(struct arch_hw_breakpoint *brk) 760 { 761 unsigned long dawr, dawrx, mrd; 762 763 dawr = brk->address; 764 765 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 766 << (63 - 58); //* read/write bits */ 767 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 768 << (63 - 59); //* translate */ 769 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 770 >> 3; //* PRIM bits */ 771 /* dawr length is stored in field MDR bits 48:53. Matches range in 772 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 773 0b111111=64DW. 774 brk->len is in bytes. 775 This aligns up to double word size, shifts and does the bias. 776 */ 777 mrd = ((brk->len + 7) >> 3) - 1; 778 dawrx |= (mrd & 0x3f) << (63 - 53); 779 780 if (ppc_md.set_dawr) 781 return ppc_md.set_dawr(dawr, dawrx); 782 mtspr(SPRN_DAWR, dawr); 783 mtspr(SPRN_DAWRX, dawrx); 784 return 0; 785 } 786 787 void __set_breakpoint(struct arch_hw_breakpoint *brk) 788 { 789 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 790 791 if (cpu_has_feature(CPU_FTR_DAWR)) 792 set_dawr(brk); 793 else 794 set_dabr(brk); 795 } 796 797 void set_breakpoint(struct arch_hw_breakpoint *brk) 798 { 799 preempt_disable(); 800 __set_breakpoint(brk); 801 preempt_enable(); 802 } 803 804 #ifdef CONFIG_PPC64 805 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 806 #endif 807 808 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 809 struct arch_hw_breakpoint *b) 810 { 811 if (a->address != b->address) 812 return false; 813 if (a->type != b->type) 814 return false; 815 if (a->len != b->len) 816 return false; 817 return true; 818 } 819 820 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 821 822 static inline bool tm_enabled(struct task_struct *tsk) 823 { 824 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 825 } 826 827 static void tm_reclaim_thread(struct thread_struct *thr, 828 struct thread_info *ti, uint8_t cause) 829 { 830 /* 831 * Use the current MSR TM suspended bit to track if we have 832 * checkpointed state outstanding. 833 * On signal delivery, we'd normally reclaim the checkpointed 834 * state to obtain stack pointer (see:get_tm_stackpointer()). 835 * This will then directly return to userspace without going 836 * through __switch_to(). However, if the stack frame is bad, 837 * we need to exit this thread which calls __switch_to() which 838 * will again attempt to reclaim the already saved tm state. 839 * Hence we need to check that we've not already reclaimed 840 * this state. 841 * We do this using the current MSR, rather tracking it in 842 * some specific thread_struct bit, as it has the additional 843 * benefit of checking for a potential TM bad thing exception. 844 */ 845 if (!MSR_TM_SUSPENDED(mfmsr())) 846 return; 847 848 giveup_all(container_of(thr, struct task_struct, thread)); 849 850 tm_reclaim(thr, thr->ckpt_regs.msr, cause); 851 } 852 853 void tm_reclaim_current(uint8_t cause) 854 { 855 tm_enable(); 856 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 857 } 858 859 static inline void tm_reclaim_task(struct task_struct *tsk) 860 { 861 /* We have to work out if we're switching from/to a task that's in the 862 * middle of a transaction. 863 * 864 * In switching we need to maintain a 2nd register state as 865 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 866 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 867 * ckvr_state 868 * 869 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 870 */ 871 struct thread_struct *thr = &tsk->thread; 872 873 if (!thr->regs) 874 return; 875 876 if (!MSR_TM_ACTIVE(thr->regs->msr)) 877 goto out_and_saveregs; 878 879 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 880 "ccr=%lx, msr=%lx, trap=%lx)\n", 881 tsk->pid, thr->regs->nip, 882 thr->regs->ccr, thr->regs->msr, 883 thr->regs->trap); 884 885 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 886 887 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 888 tsk->pid); 889 890 out_and_saveregs: 891 /* Always save the regs here, even if a transaction's not active. 892 * This context-switches a thread's TM info SPRs. We do it here to 893 * be consistent with the restore path (in recheckpoint) which 894 * cannot happen later in _switch(). 895 */ 896 tm_save_sprs(thr); 897 } 898 899 extern void __tm_recheckpoint(struct thread_struct *thread, 900 unsigned long orig_msr); 901 902 void tm_recheckpoint(struct thread_struct *thread, 903 unsigned long orig_msr) 904 { 905 unsigned long flags; 906 907 if (!(thread->regs->msr & MSR_TM)) 908 return; 909 910 /* We really can't be interrupted here as the TEXASR registers can't 911 * change and later in the trecheckpoint code, we have a userspace R1. 