1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/mqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/utsname.h> 35 #include <linux/ftrace.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/personality.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/uaccess.h> 41 #include <linux/elf-randomize.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #endif 58 #include <asm/code-patching.h> 59 #include <asm/exec.h> 60 #include <asm/livepatch.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/asm-prototypes.h> 63 64 #include <linux/kprobes.h> 65 #include <linux/kdebug.h> 66 67 /* Transactional Memory debug */ 68 #ifdef TM_DEBUG_SW 69 #define TM_DEBUG(x...) printk(KERN_INFO x) 70 #else 71 #define TM_DEBUG(x...) do { } while(0) 72 #endif 73 74 extern unsigned long _get_SP(void); 75 76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 77 static void check_if_tm_restore_required(struct task_struct *tsk) 78 { 79 /* 80 * If we are saving the current thread's registers, and the 81 * thread is in a transactional state, set the TIF_RESTORE_TM 82 * bit so that we know to restore the registers before 83 * returning to userspace. 84 */ 85 if (tsk == current && tsk->thread.regs && 86 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 87 !test_thread_flag(TIF_RESTORE_TM)) { 88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 89 set_thread_flag(TIF_RESTORE_TM); 90 } 91 } 92 93 static inline bool msr_tm_active(unsigned long msr) 94 { 95 return MSR_TM_ACTIVE(msr); 96 } 97 #else 98 static inline bool msr_tm_active(unsigned long msr) { return false; } 99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 101 102 bool strict_msr_control; 103 EXPORT_SYMBOL(strict_msr_control); 104 105 static int __init enable_strict_msr_control(char *str) 106 { 107 strict_msr_control = true; 108 pr_info("Enabling strict facility control\n"); 109 110 return 0; 111 } 112 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 113 114 unsigned long msr_check_and_set(unsigned long bits) 115 { 116 unsigned long oldmsr = mfmsr(); 117 unsigned long newmsr; 118 119 newmsr = oldmsr | bits; 120 121 #ifdef CONFIG_VSX 122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 123 newmsr |= MSR_VSX; 124 #endif 125 126 if (oldmsr != newmsr) 127 mtmsr_isync(newmsr); 128 129 return newmsr; 130 } 131 132 void __msr_check_and_clear(unsigned long bits) 133 { 134 unsigned long oldmsr = mfmsr(); 135 unsigned long newmsr; 136 137 newmsr = oldmsr & ~bits; 138 139 #ifdef CONFIG_VSX 140 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 141 newmsr &= ~MSR_VSX; 142 #endif 143 144 if (oldmsr != newmsr) 145 mtmsr_isync(newmsr); 146 } 147 EXPORT_SYMBOL(__msr_check_and_clear); 148 149 #ifdef CONFIG_PPC_FPU 150 void __giveup_fpu(struct task_struct *tsk) 151 { 152 unsigned long msr; 153 154 save_fpu(tsk); 155 msr = tsk->thread.regs->msr; 156 msr &= ~MSR_FP; 157 #ifdef CONFIG_VSX 158 if (cpu_has_feature(CPU_FTR_VSX)) 159 msr &= ~MSR_VSX; 160 #endif 161 tsk->thread.regs->msr = msr; 162 } 163 164 void giveup_fpu(struct task_struct *tsk) 165 { 166 check_if_tm_restore_required(tsk); 167 168 msr_check_and_set(MSR_FP); 169 __giveup_fpu(tsk); 170 msr_check_and_clear(MSR_FP); 171 } 172 EXPORT_SYMBOL(giveup_fpu); 173 174 /* 175 * Make sure the floating-point register state in the 176 * the thread_struct is up to date for task tsk. 177 */ 178 void flush_fp_to_thread(struct task_struct *tsk) 179 { 180 if (tsk->thread.regs) { 181 /* 182 * We need to disable preemption here because if we didn't, 183 * another process could get scheduled after the regs->msr 184 * test but before we have finished saving the FP registers 185 * to the thread_struct. That process could take over the 186 * FPU, and then when we get scheduled again we would store 187 * bogus values for the remaining FP registers. 188 */ 189 preempt_disable(); 190 if (tsk->thread.regs->msr & MSR_FP) { 191 /* 192 * This should only ever be called for current or 193 * for a stopped child process. Since we save away 194 * the FP register state on context switch, 195 * there is something wrong if a stopped child appears 196 * to still have its FP state in the CPU registers. 197 */ 198 BUG_ON(tsk != current); 199 giveup_fpu(tsk); 200 } 201 preempt_enable(); 202 } 203 } 204 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 205 206 void enable_kernel_fp(void) 207 { 208 unsigned long cpumsr; 209 210 WARN_ON(preemptible()); 211 212 cpumsr = msr_check_and_set(MSR_FP); 213 214 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 215 check_if_tm_restore_required(current); 216 /* 217 * If a thread has already been reclaimed then the 218 * checkpointed registers are on the CPU but have definitely 219 * been saved by the reclaim code. Don't need to and *cannot* 220 * giveup as this would save to the 'live' structure not the 221 * checkpointed structure. 222 */ 223 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 224 return; 225 __giveup_fpu(current); 226 } 227 } 228 EXPORT_SYMBOL(enable_kernel_fp); 229 230 static int restore_fp(struct task_struct *tsk) { 231 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) { 232 load_fp_state(¤t->thread.fp_state); 233 current->thread.load_fp++; 234 return 1; 235 } 236 return 0; 237 } 238 #else 239 static int restore_fp(struct task_struct *tsk) { return 0; } 240 #endif /* CONFIG_PPC_FPU */ 241 242 #ifdef CONFIG_ALTIVEC 243 #define loadvec(thr) ((thr).load_vec) 244 245 static void __giveup_altivec(struct task_struct *tsk) 246 { 247 unsigned long msr; 248 249 save_altivec(tsk); 250 msr = tsk->thread.regs->msr; 251 msr &= ~MSR_VEC; 252 #ifdef CONFIG_VSX 253 if (cpu_has_feature(CPU_FTR_VSX)) 254 msr &= ~MSR_VSX; 255 #endif 256 tsk->thread.regs->msr = msr; 257 } 258 259 void giveup_altivec(struct task_struct *tsk) 260 { 261 check_if_tm_restore_required(tsk); 262 263 msr_check_and_set(MSR_VEC); 264 __giveup_altivec(tsk); 265 msr_check_and_clear(MSR_VEC); 266 } 267 EXPORT_SYMBOL(giveup_altivec); 268 269 void enable_kernel_altivec(void) 270 { 271 unsigned long cpumsr; 272 273 WARN_ON(preemptible()); 274 275 cpumsr = msr_check_and_set(MSR_VEC); 276 277 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 278 check_if_tm_restore_required(current); 279 /* 280 * If a thread has already been reclaimed then the 281 * checkpointed registers are on the CPU but have definitely 282 * been saved by the reclaim code. Don't need to and *cannot* 283 * giveup as this would save to the 'live' structure not the 284 * checkpointed structure. 