1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #include <asm/hw_irq.h> 58 #endif 59 #include <asm/code-patching.h> 60 #include <asm/exec.h> 61 #include <asm/livepatch.h> 62 #include <asm/cpu_has_feature.h> 63 #include <asm/asm-prototypes.h> 64 #include <asm/stacktrace.h> 65 #include <asm/hw_breakpoint.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 /* 81 * Are we running in "Suspend disabled" mode? If so we have to block any 82 * sigreturn that would get us into suspended state, and we also warn in some 83 * other paths that we should never reach with suspend disabled. 84 */ 85 bool tm_suspend_disabled __ro_after_init = false; 86 87 static void check_if_tm_restore_required(struct task_struct *tsk) 88 { 89 /* 90 * If we are saving the current thread's registers, and the 91 * thread is in a transactional state, set the TIF_RESTORE_TM 92 * bit so that we know to restore the registers before 93 * returning to userspace. 94 */ 95 if (tsk == current && tsk->thread.regs && 96 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 97 !test_thread_flag(TIF_RESTORE_TM)) { 98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 99 set_thread_flag(TIF_RESTORE_TM); 100 } 101 } 102 103 #else 104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 106 107 bool strict_msr_control; 108 EXPORT_SYMBOL(strict_msr_control); 109 110 static int __init enable_strict_msr_control(char *str) 111 { 112 strict_msr_control = true; 113 pr_info("Enabling strict facility control\n"); 114 115 return 0; 116 } 117 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 118 119 /* notrace because it's called by restore_math */ 120 unsigned long notrace msr_check_and_set(unsigned long bits) 121 { 122 unsigned long oldmsr = mfmsr(); 123 unsigned long newmsr; 124 125 newmsr = oldmsr | bits; 126 127 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 128 newmsr |= MSR_VSX; 129 130 if (oldmsr != newmsr) 131 mtmsr_isync(newmsr); 132 133 return newmsr; 134 } 135 EXPORT_SYMBOL_GPL(msr_check_and_set); 136 137 /* notrace because it's called by restore_math */ 138 void notrace __msr_check_and_clear(unsigned long bits) 139 { 140 unsigned long oldmsr = mfmsr(); 141 unsigned long newmsr; 142 143 newmsr = oldmsr & ~bits; 144 145 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 146 newmsr &= ~MSR_VSX; 147 148 if (oldmsr != newmsr) 149 mtmsr_isync(newmsr); 150 } 151 EXPORT_SYMBOL(__msr_check_and_clear); 152 153 #ifdef CONFIG_PPC_FPU 154 static void __giveup_fpu(struct task_struct *tsk) 155 { 156 unsigned long msr; 157 158 save_fpu(tsk); 159 msr = tsk->thread.regs->msr; 160 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 161 if (cpu_has_feature(CPU_FTR_VSX)) 162 msr &= ~MSR_VSX; 163 tsk->thread.regs->msr = msr; 164 } 165 166 void giveup_fpu(struct task_struct *tsk) 167 { 168 check_if_tm_restore_required(tsk); 169 170 msr_check_and_set(MSR_FP); 171 __giveup_fpu(tsk); 172 msr_check_and_clear(MSR_FP); 173 } 174 EXPORT_SYMBOL(giveup_fpu); 175 176 /* 177 * Make sure the floating-point register state in the 178 * the thread_struct is up to date for task tsk. 179 */ 180 void flush_fp_to_thread(struct task_struct *tsk) 181 { 182 if (tsk->thread.regs) { 183 /* 184 * We need to disable preemption here because if we didn't, 185 * another process could get scheduled after the regs->msr 186 * test but before we have finished saving the FP registers 187 * to the thread_struct. That process could take over the 188 * FPU, and then when we get scheduled again we would store 189 * bogus values for the remaining FP registers. 190 */ 191 preempt_disable(); 192 if (tsk->thread.regs->msr & MSR_FP) { 193 /* 194 * This should only ever be called for current or 195 * for a stopped child process. Since we save away 196 * the FP register state on context switch, 197 * there is something wrong if a stopped child appears 198 * to still have its FP state in the CPU registers. 199 */ 200 BUG_ON(tsk != current); 201 giveup_fpu(tsk); 202 } 203 preempt_enable(); 204 } 205 } 206 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 207 208 void enable_kernel_fp(void) 209 { 210 unsigned long cpumsr; 211 212 WARN_ON(preemptible()); 213 214 cpumsr = msr_check_and_set(MSR_FP); 215 216 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 217 check_if_tm_restore_required(current); 218 /* 219 * If a thread has already been reclaimed then the 220 * checkpointed registers are on the CPU but have definitely 221 * been saved by the reclaim code. Don't need to and *cannot* 222 * giveup as this would save to the 'live' structure not the 223 * checkpointed structure. 224 */ 225 if (!MSR_TM_ACTIVE(cpumsr) && 226 MSR_TM_ACTIVE(current->thread.regs->msr)) 227 return; 228 __giveup_fpu(current); 229 } 230 } 231 EXPORT_SYMBOL(enable_kernel_fp); 232 #else 233 static inline void __giveup_fpu(struct task_struct *tsk) { } 234 #endif /* CONFIG_PPC_FPU */ 235 236 #ifdef CONFIG_ALTIVEC 237 static void __giveup_altivec(struct task_struct *tsk) 238 { 239 unsigned long msr; 240 241 save_altivec(tsk); 242 msr = tsk->thread.regs->msr; 243 msr &= ~MSR_VEC; 244 if (cpu_has_feature(CPU_FTR_VSX)) 245 msr &= ~MSR_VSX; 246 tsk->thread.regs->msr = msr; 247 } 248 249 void giveup_altivec(struct task_struct *tsk) 250 { 251 check_if_tm_restore_required(tsk); 252 253 msr_check_and_set(MSR_VEC); 254 __giveup_altivec(tsk); 255 msr_check_and_clear(MSR_VEC); 256 } 257 EXPORT_SYMBOL(giveup_altivec); 258 259 void enable_kernel_altivec(void) 260 { 261 unsigned long cpumsr; 262 263 WARN_ON(preemptible()); 264 265 cpumsr = msr_check_and_set(MSR_VEC); 266 267 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 268 check_if_tm_restore_required(current); 269 /* 270 * If a thread has already been reclaimed then the 271 * checkpointed registers are on the CPU but have definitely 272 * been saved by the reclaim code. Don't need to and *cannot* 273 * giveup as this would save to the 'live' structure not the 274 * checkpointed structure. 275 */ 276 if (!MSR_TM_ACTIVE(cpumsr) && 277 MSR_TM_ACTIVE(current->thread.regs->msr)) 278 return; 279 __giveup_altivec(current); 280 } 281 } 282 EXPORT_SYMBOL(enable_kernel_altivec); 283 284 /* 285 * Make sure the VMX/Altivec register state in the 286 * the thread_struct is up to date for task tsk. 287 */ 288 void flush_altivec_to_thread(struct task_struct *tsk) 289 { 290 if (tsk->thread.regs) { 291 preempt_disable(); 292 if (tsk->thread.regs->msr & MSR_VEC) { 293 BUG_ON(tsk != current); 294 giveup_altivec(tsk); 295 } 296 preempt_enable(); 297 } 298 } 299 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 300 #endif /* CONFIG_ALTIVEC */ 301 302 #ifdef CONFIG_VSX 303 static void __giveup_vsx(struct task_struct *tsk) 304 { 305 unsigned long msr = tsk->thread.regs->msr; 306 307 /* 308 * We should never be ssetting MSR_VSX without also setting 309 * MSR_FP and MSR_VEC 310 */ 311 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 312 313 /* __giveup_fpu will clear MSR_VSX */ 314 if (msr & MSR_FP) 315 __giveup_fpu(tsk); 316 if (msr & MSR_VEC) 317 __giveup_altivec(tsk); 318 } 319 320 static void giveup_vsx(struct task_struct *tsk) 321 { 322 check_if_tm_restore_required(tsk); 323 324 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 325 __giveup_vsx(tsk); 326 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 327 } 328 329 void enable_kernel_vsx(void) 330 { 331 unsigned long cpumsr; 332 333 WARN_ON(preemptible()); 334 335 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 336 337 if (current->thread.regs && 338 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 339 check_if_tm_restore_required(current); 340 /* 341 * If a thread has already been reclaimed then the 342 * checkpointed registers are on the CPU but have definitely 343 * been saved by the reclaim code. Don't need to and *cannot* 344 * giveup as this would save to the 'live' structure not the 345 * checkpointed structure. 