912 * So let's hard disable over this region. 913 */ 914 local_irq_save(flags); 915 hard_irq_disable(); 916 917 /* The TM SPRs are restored here, so that TEXASR.FS can be set 918 * before the trecheckpoint and no explosion occurs. 919 */ 920 tm_restore_sprs(thread); 921 922 __tm_recheckpoint(thread, orig_msr); 923 924 local_irq_restore(flags); 925 } 926 927 static inline void tm_recheckpoint_new_task(struct task_struct *new) 928 { 929 unsigned long msr; 930 931 if (!cpu_has_feature(CPU_FTR_TM)) 932 return; 933 934 /* Recheckpoint the registers of the thread we're about to switch to. 935 * 936 * If the task was using FP, we non-lazily reload both the original and 937 * the speculative FP register states. This is because the kernel 938 * doesn't see if/when a TM rollback occurs, so if we take an FP 939 * unavailable later, we are unable to determine which set of FP regs 940 * need to be restored. 941 */ 942 if (!tm_enabled(new)) 943 return; 944 945 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 946 tm_restore_sprs(&new->thread); 947 return; 948 } 949 msr = new->thread.ckpt_regs.msr; 950 /* Recheckpoint to restore original checkpointed register state. */ 951 TM_DEBUG("*** tm_recheckpoint of pid %d " 952 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 953 new->pid, new->thread.regs->msr, msr); 954 955 tm_recheckpoint(&new->thread, msr); 956 957 /* 958 * The checkpointed state has been restored but the live state has 959 * not, ensure all the math functionality is turned off to trigger 960 * restore_math() to reload. 961 */ 962 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 963 964 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 965 "(kernel msr 0x%lx)\n", 966 new->pid, mfmsr()); 967 } 968 969 static inline void __switch_to_tm(struct task_struct *prev, 970 struct task_struct *new) 971 { 972 if (cpu_has_feature(CPU_FTR_TM)) { 973 if (tm_enabled(prev) || tm_enabled(new)) 974 tm_enable(); 975 976 if (tm_enabled(prev)) { 977 prev->thread.load_tm++; 978 tm_reclaim_task(prev); 979 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 980 prev->thread.regs->msr &= ~MSR_TM; 981 } 982 983 tm_recheckpoint_new_task(new); 984 } 985 } 986 987 /* 988 * This is called if we are on the way out to userspace and the 989 * TIF_RESTORE_TM flag is set. It checks if we need to reload 990 * FP and/or vector state and does so if necessary. 991 * If userspace is inside a transaction (whether active or 992 * suspended) and FP/VMX/VSX instructions have ever been enabled 993 * inside that transaction, then we have to keep them enabled 994 * and keep the FP/VMX/VSX state loaded while ever the transaction 995 * continues. The reason is that if we didn't, and subsequently 996 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 997 * we don't know whether it's the same transaction, and thus we 998 * don't know which of the checkpointed state and the transactional 999 * state to use. 1000 */ 1001 void restore_tm_state(struct pt_regs *regs) 1002 { 1003 unsigned long msr_diff; 1004 1005 /* 1006 * This is the only moment we should clear TIF_RESTORE_TM as 1007 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1008 * again, anything else could lead to an incorrect ckpt_msr being 1009 * saved and therefore incorrect signal contexts. 1010 */ 1011 clear_thread_flag(TIF_RESTORE_TM); 1012 if (!MSR_TM_ACTIVE(regs->msr)) 1013 return; 1014 1015 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1016 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1017 1018 /* Ensure that restore_math() will restore */ 1019 if (msr_diff & MSR_FP) 1020 current->thread.load_fp = 1; 1021 #ifdef CONFIG_ALTIVEC 1022 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1023 current->thread.load_vec = 1; 1024 #endif 1025 restore_math(regs); 1026 1027 regs->msr |= msr_diff; 1028 } 1029 1030 #else 1031 #define tm_recheckpoint_new_task(new) 1032 #define __switch_to_tm(prev, new) 1033 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1034 1035 static inline void save_sprs(struct thread_struct *t) 1036 { 1037 #ifdef CONFIG_ALTIVEC 1038 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1039 t->vrsave = mfspr(SPRN_VRSAVE); 1040 #endif 1041 #ifdef CONFIG_PPC_BOOK3S_64 1042 if (cpu_has_feature(CPU_FTR_DSCR)) 1043 t->dscr = mfspr(SPRN_DSCR); 1044 1045 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1046 t->bescr = mfspr(SPRN_BESCR); 1047 t->ebbhr = mfspr(SPRN_EBBHR); 1048 t->ebbrr = mfspr(SPRN_EBBRR); 1049 1050 t->fscr = mfspr(SPRN_FSCR); 1051 1052 /* 1053 * Note that the TAR is not available for use in the kernel. 