285 */ 286 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 287 return; 288 __giveup_altivec(current); 289 } 290 } 291 EXPORT_SYMBOL(enable_kernel_altivec); 292 293 /* 294 * Make sure the VMX/Altivec register state in the 295 * the thread_struct is up to date for task tsk. 296 */ 297 void flush_altivec_to_thread(struct task_struct *tsk) 298 { 299 if (tsk->thread.regs) { 300 preempt_disable(); 301 if (tsk->thread.regs->msr & MSR_VEC) { 302 BUG_ON(tsk != current); 303 giveup_altivec(tsk); 304 } 305 preempt_enable(); 306 } 307 } 308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 309 310 static int restore_altivec(struct task_struct *tsk) 311 { 312 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 313 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) { 314 load_vr_state(&tsk->thread.vr_state); 315 tsk->thread.used_vr = 1; 316 tsk->thread.load_vec++; 317 318 return 1; 319 } 320 return 0; 321 } 322 #else 323 #define loadvec(thr) 0 324 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 325 #endif /* CONFIG_ALTIVEC */ 326 327 #ifdef CONFIG_VSX 328 static void __giveup_vsx(struct task_struct *tsk) 329 { 330 if (tsk->thread.regs->msr & MSR_FP) 331 __giveup_fpu(tsk); 332 if (tsk->thread.regs->msr & MSR_VEC) 333 __giveup_altivec(tsk); 334 tsk->thread.regs->msr &= ~MSR_VSX; 335 } 336 337 static void giveup_vsx(struct task_struct *tsk) 338 { 339 check_if_tm_restore_required(tsk); 340 341 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 342 __giveup_vsx(tsk); 343 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 344 } 345 346 static void save_vsx(struct task_struct *tsk) 347 { 348 if (tsk->thread.regs->msr & MSR_FP) 349 save_fpu(tsk); 350 if (tsk->thread.regs->msr & MSR_VEC) 351 save_altivec(tsk); 352 } 353 354 void enable_kernel_vsx(void) 355 { 356 unsigned long cpumsr; 357 358 WARN_ON(preemptible()); 359 360 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 361 362 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { 363 check_if_tm_restore_required(current); 364 /* 365 * If a thread has already been reclaimed then the 366 * checkpointed registers are on the CPU but have definitely 367 * been saved by the reclaim code. Don't need to and *cannot* 368 * giveup as this would save to the 'live' structure not the 369 * checkpointed structure. 370 */ 371 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 372 return; 373 if (current->thread.regs->msr & MSR_FP) 374 __giveup_fpu(current); 375 if (current->thread.regs->msr & MSR_VEC) 376 __giveup_altivec(current); 377 __giveup_vsx(current); 378 } 379 } 380 EXPORT_SYMBOL(enable_kernel_vsx); 381 382 void flush_vsx_to_thread(struct task_struct *tsk) 383 { 384 if (tsk->thread.regs) { 385 preempt_disable(); 386 if (tsk->thread.regs->msr & MSR_VSX) { 387 BUG_ON(tsk != current); 388 giveup_vsx(tsk); 389 } 390 preempt_enable(); 391 } 392 } 393 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 394 395 static int restore_vsx(struct task_struct *tsk) 396 { 397 if (cpu_has_feature(CPU_FTR_VSX)) { 398 tsk->thread.used_vsr = 1; 399 return 1; 400 } 401 402 return 0; 403 } 404 #else 405 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 406 static inline void save_vsx(struct task_struct *tsk) { } 407 #endif /* CONFIG_VSX */ 408 409 #ifdef CONFIG_SPE 410 void giveup_spe(struct task_struct *tsk) 411 { 412 check_if_tm_restore_required(tsk); 413 414 msr_check_and_set(MSR_SPE); 415 __giveup_spe(tsk); 416 msr_check_and_clear(MSR_SPE); 417 } 418 EXPORT_SYMBOL(giveup_spe); 419 420 void enable_kernel_spe(void) 421 { 422 WARN_ON(preemptible()); 423 424 msr_check_and_set(MSR_SPE); 425 426 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 427 check_if_tm_restore_required(current); 428 __giveup_spe(current); 429 } 430 } 431 EXPORT_SYMBOL(enable_kernel_spe); 432 433 void flush_spe_to_thread(struct task_struct *tsk) 434 { 435 if (tsk->thread.regs) { 436 preempt_disable(); 437 if (tsk->thread.regs->msr & MSR_SPE) { 438 BUG_ON(tsk != current); 439 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 440 giveup_spe(tsk); 441 } 442 preempt_enable(); 443 } 444 } 445 #endif /* CONFIG_SPE */ 446 447 static unsigned long msr_all_available; 448 449 static int __init init_msr_all_available(void) 450 { 451 #ifdef CONFIG_PPC_FPU 452 msr_all_available |= MSR_FP; 453 #endif 454 #ifdef CONFIG_ALTIVEC 455 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 456 msr_all_available |= MSR_VEC; 457 #endif 458 #ifdef CONFIG_VSX 459 if (cpu_has_feature(CPU_FTR_VSX)) 460 msr_all_available |= MSR_VSX; 461 #endif 462 #ifdef CONFIG_SPE 463 if (cpu_has_feature(CPU_FTR_SPE)) 464 msr_all_available |= MSR_SPE; 465 #endif 466 467 return 0; 468 } 469 early_initcall(init_msr_all_available); 470 471 void giveup_all(struct task_struct *tsk) 472 { 473 unsigned long usermsr; 474 475 if (!tsk->thread.regs) 476 return; 477 478 usermsr = tsk->thread.regs->msr; 479 480 if ((usermsr & msr_all_available) == 0) 481 return; 482 483 msr_check_and_set(msr_all_available); 484 check_if_tm_restore_required(tsk); 485 486 #ifdef CONFIG_PPC_FPU 487 if (usermsr & MSR_FP) 488 __giveup_fpu(tsk); 489 #endif 490 #ifdef CONFIG_ALTIVEC 491 if (usermsr & MSR_VEC) 492 __giveup_altivec(tsk); 493 #endif 494 #ifdef CONFIG_VSX 495 if (usermsr & MSR_VSX) 496 __giveup_vsx(tsk); 497 #endif 498 #ifdef CONFIG_SPE 499 if (usermsr & MSR_SPE) 500 __giveup_spe(tsk); 501 #endif 502 503 msr_check_and_clear(msr_all_available); 504 } 505 EXPORT_SYMBOL(giveup_all); 506 507 void restore_math(struct pt_regs *regs) 508 { 509 unsigned long msr; 510 511 if (!msr_tm_active(regs->msr) && 512 !current->thread.load_fp && !loadvec(current->thread)) 513 return; 514 515 msr = regs->msr; 516 msr_check_and_set(msr_all_available); 517 518 /* 519 * Only reload if the bit is not set in the user MSR, the bit BEING set 520 * indicates that the registers are hot 521 */ 522 if ((!