1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/mqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/utsname.h> 35 #include <linux/ftrace.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/personality.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/uaccess.h> 41 #include <linux/elf-randomize.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #endif 58 #include <asm/code-patching.h> 59 #include <asm/exec.h> 60 #include <asm/livepatch.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/asm-prototypes.h> 63 64 #include <linux/kprobes.h> 65 #include <linux/kdebug.h> 66 67 /* Transactional Memory debug */ 68 #ifdef TM_DEBUG_SW 69 #define TM_DEBUG(x...) printk(KERN_INFO x) 70 #else 71 #define TM_DEBUG(x...) do { } while(0) 72 #endif 73 74 extern unsigned long _get_SP(void); 75 76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 77 static void check_if_tm_restore_required(struct task_struct *tsk) 78 { 79 /* 80 * If we are saving the current thread's registers, and the 81 * thread is in a transactional state, set the TIF_RESTORE_TM 82 * bit so that we know to restore the registers before 83 * returning to userspace. 84 */ 85 if (tsk == current && tsk->thread.regs && 86 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 87 !test_thread_flag(TIF_RESTORE_TM)) { 88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 89 set_thread_flag(TIF_RESTORE_TM); 90 } 91 } 92 93 static inline bool msr_tm_active(unsigned long msr) 94 { 95 return MSR_TM_ACTIVE(msr); 96 } 97 #else 98 static inline bool msr_tm_active(unsigned long msr) { return false; } 99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 101 102 bool strict_msr_control; 103 EXPORT_SYMBOL(strict_msr_control); 104 105 static int __init enable_strict_msr_control(char *str) 106 { 107 strict_msr_control = true; 108 pr_info("Enabling strict facility control\n"); 109 110 return 0; 111 } 112 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 113 114 unsigned long msr_check_and_set(unsigned long bits) 115 { 116 unsigned long oldmsr = mfmsr(); 117 unsigned long newmsr; 118 119 newmsr = oldmsr | bits; 120 121 #ifdef CONFIG_VSX 122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 123 newmsr |= MSR_VSX; 124 #endif 125 126 if (oldmsr != newmsr) 127 mtmsr_isync(newmsr); 128 129 return newmsr; 130 } 131 132 void __msr_check_and_clear(unsigned long bits) 133 { 134 unsigned long oldmsr = mfmsr(); 135 unsigned long newmsr; 136 137 newmsr = oldmsr & ~bits; 138 139 #ifdef CONFIG_VSX 140 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 141 newmsr &= ~MSR_VSX; 142 #endif 143 144 if (oldmsr != newmsr) 145 mtmsr_isync(newmsr); 146 } 147 EXPORT_SYMBOL(__msr_check_and_clear); 148 149 #ifdef CONFIG_PPC_FPU 150 void __giveup_fpu(struct task_struct *tsk) 151 { 152 unsigned long msr; 153 154 save_fpu(tsk); 155 msr = tsk->thread.regs->msr; 156 msr &= ~MSR_FP; 157 #ifdef CONFIG_VSX 158 if (cpu_has_feature(CPU_FTR_VSX)) 159 msr &= ~MSR_VSX; 160 #endif 161 tsk->thread.regs->msr = msr; 162 } 163 164 void giveup_fpu(struct task_struct *tsk) 165 { 166 check_if_tm_restore_required(tsk); 167 168 msr_check_and_set(MSR_FP); 169 __giveup_fpu(tsk); 170 msr_check_and_clear(MSR_FP); 171 } 172 EXPORT_SYMBOL(giveup_fpu); 173 174 /* 175 * Make sure the floating-point register state in the 176 * the thread_struct is up to date for task tsk. 177 */ 178 void flush_fp_to_thread(struct task_struct *tsk) 179 { 180 if (tsk->thread.regs) { 181 /* 182 * We need to disable preemption here because if we didn't, 183 * another process could get scheduled after the regs->msr 184 * test but before we have finished saving the FP registers 185 * to the thread_struct. That process could take over the 186 * FPU, and then when we get scheduled again we would store 187 * bogus values for the remaining FP registers. 188 */ 189 preempt_disable(); 190 if (tsk->thread.regs->msr & MSR_FP) { 191 /* 192 * This should only ever be called for current or 193 * for a stopped child process. Since we save away 194 * the FP register state on context switch, 195 * there is something wrong if a stopped child appears 196 * to still have its FP state in the CPU registers. 197 */ 198 BUG_ON(tsk != current); 199 giveup_fpu(tsk); 200 } 201 preempt_enable(); 202 } 203 } 204 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 205 206 void enable_kernel_fp(void) 207 { 208 unsigned long cpumsr; 209 210 WARN_ON(preemptible()); 211 212 cpumsr = msr_check_and_set(MSR_FP); 213 214 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 215 check_if_tm_restore_required(current); 216 /* 217 * If a thread has already been reclaimed then the 218 * checkpointed registers are on the CPU but have definitely 219 * been saved by the reclaim code. Don't need to and *cannot* 220 * giveup as this would save to the 'live' structure not the 221 * checkpointed structure. 222 */ 223 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 224 return; 225 __giveup_fpu(current); 226 } 227 } 228 EXPORT_SYMBOL(enable_kernel_fp); 229 230 static int restore_fp(struct task_struct *tsk) { 231 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) { 232 load_fp_state(¤t->thread.fp_state); 233 current->thread.load_fp++; 234 return 1; 235 } 236 return 0; 237 } 238 #else 239 static int restore_fp(struct task_struct *tsk) { return 0; } 240 #endif /* CONFIG_PPC_FPU */ 241 242 #ifdef CONFIG_ALTIVEC 243 #define loadvec(thr) ((thr).load_vec) 244 245 static void __giveup_altivec(struct task_struct *tsk) 246 { 247 unsigned long msr; 248 249 save_altivec(tsk); 250 msr = tsk->thread.regs->msr; 251 msr &= ~MSR_VEC; 252 #ifdef CONFIG_VSX 253 if (cpu_has_feature(CPU_FTR_VSX)) 254 msr &= ~MSR_VSX; 255 #endif 256 tsk->thread.regs->msr = msr; 257 } 258 259 void giveup_altivec(struct task_struct *tsk) 260 { 261 check_if_tm_restore_required(tsk); 262 263 msr_check_and_set(MSR_VEC); 264 __giveup_altivec(tsk); 265 msr_check_and_clear(MSR_VEC); 266 } 267 EXPORT_SYMBOL(giveup_altivec); 268 269 void enable_kernel_altivec(void) 270 { 271 unsigned long cpumsr; 272 273 WARN_ON(preemptible()); 274 275 cpumsr = msr_check_and_set(MSR_VEC); 276 277 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 278 check_if_tm_restore_required(current); 279 /* 280 * If a thread has already been reclaimed then the 281 * checkpointed registers are on the CPU but have definitely 282 * been saved by the reclaim code. Don't need to and *cannot* 283 * giveup as this would save to the 'live' structure not the 284 * checkpointed structure. 