1054 * (To provide this, the TAR should be backed up/restored on 1055 * exception entry/exit instead, and be in pt_regs. FIXME, 1056 * this should be in pt_regs anyway (for debug).) 1057 */ 1058 t->tar = mfspr(SPRN_TAR); 1059 } 1060 #endif 1061 } 1062 1063 static inline void restore_sprs(struct thread_struct *old_thread, 1064 struct thread_struct *new_thread) 1065 { 1066 #ifdef CONFIG_ALTIVEC 1067 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1068 old_thread->vrsave != new_thread->vrsave) 1069 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1070 #endif 1071 #ifdef CONFIG_PPC_BOOK3S_64 1072 if (cpu_has_feature(CPU_FTR_DSCR)) { 1073 u64 dscr = get_paca()->dscr_default; 1074 if (new_thread->dscr_inherit) 1075 dscr = new_thread->dscr; 1076 1077 if (old_thread->dscr != dscr) 1078 mtspr(SPRN_DSCR, dscr); 1079 } 1080 1081 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1082 if (old_thread->bescr != new_thread->bescr) 1083 mtspr(SPRN_BESCR, new_thread->bescr); 1084 if (old_thread->ebbhr != new_thread->ebbhr) 1085 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1086 if (old_thread->ebbrr != new_thread->ebbrr) 1087 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1088 1089 if (old_thread->fscr != new_thread->fscr) 1090 mtspr(SPRN_FSCR, new_thread->fscr); 1091 1092 if (old_thread->tar != new_thread->tar) 1093 mtspr(SPRN_TAR, new_thread->tar); 1094 } 1095 #endif 1096 } 1097 1098 struct task_struct *__switch_to(struct task_struct *prev, 1099 struct task_struct *new) 1100 { 1101 struct thread_struct *new_thread, *old_thread; 1102 struct task_struct *last; 1103 #ifdef CONFIG_PPC_BOOK3S_64 1104 struct ppc64_tlb_batch *batch; 1105 #endif 1106 1107 new_thread = &new->thread; 1108 old_thread = ¤t->thread; 1109 1110 WARN_ON(!irqs_disabled()); 1111 1112 #ifdef CONFIG_PPC64 1113 /* 1114 * Collect processor utilization data per process 1115 */ 1116 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1117 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1118 long unsigned start_tb, current_tb; 1119 start_tb = old_thread->start_tb; 1120 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1121 old_thread->accum_tb += (current_tb - start_tb); 1122 new_thread->start_tb = current_tb; 1123 } 1124 #endif /* CONFIG_PPC64 */ 1125 1126 #ifdef CONFIG_PPC_STD_MMU_64 1127 batch = this_cpu_ptr(&ppc64_tlb_batch); 1128 if (batch->active) { 1129 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1130 if (batch->index) 1131 __flush_tlb_pending(batch); 1132 batch->active = 0; 1133 } 1134 #endif /* CONFIG_PPC_STD_MMU_64 */ 1135 1136 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1137 switch_booke_debug_regs(&new->thread.debug); 1138 #else 1139 /* 1140 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1141 * schedule DABR 1142 */ 1143 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1144 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1145 __set_breakpoint(&new->thread.hw_brk); 1146 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1147 #endif 1148 1149 /* 1150 * We need to save SPRs before treclaim/trecheckpoint as these will 1151 * change a number of them. 1152 */ 1153 save_sprs(&prev->thread); 1154 1155 /* Save FPU, Altivec, VSX and SPE state */ 1156 giveup_all(prev); 1157 1158 __switch_to_tm(prev, new); 1159 1160 /* 1161 * We can't take a PMU exception inside _switch() since there is a 1162 * window where the kernel stack SLB and the kernel stack are out 1163 * of sync. Hard disable here. 1164 */ 1165 hard_irq_disable(); 1166 1167 /* 1168 * Call restore_sprs() before calling _switch(). If we move it after 1169 * _switch() then we miss out on calling it for new tasks. The reason 1170 * for this is we manually create a stack frame for new tasks that 1171 * directly returns through ret_from_fork() or 1172 * ret_from_kernel_thread(). See copy_thread() for details. 1173 */ 1174 restore_sprs(old_thread, new_thread); 1175 1176 last = _switch(old_thread, new_thread); 1177 1178 #ifdef CONFIG_PPC_STD_MMU_64 1179 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1180 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1181 batch = this_cpu_ptr(&ppc64_tlb_batch); 1182 batch->active = 1; 1183 } 1184 1185 if (current_thread_info()->task->thread.regs) 1186 restore_math(current_thread_info()->task->thread.regs); 1187 #endif /* CONFIG_PPC_STD_MMU_64 */ 1188 1189 return last; 1190 } 1191 1192 static int instructions_to_print = 16; 1193 1194 static void show_instructions(struct pt_regs *regs) 1195 { 1196 int i; 1197 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1198 sizeof(int)); 1199 1200 printk("Instruction dump:"); 1201 1202 for (i = 0; i < instructions_to_print; i++) { 1203 int instr; 1204 1205 if (!