346 */ 347 if (!MSR_TM_ACTIVE(cpumsr) && 348 MSR_TM_ACTIVE(current->thread.regs->msr)) 349 return; 350 __giveup_vsx(current); 351 } 352 } 353 EXPORT_SYMBOL(enable_kernel_vsx); 354 355 void flush_vsx_to_thread(struct task_struct *tsk) 356 { 357 if (tsk->thread.regs) { 358 preempt_disable(); 359 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 360 BUG_ON(tsk != current); 361 giveup_vsx(tsk); 362 } 363 preempt_enable(); 364 } 365 } 366 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 367 #endif /* CONFIG_VSX */ 368 369 #ifdef CONFIG_SPE 370 void giveup_spe(struct task_struct *tsk) 371 { 372 check_if_tm_restore_required(tsk); 373 374 msr_check_and_set(MSR_SPE); 375 __giveup_spe(tsk); 376 msr_check_and_clear(MSR_SPE); 377 } 378 EXPORT_SYMBOL(giveup_spe); 379 380 void enable_kernel_spe(void) 381 { 382 WARN_ON(preemptible()); 383 384 msr_check_and_set(MSR_SPE); 385 386 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 387 check_if_tm_restore_required(current); 388 __giveup_spe(current); 389 } 390 } 391 EXPORT_SYMBOL(enable_kernel_spe); 392 393 void flush_spe_to_thread(struct task_struct *tsk) 394 { 395 if (tsk->thread.regs) { 396 preempt_disable(); 397 if (tsk->thread.regs->msr & MSR_SPE) { 398 BUG_ON(tsk != current); 399 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 400 giveup_spe(tsk); 401 } 402 preempt_enable(); 403 } 404 } 405 #endif /* CONFIG_SPE */ 406 407 static unsigned long msr_all_available; 408 409 static int __init init_msr_all_available(void) 410 { 411 if (IS_ENABLED(CONFIG_PPC_FPU)) 412 msr_all_available |= MSR_FP; 413 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 414 msr_all_available |= MSR_VEC; 415 if (cpu_has_feature(CPU_FTR_VSX)) 416 msr_all_available |= MSR_VSX; 417 if (cpu_has_feature(CPU_FTR_SPE)) 418 msr_all_available |= MSR_SPE; 419 420 return 0; 421 } 422 early_initcall(init_msr_all_available); 423 424 void giveup_all(struct task_struct *tsk) 425 { 426 unsigned long usermsr; 427 428 if (!tsk->thread.regs) 429 return; 430 431 check_if_tm_restore_required(tsk); 432 433 usermsr = tsk->thread.regs->msr; 434 435 if ((usermsr & msr_all_available) == 0) 436 return; 437 438 msr_check_and_set(msr_all_available); 439 440 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 441 442 if (usermsr & MSR_FP) 443 __giveup_fpu(tsk); 444 if (usermsr & MSR_VEC) 445 __giveup_altivec(tsk); 446 if (usermsr & MSR_SPE) 447 __giveup_spe(tsk); 448 449 msr_check_and_clear(msr_all_available); 450 } 451 EXPORT_SYMBOL(giveup_all); 452 453 #ifdef CONFIG_PPC_BOOK3S_64 454 #ifdef CONFIG_PPC_FPU 455 static bool should_restore_fp(void) 456 { 457 if (current->thread.load_fp) { 458 current->thread.load_fp++; 459 return true; 460 } 461 return false; 462 } 463 464 static void do_restore_fp(void) 465 { 466 load_fp_state(¤t->thread.fp_state); 467 } 468 #else 469 static bool should_restore_fp(void) { return false; } 470 static void do_restore_fp(void) { } 471 #endif /* CONFIG_PPC_FPU */ 472 473 #ifdef CONFIG_ALTIVEC 474 static bool should_restore_altivec(void) 475 { 476 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { 477 current->thread.load_vec++; 478 return true; 479 } 480 return false; 481 } 482 483 static void do_restore_altivec(void) 484 { 485 load_vr_state(¤t->thread.vr_state); 486 current->thread.used_vr = 1; 487 } 488 #else 489 static bool should_restore_altivec(void) { return false; } 490 static void do_restore_altivec(void) { } 491 #endif /* CONFIG_ALTIVEC */ 492 493 static bool should_restore_vsx(void) 494 { 495 if (cpu_has_feature(CPU_FTR_VSX)) 496 return true; 497 return false; 498 } 499 #ifdef CONFIG_VSX 500 static void do_restore_vsx(void) 501 { 502 current->thread.used_vsr = 1; 503 } 504 #else 505 static void do_restore_vsx(void) { } 506 #endif /* CONFIG_VSX */ 507 508 /* 509 * The exception exit path calls restore_math() with interrupts hard disabled 510 * but the soft irq state not "reconciled". ftrace code that calls 511 * local_irq_save/restore causes warnings. 512 * 513 * Rather than complicate the exit path, just don't trace restore_math. This 514 * could be done by having ftrace entry code check for this un-reconciled 515 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 516 * temporarily fix it up for the duration of the ftrace call. 517 */ 518 void notrace restore_math(struct pt_regs *regs) 519 { 520 unsigned long msr; 521 unsigned long new_msr = 0; 522 523 msr = regs->msr; 524 525 /* 526 * new_msr tracks the facilities that are to be restored. Only reload 527 * if the bit is not set in the user MSR (if it is set, the registers 528 * are live for the user thread). 529 */ 530 if ((!(msr & MSR_FP)) && should_restore_fp()) 531 new_msr |= MSR_FP; 532 533 if ((!(msr & MSR_VEC)) && should_restore_altivec()) 534 new_msr |= MSR_VEC; 535 536 if ((!(msr & MSR_VSX)) && should_restore_vsx()) { 537 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) 538 new_msr |= MSR_VSX; 539 } 540 541 if (new_msr) { 542 unsigned long fpexc_mode = 0; 543 544 msr_check_and_set(new_msr); 545 546 if (new_msr & MSR_FP) { 547 do_restore_fp(); 548 549 // This also covers VSX, because VSX implies FP 550 fpexc_mode = current->thread.fpexc_mode; 551 } 552 553 if (new_msr & MSR_VEC) 554 do_restore_altivec(); 555 556 if (new_msr & MSR_VSX) 557 do_restore_vsx(); 558 559 msr_check_and_clear(new_msr); 560 561 regs->msr |= new_msr | fpexc_mode; 562 } 563 } 564 #endif /* CONFIG_PPC_BOOK3S_64 */ 565 566 static void save_all(struct task_struct *tsk) 567 { 568 unsigned long usermsr; 569 570 if (!tsk->thread.regs) 571 return; 572 573 usermsr = tsk->thread.regs->msr; 574 575 if ((usermsr & msr_all_available) == 0) 576 return; 577 578 msr_check_and_set(msr_all_available); 579 580 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 581 582 if (usermsr & MSR_FP) 583 save_fpu(tsk); 584 585 if (usermsr & MSR_VEC) 586 save_altivec(tsk); 587 588 if (usermsr & MSR_SPE) 589 __giveup_spe(tsk); 590 591 msr_check_and_clear(msr_all_available); 592 thread_pkey_regs_save(&tsk->thread); 593 } 594 595 void flush_all_to_thread(struct task_struct *tsk) 596 { 597 if (tsk->thread.regs) { 598 preempt_disable(); 599 BUG_ON(tsk != current); 600 #ifdef CONFIG_SPE 601 if (tsk->thread.regs->msr & MSR_SPE) 602 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 603 #endif 604 save_all(tsk); 605 606 preempt_enable(); 607 } 608 } 609 EXPORT_SYMBOL(flush_all_to_thread); 610 611 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 612 void do_send_trap(struct pt_regs *regs, unsigned long address, 613 unsigned long error_code, int breakpt) 614 { 615 current->thread.trap_nr = TRAP_HWBKPT; 616 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 617 11, SIGSEGV) == NOTIFY_STOP) 618 return; 619 620 /* Deliver the signal to userspace */ 621 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 622 (void __user *)address); 623 } 624 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 625 626 static void do_break_handler(struct pt_regs *regs) 627 { 628 struct arch_hw_breakpoint null_brk = {0}; 629 struct arch_hw_breakpoint *info; 630 struct ppc_inst instr = ppc_inst(0); 631 int type = 0; 632 int size = 0; 633 unsigned long ea; 634 int i; 635 636 /* 637 * If underneath hw supports only one watchpoint, we know it 638 * caused exception. 8xx also falls into this category. 639 */ 640 if (nr_wp_slots() == 1) { 641 __set_breakpoint(0, &null_brk); 642 current->thread.hw_brk[0] = null_brk; 643 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED; 644 return; 645 } 646 647 /* Otherwise findout which DAWR caused exception and disable it. */ 648 wp_get_instr_detail(regs, &instr, &type, &size, &ea); 649 650 for (i = 0; i < nr_wp_slots(); i++) { 651 info = ¤t->thread.hw_brk[i]; 652 if (!info->address) 653 continue; 654 655 if (wp_check_constraints(regs, instr, ea, type, size, info)) { 656 __set_breakpoint(i, &null_brk); 657 current->thread.hw_brk[i] = null_brk; 658 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED; 659 } 660 } 661 } 662 663 void do_break (struct pt_regs *regs, unsigned long address, 664 unsigned long error_code) 665 { 666 current->thread.trap_nr = TRAP_HWBKPT; 667 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 668 11, SIGSEGV) == NOTIFY_STOP) 669 return; 670 671 if (debugger_break_match(regs)) 672 return; 673 674 /* 675 * We reach here only when watchpoint exception is generated by ptrace 676 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set, 677 * watchpoint is already handled by hw_breakpoint_handler() so we don't 678 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set, 679 * we need to manually handle the watchpoint here. 680 */ 681 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT)) 682 do_break_handler(regs); 683 684 /* Deliver the signal to userspace */ 685 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 686 } 687 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 688 689 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 690 691 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 692 /* 693 * Set the debug registers back to their default "safe" values. 