285 */ 286 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 287 return; 288 __giveup_altivec(current); 289 } 290 } 291 EXPORT_SYMBOL(enable_kernel_altivec); 292 293 /* 294 * Make sure the VMX/Altivec register state in the 295 * the thread_struct is up to date for task tsk. 296 */ 297 void flush_altivec_to_thread(struct task_struct *tsk) 298 { 299 if (tsk->thread.regs) { 300 preempt_disable(); 301 if (tsk->thread.regs->msr & MSR_VEC) { 302 BUG_ON(tsk != current); 303 giveup_altivec(tsk); 304 } 305 preempt_enable(); 306 } 307 } 308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 309 310 static int restore_altivec(struct task_struct *tsk) 311 { 312 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 313 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) { 314 load_vr_state(&tsk->thread.vr_state); 315 tsk->thread.used_vr = 1; 316 tsk->thread.load_vec++; 317 318 return 1; 319 } 320 return 0; 321 } 322 #else 323 #define loadvec(thr) 0 324 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 325 #endif /* CONFIG_ALTIVEC */ 326 327 #ifdef CONFIG_VSX 328 static void __giveup_vsx(struct task_struct *tsk) 329 { 330 if (tsk->thread.regs->msr & MSR_FP) 331 __giveup_fpu(tsk); 332 if (tsk->thread.regs->msr & MSR_VEC) 333 __giveup_altivec(tsk); 334 tsk->thread.regs->msr &= ~MSR_VSX; 335 } 336 337 static void giveup_vsx(struct task_struct *tsk) 338 { 339 check_if_tm_restore_required(tsk); 340 341 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 342 __giveup_vsx(tsk); 343 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 344 } 345 346 static void save_vsx(struct task_struct *tsk) 347 { 348 if (tsk->thread.regs->msr & MSR_FP) 349 save_fpu(tsk); 350 if (tsk->thread.regs->msr & MSR_VEC) 351 save_altivec(tsk); 352 } 353 354 void enable_kernel_vsx(void) 355 { 356 unsigned long cpumsr; 357 358 WARN_ON(preemptible()); 359 360 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 361 362 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { 363 check_if_tm_restore_required(current); 364 /* 365 * If a thread has already been reclaimed then the 366 * checkpointed registers are on the CPU but have definitely 367 * been saved by the reclaim code. Don't need to and *cannot* 368 * giveup as this would save to the 'live' structure not the 369 * checkpointed structure. 370 */ 371 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 372 return; 373 if (current->thread.regs->msr & MSR_FP) 374 __giveup_fpu(current); 375 if (current->thread.regs->msr & MSR_VEC) 376 __giveup_altivec(current); 377 __giveup_vsx(current); 378 } 379 } 380 EXPORT_SYMBOL(enable_kernel_vsx); 381 382 void flush_vsx_to_thread(struct task_struct *tsk) 383 { 384 if (tsk->thread.regs) { 385 preempt_disable(); 386 if (tsk->thread.regs->msr & MSR_VSX) { 387 BUG_ON(tsk != current); 388 giveup_vsx(tsk); 389 } 390 preempt_enable(); 391 } 392 } 393 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 394 395 static int restore_vsx(struct task_struct *tsk) 396 { 397 if (cpu_has_feature(CPU_FTR_VSX)) { 398 tsk->thread.used_vsr = 1; 399 return 1; 400 } 401 402 return 0; 403 } 404 #else 405 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 406 static inline void save_vsx(struct task_struct *tsk) { } 407 #endif /* CONFIG_VSX */ 408 409 #ifdef CONFIG_SPE 410 void giveup_spe(struct task_struct *tsk) 411 { 412 check_if_tm_restore_required(tsk); 413 414 msr_check_and_set(MSR_SPE); 415 __giveup_spe(tsk); 416 msr_check_and_clear(MSR_SPE); 417 } 418 EXPORT_SYMBOL(giveup_spe); 419 420 void enable_kernel_spe(void) 421 { 422 WARN_ON(preemptible()); 423 424 msr_check_and_set(MSR_SPE); 425 426 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 427 check_if_tm_restore_required(current); 428 __giveup_spe(current); 429 } 430 } 431 EXPORT_SYMBOL(enable_kernel_spe); 432 433 void flush_spe_to_thread(struct task_struct *tsk) 434 { 435 if (tsk->thread.regs) { 436 preempt_disable(); 437 if (tsk->thread.regs->msr & MSR_SPE) { 438 BUG_ON(tsk != current); 439 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 440 giveup_spe(tsk); 441 } 442 preempt_enable(); 443 } 444 } 445 #endif /* CONFIG_SPE */ 446 447 static unsigned long msr_all_available; 448 449 static int __init init_msr_all_available(void) 450 { 451 #ifdef CONFIG_PPC_FPU 452 msr_all_available |= MSR_FP; 453 #endif 454 #ifdef CONFIG_ALTIVEC 455 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 456 msr_all_available |= MSR_VEC; 457 #endif 458 #ifdef CONFIG_VSX 459 if (cpu_has_feature(CPU_FTR_VSX)) 460 msr_all_available |= MSR_VSX; 461 #endif 462 #ifdef CONFIG_SPE 463 if (cpu_has_feature(CPU_FTR_SPE)) 464 msr_all_available |= MSR_SPE; 465 #endif 466 467 return 0; 468 } 469 early_initcall(init_msr_all_available); 470 471 void giveup_all(struct task_struct *tsk) 472 { 473 unsigned long usermsr; 474 475 if (!tsk->thread.regs) 476 return; 477 478 usermsr = tsk->thread.regs->msr; 479 480 if ((usermsr & msr_all_available) == 0) 481 return; 482 483 msr_check_and_set(msr_all_available); 484 check_if_tm_restore_required(tsk); 485 486 #ifdef CONFIG_PPC_FPU 487 if (usermsr & MSR_FP) 488 __giveup_fpu(tsk); 489 #endif 490 #ifdef CONFIG_ALTIVEC 491 if (usermsr & MSR_VEC) 492 __giveup_altivec(tsk); 493 #endif 494 #ifdef CONFIG_VSX 495 if (usermsr & MSR_VSX) 496 __giveup_vsx(tsk); 497 #endif 498 #ifdef CONFIG_SPE 499 if (usermsr & MSR_SPE) 500 __giveup_spe(tsk); 501 #endif 502 503 msr_check_and_clear(msr_all_available); 504 } 505 EXPORT_SYMBOL(giveup_all); 506 507 void restore_math(struct pt_regs *regs) 508 { 509 unsigned long msr; 510 511 if (!msr_tm_active(regs->msr) && 512 !current->thread.load_fp && !loadvec(current->thread)) 513 return; 514 515 msr = regs->msr; 516 msr_check_and_set(msr_all_available); 517 518 /* 519 * Only reload if the bit is not set in the user MSR, the bit BEING set 520 * indicates that the registers are hot 521 */ 522 if ((!(msr & MSR_FP)) && restore_fp(current)) 523 msr |= MSR_FP | current->thread.fpexc_mode; 524 525 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 526 msr |= MSR_VEC; 527 528 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 529 restore_vsx(current)) { 530 msr |= MSR_VSX; 531 } 532 533 msr_check_and_clear(msr_all_available); 534 535 regs->msr = msr; 536 } 537 538 void save_all(struct task_struct *tsk) 539 { 540 unsigned long usermsr; 541 542 if (!tsk->thread.regs) 543 return; 544 545 usermsr = tsk->thread.regs->msr; 546 547 if ((usermsr & msr_all_available) == 0) 548 return; 549 550 msr_check_and_set(msr_all_available); 551 552 /* 553 * Saving the way the register space is in hardware, save_vsx boils 554 * down to a save_fpu() and save_altivec() 555 */ 556 if (usermsr & MSR_VSX) { 557 save_vsx(tsk); 558 } else { 559 if (usermsr & MSR_FP) 560 save_fpu(tsk); 561 562 if (usermsr & MSR_VEC) 563 save_altivec(tsk); 564 } 565 566 if (usermsr & MSR_SPE) 567 __giveup_spe(tsk); 568 569 msr_check_and_clear(msr_all_available); 570 } 571 572 void flush_all_to_thread(struct task_struct *tsk) 573 { 574 if (tsk->thread.regs) { 575 preempt_disable(); 576 BUG_ON(tsk != current); 577 save_all(tsk); 578 579 #ifdef CONFIG_SPE 580 if (tsk->thread.regs->msr & MSR_SPE) 581 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 582 #endif 583 584 preempt_enable(); 585 } 586 } 587 EXPORT_SYMBOL(flush_all_to_thread); 588 589 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 590 void do_send_trap(struct pt_regs *regs, unsigned long address, 591 unsigned long error_code, int signal_code, int breakpt) 592 { 593 siginfo_t info; 594 595 current->thread.trap_nr = signal_code; 596 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 597 11, SIGSEGV) == NOTIFY_STOP) 598 return; 599 600 /* Deliver the signal to userspace */ 601 info.si_signo = SIGTRAP; 602 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 603 info.si_code = signal_code; 604 info.si_addr = (void __user *)address; 605 force_sig_info(SIGTRAP, &info, current); 606 } 607 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 608 void do_break (struct pt_regs *regs, unsigned long address, 609 unsigned long error_code) 610 { 611 siginfo_t info; 612 613 current->thread.trap_nr = TRAP_HWBKPT; 614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 615 11, SIGSEGV) == NOTIFY_STOP) 616 return; 617 618 if (debugger_break_match(regs)) 619 return; 620 621 /* Clear the breakpoint */ 622 hw_breakpoint_disable(); 623 624 /* Deliver the signal to userspace */ 625 info.si_signo = SIGTRAP; 626 info.si_errno = 0; 627 info.si_code = TRAP_HWBKPT; 628 info.si_addr = (void __user *)address; 629 force_sig_info(SIGTRAP, &info, current); 630 } 631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 632 633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 634 635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 636 /* 637 * Set the debug registers back to their default "safe" values. 638 */ 639 static void set_debug_reg_defaults(struct thread_struct *thread) 640 { 641 thread->debug.iac1 = thread->debug.iac2 = 0; 642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 643 thread->debug.iac3 = thread->debug.iac4 = 0; 644 #endif 645 thread->debug.dac1 = thread->debug.dac2 = 0; 646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 647 thread->debug.dvc1 = thread->debug.dvc2 = 0; 648 #endif 649 thread->debug.dbcr0 = 0; 650 #ifdef CONFIG_BOOKE 651 /* 652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 653 */ 654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 655 DBCR1_IAC3US | DBCR1_IAC4US; 656 /* 657 * Force Data Address Compare User/Supervisor bits to be User-only 658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 659 */ 660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 661 #else 662 thread->debug.dbcr1 = 0; 663 #endif 664 } 665 666 static void prime_debug_regs(struct debug_reg *debug) 667 { 668 /* 669 * We could have inherited MSR_DE from userspace, since 670 * it doesn't get cleared on exception entry. Make sure 671 * MSR_DE is clear before we enable any debug events. 672 */ 673 mtmsr(mfmsr() & ~MSR_DE); 674 675 mtspr(SPRN_IAC1, debug->iac1); 676 mtspr(SPRN_IAC2, debug->iac2); 677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 678 mtspr(SPRN_IAC3, debug->iac3); 679 mtspr(SPRN_IAC4, debug->iac4); 680 #endif 681 mtspr(SPRN_DAC1, debug->dac1); 682 mtspr(SPRN_DAC2, debug->dac2); 683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 684 mtspr(SPRN_DVC1, debug->dvc1); 685 mtspr(SPRN_DVC2, debug->dvc2); 686 #endif 687 mtspr(SPRN_DBCR0, debug->dbcr0); 688 mtspr(SPRN_DBCR1, debug->dbcr1); 689 #ifdef CONFIG_BOOKE 690 mtspr(SPRN_DBCR2, debug->dbcr2); 691 #endif 692 } 693 /* 694 * Unless neither the old or new thread are making use of the 695 * debug registers, set the debug registers from the values 696 * stored in the new thread. 697 */ 698 void switch_booke_debug_regs(struct debug_reg *new_debug) 699 { 700 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 701 || (new_debug->dbcr0 & DBCR0_IDM)) 702 prime_debug_regs(new_debug); 703 } 704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 706 #ifndef CONFIG_HAVE_HW_BREAKPOINT 707 static void set_debug_reg_defaults(struct thread_struct *thread) 708 { 709 thread->hw_brk.address = 0; 710 thread->hw_brk.type = 0; 711 set_breakpoint(&thread->hw_brk); 712 } 713 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 714 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 715 716 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 717 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 718 { 719 mtspr(SPRN_DAC1, dabr); 720 #ifdef CONFIG_PPC_47x 721 isync(); 722 #endif 723 return 0; 724 } 725 #elif defined(CONFIG_PPC_BOOK3S) 726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 727 { 728 mtspr(SPRN_DABR, dabr); 729 if (cpu_has_feature(CPU_FTR_DABRX)) 730 mtspr(SPRN_DABRX, dabrx); 731 return 0; 732 } 733 #else 734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 735 { 736 return -EINVAL; 737 } 738 #endif 739 740 static inline int set_dabr(struct arch_hw_breakpoint *brk) 741 { 742 unsigned long dabr, dabrx; 743 744 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 745 dabrx = ((brk->type >> 3) & 0x7); 746 747 if (ppc_md.set_dabr) 748 return ppc_md.set_dabr(dabr, dabrx); 749 750 return __set_dabr(dabr, dabrx); 751 } 752 753 static inline int set_dawr(struct arch_hw_breakpoint *brk) 754 { 755 unsigned long dawr, dawrx, mrd; 756 757 dawr = brk->address; 758 759 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 760 << (63 - 58); //* read/write bits */ 761 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 762 << (63 - 59); //* translate */ 763 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 764 >> 3; //* PRIM bits */ 765 /* dawr length is stored in field MDR bits 48:53. Matches range in 766 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 767 0b111111=64DW. 768 brk->len is in bytes. 769 This aligns up to double word size, shifts and does the bias. 770 */ 771 mrd = ((brk->len + 7) >> 3) - 1; 772 dawrx |= (mrd & 0x3f) << (63 - 53); 773 774 if (ppc_md.set_dawr) 775 return ppc_md.set_dawr(dawr, dawrx); 776 mtspr(SPRN_DAWR, dawr); 777 mtspr(SPRN_DAWRX, dawrx); 778 return 0; 779 } 780 781 void __set_breakpoint(struct arch_hw_breakpoint *brk) 782 { 783 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 784 785 if (cpu_has_feature(CPU_FTR_DAWR)) 786 set_dawr(brk); 787 else 788 set_dabr(brk); 789 } 790 791 void set_breakpoint(struct arch_hw_breakpoint *brk) 792 { 793 preempt_disable(); 794 __set_breakpoint(brk); 795 preempt_enable(); 796 } 797 798 #ifdef CONFIG_PPC64 799 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 800 #endif 801 802 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 803 struct arch_hw_breakpoint *b) 804 { 805 if (a->address != b->address) 806 return false; 807 if (a->type != b->type) 808 return false; 809 if (a->len != b->len) 810 return false; 811 return true; 812 } 813 814 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 815 816 static inline bool tm_enabled(struct task_struct *tsk) 817 { 818 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 819 } 820 821 static void tm_reclaim_thread(struct thread_struct *thr, 822 struct thread_info *ti, uint8_t cause) 823 { 824 /* 825 * Use the current MSR TM suspended bit to track if we have 826 * checkpointed state outstanding. 827 * On signal delivery, we'd normally reclaim the checkpointed 828 * state to obtain stack pointer (see:get_tm_stackpointer()). 829 * This will then directly return to userspace without going 830 * through __switch_to(). However, if the stack frame is bad, 831 * we need to exit this thread which calls __switch_to() which 832 * will again attempt to reclaim the already saved tm state. 