xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 82003e04)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63 
64 #include <linux/kprobes.h>
65 #include <linux/kdebug.h>
66 
67 /* Transactional Memory debug */
68 #ifdef TM_DEBUG_SW
69 #define TM_DEBUG(x...) printk(KERN_INFO x)
70 #else
71 #define TM_DEBUG(x...) do { } while(0)
72 #endif
73 
74 extern unsigned long _get_SP(void);
75 
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 static void check_if_tm_restore_required(struct task_struct *tsk)
78 {
79 	/*
80 	 * If we are saving the current thread's registers, and the
81 	 * thread is in a transactional state, set the TIF_RESTORE_TM
82 	 * bit so that we know to restore the registers before
83 	 * returning to userspace.
84 	 */
85 	if (tsk == current && tsk->thread.regs &&
86 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 	    !test_thread_flag(TIF_RESTORE_TM)) {
88 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 		set_thread_flag(TIF_RESTORE_TM);
90 	}
91 }
92 
93 static inline bool msr_tm_active(unsigned long msr)
94 {
95 	return MSR_TM_ACTIVE(msr);
96 }
97 #else
98 static inline bool msr_tm_active(unsigned long msr) { return false; }
99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101 
102 bool strict_msr_control;
103 EXPORT_SYMBOL(strict_msr_control);
104 
105 static int __init enable_strict_msr_control(char *str)
106 {
107 	strict_msr_control = true;
108 	pr_info("Enabling strict facility control\n");
109 
110 	return 0;
111 }
112 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113 
114 unsigned long msr_check_and_set(unsigned long bits)
115 {
116 	unsigned long oldmsr = mfmsr();
117 	unsigned long newmsr;
118 
119 	newmsr = oldmsr | bits;
120 
121 #ifdef CONFIG_VSX
122 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 		newmsr |= MSR_VSX;
124 #endif
125 
126 	if (oldmsr != newmsr)
127 		mtmsr_isync(newmsr);
128 
129 	return newmsr;
130 }
131 
132 void __msr_check_and_clear(unsigned long bits)
133 {
134 	unsigned long oldmsr = mfmsr();
135 	unsigned long newmsr;
136 
137 	newmsr = oldmsr & ~bits;
138 
139 #ifdef CONFIG_VSX
140 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
141 		newmsr &= ~MSR_VSX;
142 #endif
143 
144 	if (oldmsr != newmsr)
145 		mtmsr_isync(newmsr);
146 }
147 EXPORT_SYMBOL(__msr_check_and_clear);
148 
149 #ifdef CONFIG_PPC_FPU
150 void __giveup_fpu(struct task_struct *tsk)
151 {
152 	unsigned long msr;
153 
154 	save_fpu(tsk);
155 	msr = tsk->thread.regs->msr;
156 	msr &= ~MSR_FP;
157 #ifdef CONFIG_VSX
158 	if (cpu_has_feature(CPU_FTR_VSX))
159 		msr &= ~MSR_VSX;
160 #endif
161 	tsk->thread.regs->msr = msr;
162 }
163 
164 void giveup_fpu(struct task_struct *tsk)
165 {
166 	check_if_tm_restore_required(tsk);
167 
168 	msr_check_and_set(MSR_FP);
169 	__giveup_fpu(tsk);
170 	msr_check_and_clear(MSR_FP);
171 }
172 EXPORT_SYMBOL(giveup_fpu);
173 
174 /*
175  * Make sure the floating-point register state in the
176  * the thread_struct is up to date for task tsk.
177  */
178 void flush_fp_to_thread(struct task_struct *tsk)
179 {
180 	if (tsk->thread.regs) {
181 		/*
182 		 * We need to disable preemption here because if we didn't,
183 		 * another process could get scheduled after the regs->msr
184 		 * test but before we have finished saving the FP registers
185 		 * to the thread_struct.  That process could take over the
186 		 * FPU, and then when we get scheduled again we would store
187 		 * bogus values for the remaining FP registers.
188 		 */
189 		preempt_disable();
190 		if (tsk->thread.regs->msr & MSR_FP) {
191 			/*
192 			 * This should only ever be called for current or
193 			 * for a stopped child process.  Since we save away
194 			 * the FP register state on context switch,
195 			 * there is something wrong if a stopped child appears
196 			 * to still have its FP state in the CPU registers.
197 			 */
198 			BUG_ON(tsk != current);
199 			giveup_fpu(tsk);
200 		}
201 		preempt_enable();
202 	}
203 }
204 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
205 
206 void enable_kernel_fp(void)
207 {
208 	unsigned long cpumsr;
209 
210 	WARN_ON(preemptible());
211 
212 	cpumsr = msr_check_and_set(MSR_FP);
213 
214 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
215 		check_if_tm_restore_required(current);
216 		/*
217 		 * If a thread has already been reclaimed then the
218 		 * checkpointed registers are on the CPU but have definitely
219 		 * been saved by the reclaim code. Don't need to and *cannot*
220 		 * giveup as this would save  to the 'live' structure not the
221 		 * checkpointed structure.
222 		 */
223 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
224 			return;
225 		__giveup_fpu(current);
226 	}
227 }
228 EXPORT_SYMBOL(enable_kernel_fp);
229 
230 static int restore_fp(struct task_struct *tsk) {
231 	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
232 		load_fp_state(&current->thread.fp_state);
233 		current->thread.load_fp++;
234 		return 1;
235 	}
236 	return 0;
237 }
238 #else
239 static int restore_fp(struct task_struct *tsk) { return 0; }
240 #endif /* CONFIG_PPC_FPU */
241 
242 #ifdef CONFIG_ALTIVEC
243 #define loadvec(thr) ((thr).load_vec)
244 
245 static void __giveup_altivec(struct task_struct *tsk)
246 {
247 	unsigned long msr;
248 
249 	save_altivec(tsk);
250 	msr = tsk->thread.regs->msr;
251 	msr &= ~MSR_VEC;
252 #ifdef CONFIG_VSX
253 	if (cpu_has_feature(CPU_FTR_VSX))
254 		msr &= ~MSR_VSX;
255 #endif
256 	tsk->thread.regs->msr = msr;
257 }
258 
259 void giveup_altivec(struct task_struct *tsk)
260 {
261 	check_if_tm_restore_required(tsk);
262 
263 	msr_check_and_set(MSR_VEC);
264 	__giveup_altivec(tsk);
265 	msr_check_and_clear(MSR_VEC);
266 }
267 EXPORT_SYMBOL(giveup_altivec);
268 
269 void enable_kernel_altivec(void)
270 {
271 	unsigned long cpumsr;
272 
273 	WARN_ON(preemptible());
274 
275 	cpumsr = msr_check_and_set(MSR_VEC);
276 
277 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
278 		check_if_tm_restore_required(current);
279 		/*
280 		 * If a thread has already been reclaimed then the
281 		 * checkpointed registers are on the CPU but have definitely
282 		 * been saved by the reclaim code. Don't need to and *cannot*
283 		 * giveup as this would save  to the 'live' structure not the
284 		 * checkpointed structure.
285 		 */
286 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
287 			return;
288 		__giveup_altivec(current);
289 	}
290 }
291 EXPORT_SYMBOL(enable_kernel_altivec);
292 
293 /*
294  * Make sure the VMX/Altivec register state in the
295  * the thread_struct is up to date for task tsk.