694 */ 695 static void set_debug_reg_defaults(struct thread_struct *thread) 696 { 697 thread->debug.iac1 = thread->debug.iac2 = 0; 698 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 699 thread->debug.iac3 = thread->debug.iac4 = 0; 700 #endif 701 thread->debug.dac1 = thread->debug.dac2 = 0; 702 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 703 thread->debug.dvc1 = thread->debug.dvc2 = 0; 704 #endif 705 thread->debug.dbcr0 = 0; 706 #ifdef CONFIG_BOOKE 707 /* 708 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 709 */ 710 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 711 DBCR1_IAC3US | DBCR1_IAC4US; 712 /* 713 * Force Data Address Compare User/Supervisor bits to be User-only 714 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 715 */ 716 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 717 #else 718 thread->debug.dbcr1 = 0; 719 #endif 720 } 721 722 static void prime_debug_regs(struct debug_reg *debug) 723 { 724 /* 725 * We could have inherited MSR_DE from userspace, since 726 * it doesn't get cleared on exception entry. Make sure 727 * MSR_DE is clear before we enable any debug events. 728 */ 729 mtmsr(mfmsr() & ~MSR_DE); 730 731 mtspr(SPRN_IAC1, debug->iac1); 732 mtspr(SPRN_IAC2, debug->iac2); 733 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 734 mtspr(SPRN_IAC3, debug->iac3); 735 mtspr(SPRN_IAC4, debug->iac4); 736 #endif 737 mtspr(SPRN_DAC1, debug->dac1); 738 mtspr(SPRN_DAC2, debug->dac2); 739 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 740 mtspr(SPRN_DVC1, debug->dvc1); 741 mtspr(SPRN_DVC2, debug->dvc2); 742 #endif 743 mtspr(SPRN_DBCR0, debug->dbcr0); 744 mtspr(SPRN_DBCR1, debug->dbcr1); 745 #ifdef CONFIG_BOOKE 746 mtspr(SPRN_DBCR2, debug->dbcr2); 747 #endif 748 } 749 /* 750 * Unless neither the old or new thread are making use of the 751 * debug registers, set the debug registers from the values 752 * stored in the new thread. 753 */ 754 void switch_booke_debug_regs(struct debug_reg *new_debug) 755 { 756 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 757 || (new_debug->dbcr0 & DBCR0_IDM)) 758 prime_debug_regs(new_debug); 759 } 760 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 761 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 762 #ifndef CONFIG_HAVE_HW_BREAKPOINT 763 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 764 { 765 preempt_disable(); 766 __set_breakpoint(i, brk); 767 preempt_enable(); 768 } 769 770 static void set_debug_reg_defaults(struct thread_struct *thread) 771 { 772 int i; 773 struct arch_hw_breakpoint null_brk = {0}; 774 775 for (i = 0; i < nr_wp_slots(); i++) { 776 thread->hw_brk[i] = null_brk; 777 if (ppc_breakpoint_available()) 778 set_breakpoint(i, &thread->hw_brk[i]); 779 } 780 } 781 782 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 783 struct arch_hw_breakpoint *b) 784 { 785 if (a->address != b->address) 786 return false; 787 if (a->type != b->type) 788 return false; 789 if (a->len != b->len) 790 return false; 791 /* no need to check hw_len. it's calculated from address and len */ 792 return true; 793 } 794 795 static void switch_hw_breakpoint(struct task_struct *new) 796 { 797 int i; 798 799 for (i = 0; i < nr_wp_slots(); i++) { 800 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 801 &new->thread.hw_brk[i]))) 802 continue; 803 804 __set_breakpoint(i, &new->thread.hw_brk[i]); 805 } 806 } 807 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 808 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 809 810 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 811 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 812 { 813 mtspr(SPRN_DAC1, dabr); 814 if (IS_ENABLED(CONFIG_PPC_47x)) 815 isync(); 816 return 0; 817 } 818 #elif defined(CONFIG_PPC_BOOK3S) 819 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 820 { 821 mtspr(SPRN_DABR, dabr); 822 if (cpu_has_feature(CPU_FTR_DABRX)) 823 mtspr(SPRN_DABRX, dabrx); 824 return 0; 825 } 826 #else 827 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 828 { 829 return -EINVAL; 830 } 831 #endif 832 833 static inline int set_dabr(struct arch_hw_breakpoint *brk) 834 { 835 unsigned long dabr, dabrx; 836 837 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 838 dabrx = ((brk->type >> 3) & 0x7); 839 840 if (ppc_md.set_dabr) 841 return ppc_md.set_dabr(dabr, dabrx); 842 843 return __set_dabr(dabr, dabrx); 844 } 845 846 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 847 { 848 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 849 LCTRL1_CRWF_RW; 850 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 851 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 852 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 853 854 if (start_addr == 0) 855 lctrl2 |= LCTRL2_LW0LA_F; 856 else if (end_addr == 0) 857 lctrl2 |= LCTRL2_LW0LA_E; 858 else 859 lctrl2 |= LCTRL2_LW0LA_EandF; 860 861 mtspr(SPRN_LCTRL2, 0); 862 863 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 864 return 0; 865 866 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 867 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 868 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 869 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 870 871 mtspr(SPRN_CMPE, start_addr - 1); 872 mtspr(SPRN_CMPF, end_addr); 873 mtspr(SPRN_LCTRL1, lctrl1); 874 mtspr(SPRN_LCTRL2, lctrl2); 875 876 return 0; 877 } 878 879 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 880 { 881 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 882 883 if (dawr_enabled()) 884 // Power8 or later 885 set_dawr(nr, brk); 886 else if (IS_ENABLED(CONFIG_PPC_8xx)) 887 set_breakpoint_8xx(brk); 888 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 889 // Power7 or earlier 890 set_dabr(brk); 891 else 892 // Shouldn't happen due to higher level checks 893 WARN_ON_ONCE(1); 894 } 895 896 /* Check if we have DAWR or DABR hardware */ 897 bool ppc_breakpoint_available(void) 898 { 899 if (dawr_enabled()) 900 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 901 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 902 return false; /* POWER9 with DAWR disabled */ 903 /* DABR: Everything but POWER8 and POWER9 */ 904 return true; 905 } 906 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 907 908 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 909 910 static inline bool tm_enabled(struct task_struct *tsk) 911 { 912 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 913 } 914 915 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 916 { 917 /* 918 * Use the current MSR TM suspended bit to track if we have 919 * checkpointed state outstanding. 920 * On signal delivery, we'd normally reclaim the checkpointed 921 * state to obtain stack pointer (see:get_tm_stackpointer()). 922 * This will then directly return to userspace without going 923 * through __switch_to(). However, if the stack frame is bad, 924 * we need to exit this thread which calls __switch_to() which 925 * will again attempt to reclaim the already saved tm state. 926 * Hence we need to check that we've not already reclaimed 927 * this state. 928 * We do this using the current MSR, rather tracking it in 929 * some specific thread_struct bit, as it has the additional 930 * benefit of checking for a potential TM bad thing exception. 