(i % 8)) 1206 pr_cont("\n"); 1207 1208 #if !defined(CONFIG_BOOKE) 1209 /* If executing with the IMMU off, adjust pc rather 1210 * than print XXXXXXXX. 1211 */ 1212 if (!(regs->msr & MSR_IR)) 1213 pc = (unsigned long)phys_to_virt(pc); 1214 #endif 1215 1216 if (!__kernel_text_address(pc) || 1217 probe_kernel_address((unsigned int __user *)pc, instr)) { 1218 pr_cont("XXXXXXXX "); 1219 } else { 1220 if (regs->nip == pc) 1221 pr_cont("<%08x> ", instr); 1222 else 1223 pr_cont("%08x ", instr); 1224 } 1225 1226 pc += sizeof(int); 1227 } 1228 1229 pr_cont("\n"); 1230 } 1231 1232 struct regbit { 1233 unsigned long bit; 1234 const char *name; 1235 }; 1236 1237 static struct regbit msr_bits[] = { 1238 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1239 {MSR_SF, "SF"}, 1240 {MSR_HV, "HV"}, 1241 #endif 1242 {MSR_VEC, "VEC"}, 1243 {MSR_VSX, "VSX"}, 1244 #ifdef CONFIG_BOOKE 1245 {MSR_CE, "CE"}, 1246 #endif 1247 {MSR_EE, "EE"}, 1248 {MSR_PR, "PR"}, 1249 {MSR_FP, "FP"}, 1250 {MSR_ME, "ME"}, 1251 #ifdef CONFIG_BOOKE 1252 {MSR_DE, "DE"}, 1253 #else 1254 {MSR_SE, "SE"}, 1255 {MSR_BE, "BE"}, 1256 #endif 1257 {MSR_IR, "IR"}, 1258 {MSR_DR, "DR"}, 1259 {MSR_PMM, "PMM"}, 1260 #ifndef CONFIG_BOOKE 1261 {MSR_RI, "RI"}, 1262 {MSR_LE, "LE"}, 1263 #endif 1264 {0, NULL} 1265 }; 1266 1267 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1268 { 1269 const char *s = ""; 1270 1271 for (; bits->bit; ++bits) 1272 if (val & bits->bit) { 1273 pr_cont("%s%s", s, bits->name); 1274 s = sep; 1275 } 1276 } 1277 1278 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1279 static struct regbit msr_tm_bits[] = { 1280 {MSR_TS_T, "T"}, 1281 {MSR_TS_S, "S"}, 1282 {MSR_TM, "E"}, 1283 {0, NULL} 1284 }; 1285 1286 static void print_tm_bits(unsigned long val) 1287 { 1288 /* 1289 * This only prints something if at least one of the TM bit is set. 1290 * Inside the TM[], the output means: 1291 * E: Enabled (bit 32) 1292 * S: Suspended (bit 33) 1293 * T: Transactional (bit 34) 1294 */ 1295 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1296 pr_cont(",TM["); 1297 print_bits(val, msr_tm_bits, ""); 1298 pr_cont("]"); 1299 } 1300 } 1301 #else 1302 static void print_tm_bits(unsigned long val) {} 1303 #endif 1304 1305 static void print_msr_bits(unsigned long val) 1306 { 1307 pr_cont("<"); 1308 print_bits(val, msr_bits, ","); 1309 print_tm_bits(val); 1310 pr_cont(">"); 1311 } 1312 1313 #ifdef CONFIG_PPC64 1314 #define REG "%016lx" 1315 #define REGS_PER_LINE 4 1316 #define LAST_VOLATILE 13 1317 #else 1318 #define REG "%08lx" 1319 #define REGS_PER_LINE 8 1320 #define LAST_VOLATILE 12 1321 #endif 1322 1323 void show_regs(struct pt_regs * regs) 1324 { 1325 int i, trap; 1326 1327 show_regs_print_info(KERN_DEFAULT); 1328 1329 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1330 regs->nip, regs->link, regs->ctr); 1331 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1332 regs, regs->trap, print_tainted(), init_utsname()->release); 1333 printk("MSR: "REG" ", regs->msr); 1334 print_msr_bits(regs->msr); 1335 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1336 trap = TRAP(regs); 1337 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1338 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1339 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1340 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1341 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1342 #else 1343 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1344 #endif 1345 #ifdef CONFIG_PPC64 1346 pr_cont("SOFTE: %ld ", regs->softe); 1347 #endif 1348 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1349 if (MSR_TM_ACTIVE(regs->msr)) 1350 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1351 #endif 1352 1353 for (i = 0; i < 32; i++) { 1354 if ((i % REGS_PER_LINE) == 0) 1355 pr_cont("\nGPR%02d: ", i); 1356 pr_cont(REG " ", regs->gpr[i]); 1357 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1358 break; 1359 } 1360 pr_cont("\n"); 1361 #ifdef CONFIG_KALLSYMS 1362 /* 1363 * Lookup NIP late so we have the best change of getting the 1364 * above info out without failing 1365 */ 1366 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1367 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1368 #endif 1369 show_stack(current, (unsigned long *) regs->gpr[1]); 1370 if (!user_mode(regs)) 1371 show_instructions(regs); 1372 } 1373 1374 void flush_thread(void) 1375 { 1376 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1377 flush_ptrace_hw_breakpoint(current); 1378 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1379 set_debug_reg_defaults(¤t->thread); 1380 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1381 } 1382 1383 void 1384 release_thread(struct task_struct *t) 1385 { 1386 } 1387 1388 /* 1389 * this gets called so that we can store coprocessor state into memory and 1390 * copy the current task into the new thread. 