296  */
297 void flush_altivec_to_thread(struct task_struct *tsk)
298 {
299 	if (tsk->thread.regs) {
300 		preempt_disable();
301 		if (tsk->thread.regs->msr & MSR_VEC) {
302 			BUG_ON(tsk != current);
303 			giveup_altivec(tsk);
304 		}
305 		preempt_enable();
306 	}
307 }
308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
309 
310 static int restore_altivec(struct task_struct *tsk)
311 {
312 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
313 		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
314 		load_vr_state(&tsk->thread.vr_state);
315 		tsk->thread.used_vr = 1;
316 		tsk->thread.load_vec++;
317 
318 		return 1;
319 	}
320 	return 0;
321 }
322 #else
323 #define loadvec(thr) 0
324 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
325 #endif /* CONFIG_ALTIVEC */
326 
327 #ifdef CONFIG_VSX
328 static void __giveup_vsx(struct task_struct *tsk)
329 {
330 	if (tsk->thread.regs->msr & MSR_FP)
331 		__giveup_fpu(tsk);
332 	if (tsk->thread.regs->msr & MSR_VEC)
333 		__giveup_altivec(tsk);
334 	tsk->thread.regs->msr &= ~MSR_VSX;
335 }
336 
337 static void giveup_vsx(struct task_struct *tsk)
338 {
339 	check_if_tm_restore_required(tsk);
340 
341 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342 	__giveup_vsx(tsk);
343 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
344 }
345 
346 static void save_vsx(struct task_struct *tsk)
347 {
348 	if (tsk->thread.regs->msr & MSR_FP)
349 		save_fpu(tsk);
350 	if (tsk->thread.regs->msr & MSR_VEC)
351 		save_altivec(tsk);
352 }
353 
354 void enable_kernel_vsx(void)
355 {
356 	unsigned long cpumsr;
357 
358 	WARN_ON(preemptible());
359 
360 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361 
362 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
363 		check_if_tm_restore_required(current);
364 		/*
365 		 * If a thread has already been reclaimed then the
366 		 * checkpointed registers are on the CPU but have definitely
367 		 * been saved by the reclaim code. Don't need to and *cannot*
368 		 * giveup as this would save  to the 'live' structure not the
369 		 * checkpointed structure.
370 		 */
371 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
372 			return;
373 		if (current->thread.regs->msr & MSR_FP)
374 			__giveup_fpu(current);
375 		if (current->thread.regs->msr & MSR_VEC)
376 			__giveup_altivec(current);
377 		__giveup_vsx(current);
378 	}
379 }
380 EXPORT_SYMBOL(enable_kernel_vsx);
381 
382 void flush_vsx_to_thread(struct task_struct *tsk)
383 {
384 	if (tsk->thread.regs) {
385 		preempt_disable();
386 		if (tsk->thread.regs->msr & MSR_VSX) {
387 			BUG_ON(tsk != current);
388 			giveup_vsx(tsk);
389 		}
390 		preempt_enable();
391 	}
392 }
393 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
394 
395 static int restore_vsx(struct task_struct *tsk)
396 {
397 	if (cpu_has_feature(CPU_FTR_VSX)) {
398 		tsk->thread.used_vsr = 1;
399 		return 1;
400 	}
401 
402 	return 0;
403 }
404 #else
405 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
406 static inline void save_vsx(struct task_struct *tsk) { }
407 #endif /* CONFIG_VSX */
408 
409 #ifdef CONFIG_SPE
410 void giveup_spe(struct task_struct *tsk)
411 {
412 	check_if_tm_restore_required(tsk);
413 
414 	msr_check_and_set(MSR_SPE);
415 	__giveup_spe(tsk);
416 	msr_check_and_clear(MSR_SPE);
417 }
418 EXPORT_SYMBOL(giveup_spe);
419 
420 void enable_kernel_spe(void)
421 {
422 	WARN_ON(preemptible());
423 
424 	msr_check_and_set(MSR_SPE);
425 
426 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427 		check_if_tm_restore_required(current);
428 		__giveup_spe(current);
429 	}
430 }
431 EXPORT_SYMBOL(enable_kernel_spe);
432 
433 void flush_spe_to_thread(struct task_struct *tsk)
434 {
435 	if (tsk->thread.regs) {
436 		preempt_disable();
437 		if (tsk->thread.regs->msr & MSR_SPE) {
438 			BUG_ON(tsk != current);
439 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440 			giveup_spe(tsk);
441 		}
442 		preempt_enable();
443 	}
444 }
445 #endif /* CONFIG_SPE */
446 
447 static unsigned long msr_all_available;
448 
449 static int __init init_msr_all_available(void)
450 {
451 #ifdef CONFIG_PPC_FPU
452 	msr_all_available |= MSR_FP;
453 #endif
454 #ifdef CONFIG_ALTIVEC
455 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
456 		msr_all_available |= MSR_VEC;
457 #endif
458 #ifdef CONFIG_VSX
459 	if (cpu_has_feature(CPU_FTR_VSX))
460 		msr_all_available |= MSR_VSX;
461 #endif
462 #ifdef CONFIG_SPE
463 	if (cpu_has_feature(CPU_FTR_SPE))
464 		msr_all_available |= MSR_SPE;
465 #endif
466 
467 	return 0;
468 }
469 early_initcall(init_msr_all_available);
470 
471 void giveup_all(struct task_struct *tsk)
472 {
473 	unsigned long usermsr;
474 
475 	if (!tsk->thread.regs)
476 		return;
477 
478 	usermsr = tsk->thread.regs->msr;
479 
480 	if ((usermsr & msr_all_available) == 0)
481 		return;
482 
483 	msr_check_and_set(msr_all_available);
484 	check_if_tm_restore_required(tsk);
485 
486 #ifdef CONFIG_PPC_FPU
487 	if (usermsr & MSR_FP)
488 		__giveup_fpu(tsk);
489 #endif
490 #ifdef CONFIG_ALTIVEC
491 	if (usermsr & MSR_VEC)
492 		__giveup_altivec(tsk);
493 #endif
494 #ifdef CONFIG_VSX
495 	if (usermsr & MSR_VSX)
496 		__giveup_vsx(tsk);
497 #endif
498 #ifdef CONFIG_SPE
499 	if (usermsr & MSR_SPE)
500 		__giveup_spe(tsk);
501 #endif
502 
503 	msr_check_and_clear(msr_all_available);
504 }
505 EXPORT_SYMBOL(giveup_all);
506 
507 void restore_math(struct pt_regs *regs)
508 {
509 	unsigned long msr;
510 
511 	if (!msr_tm_active(regs->msr) &&
512 		!current->thread.load_fp && !loadvec(current->thread))
513 		return;
514 
515 	msr = regs->msr;
516 	msr_check_and_set(msr_all_available);
517 
518 	/*
519 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
520 	 * indicates that the registers are hot
521 	 */
522 	if ((!(msr & MSR_FP)) && restore_fp(current))
523 		msr |= MSR_FP | current->thread.fpexc_mode;
524 
525 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
526 		msr |= MSR_VEC;
527 
528 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
529 			restore_vsx(current)) {
530 		msr |= MSR_VSX;
531 	}
532 
533 	msr_check_and_clear(msr_all_available);
534 
535 	regs->msr = msr;
536 }
537 
538 void save_all(struct task_struct *tsk)
539 {
540 	unsigned long usermsr;
541 
542 	if (!tsk->thread.regs)
543 		return;
544 
545 	usermsr = tsk->thread.regs->msr;
546 
547 	if ((usermsr & msr_all_available) == 0)
548 		return;
549 
550 	msr_check_and_set(msr_all_available);
551 
552 	/*
553 	 * Saving the way the register space is in hardware, save_vsx boils
554 	 * down to a save_fpu() and save_altivec()
555 	 */
556 	if (usermsr & MSR_VSX) {
557 		save_vsx(tsk);
558 	} else {
559 		if (usermsr & MSR_FP)
560 			save_fpu(tsk);
561 
562 		if (usermsr & MSR_VEC)
563 			save_altivec(tsk);
564 	}
565 
566 	if (usermsr & MSR_SPE)
567 		__giveup_spe(tsk);
568 
569 	msr_check_and_clear(msr_all_available);
570 }
571 
572 void flush_all_to_thread(struct task_struct *tsk)
573 {
574 	if (tsk->thread.regs) {
575 		preempt_disable();
576 		BUG_ON(tsk != current);
577 		save_all(tsk);
578 
579 #ifdef CONFIG_SPE
580 		if (tsk->thread.regs->msr & MSR_SPE)
581 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
582 #endif
583 
584 		preempt_enable();
585 	}
586 }
587 EXPORT_SYMBOL(flush_all_to_thread);
588 
589 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
590 void do_send_trap(struct pt_regs *regs, unsigned long address,
591 		  unsigned long error_code, int signal_code, int breakpt)
592 {
593 	siginfo_t info;
594 
595 	current->thread.trap_nr = signal_code;
596 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
597 			11, SIGSEGV) == NOTIFY_STOP)
598 		return;
599 
600 	/* Deliver the signal to userspace */
601 	info.si_signo = SIGTRAP;
602 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
603 	info.si_code = signal_code;
604 	info.si_addr = (void __user *)address;
605 	force_sig_info(SIGTRAP, &info, current);
606 }
607 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
608 void do_break (struct pt_regs *regs, unsigned long address,
609 		    unsigned long error_code)
610 {
611 	siginfo_t info;
612 
613 	current->thread.trap_nr = TRAP_HWBKPT;
614 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 			11, SIGSEGV) == NOTIFY_STOP)
616 		return;
617 
618 	if (debugger_break_match(regs))
619 		return;
620 
621 	/* Clear the breakpoint */
622 	hw_breakpoint_disable();
623 
624 	/* Deliver the signal to userspace */
625 	info.si_signo = SIGTRAP;
626 	info.si_errno = 0;
627 	info.si_code = TRAP_HWBKPT;
628 	info.si_addr = (void __user *)address;
629 	force_sig_info(SIGTRAP, &info, current);
630 }
631 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
632 
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
634 
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
636 /*
637  * Set the debug registers back to their default "safe" values.