931 */ 932 if (!MSR_TM_SUSPENDED(mfmsr())) 933 return; 934 935 giveup_all(container_of(thr, struct task_struct, thread)); 936 937 tm_reclaim(thr, cause); 938 939 /* 940 * If we are in a transaction and FP is off then we can't have 941 * used FP inside that transaction. Hence the checkpointed 942 * state is the same as the live state. We need to copy the 943 * live state to the checkpointed state so that when the 944 * transaction is restored, the checkpointed state is correct 945 * and the aborted transaction sees the correct state. We use 946 * ckpt_regs.msr here as that's what tm_reclaim will use to 947 * determine if it's going to write the checkpointed state or 948 * not. So either this will write the checkpointed registers, 949 * or reclaim will. Similarly for VMX. 950 */ 951 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 952 memcpy(&thr->ckfp_state, &thr->fp_state, 953 sizeof(struct thread_fp_state)); 954 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 955 memcpy(&thr->ckvr_state, &thr->vr_state, 956 sizeof(struct thread_vr_state)); 957 } 958 959 void tm_reclaim_current(uint8_t cause) 960 { 961 tm_enable(); 962 tm_reclaim_thread(¤t->thread, cause); 963 } 964 965 static inline void tm_reclaim_task(struct task_struct *tsk) 966 { 967 /* We have to work out if we're switching from/to a task that's in the 968 * middle of a transaction. 969 * 970 * In switching we need to maintain a 2nd register state as 971 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 972 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 973 * ckvr_state 974 * 975 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 976 */ 977 struct thread_struct *thr = &tsk->thread; 978 979 if (!thr->regs) 980 return; 981 982 if (!MSR_TM_ACTIVE(thr->regs->msr)) 983 goto out_and_saveregs; 984 985 WARN_ON(tm_suspend_disabled); 986 987 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 988 "ccr=%lx, msr=%lx, trap=%lx)\n", 989 tsk->pid, thr->regs->nip, 990 thr->regs->ccr, thr->regs->msr, 991 thr->regs->trap); 992 993 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 994 995 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 996 tsk->pid); 997 998 out_and_saveregs: 999 /* Always save the regs here, even if a transaction's not active. 1000 * This context-switches a thread's TM info SPRs. We do it here to 1001 * be consistent with the restore path (in recheckpoint) which 1002 * cannot happen later in _switch(). 1003 */ 1004 tm_save_sprs(thr); 1005 } 1006 1007 extern void __tm_recheckpoint(struct thread_struct *thread); 1008 1009 void tm_recheckpoint(struct thread_struct *thread) 1010 { 1011 unsigned long flags; 1012 1013 if (!(thread->regs->msr & MSR_TM)) 1014 return; 1015 1016 /* We really can't be interrupted here as the TEXASR registers can't 1017 * change and later in the trecheckpoint code, we have a userspace R1. 1018 * So let's hard disable over this region. 1019 */ 1020 local_irq_save(flags); 1021 hard_irq_disable(); 1022 1023 /* The TM SPRs are restored here, so that TEXASR.FS can be set 1024 * before the trecheckpoint and no explosion occurs. 1025 */ 1026 tm_restore_sprs(thread); 1027 1028 __tm_recheckpoint(thread); 1029 1030 local_irq_restore(flags); 1031 } 1032 1033 static inline void tm_recheckpoint_new_task(struct task_struct *new) 1034 { 1035 if (!cpu_has_feature(CPU_FTR_TM)) 1036 return; 1037 1038 /* Recheckpoint the registers of the thread we're about to switch to. 1039 * 1040 * If the task was using FP, we non-lazily reload both the original and 1041 * the speculative FP register states. This is because the kernel 1042 * doesn't see if/when a TM rollback occurs, so if we take an FP 1043 * unavailable later, we are unable to determine which set of FP regs 1044 * need to be restored. 1045 */ 1046 if (!tm_enabled(new)) 1047 return; 1048 1049 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1050 tm_restore_sprs(&new->thread); 1051 return; 1052 } 1053 /* Recheckpoint to restore original checkpointed register state. */ 1054 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1055 new->pid, new->thread.regs->msr); 1056 1057 tm_recheckpoint(&new->thread); 1058 1059 /* 1060 * The checkpointed state has been restored but the live state has 1061 * not, ensure all the math functionality is turned off to trigger 1062 * restore_math() to reload. 1063 */ 1064 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1065 1066 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1067 "(kernel msr 0x%lx)\n", 1068 new->pid, mfmsr()); 1069 } 1070 1071 static inline void __switch_to_tm(struct task_struct *prev, 1072 struct task_struct *new) 1073 { 1074 if (cpu_has_feature(CPU_FTR_TM)) { 1075 if (tm_enabled(prev) || tm_enabled(new)) 1076 tm_enable(); 1077 1078 if (tm_enabled(prev)) { 1079 prev->thread.load_tm++; 1080 tm_reclaim_task(prev); 1081 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1082 prev->thread.regs->msr &= ~MSR_TM; 1083 } 1084 1085 tm_recheckpoint_new_task(new); 1086 } 1087 } 1088 1089 /* 1090 * This is called if we are on the way out to userspace and the 1091 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1092 * FP and/or vector state and does so if necessary. 1093 * If userspace is inside a transaction (whether active or 1094 * suspended) and FP/VMX/VSX instructions have ever been enabled 1095 * inside that transaction, then we have to keep them enabled 1096 * and keep the FP/VMX/VSX state loaded while ever the transaction 1097 * continues. The reason is that if we didn't, and subsequently 1098 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1099 * we don't know whether it's the same transaction, and thus we 1100 * don't know which of the checkpointed state and the transactional 1101 * state to use. 1102 */ 1103 void restore_tm_state(struct pt_regs *regs) 1104 { 1105 unsigned long msr_diff; 1106 1107 /* 1108 * This is the only moment we should clear TIF_RESTORE_TM as 1109 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1110 * again, anything else could lead to an incorrect ckpt_msr being 1111 * saved and therefore incorrect signal contexts. 1112 */ 1113 clear_thread_flag(TIF_RESTORE_TM); 1114 if (!MSR_TM_ACTIVE(regs->msr)) 1115 return; 1116 1117 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1118 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1119 1120 /* Ensure that restore_math() will restore */ 1121 if (msr_diff & MSR_FP) 1122 current->thread.load_fp = 1; 1123 #ifdef CONFIG_ALTIVEC 1124 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1125 current->thread.load_vec = 1; 1126 #endif 1127 restore_math(regs); 1128 1129 regs->msr |= msr_diff; 1130 } 1131 1132 #else 1133 #define tm_recheckpoint_new_task(new) 1134 #define __switch_to_tm(prev, new) 1135 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1136 1137 static inline void save_sprs(struct thread_struct *t) 1138 { 1139 #ifdef CONFIG_ALTIVEC 1140 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1141 t->vrsave = mfspr(SPRN_VRSAVE); 1142 #endif 1143 #ifdef CONFIG_PPC_BOOK3S_64 1144 if (cpu_has_feature(CPU_FTR_DSCR)) 1145 t->dscr = mfspr(SPRN_DSCR); 1146 1147 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1148 t->bescr = mfspr(SPRN_BESCR); 1149 t->ebbhr = mfspr(SPRN_EBBHR); 1150 t->ebbrr = mfspr(SPRN_EBBRR); 1151 1152 t->fscr = mfspr(SPRN_FSCR); 1153 1154 /* 1155 * Note that the TAR is not available for use in the kernel. 1156 * (To provide this, the TAR should be backed up/restored on 1157 * exception entry/exit instead, and be in pt_regs. FIXME, 1158 * this should be in pt_regs anyway (for debug).) 