(msr & MSR_FP)) && restore_fp(current)) 523 msr |= MSR_FP | current->thread.fpexc_mode; 524 525 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 526 msr |= MSR_VEC; 527 528 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 529 restore_vsx(current)) { 530 msr |= MSR_VSX; 531 } 532 533 msr_check_and_clear(msr_all_available); 534 535 regs->msr = msr; 536 } 537 538 void save_all(struct task_struct *tsk) 539 { 540 unsigned long usermsr; 541 542 if (!tsk->thread.regs) 543 return; 544 545 usermsr = tsk->thread.regs->msr; 546 547 if ((usermsr & msr_all_available) == 0) 548 return; 549 550 msr_check_and_set(msr_all_available); 551 552 /* 553 * Saving the way the register space is in hardware, save_vsx boils 554 * down to a save_fpu() and save_altivec() 555 */ 556 if (usermsr & MSR_VSX) { 557 save_vsx(tsk); 558 } else { 559 if (usermsr & MSR_FP) 560 save_fpu(tsk); 561 562 if (usermsr & MSR_VEC) 563 save_altivec(tsk); 564 } 565 566 if (usermsr & MSR_SPE) 567 __giveup_spe(tsk); 568 569 msr_check_and_clear(msr_all_available); 570 } 571 572 void flush_all_to_thread(struct task_struct *tsk) 573 { 574 if (tsk->thread.regs) { 575 preempt_disable(); 576 BUG_ON(tsk != current); 577 save_all(tsk); 578 579 #ifdef CONFIG_SPE 580 if (tsk->thread.regs->msr & MSR_SPE) 581 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 582 #endif 583 584 preempt_enable(); 585 } 586 } 587 EXPORT_SYMBOL(flush_all_to_thread); 588 589 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 590 void do_send_trap(struct pt_regs *regs, unsigned long address, 591 unsigned long error_code, int signal_code, int breakpt) 592 { 593 siginfo_t info; 594 595 current->thread.trap_nr = signal_code; 596 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 597 11, SIGSEGV) == NOTIFY_STOP) 598 return; 599 600 /* Deliver the signal to userspace */ 601 info.si_signo = SIGTRAP; 602 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 603 info.si_code = signal_code; 604 info.si_addr = (void __user *)address; 605 force_sig_info(SIGTRAP, &info, current); 606 } 607 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 608 void do_break (struct pt_regs *regs, unsigned long address, 609 unsigned long error_code) 610 { 611 siginfo_t info; 612 613 current->thread.trap_nr = TRAP_HWBKPT; 614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 615 11, SIGSEGV) == NOTIFY_STOP) 616 return; 617 618 if (debugger_break_match(regs)) 619 return; 620 621 /* Clear the breakpoint */ 622 hw_breakpoint_disable(); 623 624 /* Deliver the signal to userspace */ 625 info.si_signo = SIGTRAP; 626 info.si_errno = 0; 627 info.si_code = TRAP_HWBKPT; 628 info.si_addr = (void __user *)address; 629 force_sig_info(SIGTRAP, &info, current); 630 } 631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 632 633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 634 635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 636 /* 637 * Set the debug registers back to their default "safe" values. 638 */ 639 static void set_debug_reg_defaults(struct thread_struct *thread) 640 { 641 thread->debug.iac1 = thread->debug.iac2 = 0; 642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 643 thread->debug.iac3 = thread->debug.iac4 = 0; 644 #endif 645 thread->debug.dac1 = thread->debug.dac2 = 0; 646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 647 thread->debug.dvc1 = thread->debug.dvc2 = 0; 648 #endif 649 thread->debug.dbcr0 = 0; 650 #ifdef CONFIG_BOOKE 651 /* 652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 653 */ 654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 655 DBCR1_IAC3US | DBCR1_IAC4US; 656 /* 657 * Force Data Address Compare User/Supervisor bits to be User-only 658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 659 */ 660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 661 #else 662 thread->debug.dbcr1 = 0; 663 #endif 664 } 665 666 static void prime_debug_regs(struct debug_reg *debug) 667 { 668 /* 669 * We could have inherited MSR_DE from userspace, since 670 * it doesn't get cleared on exception entry. Make sure 671 * MSR_DE is clear before we enable any debug events. 672 */ 673 mtmsr(mfmsr() & ~MSR_DE); 674 675 mtspr(SPRN_IAC1, debug->iac1); 676 mtspr(SPRN_IAC2, debug->iac2); 677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 678 mtspr(SPRN_IAC3, debug->iac3); 679 mtspr(SPRN_IAC4, debug->iac4); 680 #endif 681 mtspr(SPRN_DAC1, debug->dac1); 682 mtspr(SPRN_DAC2, debug->dac2); 683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 684 mtspr(SPRN_DVC1, debug->dvc1); 685 mtspr(SPRN_DVC2, debug->dvc2); 686 #endif 687 mtspr(SPRN_DBCR0, debug->dbcr0); 688 mtspr(SPRN_DBCR1, debug->dbcr1); 689 #ifdef CONFIG_BOOKE 690 mtspr(SPRN_DBCR2, debug->dbcr2); 691 #endif 692 } 693 /* 694 * Unless neither the old or new thread are making use of the 695 * debug registers, set the debug registers from the values 696 * stored in the new thread. 697 */ 698 void switch_booke_debug_regs(struct debug_reg *new_debug) 699 { 700 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 701 || (new_debug->dbcr0 & DBCR0_IDM)) 702 prime_debug_regs(new_debug); 703 } 704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 706 #ifndef CONFIG_HAVE_HW_BREAKPOINT 707 static void set_debug_reg_defaults(struct thread_struct *thread) 708 { 709 thread->hw_brk.address = 0; 710 thread->hw_brk.type = 0; 711 set_breakpoint(&thread->hw_brk); 712 } 713 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 714 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 715 716 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 717 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 718 { 719 mtspr(SPRN_DAC1, dabr); 720 #ifdef CONFIG_PPC_47x 721 isync(); 722 #endif 723 return 0; 724 } 725 #elif defined(CONFIG_PPC_BOOK3S) 726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 727 { 728 mtspr(SPRN_DABR, dabr); 729 if (cpu_has_feature(CPU_FTR_DABRX)) 730 mtspr(SPRN_DABRX, dabrx); 731 return 0; 732 } 733 #else 734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 