638  */
639 static void set_debug_reg_defaults(struct thread_struct *thread)
640 {
641 	thread->debug.iac1 = thread->debug.iac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 	thread->debug.iac3 = thread->debug.iac4 = 0;
644 #endif
645 	thread->debug.dac1 = thread->debug.dac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
648 #endif
649 	thread->debug.dbcr0 = 0;
650 #ifdef CONFIG_BOOKE
651 	/*
652 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
653 	 */
654 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655 			DBCR1_IAC3US | DBCR1_IAC4US;
656 	/*
657 	 * Force Data Address Compare User/Supervisor bits to be User-only
658 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
659 	 */
660 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661 #else
662 	thread->debug.dbcr1 = 0;
663 #endif
664 }
665 
666 static void prime_debug_regs(struct debug_reg *debug)
667 {
668 	/*
669 	 * We could have inherited MSR_DE from userspace, since
670 	 * it doesn't get cleared on exception entry.  Make sure
671 	 * MSR_DE is clear before we enable any debug events.
672 	 */
673 	mtmsr(mfmsr() & ~MSR_DE);
674 
675 	mtspr(SPRN_IAC1, debug->iac1);
676 	mtspr(SPRN_IAC2, debug->iac2);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678 	mtspr(SPRN_IAC3, debug->iac3);
679 	mtspr(SPRN_IAC4, debug->iac4);
680 #endif
681 	mtspr(SPRN_DAC1, debug->dac1);
682 	mtspr(SPRN_DAC2, debug->dac2);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684 	mtspr(SPRN_DVC1, debug->dvc1);
685 	mtspr(SPRN_DVC2, debug->dvc2);
686 #endif
687 	mtspr(SPRN_DBCR0, debug->dbcr0);
688 	mtspr(SPRN_DBCR1, debug->dbcr1);
689 #ifdef CONFIG_BOOKE
690 	mtspr(SPRN_DBCR2, debug->dbcr2);
691 #endif
692 }
693 /*
694  * Unless neither the old or new thread are making use of the
695  * debug registers, set the debug registers from the values
696  * stored in the new thread.
697  */
698 void switch_booke_debug_regs(struct debug_reg *new_debug)
699 {
700 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701 		|| (new_debug->dbcr0 & DBCR0_IDM))
702 			prime_debug_regs(new_debug);
703 }
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_debug_reg_defaults(struct thread_struct *thread)
708 {
709 	thread->hw_brk.address = 0;
710 	thread->hw_brk.type = 0;
711 	set_breakpoint(&thread->hw_brk);
712 }
713 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
714 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
715 
716 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
717 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
718 {
719 	mtspr(SPRN_DAC1, dabr);
720 #ifdef CONFIG_PPC_47x
721 	isync();
722 #endif
723 	return 0;
724 }
725 #elif defined(CONFIG_PPC_BOOK3S)
726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
727 {
728 	mtspr(SPRN_DABR, dabr);
729 	if (cpu_has_feature(CPU_FTR_DABRX))
730 		mtspr(SPRN_DABRX, dabrx);
731 	return 0;
732 }
733 #else
734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735 {
736 	return -EINVAL;
737 }
738 #endif
739 
740 static inline int set_dabr(struct arch_hw_breakpoint *brk)
741 {
742 	unsigned long dabr, dabrx;
743 
744 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
745 	dabrx = ((brk->type >> 3) & 0x7);
746 
747 	if (ppc_md.set_dabr)
748 		return ppc_md.set_dabr(dabr, dabrx);
749 
750 	return __set_dabr(dabr, dabrx);
751 }
752 
753 static inline int set_dawr(struct arch_hw_breakpoint *brk)
754 {
755 	unsigned long dawr, dawrx, mrd;
756 
757 	dawr = brk->address;
758 
759 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
760 		                   << (63 - 58); //* read/write bits */
761 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
762 		                   << (63 - 59); //* translate */
763 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
764 		                   >> 3; //* PRIM bits */
765 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
766 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
767 	   0b111111=64DW.
768 	   brk->len is in bytes.
769 	   This aligns up to double word size, shifts and does the bias.
770 	*/
771 	mrd = ((brk->len + 7) >> 3) - 1;
772 	dawrx |= (mrd & 0x3f) << (63 - 53);
773 
774 	if (ppc_md.set_dawr)
775 		return ppc_md.set_dawr(dawr, dawrx);
776 	mtspr(SPRN_DAWR, dawr);
777 	mtspr(SPRN_DAWRX, dawrx);
778 	return 0;
779 }
780 
781 void __set_breakpoint(struct arch_hw_breakpoint *brk)
782 {
783 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
784 
785 	if (cpu_has_feature(CPU_FTR_DAWR))
786 		set_dawr(brk);
787 	else
788 		set_dabr(brk);
789 }
790 
791 void set_breakpoint(struct arch_hw_breakpoint *brk)
792 {
793 	preempt_disable();
794 	__set_breakpoint(brk);
795 	preempt_enable();
796 }
797 
798 #ifdef CONFIG_PPC64
799 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
800 #endif
801 
802 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
803 			      struct arch_hw_breakpoint *b)
804 {
805 	if (a->address != b->address)
806 		return false;
807 	if (a->type != b->type)
808 		return false;
809 	if (a->len != b->len)
810 		return false;
811 	return true;
812 }
813 
814 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
815 
816 static inline bool tm_enabled(struct task_struct *tsk)
817 {
818 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
819 }
820 
821 static void tm_reclaim_thread(struct thread_struct *thr,
822 			      struct thread_info *ti, uint8_t cause)
823 {
824 	/*
825 	 * Use the current MSR TM suspended bit to track if we have
826 	 * checkpointed state outstanding.