1391 */ 1392 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1393 { 1394 flush_all_to_thread(src); 1395 /* 1396 * Flush TM state out so we can copy it. __switch_to_tm() does this 1397 * flush but it removes the checkpointed state from the current CPU and 1398 * transitions the CPU out of TM mode. Hence we need to call 1399 * tm_recheckpoint_new_task() (on the same task) to restore the 1400 * checkpointed state back and the TM mode. 1401 * 1402 * Can't pass dst because it isn't ready. Doesn't matter, passing 1403 * dst is only important for __switch_to() 1404 */ 1405 __switch_to_tm(src, src); 1406 1407 *dst = *src; 1408 1409 clear_task_ebb(dst); 1410 1411 return 0; 1412 } 1413 1414 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1415 { 1416 #ifdef CONFIG_PPC_STD_MMU_64 1417 unsigned long sp_vsid; 1418 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1419 1420 if (radix_enabled()) 1421 return; 1422 1423 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1424 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1425 << SLB_VSID_SHIFT_1T; 1426 else 1427 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1428 << SLB_VSID_SHIFT; 1429 sp_vsid |= SLB_VSID_KERNEL | llp; 1430 p->thread.ksp_vsid = sp_vsid; 1431 #endif 1432 } 1433 1434 /* 1435 * Copy a thread.. 1436 */ 1437 1438 /* 1439 * Copy architecture-specific thread state 1440 */ 1441 int copy_thread(unsigned long clone_flags, unsigned long usp, 1442 unsigned long kthread_arg, struct task_struct *p) 1443 { 1444 struct pt_regs *childregs, *kregs; 1445 extern void ret_from_fork(void); 1446 extern void ret_from_kernel_thread(void); 1447 void (*f)(void); 1448 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1449 struct thread_info *ti = task_thread_info(p); 1450 1451 klp_init_thread_info(ti); 1452 1453 /* Copy registers */ 1454 sp -= sizeof(struct pt_regs); 1455 childregs = (struct pt_regs *) sp; 1456 if (unlikely(p->flags & PF_KTHREAD)) { 1457 /* kernel thread */ 1458 memset(childregs, 0, sizeof(struct pt_regs)); 1459 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1460 /* function */ 1461 if (usp) 1462 childregs->gpr[14] = ppc_function_entry((void *)usp); 1463 #ifdef CONFIG_PPC64 1464 clear_tsk_thread_flag(p, TIF_32BIT); 1465 childregs->softe = 1; 1466 #endif 1467 childregs->gpr[15] = kthread_arg; 1468 p->thread.regs = NULL; /* no user register state */ 1469 ti->flags |= _TIF_RESTOREALL; 1470 f = ret_from_kernel_thread; 1471 } else { 1472 /* user thread */ 1473 struct pt_regs *regs = current_pt_regs(); 1474 CHECK_FULL_REGS(regs); 1475 *childregs = *regs; 1476 if (usp) 1477 childregs->gpr[1] = usp; 1478 p->thread.regs = childregs; 1479 childregs->gpr[3] = 0; /* Result from fork() */ 1480 if (clone_flags & CLONE_SETTLS) { 1481 #ifdef CONFIG_PPC64 1482 if (!is_32bit_task()) 1483 childregs->gpr[13] = childregs->gpr[6]; 1484 else 1485 #endif 1486 childregs->gpr[2] = childregs->gpr[6]; 1487 } 1488 1489 f = ret_from_fork; 1490 } 1491 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1492 sp -= STACK_FRAME_OVERHEAD; 1493 1494 /* 1495 * The way this works is that at some point in the future 1496 * some task will call _switch to switch to the new task. 1497 * That will pop off the stack frame created below and start 1498 * the new task running at ret_from_fork. The new task will 1499 * do some house keeping and then return from the fork or clone 1500 * system call, using the stack frame created above. 1501 */ 1502 ((unsigned long *)sp)[0] = 0; 1503 sp -= sizeof(struct pt_regs); 1504 kregs = (struct pt_regs *) sp; 1505 sp -= STACK_FRAME_OVERHEAD; 1506 p->thread.ksp = sp; 1507 #ifdef CONFIG_PPC32 1508 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1509 _ALIGN_UP(sizeof(struct thread_info), 16); 1510 #endif 1511 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1512 p->thread.ptrace_bps[0] = NULL; 1513 #endif 1514 1515 p->thread.fp_save_area = NULL; 1516 #ifdef CONFIG_ALTIVEC 1517 p->thread.vr_save_area = NULL; 1518 #endif 1519 1520 setup_ksp_vsid(p, sp); 1521 1522 #ifdef CONFIG_PPC64 1523 if (cpu_has_feature(CPU_FTR_DSCR)) { 1524 p->thread.dscr_inherit = current->thread.dscr_inherit; 