833 * Hence we need to check that we've not already reclaimed 834 * this state. 835 * We do this using the current MSR, rather tracking it in 836 * some specific thread_struct bit, as it has the additional 837 * benefit of checking for a potential TM bad thing exception. 838 */ 839 if (!MSR_TM_SUSPENDED(mfmsr())) 840 return; 841 842 giveup_all(container_of(thr, struct task_struct, thread)); 843 844 tm_reclaim(thr, thr->ckpt_regs.msr, cause); 845 } 846 847 void tm_reclaim_current(uint8_t cause) 848 { 849 tm_enable(); 850 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 851 } 852 853 static inline void tm_reclaim_task(struct task_struct *tsk) 854 { 855 /* We have to work out if we're switching from/to a task that's in the 856 * middle of a transaction. 857 * 858 * In switching we need to maintain a 2nd register state as 859 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 860 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 861 * ckvr_state 862 * 863 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 864 */ 865 struct thread_struct *thr = &tsk->thread; 866 867 if (!thr->regs) 868 return; 869 870 if (!MSR_TM_ACTIVE(thr->regs->msr)) 871 goto out_and_saveregs; 872 873 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 874 "ccr=%lx, msr=%lx, trap=%lx)\n", 875 tsk->pid, thr->regs->nip, 876 thr->regs->ccr, thr->regs->msr, 877 thr->regs->trap); 878 879 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 880 881 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 882 tsk->pid); 883 884 out_and_saveregs: 885 /* Always save the regs here, even if a transaction's not active. 886 * This context-switches a thread's TM info SPRs. We do it here to 887 * be consistent with the restore path (in recheckpoint) which 888 * cannot happen later in _switch(). 889 */ 890 tm_save_sprs(thr); 891 } 892 893 extern void __tm_recheckpoint(struct thread_struct *thread, 894 unsigned long orig_msr); 895 896 void tm_recheckpoint(struct thread_struct *thread, 897 unsigned long orig_msr) 898 { 899 unsigned long flags; 900 901 if (!(thread->regs->msr & MSR_TM)) 902 return; 903 904 /* We really can't be interrupted here as the TEXASR registers can't 905 * change and later in the trecheckpoint code, we have a userspace R1. 906 * So let's hard disable over this region. 907 */ 908 local_irq_save(flags); 909 hard_irq_disable(); 910 911 /* The TM SPRs are restored here, so that TEXASR.FS can be set 912 * before the trecheckpoint and no explosion occurs. 913 */ 914 tm_restore_sprs(thread); 915 916 __tm_recheckpoint(thread, orig_msr); 917 918 local_irq_restore(flags); 919 } 920 921 static inline void tm_recheckpoint_new_task(struct task_struct *new) 922 { 923 unsigned long msr; 924 925 if (!cpu_has_feature(CPU_FTR_TM)) 926 return; 927 928 /* Recheckpoint the registers of the thread we're about to switch to. 929 * 930 * If the task was using FP, we non-lazily reload both the original and 931 * the speculative FP register states. This is because the kernel 932 * doesn't see if/when a TM rollback occurs, so if we take an FP 933 * unavailable later, we are unable to determine which set of FP regs 934 * need to be restored. 935 */ 936 if (!tm_enabled(new)) 937 return; 938 939 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 940 tm_restore_sprs(&new->thread); 941 return; 942 } 943 msr = new->thread.ckpt_regs.msr; 944 /* Recheckpoint to restore original checkpointed register state. */ 945 TM_DEBUG("*** tm_recheckpoint of pid %d " 946 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 947 new->pid, new->thread.regs->msr, msr); 948 949 tm_recheckpoint(&new->thread, msr); 950 951 /* 952 * The checkpointed state has been restored but the live state has 953 * not, ensure all the math functionality is turned off to trigger 954 * restore_math() to reload. 955 */ 956 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 957 958 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 959 "(kernel msr 0x%lx)\n", 960 new->pid, mfmsr()); 961 } 962 963 static inline void __switch_to_tm(struct task_struct *prev, 964 struct task_struct *new) 965 { 966 if (cpu_has_feature(CPU_FTR_TM)) { 967 if (tm_enabled(prev) || tm_enabled(new)) 968 tm_enable(); 969 970 if (tm_enabled(prev)) { 971 prev->thread.load_tm++; 972 tm_reclaim_task(prev); 973 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 974 prev->thread.regs->msr &= ~MSR_TM; 975 } 976 977 tm_recheckpoint_new_task(new); 978 } 979 } 980 981 /* 982 * This is called if we are on the way out to userspace and the 983 * TIF_RESTORE_TM flag is set. It checks if we need to reload 984 * FP and/or vector state and does so if necessary. 985 * If userspace is inside a transaction (whether active or 986 * suspended) and FP/VMX/VSX instructions have ever been enabled 987 * inside that transaction, then we have to keep them enabled 988 * and keep the FP/VMX/VSX state loaded while ever the transaction 989 * continues. The reason is that if we didn't, and subsequently 990 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 991 * we don't know whether it's the same transaction, and thus we 992 * don't know which of the checkpointed state and the transactional 993 * state to use. 994 */ 995 void restore_tm_state(struct pt_regs *regs) 996 { 997 unsigned long msr_diff; 998 999 /* 1000 * This is the only moment we should clear TIF_RESTORE_TM as 1001 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1002 * again, anything else could lead to an incorrect ckpt_msr being 1003 * saved and therefore incorrect signal contexts. 1004 */ 1005 clear_thread_flag(TIF_RESTORE_TM); 1006 if (!MSR_TM_ACTIVE(regs->msr)) 1007 return; 1008 1009 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1010 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1011 1012 /* Ensure that restore_math() will restore */ 1013 if (msr_diff & MSR_FP) 1014 current->thread.load_fp = 1; 1015 #ifdef CONFIG_ALTIVEC 1016 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1017 current->thread.load_vec = 1; 1018 #endif 1019 restore_math(regs); 1020 1021 regs->msr |= msr_diff; 1022 } 1023 1024 #else 1025 #define tm_recheckpoint_new_task(new) 1026 #define __switch_to_tm(prev, new) 1027 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1028 1029 static inline void save_sprs(struct thread_struct *t) 1030 { 1031 #ifdef CONFIG_ALTIVEC 1032 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1033 t->vrsave = mfspr(SPRN_VRSAVE); 1034 #endif 1035 #ifdef CONFIG_PPC_BOOK3S_64 1036 if (cpu_has_feature(CPU_FTR_DSCR)) 1037 t->dscr = mfspr(SPRN_DSCR); 1038 1039 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1040 t->bescr = mfspr(SPRN_BESCR); 1041 t->ebbhr = mfspr(SPRN_EBBHR); 1042 t->ebbrr = mfspr(SPRN_EBBRR); 1043 1044 t->fscr = mfspr(SPRN_FSCR); 1045 1046 /* 1047 * Note that the TAR is not available for use in the kernel. 