827 	 * On signal delivery, we'd normally reclaim the checkpointed
828 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
829 	 * This will then directly return to userspace without going
830 	 * through __switch_to(). However, if the stack frame is bad,
831 	 * we need to exit this thread which calls __switch_to() which
832 	 * will again attempt to reclaim the already saved tm state.
833 	 * Hence we need to check that we've not already reclaimed
834 	 * this state.
835 	 * We do this using the current MSR, rather tracking it in
836 	 * some specific thread_struct bit, as it has the additional
837 	 * benefit of checking for a potential TM bad thing exception.
838 	 */
839 	if (!MSR_TM_SUSPENDED(mfmsr()))
840 		return;
841 
842 	giveup_all(container_of(thr, struct task_struct, thread));
843 
844 	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
845 }
846 
847 void tm_reclaim_current(uint8_t cause)
848 {
849 	tm_enable();
850 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
851 }
852 
853 static inline void tm_reclaim_task(struct task_struct *tsk)
854 {
855 	/* We have to work out if we're switching from/to a task that's in the
856 	 * middle of a transaction.
857 	 *
858 	 * In switching we need to maintain a 2nd register state as
859 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
860 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
861 	 * ckvr_state
862 	 *
863 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
864 	 */
865 	struct thread_struct *thr = &tsk->thread;
866 
867 	if (!thr->regs)
868 		return;
869 
870 	if (!MSR_TM_ACTIVE(thr->regs->msr))
871 		goto out_and_saveregs;
872 
873 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
874 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
875 		 tsk->pid, thr->regs->nip,
876 		 thr->regs->ccr, thr->regs->msr,
877 		 thr->regs->trap);
878 
879 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
880 
881 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
882 		 tsk->pid);
883 
884 out_and_saveregs:
885 	/* Always save the regs here, even if a transaction's not active.
886 	 * This context-switches a thread's TM info SPRs.  We do it here to
887 	 * be consistent with the restore path (in recheckpoint) which
888 	 * cannot happen later in _switch().
889 	 */
890 	tm_save_sprs(thr);
891 }
892 
893 extern void __tm_recheckpoint(struct thread_struct *thread,
894 			      unsigned long orig_msr);
895 
896 void tm_recheckpoint(struct thread_struct *thread,
897 		     unsigned long orig_msr)
898 {
899 	unsigned long flags;
900 
901 	if (!(thread->regs->msr & MSR_TM))
902 		return;
903 
904 	/* We really can't be interrupted here as the TEXASR registers can't
905 	 * change and later in the trecheckpoint code, we have a userspace R1.
906 	 * So let's hard disable over this region.
907 	 */
908 	local_irq_save(flags);
909 	hard_irq_disable();
910 
911 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
912 	 * before the trecheckpoint and no explosion occurs.
913 	 */
914 	tm_restore_sprs(thread);
915 
916 	__tm_recheckpoint(thread, orig_msr);
917 
918 	local_irq_restore(flags);
919 }
920 
921 static inline void tm_recheckpoint_new_task(struct task_struct *new)
922 {
923 	unsigned long msr;
924 
925 	if (!cpu_has_feature(CPU_FTR_TM))
926 		return;
927 
928 	/* Recheckpoint the registers of the thread we're about to switch to.
929 	 *
930 	 * If the task was using FP, we non-lazily reload both the original and
931 	 * the speculative FP register states.  This is because the kernel
932 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
933 	 * unavailable later, we are unable to determine which set of FP regs
934 	 * need to be restored.
935 	 */
936 	if (!tm_enabled(new))
937 		return;
938 
939 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
940 		tm_restore_sprs(&new->thread);
941 		return;
942 	}
943 	msr = new->thread.ckpt_regs.msr;
944 	/* Recheckpoint to restore original checkpointed register state. */
945 	TM_DEBUG("*** tm_recheckpoint of pid %d "
946 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
947 		 new->pid, new->thread.regs->msr, msr);
948 
949 	tm_recheckpoint(&new->thread, msr);
950 
951 	/*
952 	 * The checkpointed state has been restored but the live state has
953 	 * not, ensure all the math functionality is turned off to trigger
954 	 * restore_math() to reload.
955 	 */
956 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
957 
958 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
959 		 "(kernel msr 0x%lx)\n",
960 		 new->pid, mfmsr());
961 }
962 
963 static inline void __switch_to_tm(struct task_struct *prev,
964 		struct task_struct *new)
965 {
966 	if (cpu_has_feature(CPU_FTR_TM)) {
967 		if (tm_enabled(prev) || tm_enabled(new))
968 			tm_enable();
969 
970 		if (tm_enabled(prev)) {
971 			prev->thread.load_tm++;
972 			tm_reclaim_task(prev);
973 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
974 				prev->thread.regs->msr &= ~MSR_TM;
975 		}
976 
977 		tm_recheckpoint_new_task(new);
978 	}
979 }
980 
981 /*
982  * This is called if we are on the way out to userspace and the
983  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
984  * FP and/or vector state and does so if necessary.
985  * If userspace is inside a transaction (whether active or
986  * suspended) and FP/VMX/VSX instructions have ever been enabled
987  * inside that transaction, then we have to keep them enabled
988  * and keep the FP/VMX/VSX state loaded while ever the transaction
989  * continues.  The reason is that if we didn't, and subsequently
990  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
991  * we don't know whether it's the same transaction, and thus we
992  * don't know which of the checkpointed state and the transactional
993  * state to use.
994  */
995 void restore_tm_state(struct pt_regs *regs)
996 {
997 	unsigned long msr_diff;
998 
999 	/*
1000 	 * This is the only moment we should clear TIF_RESTORE_TM as
1001 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1002 	 * again, anything else could lead to an incorrect ckpt_msr being
1003 	 * saved and therefore incorrect signal contexts.
1004 	 */
1005 	clear_thread_flag(TIF_RESTORE_TM);
1006 	if (!MSR_TM_ACTIVE(regs->msr))
1007 		return;
1008 
1009 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1010 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1011 
1012 	/* Ensure that restore_math() will restore */
1013 	if (msr_diff & MSR_FP)
1014 		current->thread.load_fp = 1;
1015 #ifdef CONFIG_ALTIVEC
1016 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1017 		current->thread.load_vec = 1;
1018 #endif
1019 	restore_math(regs);
1020 
1021 	regs->msr |= msr_diff;
1022 }
1023 
1024 #else
1025 #define tm_recheckpoint_new_task(new)
1026 #define __switch_to_tm(prev, new)
1027 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1028 
1029 static inline void save_sprs(struct thread_struct *t)
1030 {
1031 #ifdef CONFIG_ALTIVEC
1032 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1033 		t->vrsave = mfspr(SPRN_VRSAVE);
1034 #endif
1035 #ifdef CONFIG_PPC_BOOK3S_64
1036 	if (cpu_has_feature(CPU_FTR_DSCR))
1037 		t->dscr = mfspr(SPRN_DSCR);
1038 
1039 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1040 		t->bescr = mfspr(SPRN_BESCR);
1041 		t->ebbhr = mfspr(SPRN_EBBHR);
1042 		t->ebbrr = mfspr(SPRN_EBBRR);
1043 
1044 		t->fscr = mfspr(SPRN_FSCR);
1045 
1046 		/*
1047 		 * Note that the TAR is not available for use in the kernel.
1048 		 * (To provide this, the TAR should be backed up/restored on
1049 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1050 		 * this should be in pt_regs anyway (for debug).)