735 { 736 return -EINVAL; 737 } 738 #endif 739 740 static inline int set_dabr(struct arch_hw_breakpoint *brk) 741 { 742 unsigned long dabr, dabrx; 743 744 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 745 dabrx = ((brk->type >> 3) & 0x7); 746 747 if (ppc_md.set_dabr) 748 return ppc_md.set_dabr(dabr, dabrx); 749 750 return __set_dabr(dabr, dabrx); 751 } 752 753 static inline int set_dawr(struct arch_hw_breakpoint *brk) 754 { 755 unsigned long dawr, dawrx, mrd; 756 757 dawr = brk->address; 758 759 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 760 << (63 - 58); //* read/write bits */ 761 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 762 << (63 - 59); //* translate */ 763 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 764 >> 3; //* PRIM bits */ 765 /* dawr length is stored in field MDR bits 48:53. Matches range in 766 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 767 0b111111=64DW. 768 brk->len is in bytes. 769 This aligns up to double word size, shifts and does the bias. 770 */ 771 mrd = ((brk->len + 7) >> 3) - 1; 772 dawrx |= (mrd & 0x3f) << (63 - 53); 773 774 if (ppc_md.set_dawr) 775 return ppc_md.set_dawr(dawr, dawrx); 776 mtspr(SPRN_DAWR, dawr); 777 mtspr(SPRN_DAWRX, dawrx); 778 return 0; 779 } 780 781 void __set_breakpoint(struct arch_hw_breakpoint *brk) 782 { 783 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 784 785 if (cpu_has_feature(CPU_FTR_DAWR)) 786 set_dawr(brk); 787 else 788 set_dabr(brk); 789 } 790 791 void set_breakpoint(struct arch_hw_breakpoint *brk) 792 { 793 preempt_disable(); 794 __set_breakpoint(brk); 795 preempt_enable(); 796 } 797 798 #ifdef CONFIG_PPC64 799 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 800 #endif 801 802 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 803 struct arch_hw_breakpoint *b) 804 { 805 if (a->address != b->address) 806 return false; 807 if (a->type != b->type) 808 return false; 809 if (a->len != b->len) 810 return false; 811 return true; 812 } 813 814 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 815 816 static inline bool tm_enabled(struct task_struct *tsk) 817 { 818 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 819 } 820 821 static void tm_reclaim_thread(struct thread_struct *thr, 822 struct thread_info *ti, uint8_t cause) 823 { 824 /* 825 * Use the current MSR TM suspended bit to track if we have 826 * checkpointed state outstanding. 827 * On signal delivery, we'd normally reclaim the checkpointed 828 * state to obtain stack pointer (see:get_tm_stackpointer()). 829 * This will then directly return to userspace without going 830 * through __switch_to(). However, if the stack frame is bad, 831 * we need to exit this thread which calls __switch_to() which 832 * will again attempt to reclaim the already saved tm state. 833 * Hence we need to check that we've not already reclaimed 834 * this state. 835 * We do this using the current MSR, rather tracking it in 836 * some specific thread_struct bit, as it has the additional 837 * benefit of checking for a potential TM bad thing exception. 838 */ 839 if (!MSR_TM_SUSPENDED(mfmsr())) 840 return; 841 842 giveup_all(container_of(thr, struct task_struct, thread)); 843 844 tm_reclaim(thr, thr->ckpt_regs.msr, cause); 845 } 846 847 void tm_reclaim_current(uint8_t cause) 848 { 849 tm_enable(); 850 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 851 } 852 853 static inline void tm_reclaim_task(struct task_struct *tsk) 854 { 855 /* We have to work out if we're switching from/to a task that's in the 856 * middle of a transaction. 857 * 858 * In switching we need to maintain a 2nd register state as 859 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 860 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 861 * ckvr_state 862 * 863 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 864 */ 865 struct thread_struct *thr = &tsk->thread; 866 867 if (!thr->regs) 868 return; 869 870 if (!MSR_TM_ACTIVE(thr->regs->msr)) 871 goto out_and_saveregs; 872 873 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 874 "ccr=%lx, msr=%lx, trap=%lx)\n", 875 tsk->pid, thr->regs->nip, 876 thr->regs->ccr, thr->regs->msr, 877 thr->regs->trap); 878 879 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 880 881 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 882 tsk->pid); 883 884 out_and_saveregs: 885 /* Always save the regs here, even if a transaction's not active. 886 * This context-switches a thread's TM info SPRs. We do it here to 887 * be consistent with the restore path (in recheckpoint) which 888 * cannot happen later in _switch(). 889 */ 890 tm_save_sprs(thr); 891 } 892 893 extern void __tm_recheckpoint(struct thread_struct *thread, 894 unsigned long orig_msr); 895 896 void tm_recheckpoint(struct thread_struct *thread, 897 unsigned long orig_msr) 898 { 899 unsigned long flags; 900 901 if (!(thread->regs->msr & MSR_TM)) 902 return; 903 904 /* We really can't be interrupted here as the TEXASR registers can't 905 * change and later in the trecheckpoint code, we have a userspace R1. 906 * So let's hard disable over this region. 907 */ 908 local_irq_save(flags); 909 hard_irq_disable(); 910 911 /* The TM SPRs are restored here, so that TEXASR.FS can be set 912 * before the trecheckpoint and no explosion occurs. 913 */ 914 tm_restore_sprs(thread); 915 916 __tm_recheckpoint(thread, orig_msr); 917 918 local_irq_restore(flags); 919 } 920 921 static inline void tm_recheckpoint_new_task(struct task_struct *new) 922 { 923 unsigned long msr; 924 925 if (!cpu_has_feature(CPU_FTR_TM)) 926 return; 927 928 /* Recheckpoint the registers of the thread we're about to switch to. 929 * 930 * If the task was using FP, we non-lazily reload both the original and 931 * the speculative FP register states. This is because the kernel 932 * doesn't see if/when a TM rollback occurs, so if we take an FP 933 * unavailable later, we are unable to determine which set of FP regs 934 * need to be restored. 