1048 * (To provide this, the TAR should be backed up/restored on 1049 * exception entry/exit instead, and be in pt_regs. FIXME, 1050 * this should be in pt_regs anyway (for debug).) 1051 */ 1052 t->tar = mfspr(SPRN_TAR); 1053 } 1054 1055 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1056 /* Conditionally save Load Monitor registers, if enabled */ 1057 if (t->fscr & FSCR_LM) { 1058 t->lmrr = mfspr(SPRN_LMRR); 1059 t->lmser = mfspr(SPRN_LMSER); 1060 } 1061 } 1062 #endif 1063 } 1064 1065 static inline void restore_sprs(struct thread_struct *old_thread, 1066 struct thread_struct *new_thread) 1067 { 1068 #ifdef CONFIG_ALTIVEC 1069 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1070 old_thread->vrsave != new_thread->vrsave) 1071 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1072 #endif 1073 #ifdef CONFIG_PPC_BOOK3S_64 1074 if (cpu_has_feature(CPU_FTR_DSCR)) { 1075 u64 dscr = get_paca()->dscr_default; 1076 if (new_thread->dscr_inherit) 1077 dscr = new_thread->dscr; 1078 1079 if (old_thread->dscr != dscr) 1080 mtspr(SPRN_DSCR, dscr); 1081 } 1082 1083 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1084 if (old_thread->bescr != new_thread->bescr) 1085 mtspr(SPRN_BESCR, new_thread->bescr); 1086 if (old_thread->ebbhr != new_thread->ebbhr) 1087 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1088 if (old_thread->ebbrr != new_thread->ebbrr) 1089 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1090 1091 if (old_thread->fscr != new_thread->fscr) 1092 mtspr(SPRN_FSCR, new_thread->fscr); 1093 1094 if (old_thread->tar != new_thread->tar) 1095 mtspr(SPRN_TAR, new_thread->tar); 1096 } 1097 1098 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1099 /* Conditionally restore Load Monitor registers, if enabled */ 1100 if (new_thread->fscr & FSCR_LM) { 1101 if (old_thread->lmrr != new_thread->lmrr) 1102 mtspr(SPRN_LMRR, new_thread->lmrr); 1103 if (old_thread->lmser != new_thread->lmser) 1104 mtspr(SPRN_LMSER, new_thread->lmser); 1105 } 1106 } 1107 #endif 1108 } 1109 1110 struct task_struct *__switch_to(struct task_struct *prev, 1111 struct task_struct *new) 1112 { 1113 struct thread_struct *new_thread, *old_thread; 1114 struct task_struct *last; 1115 #ifdef CONFIG_PPC_BOOK3S_64 1116 struct ppc64_tlb_batch *batch; 1117 #endif 1118 1119 new_thread = &new->thread; 1120 old_thread = ¤t->thread; 1121 1122 WARN_ON(!irqs_disabled()); 1123 1124 #ifdef CONFIG_PPC64 1125 /* 1126 * Collect processor utilization data per process 1127 */ 1128 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1129 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1130 long unsigned start_tb, current_tb; 1131 start_tb = old_thread->start_tb; 1132 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1133 old_thread->accum_tb += (current_tb - start_tb); 1134 new_thread->start_tb = current_tb; 1135 } 1136 #endif /* CONFIG_PPC64 */ 1137 1138 #ifdef CONFIG_PPC_STD_MMU_64 1139 batch = this_cpu_ptr(&ppc64_tlb_batch); 1140 if (batch->active) { 1141 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1142 if (batch->index) 1143 __flush_tlb_pending(batch); 1144 batch->active = 0; 1145 } 1146 #endif /* CONFIG_PPC_STD_MMU_64 */ 1147 1148 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1149 switch_booke_debug_regs(&new->thread.debug); 1150 #else 1151 /* 1152 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1153 * schedule DABR 1154 */ 1155 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1156 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1157 __set_breakpoint(&new->thread.hw_brk); 1158 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1159 #endif 1160 1161 /* 1162 * We need to save SPRs before treclaim/trecheckpoint as these will 1163 * change a number of them. 1164 */ 1165 save_sprs(&prev->thread); 1166 1167 /* Save FPU, Altivec, VSX and SPE state */ 1168 giveup_all(prev); 1169 1170 __switch_to_tm(prev, new); 1171 1172 /* 1173 * We can't take a PMU exception inside _switch() since there is a 1174 * window where the kernel stack SLB and the kernel stack are out 1175 * of sync. Hard disable here. 1176 */ 1177 hard_irq_disable(); 1178 1179 /* 1180 * Call restore_sprs() before calling _switch(). If we move it after 1181 * _switch() then we miss out on calling it for new tasks. The reason 1182 * for this is we manually create a stack frame for new tasks that 1183 * directly returns through ret_from_fork() or 1184 * ret_from_kernel_thread(). See copy_thread() for details. 1185 */ 1186 restore_sprs(old_thread, new_thread); 1187 1188 last = _switch(old_thread, new_thread); 1189 1190 #ifdef CONFIG_PPC_STD_MMU_64 1191 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1192 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1193 batch = this_cpu_ptr(&ppc64_tlb_batch); 1194 batch->active = 1; 1195 } 1196 1197 if (current_thread_info()->task->thread.regs) 1198 restore_math(current_thread_info()->task->thread.regs); 1199 #endif /* CONFIG_PPC_STD_MMU_64 */ 1200 1201 return last; 1202 } 1203 1204 static int instructions_to_print = 16; 1205 1206 static void show_instructions(struct pt_regs *regs) 1207 { 1208 int i; 1209 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1210 sizeof(int)); 1211 1212 printk("Instruction dump:"); 1213 1214 for (i = 0; i < instructions_to_print; i++) { 1215 int instr; 1216 1217 if (!(i % 8)) 1218 printk("\n"); 1219 1220 #if !defined(CONFIG_BOOKE) 1221 /* If executing with the IMMU off, adjust pc rather 1222 * than print XXXXXXXX. 1223 */ 1224 if (!(regs->msr & MSR_IR)) 1225 pc = (unsigned long)phys_to_virt(pc); 1226 #endif 1227 1228 if (!__kernel_text_address(pc) || 1229 probe_kernel_address((unsigned int __user *)pc, instr)) { 1230 printk(KERN_CONT "XXXXXXXX "); 1231 } else { 1232 if (regs->nip == pc) 1233 printk(KERN_CONT "<%08x> ", instr); 1234 else 1235 printk(KERN_CONT "%08x ", instr); 1236 } 1237 1238 pc += sizeof(int); 1239 } 1240 1241 printk("\n"); 1242 } 1243 1244 struct regbit { 1245 unsigned long bit; 1246 const char *name; 1247 }; 1248 1249 static struct regbit msr_bits[] = { 1250 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1251 {MSR_SF, "SF"}, 1252 {MSR_HV, "HV"}, 1253 #endif 1254 {MSR_VEC, "VEC"}, 1255 {MSR_VSX, "VSX"}, 1256 #ifdef CONFIG_BOOKE 1257 {MSR_CE, "CE"}, 1258 #endif 1259 {MSR_EE, "EE"}, 1260 {MSR_PR, "PR"}, 1261 {MSR_FP, "FP"}, 1262 {MSR_ME, "ME"}, 1263 #ifdef CONFIG_BOOKE 1264 {MSR_DE, "DE"}, 1265 #else 1266 {MSR_SE, "SE"}, 1267 {MSR_BE, "BE"}, 1268 #endif 1269 {MSR_IR, "IR"}, 1270 {MSR_DR, "DR"}, 1271 {MSR_PMM, "PMM"}, 1272 #ifndef CONFIG_BOOKE 1273 {MSR_RI, "RI"}, 1274 {MSR_LE, "LE"}, 1275 #endif 1276 {0, NULL} 1277 }; 1278 1279 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1280 { 1281 const char *s = ""; 1282 1283 for (; bits->bit; ++bits) 1284 if (val & bits->bit) { 1285 printk("%s%s", s, bits->name); 1286 s = sep; 1287 } 1288 } 1289 1290 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1291 static struct regbit msr_tm_bits[] = { 1292 {MSR_TS_T, "T"}, 1293 {MSR_TS_S, "S"}, 1294 {MSR_TM, "E"}, 1295 {0, NULL} 1296 }; 1297 1298 static void