1051 		 */
1052 		t->tar = mfspr(SPRN_TAR);
1053 	}
1054 
1055 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1056 		/* Conditionally save Load Monitor registers, if enabled */
1057 		if (t->fscr & FSCR_LM) {
1058 			t->lmrr = mfspr(SPRN_LMRR);
1059 			t->lmser = mfspr(SPRN_LMSER);
1060 		}
1061 	}
1062 #endif
1063 }
1064 
1065 static inline void restore_sprs(struct thread_struct *old_thread,
1066 				struct thread_struct *new_thread)
1067 {
1068 #ifdef CONFIG_ALTIVEC
1069 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1070 	    old_thread->vrsave != new_thread->vrsave)
1071 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1072 #endif
1073 #ifdef CONFIG_PPC_BOOK3S_64
1074 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1075 		u64 dscr = get_paca()->dscr_default;
1076 		if (new_thread->dscr_inherit)
1077 			dscr = new_thread->dscr;
1078 
1079 		if (old_thread->dscr != dscr)
1080 			mtspr(SPRN_DSCR, dscr);
1081 	}
1082 
1083 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1084 		if (old_thread->bescr != new_thread->bescr)
1085 			mtspr(SPRN_BESCR, new_thread->bescr);
1086 		if (old_thread->ebbhr != new_thread->ebbhr)
1087 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1088 		if (old_thread->ebbrr != new_thread->ebbrr)
1089 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1090 
1091 		if (old_thread->fscr != new_thread->fscr)
1092 			mtspr(SPRN_FSCR, new_thread->fscr);
1093 
1094 		if (old_thread->tar != new_thread->tar)
1095 			mtspr(SPRN_TAR, new_thread->tar);
1096 	}
1097 
1098 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1099 		/* Conditionally restore Load Monitor registers, if enabled */
1100 		if (new_thread->fscr & FSCR_LM) {
1101 			if (old_thread->lmrr != new_thread->lmrr)
1102 				mtspr(SPRN_LMRR, new_thread->lmrr);
1103 			if (old_thread->lmser != new_thread->lmser)
1104 				mtspr(SPRN_LMSER, new_thread->lmser);
1105 		}
1106 	}
1107 #endif
1108 }
1109 
1110 struct task_struct *__switch_to(struct task_struct *prev,
1111 	struct task_struct *new)
1112 {
1113 	struct thread_struct *new_thread, *old_thread;
1114 	struct task_struct *last;
1115 #ifdef CONFIG_PPC_BOOK3S_64
1116 	struct ppc64_tlb_batch *batch;
1117 #endif
1118 
1119 	new_thread = &new->thread;
1120 	old_thread = &current->thread;
1121 
1122 	WARN_ON(!irqs_disabled());
1123 
1124 #ifdef CONFIG_PPC64
1125 	/*
1126 	 * Collect processor utilization data per process
1127 	 */
1128 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1129 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1130 		long unsigned start_tb, current_tb;
1131 		start_tb = old_thread->start_tb;
1132 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1133 		old_thread->accum_tb += (current_tb - start_tb);
1134 		new_thread->start_tb = current_tb;
1135 	}
1136 #endif /* CONFIG_PPC64 */
1137 
1138 #ifdef CONFIG_PPC_STD_MMU_64
1139 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1140 	if (batch->active) {
1141 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1142 		if (batch->index)
1143 			__flush_tlb_pending(batch);
1144 		batch->active = 0;
1145 	}
1146 #endif /* CONFIG_PPC_STD_MMU_64 */
1147 
1148 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1149 	switch_booke_debug_regs(&new->thread.debug);
1150 #else
1151 /*
1152  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1153  * schedule DABR
1154  */
1155 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1156 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1157 		__set_breakpoint(&new->thread.hw_brk);
1158 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1159 #endif
1160 
1161 	/*
1162 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1163 	 * change a number of them.
1164 	 */
1165 	save_sprs(&prev->thread);
1166 
1167 	/* Save FPU, Altivec, VSX and SPE state */
1168 	giveup_all(prev);
1169 
1170 	__switch_to_tm(prev, new);
1171 
1172 	/*
1173 	 * We can't take a PMU exception inside _switch() since there is a
1174 	 * window where the kernel stack SLB and the kernel stack are out
1175 	 * of sync. Hard disable here.
1176 	 */
1177 	hard_irq_disable();
1178 
1179 	/*
1180 	 * Call restore_sprs() before calling _switch(). If we move it after
1181 	 * _switch() then we miss out on calling it for new tasks. The reason
1182 	 * for this is we manually create a stack frame for new tasks that
1183 	 * directly returns through ret_from_fork() or
1184 	 * ret_from_kernel_thread(). See copy_thread() for details.
1185 	 */
1186 	restore_sprs(old_thread, new_thread);
1187 
1188 	last = _switch(old_thread, new_thread);
1189 
1190 #ifdef CONFIG_PPC_STD_MMU_64
1191 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1192 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1193 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1194 		batch->active = 1;
1195 	}
1196 
1197 	if (current_thread_info()->task->thread.regs)
1198 		restore_math(current_thread_info()->task->thread.regs);
1199 #endif /* CONFIG_PPC_STD_MMU_64 */
1200 
1201 	return last;
1202 }
1203 
1204 static int instructions_to_print = 16;
1205 
1206 static void show_instructions(struct pt_regs *regs)
1207 {
1208 	int i;
1209 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1210 			sizeof(int));
1211 
1212 	printk("Instruction dump:");
1213 
1214 	for (i = 0; i < instructions_to_print; i++) {
1215 		int instr;
1216 
1217 		if (!(i % 8))
1218 			printk("\n");
1219 
1220 #if !defined(CONFIG_BOOKE)
1221 		/* If executing with the IMMU off, adjust pc rather
1222 		 * than print XXXXXXXX.
1223 		 */
1224 		if (!(regs->msr & MSR_IR))
1225 			pc = (unsigned long)phys_to_virt(pc);
1226 #endif
1227 
1228 		if (!__kernel_text_address(pc) ||
1229 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1230 			printk(KERN_CONT "XXXXXXXX ");
1231 		} else {
1232 			if (regs->nip == pc)
1233 				printk(KERN_CONT "<%08x> ", instr);
1234 			else
1235 				printk(KERN_CONT "%08x ", instr);
1236 		}
1237 
1238 		pc += sizeof(int);
1239 	}
1240 
1241 	printk("\n");
1242 }
1243 
1244 struct regbit {
1245 	unsigned long bit;
1246 	const char *name;
1247 };
1248 
1249 static struct regbit msr_bits[] = {
1250 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1251 	{MSR_SF,	"SF"},
1252 	{MSR_HV,	"HV"},
1253 #endif
1254 	{MSR_VEC,	"VEC"},
1255 	{MSR_VSX,	"VSX"},
1256 #ifdef CONFIG_BOOKE
1257 	{MSR_CE,	"CE"},
1258 #endif
1259 	{MSR_EE,	"EE"},
1260 	{MSR_PR,	"PR"},
1261 	{MSR_FP,	"FP"},
1262 	{MSR_ME,	"ME"},
1263 #ifdef CONFIG_BOOKE
1264 	{MSR_DE,	"DE"},
1265 #else
1266 	{MSR_SE,	"SE"},
1267 	{MSR_BE,	"BE"},
1268 #endif
1269 	{MSR_IR,	"IR"},
1270 	{MSR_DR,	"DR"},
1271 	{MSR_PMM,	"PMM"},
1272 #ifndef CONFIG_BOOKE
1273 	{MSR_RI,	"RI"},
1274 	{MSR_LE,	"LE"},
1275 #endif
1276 	{0,		NULL}
1277 };
1278 
1279 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1280 {
1281 	const char *s = "";
1282 
1283 	for (; bits->bit; ++bits)
1284 		if (val & bits->bit) {
1285 			printk("%s%s", s, bits->name);
1286 			s = sep;
1287 		}
1288 }
1289 
1290 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1291 static struct regbit msr_tm_bits[] = {
1292 	{MSR_TS_T,	"T"},
1293 	{MSR_TS_S,	"S"},
1294 	{MSR_TM,	"E"},
1295 	{0,		NULL}
1296 };
1297 
1298 static void print_tm_bits(unsigned long val)
1299 {
1300 /*
1301  * This only prints something if at least one of the TM bit is set.