1525 p->thread.dscr = mfspr(SPRN_DSCR); 1526 } 1527 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1528 p->thread.ppr = INIT_PPR; 1529 #endif 1530 kregs->nip = ppc_function_entry(f); 1531 return 0; 1532 } 1533 1534 /* 1535 * Set up a thread for executing a new program 1536 */ 1537 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1538 { 1539 #ifdef CONFIG_PPC64 1540 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1541 #endif 1542 1543 /* 1544 * If we exec out of a kernel thread then thread.regs will not be 1545 * set. Do it now. 1546 */ 1547 if (!current->thread.regs) { 1548 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1549 current->thread.regs = regs - 1; 1550 } 1551 1552 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1553 /* 1554 * Clear any transactional state, we're exec()ing. The cause is 1555 * not important as there will never be a recheckpoint so it's not 1556 * user visible. 1557 */ 1558 if (MSR_TM_SUSPENDED(mfmsr())) 1559 tm_reclaim_current(0); 1560 #endif 1561 1562 memset(regs->gpr, 0, sizeof(regs->gpr)); 1563 regs->ctr = 0; 1564 regs->link = 0; 1565 regs->xer = 0; 1566 regs->ccr = 0; 1567 regs->gpr[1] = sp; 1568 1569 /* 1570 * We have just cleared all the nonvolatile GPRs, so make 1571 * FULL_REGS(regs) return true. This is necessary to allow 1572 * ptrace to examine the thread immediately after exec. 1573 */ 1574 regs->trap &= ~1UL; 1575 1576 #ifdef CONFIG_PPC32 1577 regs->mq = 0; 1578 regs->nip = start; 1579 regs->msr = MSR_USER; 1580 #else 1581 if (!is_32bit_task()) { 1582 unsigned long entry; 1583 1584 if (is_elf2_task()) { 1585 /* Look ma, no function descriptors! */ 1586 entry = start; 1587 1588 /* 1589 * Ulrich says: 1590 * The latest iteration of the ABI requires that when 1591 * calling a function (at its global entry point), 1592 * the caller must ensure r12 holds the entry point 1593 * address (so that the function can quickly 1594 * establish addressability). 1595 */ 1596 regs->gpr[12] = start; 1597 /* Make sure that's restored on entry to userspace. */ 1598 set_thread_flag(TIF_RESTOREALL); 1599 } else { 1600 unsigned long toc; 1601 1602 /* start is a relocated pointer to the function 1603 * descriptor for the elf _start routine. The first 1604 * entry in the function descriptor is the entry 1605 * address of _start and the second entry is the TOC 1606 * value we need to use. 1607 */ 1608 __get_user(entry, (unsigned long __user *)start); 1609 __get_user(toc, (unsigned long __user *)start+1); 1610 1611 /* Check whether the e_entry function descriptor entries 1612 * need to be relocated before we can use them. 1613 */ 1614 if (load_addr != 0) { 1615 entry += load_addr; 1616 toc += load_addr; 1617 } 1618 regs->gpr[2] = toc; 1619 } 1620 regs->nip = entry; 1621 regs->msr = MSR_USER64; 1622 } else { 1623 regs->nip = start; 1624 regs->gpr[2] = 0; 1625 regs->msr = MSR_USER32; 1626 } 1627 #endif 1628 #ifdef CONFIG_VSX 1629 current->thread.used_vsr = 0; 1630 #endif 1631 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1632 current->thread.fp_save_area = NULL; 1633 #ifdef CONFIG_ALTIVEC 1634 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1635 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1636 current->thread.vr_save_area = NULL; 1637 current->thread.vrsave = 0; 1638 current->thread.used_vr = 0; 1639 #endif /* CONFIG_ALTIVEC */ 1640 #ifdef CONFIG_SPE 1641 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1642 current->thread.acc = 0; 1643 current->thread.spefscr = 0; 1644 current->thread.used_spe = 0; 1645 #endif /* CONFIG_SPE */ 1646 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1647 current->thread.tm_tfhar = 0; 1648 current->thread.tm_texasr = 0; 1649 current->thread.tm_tfiar = 0; 1650 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1651 } 1652 EXPORT_SYMBOL(start_thread); 1653 1654 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1655 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1656 1657 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1658 { 1659 struct pt_regs *regs = tsk->thread.regs; 1660 1661 /* This is a bit hairy. If we are an SPE enabled processor 1662 * (have embedded fp) we store the IEEE exception enable flags in 1663 * fpexc_mode. fpexc_mode is also used for setting FP exception 1664 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1665 if (val & PR_FP_EXC_SW_ENABLE) { 1666 #ifdef CONFIG_SPE 1667 if (cpu_has_feature(CPU_FTR_SPE)) { 1668 /* 1669 * When the sticky exception bits are set 1670 * directly by userspace, it must call prctl 1671 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1672 * in the existing prctl settings) or 1673 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1674 * the bits being set). <fenv.h> functions 1675 * saving and restoring the whole 1676 * floating-point environment need to do so 1677 * anyway to restore the prctl settings from 1678 * the saved environment. 