print_tm_bits(unsigned long val) 1299 { 1300 /* 1301 * This only prints something if at least one of the TM bit is set. 1302 * Inside the TM[], the output means: 1303 * E: Enabled (bit 32) 1304 * S: Suspended (bit 33) 1305 * T: Transactional (bit 34) 1306 */ 1307 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1308 printk(",TM["); 1309 print_bits(val, msr_tm_bits, ""); 1310 printk("]"); 1311 } 1312 } 1313 #else 1314 static void print_tm_bits(unsigned long val) {} 1315 #endif 1316 1317 static void print_msr_bits(unsigned long val) 1318 { 1319 printk("<"); 1320 print_bits(val, msr_bits, ","); 1321 print_tm_bits(val); 1322 printk(">"); 1323 } 1324 1325 #ifdef CONFIG_PPC64 1326 #define REG "%016lx" 1327 #define REGS_PER_LINE 4 1328 #define LAST_VOLATILE 13 1329 #else 1330 #define REG "%08lx" 1331 #define REGS_PER_LINE 8 1332 #define LAST_VOLATILE 12 1333 #endif 1334 1335 void show_regs(struct pt_regs * regs) 1336 { 1337 int i, trap; 1338 1339 show_regs_print_info(KERN_DEFAULT); 1340 1341 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1342 regs->nip, regs->link, regs->ctr); 1343 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1344 regs, regs->trap, print_tainted(), init_utsname()->release); 1345 printk("MSR: "REG" ", regs->msr); 1346 print_msr_bits(regs->msr); 1347 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1348 trap = TRAP(regs); 1349 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1350 printk("CFAR: "REG" ", regs->orig_gpr3); 1351 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1352 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1353 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1354 #else 1355 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1356 #endif 1357 #ifdef CONFIG_PPC64 1358 printk("SOFTE: %ld ", regs->softe); 1359 #endif 1360 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1361 if (MSR_TM_ACTIVE(regs->msr)) 1362 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1363 #endif 1364 1365 for (i = 0; i < 32; i++) { 1366 if ((i % REGS_PER_LINE) == 0) 1367 printk("\nGPR%02d: ", i); 1368 printk(REG " ", regs->gpr[i]); 1369 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1370 break; 1371 } 1372 printk("\n"); 1373 #ifdef CONFIG_KALLSYMS 1374 /* 1375 * Lookup NIP late so we have the best change of getting the 1376 * above info out without failing 1377 */ 1378 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1379 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1380 #endif 1381 show_stack(current, (unsigned long *) regs->gpr[1]); 1382 if (!user_mode(regs)) 1383 show_instructions(regs); 1384 } 1385 1386 void flush_thread(void) 1387 { 1388 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1389 flush_ptrace_hw_breakpoint(current); 1390 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1391 set_debug_reg_defaults(¤t->thread); 1392 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1393 } 1394 1395 void 1396 release_thread(struct task_struct *t) 1397 { 1398 } 1399 1400 /* 1401 * this gets called so that we can store coprocessor state into memory and 1402 * copy the current task into the new thread. 1403 */ 1404 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1405 { 1406 flush_all_to_thread(src); 1407 /* 1408 * Flush TM state out so we can copy it. __switch_to_tm() does this 1409 * flush but it removes the checkpointed state from the current CPU and 1410 * transitions the CPU out of TM mode. Hence we need to call 1411 * tm_recheckpoint_new_task() (on the same task) to restore the 1412 * checkpointed state back and the TM mode. 1413 * 1414 * Can't pass dst because it isn't ready. Doesn't matter, passing 1415 * dst is only important for __switch_to() 1416 */ 1417 __switch_to_tm(src, src); 1418 1419 *dst = *src; 1420 1421 clear_task_ebb(dst); 1422 1423 return 0; 1424 } 1425 1426 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1427 { 1428 #ifdef CONFIG_PPC_STD_MMU_64 1429 unsigned long sp_vsid; 1430 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1431 1432 if (radix_enabled()) 1433 return; 1434 1435 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1436 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1437 << SLB_VSID_SHIFT_1T; 1438 else 1439 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1440 << SLB_VSID_SHIFT; 1441 sp_vsid |= SLB_VSID_KERNEL | llp; 1442 p->thread.ksp_vsid = sp_vsid; 1443 #endif 1444 } 1445 1446 /* 1447 * Copy a thread.. 1448 */ 1449 1450 /* 1451 * Copy architecture-specific thread state 1452 */ 1453 int copy_thread(unsigned long clone_flags, unsigned long usp, 1454 unsigned long kthread_arg, struct task_struct *p) 1455 { 1456 struct pt_regs *childregs, *kregs; 1457 extern void ret_from_fork(void); 1458 extern void ret_from_kernel_thread(void); 1459 void (*f)(void); 1460 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1461 struct thread_info *ti = task_thread_info(p); 1462 1463 klp_init_thread_info(ti); 1464 1465 /* Copy registers */ 1466 sp -= sizeof(struct pt_regs); 1467 childregs = (struct pt_regs *) sp; 1468 if (unlikely(p->flags & PF_KTHREAD)) { 1469 /* kernel thread */ 1470 memset(childregs, 0, sizeof(struct pt_regs)); 1471 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1472 /* function */ 1473 if (usp) 1474 childregs->gpr[14] = ppc_function_entry((void *)usp); 1475 #ifdef CONFIG_PPC64 1476 clear_tsk_thread_flag(p, TIF_32BIT); 1477 childregs->softe = 1; 1478 #endif 1479 childregs->gpr[15] = kthread_arg; 1480 p->thread.regs = NULL; /* no user register state */ 1481 ti->flags |= _TIF_RESTOREALL; 1482 f = ret_from_kernel_thread; 1483 } else { 1484 /* user thread */ 1485 struct pt_regs *regs = current_pt_regs(); 1486 CHECK_FULL_REGS(regs); 1487 *childregs = *regs; 1488 if (usp) 1489 childregs->gpr[1] = usp; 1490 p->thread.regs = childregs; 1491 childregs->gpr[3] = 0; /* Result from fork() */ 1492 if (clone_flags & CLONE_SETTLS) { 1493 #ifdef CONFIG_PPC64 1494 if (!is_32bit_task()) 1495 childregs->gpr[13] = childregs->gpr[6]; 1496 else 1497 #endif 1498 childregs->gpr[2] = childregs->gpr[6]; 1499 } 1500 1501 f = ret_from_fork; 1502 } 1503 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1504 sp -= STACK_FRAME_OVERHEAD; 1505 1506 /* 1507 * The way this works is that at some point in the future 1508 * some task will call _switch to switch to the new task. 1509 * That will pop off the stack frame created below and start 1510 * the new task running at ret_from_fork. The new task will 1511 * do some house keeping and then return from the fork or clone 1512 * system call, using the stack frame created above. 