1302  * Inside the TM[], the output means:
1303  *   E: Enabled		(bit 32)
1304  *   S: Suspended	(bit 33)
1305  *   T: Transactional	(bit 34)
1306  */
1307 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1308 		printk(",TM[");
1309 		print_bits(val, msr_tm_bits, "");
1310 		printk("]");
1311 	}
1312 }
1313 #else
1314 static void print_tm_bits(unsigned long val) {}
1315 #endif
1316 
1317 static void print_msr_bits(unsigned long val)
1318 {
1319 	printk("<");
1320 	print_bits(val, msr_bits, ",");
1321 	print_tm_bits(val);
1322 	printk(">");
1323 }
1324 
1325 #ifdef CONFIG_PPC64
1326 #define REG		"%016lx"
1327 #define REGS_PER_LINE	4
1328 #define LAST_VOLATILE	13
1329 #else
1330 #define REG		"%08lx"
1331 #define REGS_PER_LINE	8
1332 #define LAST_VOLATILE	12
1333 #endif
1334 
1335 void show_regs(struct pt_regs * regs)
1336 {
1337 	int i, trap;
1338 
1339 	show_regs_print_info(KERN_DEFAULT);
1340 
1341 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1342 	       regs->nip, regs->link, regs->ctr);
1343 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1344 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1345 	printk("MSR: "REG" ", regs->msr);
1346 	print_msr_bits(regs->msr);
1347 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1348 	trap = TRAP(regs);
1349 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1350 		printk("CFAR: "REG" ", regs->orig_gpr3);
1351 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1352 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1353 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1354 #else
1355 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1356 #endif
1357 #ifdef CONFIG_PPC64
1358 	printk("SOFTE: %ld ", regs->softe);
1359 #endif
1360 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1361 	if (MSR_TM_ACTIVE(regs->msr))
1362 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1363 #endif
1364 
1365 	for (i = 0;  i < 32;  i++) {
1366 		if ((i % REGS_PER_LINE) == 0)
1367 			printk("\nGPR%02d: ", i);
1368 		printk(REG " ", regs->gpr[i]);
1369 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1370 			break;
1371 	}
1372 	printk("\n");
1373 #ifdef CONFIG_KALLSYMS
1374 	/*
1375 	 * Lookup NIP late so we have the best change of getting the
1376 	 * above info out without failing
1377 	 */
1378 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1379 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1380 #endif
1381 	show_stack(current, (unsigned long *) regs->gpr[1]);
1382 	if (!user_mode(regs))
1383 		show_instructions(regs);
1384 }
1385 
1386 void flush_thread(void)
1387 {
1388 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1389 	flush_ptrace_hw_breakpoint(current);
1390 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1391 	set_debug_reg_defaults(&current->thread);
1392 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1393 }
1394 
1395 void
1396 release_thread(struct task_struct *t)
1397 {
1398 }
1399 
1400 /*
1401  * this gets called so that we can store coprocessor state into memory and
1402  * copy the current task into the new thread.
1403  */
1404 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1405 {
1406 	flush_all_to_thread(src);
1407 	/*
1408 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1409 	 * flush but it removes the checkpointed state from the current CPU and
1410 	 * transitions the CPU out of TM mode.  Hence we need to call
1411 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1412 	 * checkpointed state back and the TM mode.
1413 	 *
1414 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1415 	 * dst is only important for __switch_to()
1416 	 */
1417 	__switch_to_tm(src, src);
1418 
1419 	*dst = *src;
1420 
1421 	clear_task_ebb(dst);
1422 
1423 	return 0;
1424 }
1425 
1426 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1427 {
1428 #ifdef CONFIG_PPC_STD_MMU_64
1429 	unsigned long sp_vsid;
1430 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1431 
1432 	if (radix_enabled())
1433 		return;
1434 
1435 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1436 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1437 			<< SLB_VSID_SHIFT_1T;
1438 	else
1439 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1440 			<< SLB_VSID_SHIFT;
1441 	sp_vsid |= SLB_VSID_KERNEL | llp;
1442 	p->thread.ksp_vsid = sp_vsid;
1443 #endif
1444 }
1445 
1446 /*
1447  * Copy a thread..
1448  */
1449 
1450 /*
1451  * Copy architecture-specific thread state
1452  */
1453 int copy_thread(unsigned long clone_flags, unsigned long usp,
1454 		unsigned long kthread_arg, struct task_struct *p)
1455 {
1456 	struct pt_regs *childregs, *kregs;
1457 	extern void ret_from_fork(void);
1458 	extern void ret_from_kernel_thread(void);
1459 	void (*f)(void);
1460 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1461 	struct thread_info *ti = task_thread_info(p);
1462 
1463 	klp_init_thread_info(ti);
1464 
1465 	/* Copy registers */
1466 	sp -= sizeof(struct pt_regs);
1467 	childregs = (struct pt_regs *) sp;
1468 	if (unlikely(p->flags & PF_KTHREAD)) {
1469 		/* kernel thread */
1470 		memset(childregs, 0, sizeof(struct pt_regs));
1471 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1472 		/* function */
1473 		if (usp)
1474 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1475 #ifdef CONFIG_PPC64
1476 		clear_tsk_thread_flag(p, TIF_32BIT);
1477 		childregs->softe = 1;
1478 #endif
1479 		childregs->gpr[15] = kthread_arg;
1480 		p->thread.regs = NULL;	/* no user register state */
1481 		ti->flags |= _TIF_RESTOREALL;
1482 		f = ret_from_kernel_thread;
1483 	} else {
1484 		/* user thread */
1485 		struct pt_regs *regs = current_pt_regs();
1486 		CHECK_FULL_REGS(regs);
1487 		*childregs = *regs;
1488 		if (usp)
1489 			childregs->gpr[1] = usp;
1490 		p->thread.regs = childregs;
1491 		childregs->gpr[3] = 0;  /* Result from fork() */
1492 		if (clone_flags & CLONE_SETTLS) {
1493 #ifdef CONFIG_PPC64
1494 			if (!is_32bit_task())
1495 				childregs->gpr[13] = childregs->gpr[6];
1496 			else
1497 #endif
1498 				childregs->gpr[2] = childregs->gpr[6];
1499 		}
1500 
1501 		f = ret_from_fork;
1502 	}
1503 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1504 	sp -= STACK_FRAME_OVERHEAD;
1505 
1506 	/*
1507 	 * The way this works is that at some point in the future
1508 	 * some task will call _switch to switch to the new task.
1509 	 * That will pop off the stack frame created below and start
1510 	 * the new task running at ret_from_fork.  The new task will
1511 	 * do some house keeping and then return from the fork or clone
1512 	 * system call, using the stack frame created above.