1159 */ 1160 t->tar = mfspr(SPRN_TAR); 1161 } 1162 #endif 1163 1164 thread_pkey_regs_save(t); 1165 } 1166 1167 static inline void restore_sprs(struct thread_struct *old_thread, 1168 struct thread_struct *new_thread) 1169 { 1170 #ifdef CONFIG_ALTIVEC 1171 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1172 old_thread->vrsave != new_thread->vrsave) 1173 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1174 #endif 1175 #ifdef CONFIG_PPC_BOOK3S_64 1176 if (cpu_has_feature(CPU_FTR_DSCR)) { 1177 u64 dscr = get_paca()->dscr_default; 1178 if (new_thread->dscr_inherit) 1179 dscr = new_thread->dscr; 1180 1181 if (old_thread->dscr != dscr) 1182 mtspr(SPRN_DSCR, dscr); 1183 } 1184 1185 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1186 if (old_thread->bescr != new_thread->bescr) 1187 mtspr(SPRN_BESCR, new_thread->bescr); 1188 if (old_thread->ebbhr != new_thread->ebbhr) 1189 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1190 if (old_thread->ebbrr != new_thread->ebbrr) 1191 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1192 1193 if (old_thread->fscr != new_thread->fscr) 1194 mtspr(SPRN_FSCR, new_thread->fscr); 1195 1196 if (old_thread->tar != new_thread->tar) 1197 mtspr(SPRN_TAR, new_thread->tar); 1198 } 1199 1200 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1201 old_thread->tidr != new_thread->tidr) 1202 mtspr(SPRN_TIDR, new_thread->tidr); 1203 #endif 1204 1205 thread_pkey_regs_restore(new_thread, old_thread); 1206 } 1207 1208 struct task_struct *__switch_to(struct task_struct *prev, 1209 struct task_struct *new) 1210 { 1211 struct thread_struct *new_thread, *old_thread; 1212 struct task_struct *last; 1213 #ifdef CONFIG_PPC_BOOK3S_64 1214 struct ppc64_tlb_batch *batch; 1215 #endif 1216 1217 new_thread = &new->thread; 1218 old_thread = ¤t->thread; 1219 1220 WARN_ON(!irqs_disabled()); 1221 1222 #ifdef CONFIG_PPC_BOOK3S_64 1223 batch = this_cpu_ptr(&ppc64_tlb_batch); 1224 if (batch->active) { 1225 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1226 if (batch->index) 1227 __flush_tlb_pending(batch); 1228 batch->active = 0; 1229 } 1230 #endif /* CONFIG_PPC_BOOK3S_64 */ 1231 1232 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1233 switch_booke_debug_regs(&new->thread.debug); 1234 #else 1235 /* 1236 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1237 * schedule DABR 1238 */ 1239 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1240 switch_hw_breakpoint(new); 1241 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1242 #endif 1243 1244 /* 1245 * We need to save SPRs before treclaim/trecheckpoint as these will 1246 * change a number of them. 1247 */ 1248 save_sprs(&prev->thread); 1249 1250 /* Save FPU, Altivec, VSX and SPE state */ 1251 giveup_all(prev); 1252 1253 __switch_to_tm(prev, new); 1254 1255 if (!radix_enabled()) { 1256 /* 1257 * We can't take a PMU exception inside _switch() since there 1258 * is a window where the kernel stack SLB and the kernel stack 1259 * are out of sync. Hard disable here. 1260 */ 1261 hard_irq_disable(); 1262 } 1263 1264 /* 1265 * Call restore_sprs() before calling _switch(). If we move it after 1266 * _switch() then we miss out on calling it for new tasks. The reason 1267 * for this is we manually create a stack frame for new tasks that 1268 * directly returns through ret_from_fork() or 1269 * ret_from_kernel_thread(). See copy_thread() for details. 1270 */ 1271 restore_sprs(old_thread, new_thread); 1272 1273 last = _switch(old_thread, new_thread); 1274 1275 #ifdef CONFIG_PPC_BOOK3S_64 1276 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1277 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1278 batch = this_cpu_ptr(&ppc64_tlb_batch); 1279 batch->active = 1; 1280 } 1281 1282 if (current->thread.regs) { 1283 restore_math(current->thread.regs); 1284 1285 /* 1286 * On POWER9 the copy-paste buffer can only paste into 1287 * foreign real addresses, so unprivileged processes can not 1288 * see the data or use it in any way unless they have 1289 * foreign real mappings. If the new process has the foreign 1290 * real address mappings, we must issue a cp_abort to clear 1291 * any state and prevent snooping, corruption or a covert 1292 * channel. ISA v3.1 supports paste into local memory. 1293 */ 1294 if (current->mm && 1295 (cpu_has_feature(CPU_FTR_ARCH_31) || 1296 atomic_read(¤t->mm->context.vas_windows))) 1297 asm volatile(PPC_CP_ABORT); 1298 } 1299 #endif /* CONFIG_PPC_BOOK3S_64 */ 1300 1301 return last; 1302 } 1303 1304 #define NR_INSN_TO_PRINT 16 1305 1306 static void show_instructions(struct pt_regs *regs) 1307 { 1308 int i; 1309 unsigned long nip = regs->nip; 1310 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1311 1312 printk("Instruction dump:"); 1313 1314 /* 1315 * If we were executing with the MMU off for instructions, adjust pc 1316 * rather than printing XXXXXXXX. 1317 */ 1318 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { 1319 pc = (unsigned long)phys_to_virt(pc); 1320 nip = (unsigned long)phys_to_virt(regs->nip); 1321 } 1322 1323 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1324 int instr; 1325 1326 if (!(i % 8)) 1327 pr_cont("\n"); 1328 1329 if (!__kernel_text_address(pc) || 1330 get_kernel_nofault(instr, (const void *)pc)) { 1331 pr_cont("XXXXXXXX "); 1332 } else { 1333 if (nip == pc) 1334 pr_cont("<%08x> ", instr); 1335 else 1336 pr_cont("%08x ", instr); 1337 } 1338 1339 pc += sizeof(int); 1340 } 1341 1342 pr_cont("\n"); 1343 } 1344 1345 void show_user_instructions(struct pt_regs *regs) 1346 { 1347 unsigned long pc; 1348 int n = NR_INSN_TO_PRINT; 1349 struct seq_buf s; 1350 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1351 1352 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1353 1354 seq_buf_init(&s, buf, sizeof(buf)); 1355 1356 while (n) { 1357 int i; 1358 1359 seq_buf_clear(&s); 1360 1361 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1362 int instr; 1363 1364 if (copy_from_user_nofault(&instr, (void __user *)pc, 1365 sizeof(instr))) { 1366 seq_buf_printf(&s, "XXXXXXXX "); 1367 continue; 1368 } 1369 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1370 } 1371 1372 if (!seq_buf_has_overflowed(&s)) 1373 pr_info("%s[%d]: code: %s\n", current->comm, 1374 current->pid, s.buffer); 1375 } 1376 } 1377 1378 struct regbit { 1379 unsigned long bit; 1380 const char *name; 1381 }; 1382 1383 static struct regbit msr_bits[] = { 1384 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1385 {MSR_SF, "SF"}, 1386 {MSR_HV, "HV"}, 1387 #endif 1388 {MSR_VEC, "VEC"}, 1389 {MSR_VSX, "VSX"}, 1390 #ifdef CONFIG_BOOKE 1391 {MSR_CE, "CE"}, 1392 #endif 1393 {MSR_EE, "EE"}, 1394 {MSR_PR, "PR"}, 1395 {MSR_FP, "FP"}, 1396 {MSR_ME, "ME"}, 1397 #ifdef CONFIG_BOOKE 1398 {MSR_DE, "DE"}, 1399 #else 1400 {MSR_SE, "SE"}, 1401 {MSR_BE, "BE"}, 1402 #endif 1403 {MSR_IR, "IR"}, 1404 {MSR_DR, "DR"}, 1405 {MSR_PMM, "PMM"}, 1406 #ifndef CONFIG_BOOKE 1407 {MSR_RI, "RI"}, 1408 {MSR_LE, "LE"}, 1409 #endif 1410 {0, NULL} 1411 }; 1412 1413 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1414 { 1415 const char *s = ""; 1416 1417 for (; bits->bit; ++bits) 1418 if (val & bits->bit) { 1419 pr_cont("%s%s", s, bits->name); 1420 s = sep; 1421 } 1422 } 1423 1424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1425 static struct regbit msr_tm_bits[] = { 1426 {MSR_TS_T, "T"}, 1427 {MSR_TS_S, "S"}, 1428 {MSR_TM, "E"}, 1429 {0, NULL} 1430 }; 1431 1432 static void print_tm_bits(unsigned long val) 1433 { 1434 /* 1435 * This only prints something if at least one of the TM bit is set. 1436 * Inside the TM[], the output means: 1437 * E: Enabled (bit 32) 1438 * S: Suspended (bit 33) 1439 * T: Transactional (bit 34) 1440 */ 1441 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1442 pr_cont(",TM["); 1443 print_bits(val, msr_tm_bits, ""); 1444 pr_cont("]"); 1445 } 1446 } 1447 #else 1448 static void print_tm_bits(unsigned long val) {} 1449 #endif 1450 1451 static void print_msr_bits(unsigned long val) 1452 { 1453 pr_cont("<"); 1454 print_bits(val, msr_bits, ","); 1455 print_tm_bits(val); 1456 pr_cont(">"); 1457 } 1458 1459 #ifdef CONFIG_PPC64 1460 #define REG "%016lx" 1461 #define REGS_PER_LINE 4 1462 #define LAST_VOLATILE 13 1463 #else 1464 #define REG "%08lx" 1465 #define REGS_PER_LINE 8 1466 #define LAST_VOLATILE 12 1467 #endif 1468 1469 void show_regs(struct pt_regs * regs) 1470 { 1471 int i, trap; 1472 1473 show_regs_print_info(KERN_DEFAULT); 1474 1475 