935 */ 936 if (!tm_enabled(new)) 937 return; 938 939 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 940 tm_restore_sprs(&new->thread); 941 return; 942 } 943 msr = new->thread.ckpt_regs.msr; 944 /* Recheckpoint to restore original checkpointed register state. */ 945 TM_DEBUG("*** tm_recheckpoint of pid %d " 946 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 947 new->pid, new->thread.regs->msr, msr); 948 949 tm_recheckpoint(&new->thread, msr); 950 951 /* 952 * The checkpointed state has been restored but the live state has 953 * not, ensure all the math functionality is turned off to trigger 954 * restore_math() to reload. 955 */ 956 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 957 958 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 959 "(kernel msr 0x%lx)\n", 960 new->pid, mfmsr()); 961 } 962 963 static inline void __switch_to_tm(struct task_struct *prev, 964 struct task_struct *new) 965 { 966 if (cpu_has_feature(CPU_FTR_TM)) { 967 if (tm_enabled(prev) || tm_enabled(new)) 968 tm_enable(); 969 970 if (tm_enabled(prev)) { 971 prev->thread.load_tm++; 972 tm_reclaim_task(prev); 973 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 974 prev->thread.regs->msr &= ~MSR_TM; 975 } 976 977 tm_recheckpoint_new_task(new); 978 } 979 } 980 981 /* 982 * This is called if we are on the way out to userspace and the 983 * TIF_RESTORE_TM flag is set. It checks if we need to reload 984 * FP and/or vector state and does so if necessary. 985 * If userspace is inside a transaction (whether active or 986 * suspended) and FP/VMX/VSX instructions have ever been enabled 987 * inside that transaction, then we have to keep them enabled 988 * and keep the FP/VMX/VSX state loaded while ever the transaction 989 * continues. The reason is that if we didn't, and subsequently 990 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 991 * we don't know whether it's the same transaction, and thus we 992 * don't know which of the checkpointed state and the transactional 993 * state to use. 994 */ 995 void restore_tm_state(struct pt_regs *regs) 996 { 997 unsigned long msr_diff; 998 999 /* 1000 * This is the only moment we should clear TIF_RESTORE_TM as 1001 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1002 * again, anything else could lead to an incorrect ckpt_msr being 1003 * saved and therefore incorrect signal contexts. 1004 */ 1005 clear_thread_flag(TIF_RESTORE_TM); 1006 if (!MSR_TM_ACTIVE(regs->msr)) 1007 return; 1008 1009 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1010 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1011 1012 /* Ensure that restore_math() will restore */ 1013 if (msr_diff & MSR_FP) 1014 current->thread.load_fp = 1; 1015 #ifdef CONFIG_ALTIVEC 1016 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1017 current->thread.load_vec = 1; 1018 #endif 1019 restore_math(regs); 1020 1021 regs->msr |= msr_diff; 1022 } 1023 1024 #else 1025 #define tm_recheckpoint_new_task(new) 1026 #define __switch_to_tm(prev, new) 1027 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1028 1029 static inline void save_sprs(struct thread_struct *t) 1030 { 1031 #ifdef CONFIG_ALTIVEC 1032 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1033 t->vrsave = mfspr(SPRN_VRSAVE); 1034 #endif 1035 #ifdef CONFIG_PPC_BOOK3S_64 1036 if (cpu_has_feature(CPU_FTR_DSCR)) 1037 t->dscr = mfspr(SPRN_DSCR); 1038 1039 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1040 t->bescr = mfspr(SPRN_BESCR); 1041 t->ebbhr = mfspr(SPRN_EBBHR); 1042 t->ebbrr = mfspr(SPRN_EBBRR); 1043 1044 t->fscr = mfspr(SPRN_FSCR); 1045 1046 /* 1047 * Note that the TAR is not available for use in the kernel. 1048 * (To provide this, the TAR should be backed up/restored on 1049 * exception entry/exit instead, and be in pt_regs. FIXME, 1050 * this should be in pt_regs anyway (for debug).) 1051 */ 1052 t->tar = mfspr(SPRN_TAR); 1053 } 1054 #endif 1055 } 1056 1057 static inline void restore_sprs(struct thread_struct *old_thread, 1058 struct thread_struct *new_thread) 1059 { 1060 #ifdef CONFIG_ALTIVEC 1061 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1062 old_thread->vrsave != new_thread->vrsave) 1063 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1064 #endif 1065 #ifdef CONFIG_PPC_BOOK3S_64 1066 if (cpu_has_feature(CPU_FTR_DSCR)) { 1067 u64 dscr = get_paca()->dscr_default; 1068 if (new_thread->dscr_inherit) 1069 dscr = new_thread->dscr; 1070 1071 if (old_thread->dscr != dscr) 1072 mtspr(SPRN_DSCR, dscr); 1073 } 1074 1075 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1076 if (old_thread->bescr != new_thread->bescr) 1077 mtspr(SPRN_BESCR, new_thread->bescr); 1078 if (old_thread->ebbhr != new_thread->ebbhr) 1079 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1080 if (old_thread->ebbrr != new_thread->ebbrr) 1081 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1082 1083 if (old_thread->fscr != new_thread->fscr) 1084 mtspr(SPRN_FSCR, new_thread->fscr); 1085 1086 if (old_thread->tar != new_thread->tar) 1087 mtspr(SPRN_TAR, new_thread->tar); 1088 } 1089 #endif 1090 } 1091 1092 struct task_struct *__switch_to(struct task_struct *prev, 1093 struct task_struct *new) 1094 { 1095 struct thread_struct *new_thread, *old_thread; 1096 struct task_struct *last; 1097 #ifdef CONFIG_PPC_BOOK3S_64 1098 struct ppc64_tlb_batch *batch; 1099 #endif 1100 1101 new_thread = &new->thread; 1102 old_thread = ¤t->thread; 1103 1104 WARN_ON(!irqs_disabled()); 1105 1106 #ifdef CONFIG_PPC64 1107 /* 1108 * Collect processor utilization data per process 1109 */ 1110 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1111 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1112 long unsigned start_tb, current_tb; 1113 start_tb = old_thread->start_tb; 1114 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1115 old_thread->accum_tb += (current_tb - start_tb); 1116 new_thread->start_tb = current_tb; 1117 } 1118 #endif /* CONFIG_PPC64 */ 1119 1120 #ifdef CONFIG_PPC_STD_MMU_64 1121 batch = this_cpu_ptr(&ppc64_tlb_batch); 1122 if (batch->active) { 1123 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1124 if (batch->index) 1125 __flush_tlb_pending(batch); 1126 batch->active = 0; 1127 } 1128 #endif /* CONFIG_PPC_STD_MMU_64 */ 1129 1130 