1513 	 */
1514 	((unsigned long *)sp)[0] = 0;
1515 	sp -= sizeof(struct pt_regs);
1516 	kregs = (struct pt_regs *) sp;
1517 	sp -= STACK_FRAME_OVERHEAD;
1518 	p->thread.ksp = sp;
1519 #ifdef CONFIG_PPC32
1520 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1521 				_ALIGN_UP(sizeof(struct thread_info), 16);
1522 #endif
1523 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1524 	p->thread.ptrace_bps[0] = NULL;
1525 #endif
1526 
1527 	p->thread.fp_save_area = NULL;
1528 #ifdef CONFIG_ALTIVEC
1529 	p->thread.vr_save_area = NULL;
1530 #endif
1531 
1532 	setup_ksp_vsid(p, sp);
1533 
1534 #ifdef CONFIG_PPC64
1535 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1536 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1537 		p->thread.dscr = mfspr(SPRN_DSCR);
1538 	}
1539 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1540 		p->thread.ppr = INIT_PPR;
1541 #endif
1542 	kregs->nip = ppc_function_entry(f);
1543 	return 0;
1544 }
1545 
1546 /*
1547  * Set up a thread for executing a new program
1548  */
1549 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1550 {
1551 #ifdef CONFIG_PPC64
1552 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1553 #endif
1554 
1555 	/*
1556 	 * If we exec out of a kernel thread then thread.regs will not be
1557 	 * set.  Do it now.
1558 	 */
1559 	if (!current->thread.regs) {
1560 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1561 		current->thread.regs = regs - 1;
1562 	}
1563 
1564 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1565 	/*
1566 	 * Clear any transactional state, we're exec()ing. The cause is
1567 	 * not important as there will never be a recheckpoint so it's not
1568 	 * user visible.
1569 	 */
1570 	if (MSR_TM_SUSPENDED(mfmsr()))
1571 		tm_reclaim_current(0);
1572 #endif
1573 
1574 	memset(regs->gpr, 0, sizeof(regs->gpr));
1575 	regs->ctr = 0;
1576 	regs->link = 0;
1577 	regs->xer = 0;
1578 	regs->ccr = 0;
1579 	regs->gpr[1] = sp;
1580 
1581 	/*
1582 	 * We have just cleared all the nonvolatile GPRs, so make
1583 	 * FULL_REGS(regs) return true.  This is necessary to allow
1584 	 * ptrace to examine the thread immediately after exec.
1585 	 */
1586 	regs->trap &= ~1UL;
1587 
1588 #ifdef CONFIG_PPC32
1589 	regs->mq = 0;
1590 	regs->nip = start;
1591 	regs->msr = MSR_USER;
1592 #else
1593 	if (!is_32bit_task()) {
1594 		unsigned long entry;
1595 
1596 		if (is_elf2_task()) {
1597 			/* Look ma, no function descriptors! */
1598 			entry = start;
1599 
1600 			/*
1601 			 * Ulrich says:
1602 			 *   The latest iteration of the ABI requires that when
1603 			 *   calling a function (at its global entry point),
1604 			 *   the caller must ensure r12 holds the entry point
1605 			 *   address (so that the function can quickly
1606 			 *   establish addressability).
1607 			 */
1608 			regs->gpr[12] = start;
1609 			/* Make sure that's restored on entry to userspace. */
1610 			set_thread_flag(TIF_RESTOREALL);
1611 		} else {
1612 			unsigned long toc;
1613 
1614 			/* start is a relocated pointer to the function
1615 			 * descriptor for the elf _start routine.  The first
1616 			 * entry in the function descriptor is the entry
1617 			 * address of _start and the second entry is the TOC
1618 			 * value we need to use.
1619 			 */
1620 			__get_user(entry, (unsigned long __user *)start);
1621 			__get_user(toc, (unsigned long __user *)start+1);
1622 
1623 			/* Check whether the e_entry function descriptor entries
1624 			 * need to be relocated before we can use them.
1625 			 */
1626 			if (load_addr != 0) {
1627 				entry += load_addr;
1628 				toc   += load_addr;
1629 			}
1630 			regs->gpr[2] = toc;
1631 		}
1632 		regs->nip = entry;
1633 		regs->msr = MSR_USER64;
1634 	} else {
1635 		regs->nip = start;
1636 		regs->gpr[2] = 0;
1637 		regs->msr = MSR_USER32;
1638 	}
1639 #endif
1640 #ifdef CONFIG_VSX
1641 	current->thread.used_vsr = 0;
1642 #endif
1643 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1644 	current->thread.fp_save_area = NULL;
1645 #ifdef CONFIG_ALTIVEC
1646 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1647 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1648 	current->thread.vr_save_area = NULL;
1649 	current->thread.vrsave = 0;
1650 	current->thread.used_vr = 0;
1651 #endif /* CONFIG_ALTIVEC */
1652 #ifdef CONFIG_SPE
1653 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1654 	current->thread.acc = 0;
1655 	current->thread.spefscr = 0;
1656 	current->thread.used_spe = 0;
1657 #endif /* CONFIG_SPE */
1658 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1659 	current->thread.tm_tfhar = 0;
1660 	current->thread.tm_texasr = 0;
1661 	current->thread.tm_tfiar = 0;
1662 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1663 }
1664 EXPORT_SYMBOL(start_thread);
1665 
1666 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1667 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1668 
1669 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1670 {
1671 	struct pt_regs *regs = tsk->thread.regs;
1672 
1673 	/* This is a bit hairy.  If we are an SPE enabled  processor
1674 	 * (have embedded fp) we store the IEEE exception enable flags in
1675 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1676 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1677 	if (val & PR_FP_EXC_SW_ENABLE) {
1678 #ifdef CONFIG_SPE
1679 		if (cpu_has_feature(CPU_FTR_SPE)) {
1680 			/*
1681 			 * When the sticky exception bits are set
1682 			 * directly by userspace, it must call prctl
1683 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1684 			 * in the existing prctl settings) or
1685 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1686 			 * the bits being set).  <fenv.h> functions
1687 			 * saving and restoring the whole
1688 			 * floating-point environment need to do so
1689 			 * anyway to restore the prctl settings from
1690 			 * the saved environment.
1691 			 */
1692 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1693 			tsk->thread.fpexc_mode = val &
1694 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1695 			return 0;
1696 		} else {
1697 			return -EINVAL;
1698 		}
1699 #else
1700 		return -EINVAL;
1701 #endif
1702 	}
1703 
1704 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1705 	 * __pack_fe01 use do not overlap with bits used for
1706 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1707 	 * on CONFIG_SPE implementations are reserved so writing to
1708 	 * them does not change anything */
1709 	if (val > PR_FP_EXC_PRECISE)
1710 		return -EINVAL;
1711 	tsk->thread.fpexc_mode = __pack_fe01(val);
1712 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1713 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1714 			| tsk->thread.fpexc_mode;
1715 	return 0;
1716 }
1717 
1718 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1719 {
1720 	unsigned int val;
1721 
1722 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1723 #ifdef CONFIG_SPE
1724 		if (cpu_has_feature(CPU_FTR_SPE)) {
1725 			/*
1726 			 * When the sticky exception bits are set
1727 			 * directly by userspace, it must call prctl
1728 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1729 			 * in the existing prctl settings) or
1730 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1731 			 * the bits being set).  <fenv.h> functions
1732 			 * saving and restoring the whole
1733 			 * floating-point environment need to do so
1734 			 * anyway to restore the prctl settings from
1735 			 * the saved environment.