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1476 regs->nip, regs->link, regs->ctr); 1477 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1478 regs, regs->trap, print_tainted(), init_utsname()->release); 1479 printk("MSR: "REG" ", regs->msr); 1480 print_msr_bits(regs->msr); 1481 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1482 trap = TRAP(regs); 1483 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1484 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1485 if (trap == 0x200 || trap == 0x300 || trap == 0x600) { 1486 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE)) 1487 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1488 else 1489 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1490 } 1491 1492 #ifdef CONFIG_PPC64 1493 pr_cont("IRQMASK: %lx ", regs->softe); 1494 #endif 1495 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1496 if (MSR_TM_ACTIVE(regs->msr)) 1497 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1498 #endif 1499 1500 for (i = 0; i < 32; i++) { 1501 if ((i % REGS_PER_LINE) == 0) 1502 pr_cont("\nGPR%02d: ", i); 1503 pr_cont(REG " ", regs->gpr[i]); 1504 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1505 break; 1506 } 1507 pr_cont("\n"); 1508 /* 1509 * Lookup NIP late so we have the best change of getting the 1510 * above info out without failing 1511 */ 1512 if (IS_ENABLED(CONFIG_KALLSYMS)) { 1513 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1514 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1515 } 1516 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1517 if (!user_mode(regs)) 1518 show_instructions(regs); 1519 } 1520 1521 void flush_thread(void) 1522 { 1523 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1524 flush_ptrace_hw_breakpoint(current); 1525 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1526 set_debug_reg_defaults(¤t->thread); 1527 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1528 } 1529 1530 #ifdef CONFIG_PPC_BOOK3S_64 1531 void arch_setup_new_exec(void) 1532 { 1533 if (radix_enabled()) 1534 return; 1535 hash__setup_new_exec(); 1536 } 1537 #endif 1538 1539 #ifdef CONFIG_PPC64 1540 /** 1541 * Assign a TIDR (thread ID) for task @t and set it in the thread 1542 * structure. For now, we only support setting TIDR for 'current' task. 1543 * 1544 * Since the TID value is a truncated form of it PID, it is possible 1545 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1546 * that 2 threads share the same TID and are waiting, one of the following 1547 * cases will happen: 1548 * 1549 * 1. The correct thread is running, the wrong thread is not 1550 * In this situation, the correct thread is woken and proceeds to pass it's 1551 * condition check. 1552 * 1553 * 2. Neither threads are running 1554 * In this situation, neither thread will be woken. When scheduled, the waiting 1555 * threads will execute either a wait, which will return immediately, followed 1556 * by a condition check, which will pass for the correct thread and fail 1557 * for the wrong thread, or they will execute the condition check immediately. 1558 * 1559 * 3. The wrong thread is running, the correct thread is not 1560 * The wrong thread will be woken, but will fail it's condition check and 1561 * re-execute wait. The correct thread, when scheduled, will execute either 1562 * it's condition check (which will pass), or wait, which returns immediately 1563 * when called the first time after the thread is scheduled, followed by it's 1564 * condition check (which will pass). 1565 * 1566 * 4. Both threads are running 1567 * Both threads will be woken. The wrong thread will fail it's condition check 1568 * and execute another wait, while the correct thread will pass it's condition 1569 * check. 1570 * 1571 * @t: the task to set the thread ID for 1572 */ 1573 int set_thread_tidr(struct task_struct *t) 1574 { 1575 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1576 return -EINVAL; 1577 1578 if (t != current) 1579 return -EINVAL; 1580 1581 if (t->thread.tidr) 1582 return 0; 1583 1584 t->thread.tidr = (u16)task_pid_nr(t); 1585 mtspr(SPRN_TIDR, t->thread.tidr); 1586 1587 return 0; 1588 } 1589 EXPORT_SYMBOL_GPL(set_thread_tidr); 1590 1591 #endif /* CONFIG_PPC64 */ 1592 1593 void 1594 release_thread(struct task_struct *t) 1595 { 1596 } 1597 1598 /* 1599 * this gets called so that we can store coprocessor state into memory and 1600 * copy the current task into the new thread. 1601 */ 1602 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1603 { 1604 flush_all_to_thread(src); 1605 /* 1606 * Flush TM state out so we can copy it. __switch_to_tm() does this 1607 * flush but it removes the checkpointed state from the current CPU and 1608 * transitions the CPU out of TM mode. Hence we need to call 1609 * tm_recheckpoint_new_task() (on the same task) to restore the 1610 * checkpointed state back and the TM mode. 1611 * 1612 * Can't pass dst because it isn't ready. Doesn't matter, passing 1613 * dst is only important for __switch_to() 1614 */ 1615 __switch_to_tm(src, src); 1616 1617 *dst = *src; 1618 1619 clear_task_ebb(dst); 1620 1621 return 0; 1622 } 1623 1624 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1625 { 1626 #ifdef CONFIG_PPC_BOOK3S_64 1627 unsigned long sp_vsid; 1628 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1629 1630 if (radix_enabled()) 1631 return; 1632 1633 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1634 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1635 << SLB_VSID_SHIFT_1T; 1636 else 1637 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1638 << SLB_VSID_SHIFT; 1639 sp_vsid |= SLB_VSID_KERNEL | llp; 1640 p->thread.ksp_vsid = sp_vsid; 1641 #endif 1642 } 1643 1644 /* 1645 * Copy a thread.. 1646 */ 1647 1648 /* 1649 * Copy architecture-specific thread state 1650 */ 1651 int copy_thread(unsigned long clone_flags, unsigned long usp, 1652 unsigned long kthread_arg, struct task_struct *p, 1653 unsigned long tls) 1654 { 1655 struct pt_regs *childregs, *kregs; 1656 extern void ret_from_fork(void); 1657 extern void ret_from_fork_scv(void); 1658 extern void ret_from_kernel_thread(void); 1659 void (*f)(void); 1660 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1661 struct thread_info *ti = task_thread_info(p); 1662 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1663 int i; 1664 #endif 1665 1666 klp_init_thread_info(p); 1667 1668 /* Copy registers */ 1669 sp -= sizeof(struct pt_regs); 1670 childregs = (struct pt_regs *) sp; 1671 if (unlikely(p->flags & PF_KTHREAD)) { 1672 /* kernel thread */ 1673 memset(childregs, 0, sizeof(struct pt_regs)); 1674 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1675 /* function */ 1676 if (usp) 1677 childregs->gpr[14] = ppc_function_entry((void *)usp); 1678 #ifdef CONFIG_PPC64 1679 clear_tsk_thread_flag(p, TIF_32BIT); 1680 childregs->softe = IRQS_ENABLED; 1681 #endif 1682 childregs->gpr[15] = kthread_arg; 1683 p->thread.regs = NULL; /* no user register state */ 1684 ti->flags |= _TIF_RESTOREALL; 1685 f = ret_from_kernel_thread; 1686 } else { 1687 /* user thread */ 1688 struct pt_regs *regs = current_pt_regs(); 1689 CHECK_FULL_REGS(regs); 1690 *childregs = *regs; 1691 if (usp) 1692 childregs->gpr[1] = usp; 1693 p->thread.regs = childregs; 1694 /* 64s sets this in ret_from_fork */ 1695 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1696 childregs->gpr[3] = 0; /* Result from fork() */ 1697 if (clone_flags & CLONE_SETTLS) { 1698 if (!is_32bit_task()) 1699 childregs->gpr[13] = tls; 1700 else 1701 childregs->gpr[2] = tls; 1702 } 1703 1704 if (trap_is_scv(regs)) 1705 f = ret_from_fork_scv; 1706 else 1707 f = ret_from_fork; 1708 } 1709 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1710 sp -= STACK_FRAME_OVERHEAD; 1711 1712 /* 1713 * The way this works is that at some point in the future 1714 * some task will call _switch to switch to the new task. 1715 * That will pop off the stack frame created below and start 1716 * the new task running at ret_from_fork. The new task will 1717 * do some house keeping and then return from the fork or clone 1718 * system call, using the stack frame created above. 