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1131 switch_booke_debug_regs(&new->thread.debug); 1132 #else 1133 /* 1134 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1135 * schedule DABR 1136 */ 1137 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1138 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1139 __set_breakpoint(&new->thread.hw_brk); 1140 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1141 #endif 1142 1143 /* 1144 * We need to save SPRs before treclaim/trecheckpoint as these will 1145 * change a number of them. 1146 */ 1147 save_sprs(&prev->thread); 1148 1149 /* Save FPU, Altivec, VSX and SPE state */ 1150 giveup_all(prev); 1151 1152 __switch_to_tm(prev, new); 1153 1154 /* 1155 * We can't take a PMU exception inside _switch() since there is a 1156 * window where the kernel stack SLB and the kernel stack are out 1157 * of sync. Hard disable here. 1158 */ 1159 hard_irq_disable(); 1160 1161 /* 1162 * Call restore_sprs() before calling _switch(). If we move it after 1163 * _switch() then we miss out on calling it for new tasks. The reason 1164 * for this is we manually create a stack frame for new tasks that 1165 * directly returns through ret_from_fork() or 1166 * ret_from_kernel_thread(). See copy_thread() for details. 1167 */ 1168 restore_sprs(old_thread, new_thread); 1169 1170 last = _switch(old_thread, new_thread); 1171 1172 #ifdef CONFIG_PPC_STD_MMU_64 1173 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1174 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1175 batch = this_cpu_ptr(&ppc64_tlb_batch); 1176 batch->active = 1; 1177 } 1178 1179 if (current_thread_info()->task->thread.regs) 1180 restore_math(current_thread_info()->task->thread.regs); 1181 #endif /* CONFIG_PPC_STD_MMU_64 */ 1182 1183 return last; 1184 } 1185 1186 static int instructions_to_print = 16; 1187 1188 static void show_instructions(struct pt_regs *regs) 1189 { 1190 int i; 1191 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1192 sizeof(int)); 1193 1194 printk("Instruction dump:"); 1195 1196 for (i = 0; i < instructions_to_print; i++) { 1197 int instr; 1198 1199 if (!(i % 8)) 1200 pr_cont("\n"); 1201 1202 #if !defined(CONFIG_BOOKE) 1203 /* If executing with the IMMU off, adjust pc rather 1204 * than print XXXXXXXX. 1205 */ 1206 if (!(regs->msr & MSR_IR)) 1207 pc = (unsigned long)phys_to_virt(pc); 1208 #endif 1209 1210 if (!__kernel_text_address(pc) || 1211 probe_kernel_address((unsigned int __user *)pc, instr)) { 1212 pr_cont("XXXXXXXX "); 1213 } else { 1214 if (regs->nip == pc) 1215 pr_cont("<%08x> ", instr); 1216 else 1217 pr_cont("%08x ", instr); 1218 } 1219 1220 pc += sizeof(int); 1221 } 1222 1223 pr_cont("\n"); 1224 } 1225 1226 struct regbit { 1227 unsigned long bit; 1228 const char *name; 1229 }; 1230 1231 static struct regbit msr_bits[] = { 1232 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1233 {MSR_SF, "SF"}, 1234 {MSR_HV, "HV"}, 1235 #endif 1236 {MSR_VEC, "VEC"}, 1237 {MSR_VSX, "VSX"}, 1238 #ifdef CONFIG_BOOKE 1239 {MSR_CE, "CE"}, 1240 #endif 1241 {MSR_EE, "EE"}, 1242 {MSR_PR, "PR"}, 1243 {MSR_FP, "FP"}, 1244 {MSR_ME, "ME"}, 1245 #ifdef CONFIG_BOOKE 1246 {MSR_DE, "DE"}, 1247 #else 1248 {MSR_SE, "SE"}, 1249 {MSR_BE, "BE"}, 1250 #endif 1251 {MSR_IR, "IR"}, 1252 {MSR_DR, "DR"}, 1253 {MSR_PMM, "PMM"}, 1254 #ifndef CONFIG_BOOKE 1255 {MSR_RI, "RI"}, 1256 {MSR_LE, "LE"}, 1257 #endif 1258 {0, NULL} 1259 }; 1260 1261 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1262 { 1263 const char *s = ""; 1264 1265 for (; bits->bit; ++bits) 1266 if (val & bits->bit) { 1267 pr_cont("%s%s", s, bits->name); 1268 s = sep; 1269 } 1270 } 1271 1272 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1273 static struct regbit msr_tm_bits[] = { 1274 {MSR_TS_T, "T"}, 1275 {MSR_TS_S, "S"}, 1276 {MSR_TM, "E"}, 1277 {0, NULL} 1278 }; 1279 1280 static void print_tm_bits(unsigned long val) 1281 { 1282 /* 1283 * This only prints something if at least one of the TM bit is set. 1284 * Inside the TM[], the output means: 1285 * E: Enabled (bit 32) 1286 * S: Suspended (bit 33) 1287 * T: Transactional (bit 34) 1288 */ 1289 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1290 pr_cont(",TM["); 1291 print_bits(val, msr_tm_bits, ""); 1292 pr_cont("]"); 1293 } 1294 } 1295 #else 1296 static void print_tm_bits(unsigned long val) {} 1297 #endif 1298 1299 static void print_msr_bits(unsigned long val) 1300 { 1301 pr_cont("<"); 1302 print_bits(val, msr_bits, ","); 1303 print_tm_bits(val); 1304 pr_cont(">"); 1305 } 1306 1307 #ifdef CONFIG_PPC64 1308 #define REG "%016lx" 1309 #define REGS_PER_LINE 4 1310 #define LAST_VOLATILE 13 1311 #else 1312 #define REG "%08lx" 1313 #define REGS_PER_LINE 8 1314 #define LAST_VOLATILE 12 1315 #endif 1316 1317 void show_regs(struct pt_regs * regs) 1318 { 1319 int i, trap; 1320 1321 show_regs_print_info(KERN_DEFAULT); 1322 1323 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1324 regs->nip, regs->link, regs->ctr); 1325 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1326 regs, regs->trap, print_tainted(), init_utsname()->release); 1327 printk("MSR: "REG" ", regs->msr); 1328 print_msr_bits(regs->msr); 1329 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1330 trap = TRAP(regs); 1331 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1332 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1333 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1334 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1335 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1336 #else 1337 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1338 #endif 1339 #ifdef CONFIG_PPC64 1340 pr_cont("SOFTE: %ld ", regs->softe); 1341 #endif 1342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1343 if (MSR_TM_ACTIVE(regs->msr)) 1344 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1345 #endif 1346 1347 for (i = 0; i < 32; i++) { 1348 if ((i % REGS_PER_LINE) == 0) 1349 pr_cont("\nGPR%02d: ", i); 1350 pr_cont(REG " ", regs->gpr[i]); 1351 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1352 break; 1353 } 1354 pr_cont("\n"); 1355 #ifdef CONFIG_KALLSYMS 1356 /* 1357 * Lookup NIP late so we have the best change of getting the 1358 * above info out without failing 1359 */ 1360 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1361 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1362 #endif 1363 show_stack(current, (unsigned long *) regs->gpr[1]); 1364 if (!user_mode(regs)) 1365 show_instructions(regs); 1366 } 1367 1368 void flush_thread(void) 1369 { 1370 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1371 flush_ptrace_hw_breakpoint(current); 1372 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1373 set_debug_reg_defaults(¤t->thread); 1374 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1375 } 1376 1377 void 1378 release_thread(struct task_struct *t) 1379 { 1380 } 1381 1382 /* 1383 * this gets called so that we can store coprocessor state into memory and 1384 * copy the current task into the new thread. 