1679 */ 1680 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1681 tsk->thread.fpexc_mode = val & 1682 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1683 return 0; 1684 } else { 1685 return -EINVAL; 1686 } 1687 #else 1688 return -EINVAL; 1689 #endif 1690 } 1691 1692 /* on a CONFIG_SPE this does not hurt us. The bits that 1693 * __pack_fe01 use do not overlap with bits used for 1694 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1695 * on CONFIG_SPE implementations are reserved so writing to 1696 * them does not change anything */ 1697 if (val > PR_FP_EXC_PRECISE) 1698 return -EINVAL; 1699 tsk->thread.fpexc_mode = __pack_fe01(val); 1700 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1701 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1702 | tsk->thread.fpexc_mode; 1703 return 0; 1704 } 1705 1706 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1707 { 1708 unsigned int val; 1709 1710 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1711 #ifdef CONFIG_SPE 1712 if (cpu_has_feature(CPU_FTR_SPE)) { 1713 /* 1714 * When the sticky exception bits are set 1715 * directly by userspace, it must call prctl 1716 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1717 * in the existing prctl settings) or 1718 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1719 * the bits being set). <fenv.h> functions 1720 * saving and restoring the whole 1721 * floating-point environment need to do so 1722 * anyway to restore the prctl settings from 1723 * the saved environment. 1724 */ 1725 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1726 val = tsk->thread.fpexc_mode; 1727 } else 1728 return -EINVAL; 1729 #else 1730 return -EINVAL; 1731 #endif 1732 else 1733 val = __unpack_fe01(tsk->thread.fpexc_mode); 1734 return put_user(val, (unsigned int __user *) adr); 1735 } 1736 1737 int set_endian(struct task_struct *tsk, unsigned int val) 1738 { 1739 struct pt_regs *regs = tsk->thread.regs; 1740 1741 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1742 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1743 return -EINVAL; 1744 1745 if (regs == NULL) 1746 return -EINVAL; 1747 1748 if (val == PR_ENDIAN_BIG) 1749 regs->msr &= ~MSR_LE; 1750 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1751 regs->msr |= MSR_LE; 1752 else 1753 return -EINVAL; 1754 1755 return 0; 1756 } 1757 1758 int get_endian(struct task_struct *tsk, unsigned long adr) 1759 { 1760 struct pt_regs *regs = tsk->thread.regs; 1761 unsigned int val; 1762 1763 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1764 !cpu_has_feature(CPU_FTR_REAL_LE)) 1765 return -EINVAL; 1766 1767 if (regs == NULL) 1768 return -EINVAL; 1769 1770 if (regs->msr & MSR_LE) { 1771 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1772 val = PR_ENDIAN_LITTLE; 1773 else 1774 val = PR_ENDIAN_PPC_LITTLE; 1775 } else 1776 val = PR_ENDIAN_BIG; 1777 1778 return put_user(val, (unsigned int __user *)adr); 1779 } 1780 1781 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1782 { 1783 tsk->thread.align_ctl = val; 1784 return 0; 1785 } 1786 1787 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1788 { 1789 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1790 } 1791 1792 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1793 unsigned long nbytes) 1794 { 1795 unsigned long stack_page; 1796 unsigned long cpu = task_cpu(p); 1797 1798 /* 1799 * Avoid crashing if the stack has overflowed and corrupted 1800 * task_cpu(p), which is in the thread_info struct. 1801 */ 1802 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1803 stack_page = (unsigned long) hardirq_ctx[cpu]; 1804 if (sp >= stack_page + sizeof(struct thread_struct) 1805 && sp <= stack_page + THREAD_SIZE - nbytes) 1806 return 1; 1807 1808 stack_page = (unsigned long) softirq_ctx[cpu]; 1809 if (sp >= stack_page + sizeof(struct thread_struct) 1810 && sp <= stack_page + THREAD_SIZE - nbytes) 1811 return 1; 1812 } 1813 return 0; 1814 } 1815 1816 int validate_sp(unsigned long sp, struct task_struct *p, 1817 unsigned long nbytes) 1818 { 1819 unsigned long stack_page = (unsigned long)task_stack_page(p); 1820 1821 if (sp >= stack_page + sizeof(struct thread_struct) 1822 && sp <= stack_page + THREAD_SIZE - nbytes) 1823 return 1; 1824 1825 return