1719 */ 1720 ((unsigned long *)sp)[0] = 0; 1721 sp -= sizeof(struct pt_regs); 1722 kregs = (struct pt_regs *) sp; 1723 sp -= STACK_FRAME_OVERHEAD; 1724 p->thread.ksp = sp; 1725 #ifdef CONFIG_PPC32 1726 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1727 #endif 1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1729 for (i = 0; i < nr_wp_slots(); i++) 1730 p->thread.ptrace_bps[i] = NULL; 1731 #endif 1732 1733 p->thread.fp_save_area = NULL; 1734 #ifdef CONFIG_ALTIVEC 1735 p->thread.vr_save_area = NULL; 1736 #endif 1737 1738 setup_ksp_vsid(p, sp); 1739 1740 #ifdef CONFIG_PPC64 1741 if (cpu_has_feature(CPU_FTR_DSCR)) { 1742 p->thread.dscr_inherit = current->thread.dscr_inherit; 1743 p->thread.dscr = mfspr(SPRN_DSCR); 1744 } 1745 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1746 childregs->ppr = DEFAULT_PPR; 1747 1748 p->thread.tidr = 0; 1749 #endif 1750 kregs->nip = ppc_function_entry(f); 1751 return 0; 1752 } 1753 1754 void preload_new_slb_context(unsigned long start, unsigned long sp); 1755 1756 /* 1757 * Set up a thread for executing a new program 1758 */ 1759 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1760 { 1761 #ifdef CONFIG_PPC64 1762 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1763 1764 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled()) 1765 preload_new_slb_context(start, sp); 1766 #endif 1767 1768 /* 1769 * If we exec out of a kernel thread then thread.regs will not be 1770 * set. Do it now. 1771 */ 1772 if (!current->thread.regs) { 1773 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1774 current->thread.regs = regs - 1; 1775 } 1776 1777 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1778 /* 1779 * Clear any transactional state, we're exec()ing. The cause is 1780 * not important as there will never be a recheckpoint so it's not 1781 * user visible. 1782 */ 1783 if (MSR_TM_SUSPENDED(mfmsr())) 1784 tm_reclaim_current(0); 1785 #endif 1786 1787 memset(regs->gpr, 0, sizeof(regs->gpr)); 1788 regs->ctr = 0; 1789 regs->link = 0; 1790 regs->xer = 0; 1791 regs->ccr = 0; 1792 regs->gpr[1] = sp; 1793 1794 /* 1795 * We have just cleared all the nonvolatile GPRs, so make 1796 * FULL_REGS(regs) return true. This is necessary to allow 1797 * ptrace to examine the thread immediately after exec. 1798 */ 1799 SET_FULL_REGS(regs); 1800 1801 #ifdef CONFIG_PPC32 1802 regs->mq = 0; 1803 regs->nip = start; 1804 regs->msr = MSR_USER; 1805 #else 1806 if (!is_32bit_task()) { 1807 unsigned long entry; 1808 1809 if (is_elf2_task()) { 1810 /* Look ma, no function descriptors! */ 1811 entry = start; 1812 1813 /* 1814 * Ulrich says: 1815 * The latest iteration of the ABI requires that when 1816 * calling a function (at its global entry point), 1817 * the caller must ensure r12 holds the entry point 1818 * address (so that the function can quickly 1819 * establish addressability). 1820 */ 1821 regs->gpr[12] = start; 1822 /* Make sure that's restored on entry to userspace. */ 1823 set_thread_flag(TIF_RESTOREALL); 1824 } else { 1825 unsigned long toc; 1826 1827 /* start is a relocated pointer to the function 1828 * descriptor for the elf _start routine. The first 1829 * entry in the function descriptor is the entry 1830 * address of _start and the second entry is the TOC 1831 * value we need to use. 1832 */ 1833 __get_user(entry, (unsigned long __user *)start); 1834 __get_user(toc, (unsigned long __user *)start+1); 1835 1836 /* Check whether the e_entry function descriptor entries 1837 * need to be relocated before we can use them. 1838 */ 1839 if (load_addr != 0) { 1840 entry += load_addr; 1841 toc += load_addr; 1842 } 1843 regs->gpr[2] = toc; 1844 } 1845 regs->nip = entry; 1846 regs->msr = MSR_USER64; 1847 } else { 1848 regs->nip = start; 1849 regs->gpr[2] = 0; 1850 regs->msr = MSR_USER32; 1851 } 1852 #endif 1853 #ifdef CONFIG_VSX 1854 current->thread.used_vsr = 0; 1855 #endif 1856 current->thread.load_slb = 0; 1857 current->thread.load_fp = 0; 1858 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1859 current->thread.fp_save_area = NULL; 1860 #ifdef CONFIG_ALTIVEC 1861 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1862 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1863 current->thread.vr_save_area = NULL; 1864 current->thread.vrsave = 0; 1865 current->thread.used_vr = 0; 1866 current->thread.load_vec = 0; 1867 #endif /* CONFIG_ALTIVEC */ 1868 #ifdef CONFIG_SPE 1869 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1870 current->thread.acc = 0; 1871 current->thread.spefscr = 0; 1872 current->thread.used_spe = 0; 1873 #endif /* CONFIG_SPE */ 1874 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1875 current->thread.tm_tfhar = 0; 1876 current->thread.tm_texasr = 0; 1877 current->thread.tm_tfiar = 0; 1878 current->thread.load_tm = 0; 1879 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1880 1881 thread_pkey_regs_init(¤t->thread); 1882 } 1883 EXPORT_SYMBOL(start_thread); 1884 1885 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1886 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1887 1888 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1889 { 1890 struct pt_regs *regs = tsk->thread.regs; 1891 1892 /* This is a bit hairy. If we are an SPE enabled processor 1893 * (have embedded fp) we store the IEEE exception enable flags in 1894 * fpexc_mode. fpexc_mode is also used for setting FP exception 1895 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1896 if (val & PR_FP_EXC_SW_ENABLE) { 1897 if (cpu_has_feature(CPU_FTR_SPE)) { 1898 /* 1899 * When the sticky exception bits are set 1900 * directly by userspace, it must call prctl 1901 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1902 * in the existing prctl settings) or 1903 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1904 * the bits being set). <fenv.h> functions 1905 * saving and restoring the whole 1906 * floating-point environment need to do so 1907 * anyway to restore the prctl settings from 1908 * the saved environment. 1909 */ 1910 #ifdef CONFIG_SPE 1911 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1912 tsk->thread.fpexc_mode = val & 1913 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1914 #endif 1915 return 0; 1916 } else { 1917 return -EINVAL; 1918 } 1919 } 1920 1921 /* on a CONFIG_SPE this does not hurt us. The bits that 1922 * __pack_fe01 use do not overlap with bits used for 1923 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1924 * on CONFIG_SPE implementations are reserved so writing to 1925 * them does not change anything */ 1926 if (val > PR_FP_EXC_PRECISE) 1927 return -EINVAL; 1928 tsk->thread.fpexc_mode = __pack_fe01(val); 1929 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1930 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1931 | tsk->thread.fpexc_mode; 1932 return 0; 1933 } 1934 1935 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1936 { 1937 unsigned int val = 0; 1938 1939 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) { 1940 if (cpu_has_feature(CPU_FTR_SPE)) { 1941 /* 1942 * When the sticky exception bits are set 1943 * directly by userspace, it must call prctl 1944 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1945 * in the existing prctl settings) or 1946 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1947 * the bits being set). <fenv.h> functions 1948 * saving and restoring the whole 1949 * floating-point environment need to do so 1950 * anyway to restore the prctl settings from 1951 * the saved environment. 