1513 */ 1514 ((unsigned long *)sp)[0] = 0; 1515 sp -= sizeof(struct pt_regs); 1516 kregs = (struct pt_regs *) sp; 1517 sp -= STACK_FRAME_OVERHEAD; 1518 p->thread.ksp = sp; 1519 #ifdef CONFIG_PPC32 1520 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1521 _ALIGN_UP(sizeof(struct thread_info), 16); 1522 #endif 1523 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1524 p->thread.ptrace_bps[0] = NULL; 1525 #endif 1526 1527 p->thread.fp_save_area = NULL; 1528 #ifdef CONFIG_ALTIVEC 1529 p->thread.vr_save_area = NULL; 1530 #endif 1531 1532 setup_ksp_vsid(p, sp); 1533 1534 #ifdef CONFIG_PPC64 1535 if (cpu_has_feature(CPU_FTR_DSCR)) { 1536 p->thread.dscr_inherit = current->thread.dscr_inherit; 1537 p->thread.dscr = mfspr(SPRN_DSCR); 1538 } 1539 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1540 p->thread.ppr = INIT_PPR; 1541 #endif 1542 kregs->nip = ppc_function_entry(f); 1543 return 0; 1544 } 1545 1546 /* 1547 * Set up a thread for executing a new program 1548 */ 1549 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1550 { 1551 #ifdef CONFIG_PPC64 1552 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1553 #endif 1554 1555 /* 1556 * If we exec out of a kernel thread then thread.regs will not be 1557 * set. Do it now. 1558 */ 1559 if (!current->thread.regs) { 1560 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1561 current->thread.regs = regs - 1; 1562 } 1563 1564 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1565 /* 1566 * Clear any transactional state, we're exec()ing. The cause is 1567 * not important as there will never be a recheckpoint so it's not 1568 * user visible. 1569 */ 1570 if (MSR_TM_SUSPENDED(mfmsr())) 1571 tm_reclaim_current(0); 1572 #endif 1573 1574 memset(regs->gpr, 0, sizeof(regs->gpr)); 1575 regs->ctr = 0; 1576 regs->link = 0; 1577 regs->xer = 0; 1578 regs->ccr = 0; 1579 regs->gpr[1] = sp; 1580 1581 /* 1582 * We have just cleared all the nonvolatile GPRs, so make 1583 * FULL_REGS(regs) return true. This is necessary to allow 1584 * ptrace to examine the thread immediately after exec. 1585 */ 1586 regs->trap &= ~1UL; 1587 1588 #ifdef CONFIG_PPC32 1589 regs->mq = 0; 1590 regs->nip = start; 1591 regs->msr = MSR_USER; 1592 #else 1593 if (!is_32bit_task()) { 1594 unsigned long entry; 1595 1596 if (is_elf2_task()) { 1597 /* Look ma, no function descriptors! */ 1598 entry = start; 1599 1600 /* 1601 * Ulrich says: 1602 * The latest iteration of the ABI requires that when 1603 * calling a function (at its global entry point), 1604 * the caller must ensure r12 holds the entry point 1605 * address (so that the function can quickly 1606 * establish addressability). 1607 */ 1608 regs->gpr[12] = start; 1609 /* Make sure that's restored on entry to userspace. */ 1610 set_thread_flag(TIF_RESTOREALL); 1611 } else { 1612 unsigned long toc; 1613 1614 /* start is a relocated pointer to the function 1615 * descriptor for the elf _start routine. The first 1616 * entry in the function descriptor is the entry 1617 * address of _start and the second entry is the TOC 1618 * value we need to use. 1619 */ 1620 __get_user(entry, (unsigned long __user *)start); 1621 __get_user(toc, (unsigned long __user *)start+1); 1622 1623 /* Check whether the e_entry function descriptor entries 1624 * need to be relocated before we can use them. 1625 */ 1626 if (load_addr != 0) { 1627 entry += load_addr; 1628 toc += load_addr; 1629 } 1630 regs->gpr[2] = toc; 1631 } 1632 regs->nip = entry; 1633 regs->msr = MSR_USER64; 1634 } else { 1635 regs->nip = start; 1636 regs->gpr[2] = 0; 1637 regs->msr = MSR_USER32; 1638 } 1639 #endif 1640 #ifdef CONFIG_VSX 1641 current->thread.used_vsr = 0; 1642 #endif 1643 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1644 current->thread.fp_save_area = NULL; 1645 #ifdef CONFIG_ALTIVEC 1646 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1647 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1648 current->thread.vr_save_area = NULL; 1649 current->thread.vrsave = 0; 1650 current->thread.used_vr = 0; 1651 #endif /* CONFIG_ALTIVEC */ 1652 #ifdef CONFIG_SPE 1653 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1654 current->thread.acc = 0; 1655 current->thread.spefscr = 0; 1656 current->thread.used_spe = 0; 1657 #endif /* CONFIG_SPE */ 1658 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1659 current->thread.tm_tfhar = 0; 1660 current->thread.tm_texasr = 0; 1661 current->thread.tm_tfiar = 0; 1662 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1663 } 1664 EXPORT_SYMBOL(start_thread); 1665 1666 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1667 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1668 1669 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1670 { 1671 struct pt_regs *regs = tsk->thread.regs; 1672 1673 /* This is a bit hairy. If we are an SPE enabled processor 1674 * (have embedded fp) we store the IEEE exception enable flags in 1675 * fpexc_mode. fpexc_mode is also used for setting FP exception 1676 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1677 if (val & PR_FP_EXC_SW_ENABLE) { 1678 #ifdef CONFIG_SPE 1679 if (cpu_has_feature(CPU_FTR_SPE)) { 1680 /* 1681 * When the sticky exception bits are set 1682 * directly by userspace, it must call prctl 1683 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1684 * in the existing prctl settings) or 1685 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1686 * the bits being set). <fenv.h> functions 1687 * saving and restoring the whole 1688 * floating-point environment need to do so 1689 * anyway to restore the prctl settings from 1690 * the saved environment. 1691 */ 1692 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1693 tsk->thread.fpexc_mode = val & 1694 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1695 return 0; 1696 } else { 1697 return -EINVAL; 1698 } 1699 #else 1700 return -EINVAL; 1701 #endif 1702 } 1703 1704 /* on a CONFIG_SPE this does not hurt us. The bits that 1705 * __pack_fe01 use do not overlap with bits used for 1706 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1707 * on CONFIG_SPE implementations are reserved so writing to 1708 * them does not change anything */ 1709 if (val > PR_FP_EXC_PRECISE) 1710 return -EINVAL; 1711 tsk->thread.fpexc_mode = __pack_fe01(val); 1712 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1713 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1714 | tsk->thread.fpexc_mode; 1715 return 0; 1716 } 1717 1718 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1719 { 1720 unsigned int val; 1721 1722 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1723 #ifdef CONFIG_SPE 1724 if (cpu_has_feature(CPU_FTR_SPE)) { 1725 /* 1726 * When the sticky exception bits are set 1727 * directly by userspace, it must call prctl 1728 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1729 * in the existing prctl settings) or 1730 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1731 * the bits being set). <fenv.h> functions 1732 * saving and restoring the whole 1733 * floating-point environment need to do so 1734 * anyway to restore the prctl settings from 1735 * the saved environment. 