valid_irq_stack(sp, p, nbytes); 1826 } 1827 1828 EXPORT_SYMBOL(validate_sp); 1829 1830 unsigned long get_wchan(struct task_struct *p) 1831 { 1832 unsigned long ip, sp; 1833 int count = 0; 1834 1835 if (!p || p == current || p->state == TASK_RUNNING) 1836 return 0; 1837 1838 sp = p->thread.ksp; 1839 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1840 return 0; 1841 1842 do { 1843 sp = *(unsigned long *)sp; 1844 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1845 return 0; 1846 if (count > 0) { 1847 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1848 if (!in_sched_functions(ip)) 1849 return ip; 1850 } 1851 } while (count++ < 16); 1852 return 0; 1853 } 1854 1855 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1856 1857 void show_stack(struct task_struct *tsk, unsigned long *stack) 1858 { 1859 unsigned long sp, ip, lr, newsp; 1860 int count = 0; 1861 int firstframe = 1; 1862 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1863 int curr_frame = current->curr_ret_stack; 1864 extern void return_to_handler(void); 1865 unsigned long rth = (unsigned long)return_to_handler; 1866 #endif 1867 1868 sp = (unsigned long) stack; 1869 if (tsk == NULL) 1870 tsk = current; 1871 if (sp == 0) { 1872 if (tsk == current) 1873 sp = current_stack_pointer(); 1874 else 1875 sp = tsk->thread.ksp; 1876 } 1877 1878 lr = 0; 1879 printk("Call Trace:\n"); 1880 do { 1881 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1882 return; 1883 1884 stack = (unsigned long *) sp; 1885 newsp = stack[0]; 1886 ip = stack[STACK_FRAME_LR_SAVE]; 1887 if (!firstframe || ip != lr) { 1888 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1889 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1890 if ((ip == rth) && curr_frame >= 0) { 1891 pr_cont(" (%pS)", 1892 (void *)current->ret_stack[curr_frame].ret); 1893 curr_frame--; 1894 } 1895 #endif 1896 if (firstframe) 1897 pr_cont(" (unreliable)"); 1898 pr_cont("\n"); 1899 } 1900 firstframe = 0; 1901 1902 /* 1903 * See if this is an exception frame. 1904 * We look for the "regshere" marker in the current frame. 1905 */ 1906 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1907 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1908 struct pt_regs *regs = (struct pt_regs *) 1909 (sp + STACK_FRAME_OVERHEAD); 1910 lr = regs->link; 1911 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1912 regs->trap, (void *)regs->nip, (void *)lr); 1913 firstframe = 1; 1914 } 1915 1916 sp = newsp; 1917 } while (count++ < kstack_depth_to_print); 1918 } 1919 1920 #ifdef CONFIG_PPC64 1921 /* Called with hard IRQs off */ 1922 void notrace __ppc64_runlatch_on(void) 1923 { 1924 struct thread_info *ti = current_thread_info(); 1925 unsigned long ctrl; 1926 1927 ctrl = mfspr(SPRN_CTRLF); 1928 ctrl |= CTRL_RUNLATCH; 1929 mtspr(SPRN_CTRLT, ctrl); 1930 1931 ti->local_flags |= _TLF_RUNLATCH; 1932 } 1933 1934 /* Called with hard IRQs off */ 1935 void notrace __ppc64_runlatch_off(void) 1936 { 1937 struct thread_info *ti = current_thread_info(); 1938 unsigned long ctrl; 1939 1940 ti->local_flags &= ~_TLF_RUNLATCH; 1941 1942 ctrl = mfspr(SPRN_CTRLF); 1943 ctrl &= ~CTRL_RUNLATCH; 1944 mtspr(SPRN_CTRLT, ctrl); 1945 } 1946 #endif /* CONFIG_PPC64 */ 1947 1948 unsigned long arch_align_stack(unsigned long sp) 1949 { 1950 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1951 sp -= get_random_int() & ~PAGE_MASK; 1952 return sp & ~0xf; 1953 } 1954 1955 static inline unsigned long brk_rnd(void) 1956 { 1957 unsigned long rnd = 0; 1958 1959 /* 8MB for 32bit, 1GB for 64bit */ 1960 if (is_32bit_task()) 1961 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 1962 else 1963 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 1964 1965 return rnd << PAGE_SHIFT; 1966 } 1967 1968 unsigned long arch_randomize_brk(struct mm_struct *mm) 1969 { 1970 unsigned long base = mm->brk; 1971 unsigned long ret; 1972 1973 #ifdef CONFIG_PPC_STD_MMU_64 1974 /* 1975 * If we are using 1TB segments and we are allowed to randomise 1976 * the heap, we can put it above 1TB so it is backed by a 1TB 1977 * segment. Otherwise the heap will be in the bottom 1TB 1978 * which always uses 256MB segments and this may result in a 1979 * performance penalty. We don't need to worry about radix. For 1980 * radix, mmu_highuser_ssize remains unchanged from 256MB. 1981 */ 1982 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1983 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1984 #endif 1985 1986 ret = PAGE_ALIGN(base + brk_rnd()); 1987 1988 if (ret < mm->brk) 1989 return mm->brk; 1990 1991 return ret; 1992 } 1993 1994