1952 */ 1953 #ifdef CONFIG_SPE 1954 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1955 val = tsk->thread.fpexc_mode; 1956 #endif 1957 } else 1958 return -EINVAL; 1959 } else { 1960 val = __unpack_fe01(tsk->thread.fpexc_mode); 1961 } 1962 return put_user(val, (unsigned int __user *) adr); 1963 } 1964 1965 int set_endian(struct task_struct *tsk, unsigned int val) 1966 { 1967 struct pt_regs *regs = tsk->thread.regs; 1968 1969 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1970 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1971 return -EINVAL; 1972 1973 if (regs == NULL) 1974 return -EINVAL; 1975 1976 if (val == PR_ENDIAN_BIG) 1977 regs->msr &= ~MSR_LE; 1978 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1979 regs->msr |= MSR_LE; 1980 else 1981 return -EINVAL; 1982 1983 return 0; 1984 } 1985 1986 int get_endian(struct task_struct *tsk, unsigned long adr) 1987 { 1988 struct pt_regs *regs = tsk->thread.regs; 1989 unsigned int val; 1990 1991 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1992 !cpu_has_feature(CPU_FTR_REAL_LE)) 1993 return -EINVAL; 1994 1995 if (regs == NULL) 1996 return -EINVAL; 1997 1998 if (regs->msr & MSR_LE) { 1999 if (cpu_has_feature(CPU_FTR_REAL_LE)) 2000 val = PR_ENDIAN_LITTLE; 2001 else 2002 val = PR_ENDIAN_PPC_LITTLE; 2003 } else 2004 val = PR_ENDIAN_BIG; 2005 2006 return put_user(val, (unsigned int __user *)adr); 2007 } 2008 2009 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 2010 { 2011 tsk->thread.align_ctl = val; 2012 return 0; 2013 } 2014 2015 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2016 { 2017 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2018 } 2019 2020 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2021 unsigned long nbytes) 2022 { 2023 unsigned long stack_page; 2024 unsigned long cpu = task_cpu(p); 2025 2026 stack_page = (unsigned long)hardirq_ctx[cpu]; 2027 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2028 return 1; 2029 2030 stack_page = (unsigned long)softirq_ctx[cpu]; 2031 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2032 return 1; 2033 2034 return 0; 2035 } 2036 2037 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 2038 unsigned long nbytes) 2039 { 2040 #ifdef CONFIG_PPC64 2041 unsigned long stack_page; 2042 unsigned long cpu = task_cpu(p); 2043 2044 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 2045 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2046 return 1; 2047 2048 # ifdef CONFIG_PPC_BOOK3S_64 2049 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 2050 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2051 return 1; 2052 2053 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2054 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2055 return 1; 2056 # endif 2057 #endif 2058 2059 return 0; 2060 } 2061 2062 2063 int validate_sp(unsigned long sp, struct task_struct *p, 2064 unsigned long nbytes) 2065 { 2066 unsigned long stack_page = (unsigned long)task_stack_page(p); 2067 2068 if (sp < THREAD_SIZE) 2069 return 0; 2070 2071 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2072 return 1; 2073 2074 if (valid_irq_stack(sp, p, nbytes)) 2075 return 1; 2076 2077 return valid_emergency_stack(sp, p, nbytes); 2078 } 2079 2080 EXPORT_SYMBOL(validate_sp); 2081 2082 static unsigned long __get_wchan(struct task_struct *p) 2083 { 2084 unsigned long ip, sp; 2085 int count = 0; 2086 2087 if (!p || p == current || p->state == TASK_RUNNING) 2088 return 0; 2089 2090 sp = p->thread.ksp; 2091 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2092 return 0; 2093 2094 do { 2095 sp = *(unsigned long *)sp; 2096 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2097 p->state == TASK_RUNNING) 2098 return 0; 2099 if (count > 0) { 2100 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2101 if (!in_sched_functions(ip)) 2102 return ip; 2103 } 2104 } while (count++ < 16); 2105 return 0; 2106 } 2107 2108 unsigned long get_wchan(struct task_struct *p) 2109 { 2110 unsigned long ret; 2111 2112 if (!try_get_task_stack(p)) 2113 return 0; 2114 2115 ret = __get_wchan(p); 2116 2117 put_task_stack(p); 2118 2119 return ret; 2120 } 2121 2122 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2123 2124 void show_stack(struct task_struct *tsk, unsigned long *stack, 2125 const char *loglvl) 2126 { 2127 unsigned long sp, ip, lr, newsp; 2128 int count = 0; 2129 int firstframe = 1; 2130 unsigned long ret_addr; 2131 int ftrace_idx = 0; 2132 2133 if (tsk == NULL) 2134 tsk = current; 2135 2136 if (!try_get_task_stack(tsk)) 2137 return; 2138 2139 sp = (unsigned long) stack; 2140 if (sp == 0) { 2141 if (tsk == current) 2142 sp = current_stack_frame(); 2143 else 2144 sp = tsk->thread.ksp; 2145 } 2146 2147 lr = 0; 2148 printk("%sCall Trace:\n", loglvl); 2149 do { 2150 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2151 break; 2152 2153 stack = (unsigned long *) sp; 2154 newsp = stack[0]; 2155 ip = stack[STACK_FRAME_LR_SAVE]; 2156 if (!firstframe || ip != lr) { 2157 printk("%s["REG"] ["REG"] %pS", 2158 loglvl, sp, ip, (void *)ip); 2159 ret_addr = ftrace_graph_ret_addr(current, 2160 &ftrace_idx, ip, stack); 2161 if (ret_addr != ip) 2162 pr_cont(" (%pS)", (void *)ret_addr); 2163 if (firstframe) 2164 pr_cont(" (unreliable)"); 2165 pr_cont("\n"); 2166 } 2167 firstframe = 0; 2168 2169 /* 2170 * See if this is an exception frame. 2171 * We look for the "regshere" marker in the current frame. 2172 */ 2173 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2174 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2175 struct pt_regs *regs = (struct pt_regs *) 2176 (sp + STACK_FRAME_OVERHEAD); 2177 lr = regs->link; 2178 printk("%s--- interrupt: %lx at %pS\n LR = %pS\n", 2179 loglvl, regs->trap, 2180 (void *)regs->nip, (void *)lr); 2181 firstframe = 1; 2182 } 2183 2184 sp = newsp; 2185 } while (count++ < kstack_depth_to_print); 2186 2187 put_task_stack(tsk); 2188 } 2189 2190 #ifdef CONFIG_PPC64 2191 /* Called with hard IRQs off */ 2192 void notrace __ppc64_runlatch_on(void) 2193 { 2194 struct thread_info *ti = current_thread_info(); 2195 2196 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2197 /* 2198 * Least significant bit (RUN) is the only writable bit of 2199 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2200 * earliest ISA where this is the case, but it's convenient. 2201 */ 2202 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2203 } else { 2204 unsigned long ctrl; 2205 2206 /* 2207 * Some architectures (e.g., Cell) have writable fields other 2208 * than RUN, so do the read-modify-write. 2209 */ 2210 ctrl = mfspr(SPRN_CTRLF); 2211 ctrl |= CTRL_RUNLATCH; 2212 mtspr(SPRN_CTRLT, ctrl); 2213 } 2214 2215 ti->local_flags |= _TLF_RUNLATCH; 2216 } 2217 2218 /* Called with hard IRQs off */ 2219 void notrace __ppc64_runlatch_off(void) 2220 { 2221 struct thread_info *ti = current_thread_info(); 2222 2223 ti->local_flags &= ~_TLF_RUNLATCH; 2224 2225 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2226 mtspr(SPRN_CTRLT, 0); 2227 } else { 2228 unsigned long ctrl; 2229 2230 ctrl = mfspr(SPRN_CTRLF); 2231 ctrl &= ~CTRL_RUNLATCH; 2232 mtspr(SPRN_CTRLT, ctrl); 2233 } 2234 } 2235 #endif /* CONFIG_PPC64 */ 2236 2237 unsigned long arch_align_stack(unsigned long sp) 2238 { 2239 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2240 sp -= get_random_int() & ~PAGE_MASK; 2241 return sp & ~0xf; 2242 } 2243 2244 static inline unsigned long brk_rnd(void) 2245 { 2246 unsigned long rnd = 0; 2247 2248 /* 8MB for 32bit, 1GB for 64bit */ 2249 if (is_32bit_task()) 2250 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2251 else 2252 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2253 2254 return rnd << PAGE_SHIFT; 2255 } 2256 2257 unsigned long arch_randomize_brk(struct mm_struct *mm) 2258 { 2259 unsigned long base = mm->brk; 2260 unsigned long ret; 2261 2262 #ifdef CONFIG_PPC_BOOK3S_64 2263 /* 2264 * If we are using 1TB segments and we are allowed to randomise 2265 * the heap, we can put it above 1TB so it is backed by a 1TB 2266 * segment. Otherwise the heap will be in the bottom 1TB 2267 * which always uses 256MB segments and this may result in a 2268 * performance penalty. We don't need to worry about radix. For 2269 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2270 */ 2271 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2272 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2273 #endif 2274 2275 ret = PAGE_ALIGN(base + brk_rnd()); 2276 2277 if (ret < mm->brk) 2278 return mm->brk; 2279 2280 return ret; 2281 } 2282 2283