1736 			 */
1737 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1738 			val = tsk->thread.fpexc_mode;
1739 		} else
1740 			return -EINVAL;
1741 #else
1742 		return -EINVAL;
1743 #endif
1744 	else
1745 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1746 	return put_user(val, (unsigned int __user *) adr);
1747 }
1748 
1749 int set_endian(struct task_struct *tsk, unsigned int val)
1750 {
1751 	struct pt_regs *regs = tsk->thread.regs;
1752 
1753 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1754 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1755 		return -EINVAL;
1756 
1757 	if (regs == NULL)
1758 		return -EINVAL;
1759 
1760 	if (val == PR_ENDIAN_BIG)
1761 		regs->msr &= ~MSR_LE;
1762 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1763 		regs->msr |= MSR_LE;
1764 	else
1765 		return -EINVAL;
1766 
1767 	return 0;
1768 }
1769 
1770 int get_endian(struct task_struct *tsk, unsigned long adr)
1771 {
1772 	struct pt_regs *regs = tsk->thread.regs;
1773 	unsigned int val;
1774 
1775 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1776 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1777 		return -EINVAL;
1778 
1779 	if (regs == NULL)
1780 		return -EINVAL;
1781 
1782 	if (regs->msr & MSR_LE) {
1783 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1784 			val = PR_ENDIAN_LITTLE;
1785 		else
1786 			val = PR_ENDIAN_PPC_LITTLE;
1787 	} else
1788 		val = PR_ENDIAN_BIG;
1789 
1790 	return put_user(val, (unsigned int __user *)adr);
1791 }
1792 
1793 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1794 {
1795 	tsk->thread.align_ctl = val;
1796 	return 0;
1797 }
1798 
1799 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1800 {
1801 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1802 }
1803 
1804 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1805 				  unsigned long nbytes)
1806 {
1807 	unsigned long stack_page;
1808 	unsigned long cpu = task_cpu(p);
1809 
1810 	/*
1811 	 * Avoid crashing if the stack has overflowed and corrupted
1812 	 * task_cpu(p), which is in the thread_info struct.
1813 	 */
1814 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1815 		stack_page = (unsigned long) hardirq_ctx[cpu];
1816 		if (sp >= stack_page + sizeof(struct thread_struct)
1817 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1818 			return 1;
1819 
1820 		stack_page = (unsigned long) softirq_ctx[cpu];
1821 		if (sp >= stack_page + sizeof(struct thread_struct)
1822 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1823 			return 1;
1824 	}
1825 	return 0;
1826 }
1827 
1828 int validate_sp(unsigned long sp, struct task_struct *p,
1829 		       unsigned long nbytes)
1830 {
1831 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1832 
1833 	if (sp >= stack_page + sizeof(struct thread_struct)
1834 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1835 		return 1;
1836 
1837 	return valid_irq_stack(sp, p, nbytes);
1838 }
1839 
1840 EXPORT_SYMBOL(validate_sp);
1841 
1842 unsigned long get_wchan(struct task_struct *p)
1843 {
1844 	unsigned long ip, sp;
1845 	int count = 0;
1846 
1847 	if (!p || p == current || p->state == TASK_RUNNING)
1848 		return 0;
1849 
1850 	sp = p->thread.ksp;
1851 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1852 		return 0;
1853 
1854 	do {
1855 		sp = *(unsigned long *)sp;
1856 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1857 			return 0;
1858 		if (count > 0) {
1859 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1860 			if (!in_sched_functions(ip))
1861 				return ip;
1862 		}
1863 	} while (count++ < 16);
1864 	return 0;
1865 }
1866 
1867 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1868 
1869 void show_stack(struct task_struct *tsk, unsigned long *stack)
1870 {
1871 	unsigned long sp, ip, lr, newsp;
1872 	int count = 0;
1873 	int firstframe = 1;
1874 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1875 	int curr_frame = current->curr_ret_stack;
1876 	extern void return_to_handler(void);
1877 	unsigned long rth = (unsigned long)return_to_handler;
1878 #endif
1879 
1880 	sp = (unsigned long) stack;
1881 	if (tsk == NULL)
1882 		tsk = current;
1883 	if (sp == 0) {
1884 		if (tsk == current)
1885 			sp = current_stack_pointer();
1886 		else
1887 			sp = tsk->thread.ksp;
1888 	}
1889 
1890 	lr = 0;
1891 	printk("Call Trace:\n");
1892 	do {
1893 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1894 			return;
1895 
1896 		stack = (unsigned long *) sp;
1897 		newsp = stack[0];
1898 		ip = stack[STACK_FRAME_LR_SAVE];
1899 		if (!firstframe || ip != lr) {
1900 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1901 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1902 			if ((ip == rth) && curr_frame >= 0) {
1903 				printk(" (%pS)",
1904 				       (void *)current->ret_stack[curr_frame].ret);
1905 				curr_frame--;
1906 			}
1907 #endif
1908 			if (firstframe)
1909 				printk(" (unreliable)");
1910 			printk("\n");
1911 		}
1912 		firstframe = 0;
1913 
1914 		/*
1915 		 * See if this is an exception frame.
1916 		 * We look for the "regshere" marker in the current frame.
1917 		 */
1918 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1919 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1920 			struct pt_regs *regs = (struct pt_regs *)
1921 				(sp + STACK_FRAME_OVERHEAD);
1922 			lr = regs->link;
1923 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1924 			       regs->trap, (void *)regs->nip, (void *)lr);
1925 			firstframe = 1;
1926 		}
1927 
1928 		sp = newsp;
1929 	} while (count++ < kstack_depth_to_print);
1930 }
1931 
1932 #ifdef CONFIG_PPC64
1933 /* Called with hard IRQs off */
1934 void notrace __ppc64_runlatch_on(void)
1935 {
1936 	struct thread_info *ti = current_thread_info();
1937 	unsigned long ctrl;
1938 
1939 	ctrl = mfspr(SPRN_CTRLF);
1940 	ctrl |= CTRL_RUNLATCH;
1941 	mtspr(SPRN_CTRLT, ctrl);
1942 
1943 	ti->local_flags |= _TLF_RUNLATCH;
1944 }
1945 
1946 /* Called with hard IRQs off */
1947 void notrace __ppc64_runlatch_off(void)
1948 {
1949 	struct thread_info *ti = current_thread_info();
1950 	unsigned long ctrl;
1951 
1952 	ti->local_flags &= ~_TLF_RUNLATCH;
1953 
1954 	ctrl = mfspr(SPRN_CTRLF);
1955 	ctrl &= ~CTRL_RUNLATCH;
1956 	mtspr(SPRN_CTRLT, ctrl);
1957 }
1958 #endif /* CONFIG_PPC64 */
1959 
1960 unsigned long arch_align_stack(unsigned long sp)
1961 {
1962 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1963 		sp -= get_random_int() & ~PAGE_MASK;
1964 	return sp & ~0xf;
1965 }
1966 
1967 static inline unsigned long brk_rnd(void)
1968 {
1969         unsigned long rnd = 0;
1970 
1971 	/* 8MB for 32bit, 1GB for 64bit */
1972 	if (is_32bit_task())
1973 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1974 	else
1975 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1976 
1977 	return rnd << PAGE_SHIFT;
1978 }
1979 
1980 unsigned long arch_randomize_brk(struct mm_struct *mm)
1981 {
1982 	unsigned long base = mm->brk;
1983 	unsigned long ret;
1984 
1985 #ifdef CONFIG_PPC_STD_MMU_64
1986 	/*
1987 	 * If we are using 1TB segments and we are allowed to randomise
1988 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1989 	 * segment. Otherwise the heap will be in the bottom 1TB
1990 	 * which always uses 256MB segments and this may result in a
1991 	 * performance penalty. We don't need to worry about radix. For
1992 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1993 	 */
1994 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1995 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1996 #endif
1997 
1998 	ret = PAGE_ALIGN(base + brk_rnd());
1999 
2000 	if (ret < mm->brk)
2001 		return mm->brk;
2002 
2003 	return ret;
2004 }
2005 
2006