1385 */ 1386 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1387 { 1388 flush_all_to_thread(src); 1389 /* 1390 * Flush TM state out so we can copy it. __switch_to_tm() does this 1391 * flush but it removes the checkpointed state from the current CPU and 1392 * transitions the CPU out of TM mode. Hence we need to call 1393 * tm_recheckpoint_new_task() (on the same task) to restore the 1394 * checkpointed state back and the TM mode. 1395 * 1396 * Can't pass dst because it isn't ready. Doesn't matter, passing 1397 * dst is only important for __switch_to() 1398 */ 1399 __switch_to_tm(src, src); 1400 1401 *dst = *src; 1402 1403 clear_task_ebb(dst); 1404 1405 return 0; 1406 } 1407 1408 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1409 { 1410 #ifdef CONFIG_PPC_STD_MMU_64 1411 unsigned long sp_vsid; 1412 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1413 1414 if (radix_enabled()) 1415 return; 1416 1417 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1418 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1419 << SLB_VSID_SHIFT_1T; 1420 else 1421 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1422 << SLB_VSID_SHIFT; 1423 sp_vsid |= SLB_VSID_KERNEL | llp; 1424 p->thread.ksp_vsid = sp_vsid; 1425 #endif 1426 } 1427 1428 /* 1429 * Copy a thread.. 1430 */ 1431 1432 /* 1433 * Copy architecture-specific thread state 1434 */ 1435 int copy_thread(unsigned long clone_flags, unsigned long usp, 1436 unsigned long kthread_arg, struct task_struct *p) 1437 { 1438 struct pt_regs *childregs, *kregs; 1439 extern void ret_from_fork(void); 1440 extern void ret_from_kernel_thread(void); 1441 void (*f)(void); 1442 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1443 struct thread_info *ti = task_thread_info(p); 1444 1445 klp_init_thread_info(ti); 1446 1447 /* Copy registers */ 1448 sp -= sizeof(struct pt_regs); 1449 childregs = (struct pt_regs *) sp; 1450 if (unlikely(p->flags & PF_KTHREAD)) { 1451 /* kernel thread */ 1452 memset(childregs, 0, sizeof(struct pt_regs)); 1453 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1454 /* function */ 1455 if (usp) 1456 childregs->gpr[14] = ppc_function_entry((void *)usp); 1457 #ifdef CONFIG_PPC64 1458 clear_tsk_thread_flag(p, TIF_32BIT); 1459 childregs->softe = 1; 1460 #endif 1461 childregs->gpr[15] = kthread_arg; 1462 p->thread.regs = NULL; /* no user register state */ 1463 ti->flags |= _TIF_RESTOREALL; 1464 f = ret_from_kernel_thread; 1465 } else { 1466 /* user thread */ 1467 struct pt_regs *regs = current_pt_regs(); 1468 CHECK_FULL_REGS(regs); 1469 *childregs = *regs; 1470 if (usp) 1471 childregs->gpr[1] = usp; 1472 p->thread.regs = childregs; 1473 childregs->gpr[3] = 0; /* Result from fork() */ 1474 if (clone_flags & CLONE_SETTLS) { 1475 #ifdef CONFIG_PPC64 1476 if (!is_32bit_task()) 1477 childregs->gpr[13] = childregs->gpr[6]; 1478 else 1479 #endif 1480 childregs->gpr[2] = childregs->gpr[6]; 1481 } 1482 1483 f = ret_from_fork; 1484 } 1485 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1486 sp -= STACK_FRAME_OVERHEAD; 1487 1488 /* 1489 * The way this works is that at some point in the future 1490 * some task will call _switch to switch to the new task. 1491 * That will pop off the stack frame created below and start 1492 * the new task running at ret_from_fork. The new task will 1493 * do some house keeping and then return from the fork or clone 1494 * system call, using the stack frame created above. 1495 */ 1496 ((unsigned long *)sp)[0] = 0; 1497 sp -= sizeof(struct pt_regs); 1498 kregs = (struct pt_regs *) sp; 1499 sp -= STACK_FRAME_OVERHEAD; 1500 p->thread.ksp = sp; 1501 #ifdef CONFIG_PPC32 1502 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1503 _ALIGN_UP(sizeof(struct thread_info), 16); 1504 #endif 1505 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1506 p->thread.ptrace_bps[0] = NULL; 1507 #endif 1508 1509 p->thread.fp_save_area = NULL; 1510 #ifdef CONFIG_ALTIVEC 1511 p->thread.vr_save_area = NULL; 1512 #endif 1513 1514 setup_ksp_vsid(p, sp); 1515 1516 #ifdef CONFIG_PPC64 1517 if (cpu_has_feature(CPU_FTR_DSCR)) { 1518 p->thread.dscr_inherit = current->thread.dscr_inherit; 1519 p->thread.dscr = mfspr(SPRN_DSCR); 1520 } 1521 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1522 p->thread.ppr = INIT_PPR; 1523 #endif 1524 kregs->nip = ppc_function_entry(f); 1525 return 0; 1526 } 1527 1528 /* 1529 * Set up a thread for executing a new program 1530 */ 1531 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1532 { 1533 #ifdef CONFIG_PPC64 1534 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1535 #endif 1536 1537 /* 1538 * If we exec out of a kernel thread then thread.regs will not be 1539 * set. Do it now. 1540 */ 1541 if (!current->thread.regs) { 1542 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1543 current->thread.regs = regs - 1; 1544 } 1545 1546 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1547 /* 1548 * Clear any transactional state, we're exec()ing. The cause is 1549 * not important as there will never be a recheckpoint so it's not 1550 * user visible. 