1736 */ 1737 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1738 val = tsk->thread.fpexc_mode; 1739 } else 1740 return -EINVAL; 1741 #else 1742 return -EINVAL; 1743 #endif 1744 else 1745 val = __unpack_fe01(tsk->thread.fpexc_mode); 1746 return put_user(val, (unsigned int __user *) adr); 1747 } 1748 1749 int set_endian(struct task_struct *tsk, unsigned int val) 1750 { 1751 struct pt_regs *regs = tsk->thread.regs; 1752 1753 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1754 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1755 return -EINVAL; 1756 1757 if (regs == NULL) 1758 return -EINVAL; 1759 1760 if (val == PR_ENDIAN_BIG) 1761 regs->msr &= ~MSR_LE; 1762 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1763 regs->msr |= MSR_LE; 1764 else 1765 return -EINVAL; 1766 1767 return 0; 1768 } 1769 1770 int get_endian(struct task_struct *tsk, unsigned long adr) 1771 { 1772 struct pt_regs *regs = tsk->thread.regs; 1773 unsigned int val; 1774 1775 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1776 !cpu_has_feature(CPU_FTR_REAL_LE)) 1777 return -EINVAL; 1778 1779 if (regs == NULL) 1780 return -EINVAL; 1781 1782 if (regs->msr & MSR_LE) { 1783 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1784 val = PR_ENDIAN_LITTLE; 1785 else 1786 val = PR_ENDIAN_PPC_LITTLE; 1787 } else 1788 val = PR_ENDIAN_BIG; 1789 1790 return put_user(val, (unsigned int __user *)adr); 1791 } 1792 1793 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1794 { 1795 tsk->thread.align_ctl = val; 1796 return 0; 1797 } 1798 1799 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1800 { 1801 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1802 } 1803 1804 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1805 unsigned long nbytes) 1806 { 1807 unsigned long stack_page; 1808 unsigned long cpu = task_cpu(p); 1809 1810 /* 1811 * Avoid crashing if the stack has overflowed and corrupted 1812 * task_cpu(p), which is in the thread_info struct. 1813 */ 1814 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1815 stack_page = (unsigned long) hardirq_ctx[cpu]; 1816 if (sp >= stack_page + sizeof(struct thread_struct) 1817 && sp <= stack_page + THREAD_SIZE - nbytes) 1818 return 1; 1819 1820 stack_page = (unsigned long) softirq_ctx[cpu]; 1821 if (sp >= stack_page + sizeof(struct thread_struct) 1822 && sp <= stack_page + THREAD_SIZE - nbytes) 1823 return 1; 1824 } 1825 return 0; 1826 } 1827 1828 int validate_sp(unsigned long sp, struct task_struct *p, 1829 unsigned long nbytes) 1830 { 1831 unsigned long stack_page = (unsigned long)task_stack_page(p); 1832 1833 if (sp >= stack_page + sizeof(struct thread_struct) 1834 && sp <= stack_page + THREAD_SIZE - nbytes) 1835 return 1; 1836 1837 return valid_irq_stack(sp, p, nbytes); 1838 } 1839 1840 EXPORT_SYMBOL(validate_sp); 1841 1842 unsigned long get_wchan(struct task_struct *p) 1843 { 1844 unsigned long ip, sp; 1845 int count = 0; 1846 1847 if (!p || p == current || p->state == TASK_RUNNING) 1848 return 0; 1849 1850 sp = p->thread.ksp; 1851 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1852 return 0; 1853 1854 do { 1855 sp = *(unsigned long *)sp; 1856 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1857 return 0; 1858 if (count > 0) { 1859 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1860 if (!in_sched_functions(ip)) 1861 return ip; 1862 } 1863 } while (count++ < 16); 1864 return 0; 1865 } 1866 1867 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1868 1869 void show_stack(struct task_struct *tsk, unsigned long *stack) 1870 { 1871 unsigned long sp, ip, lr, newsp; 1872 int count = 0; 1873 int firstframe = 1; 1874 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1875 int curr_frame = current->curr_ret_stack; 1876 extern void return_to_handler(void); 1877 unsigned long rth = (unsigned long)return_to_handler; 1878 #endif 1879 1880 sp = (unsigned long) stack; 1881 if (tsk == NULL) 1882 tsk = current; 1883 if (sp == 0) { 1884 if (tsk == current) 1885 sp = current_stack_pointer(); 1886 else 1887 sp = tsk->thread.ksp; 1888 } 1889 1890 lr = 0; 1891 printk("Call Trace:\n"); 1892 do { 1893 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1894 return; 1895 1896 stack = (unsigned long *) sp; 1897 newsp = stack[0]; 1898 ip = stack[STACK_FRAME_LR_SAVE]; 1899 if (!firstframe || ip != lr) { 1900 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1901 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1902 if ((ip == rth) && curr_frame >= 0) { 1903 printk(" (%pS)", 1904 (void *)current->ret_stack[curr_frame].ret); 1905 curr_frame--; 1906 } 1907 #endif 1908 if (firstframe) 1909 printk(" (unreliable)"); 1910 printk("\n"); 1911 } 1912 firstframe = 0; 1913 1914 /* 1915 * See if this is an exception frame. 1916 * We look for the "regshere" marker in the current frame. 1917 */ 1918 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1919 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1920 struct pt_regs *regs = (struct pt_regs *) 1921 (sp + STACK_FRAME_OVERHEAD); 1922 lr = regs->link; 1923 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1924 regs->trap, (void *)regs->nip, (void *)lr); 1925 firstframe = 1; 1926 } 1927 1928 sp = newsp; 1929 } while (count++ < kstack_depth_to_print); 1930 } 1931 1932 #ifdef CONFIG_PPC64 1933 /* Called with hard IRQs off */ 1934 void notrace __ppc64_runlatch_on(void) 1935 { 1936 struct thread_info *ti = current_thread_info(); 1937 unsigned long ctrl; 1938 1939 ctrl = mfspr(SPRN_CTRLF); 1940 ctrl |= CTRL_RUNLATCH; 1941 mtspr(SPRN_CTRLT, ctrl); 1942 1943 ti->local_flags |= _TLF_RUNLATCH; 1944 } 1945 1946 /* Called with hard IRQs off */ 1947 void notrace __ppc64_runlatch_off(void) 1948 { 1949 struct thread_info *ti = current_thread_info(); 1950 unsigned long ctrl; 1951 1952 ti->local_flags &= ~_TLF_RUNLATCH; 1953 1954 ctrl = mfspr(SPRN_CTRLF); 1955 ctrl &= ~CTRL_RUNLATCH; 1956 mtspr(SPRN_CTRLT, ctrl); 1957 } 1958 #endif /* CONFIG_PPC64 */ 1959 1960 unsigned long arch_align_stack(unsigned long sp) 1961 { 1962 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1963 sp -= get_random_int() & ~PAGE_MASK; 1964 return sp & ~0xf; 1965 } 1966 1967 static inline unsigned long brk_rnd(void) 1968 { 1969 unsigned long rnd = 0; 1970 1971 /* 8MB for 32bit, 1GB for 64bit */ 1972 if (is_32bit_task()) 1973 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 1974 else 1975 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 1976 1977 return rnd << PAGE_SHIFT; 1978 } 1979 1980 unsigned long arch_randomize_brk(struct mm_struct *mm) 1981 { 1982 unsigned long base = mm->brk; 1983 unsigned long ret; 1984 1985 #ifdef CONFIG_PPC_STD_MMU_64 1986 /* 1987 * If we are using 1TB segments and we are allowed to randomise 1988 * the heap, we can put it above 1TB so it is backed by a 1TB 1989 * segment. Otherwise the heap will be in the bottom 1TB 1990 * which always uses 256MB segments and this may result in a 1991 * performance penalty. We don't need to worry about radix. For 1992 * radix, mmu_highuser_ssize remains unchanged from 256MB. 1993 */ 1994 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1995 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1996 #endif 1997 1998 ret = PAGE_ALIGN(base + brk_rnd()); 1999 2000 if (ret < mm->brk) 2001 return mm->brk; 2002 2003 return ret; 2004 } 2005 2006