1551 */ 1552 if (MSR_TM_SUSPENDED(mfmsr())) 1553 tm_reclaim_current(0); 1554 #endif 1555 1556 memset(regs->gpr, 0, sizeof(regs->gpr)); 1557 regs->ctr = 0; 1558 regs->link = 0; 1559 regs->xer = 0; 1560 regs->ccr = 0; 1561 regs->gpr[1] = sp; 1562 1563 /* 1564 * We have just cleared all the nonvolatile GPRs, so make 1565 * FULL_REGS(regs) return true. This is necessary to allow 1566 * ptrace to examine the thread immediately after exec. 1567 */ 1568 regs->trap &= ~1UL; 1569 1570 #ifdef CONFIG_PPC32 1571 regs->mq = 0; 1572 regs->nip = start; 1573 regs->msr = MSR_USER; 1574 #else 1575 if (!is_32bit_task()) { 1576 unsigned long entry; 1577 1578 if (is_elf2_task()) { 1579 /* Look ma, no function descriptors! */ 1580 entry = start; 1581 1582 /* 1583 * Ulrich says: 1584 * The latest iteration of the ABI requires that when 1585 * calling a function (at its global entry point), 1586 * the caller must ensure r12 holds the entry point 1587 * address (so that the function can quickly 1588 * establish addressability). 1589 */ 1590 regs->gpr[12] = start; 1591 /* Make sure that's restored on entry to userspace. */ 1592 set_thread_flag(TIF_RESTOREALL); 1593 } else { 1594 unsigned long toc; 1595 1596 /* start is a relocated pointer to the function 1597 * descriptor for the elf _start routine. The first 1598 * entry in the function descriptor is the entry 1599 * address of _start and the second entry is the TOC 1600 * value we need to use. 1601 */ 1602 __get_user(entry, (unsigned long __user *)start); 1603 __get_user(toc, (unsigned long __user *)start+1); 1604 1605 /* Check whether the e_entry function descriptor entries 1606 * need to be relocated before we can use them. 1607 */ 1608 if (load_addr != 0) { 1609 entry += load_addr; 1610 toc += load_addr; 1611 } 1612 regs->gpr[2] = toc; 1613 } 1614 regs->nip = entry; 1615 regs->msr = MSR_USER64; 1616 } else { 1617 regs->nip = start; 1618 regs->gpr[2] = 0; 1619 regs->msr = MSR_USER32; 1620 } 1621 #endif 1622 #ifdef CONFIG_VSX 1623 current->thread.used_vsr = 0; 1624 #endif 1625 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1626 current->thread.fp_save_area = NULL; 1627 #ifdef CONFIG_ALTIVEC 1628 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1629 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1630 current->thread.vr_save_area = NULL; 1631 current->thread.vrsave = 0; 1632 current->thread.used_vr = 0; 1633 #endif /* CONFIG_ALTIVEC */ 1634 #ifdef CONFIG_SPE 1635 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1636 current->thread.acc = 0; 1637 current->thread.spefscr = 0; 1638 current->thread.used_spe = 0; 1639 #endif /* CONFIG_SPE */ 1640 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1641 current->thread.tm_tfhar = 0; 1642 current->thread.tm_texasr = 0; 1643 current->thread.tm_tfiar = 0; 1644 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1645 } 1646 EXPORT_SYMBOL(start_thread); 1647 1648 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1649 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1650 1651 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1652 { 1653 struct pt_regs *regs = tsk->thread.regs; 1654 1655 /* This is a bit hairy. If we are an SPE enabled processor 1656 * (have embedded fp) we store the IEEE exception enable flags in 1657 * fpexc_mode. fpexc_mode is also used for setting FP exception 1658 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1659 if (val & PR_FP_EXC_SW_ENABLE) { 1660 #ifdef CONFIG_SPE 1661 if (cpu_has_feature(CPU_FTR_SPE)) { 1662 /* 1663 * When the sticky exception bits are set 1664 * directly by userspace, it must call prctl 1665 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1666 * in the existing prctl settings) or 1667 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1668 * the bits being set). <fenv.h> functions 1669 * saving and restoring the whole 1670 * floating-point environment need to do so 1671 * anyway to restore the prctl settings from 1672 * the saved environment. 1673 */ 1674 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1675 tsk->thread.fpexc_mode = val & 1676 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1677 return 0; 1678 } else { 1679 return -EINVAL; 1680 } 1681 #else 1682 return -EINVAL; 1683 #endif 1684 } 1685 1686 /* on a CONFIG_SPE this does not hurt us. The bits that 1687 * __pack_fe01 use do not overlap with bits used for 1688 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1689 * on CONFIG_SPE implementations are reserved so writing to 1690 * them does not change anything */ 1691 if (val > PR_FP_EXC_PRECISE) 1692 return -EINVAL; 1693 tsk->thread.fpexc_mode = __pack_fe01(val); 1694 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1695 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1696 | tsk->thread.fpexc_mode; 1697 return 0; 1698 } 1699 1700 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1701 { 1702 unsigned int val; 1703 1704 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1705 #ifdef CONFIG_SPE 1706 if (cpu_has_feature(CPU_FTR_SPE)) { 1707 /* 1708 * When the sticky exception bits are set 1709 * directly by userspace, it must call prctl 1710 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1711 * in the existing prctl settings) or 1712 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1713 * the bits being set). <fenv.h> functions 1714 * saving and restoring the whole 1715 * floating-point environment need to do so 1716 * anyway to restore the prctl settings from 1717 * the saved environment. 1718 */ 1719 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1720 val = tsk->thread.fpexc_mode; 1721 } else 1722 return -EINVAL; 1723 #else 1724 return -EINVAL; 1725 #endif 1726 else 1727 val = __unpack_fe01(tsk->thread.fpexc_mode); 1728 return put_user(val, (unsigned int __user *) adr); 1729 } 1730 1731 int set_endian(struct task_struct *tsk, unsigned int val) 1732 { 1733 struct pt_regs *regs = tsk->thread.regs; 1734 1735 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1736 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1737 return -EINVAL; 1738 1739 if (regs == NULL) 1740 return -EINVAL; 1741 1742 if (val == PR_ENDIAN_BIG) 1743 regs->msr &= ~MSR_LE; 1744 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1745 regs->msr |= MSR_LE; 1746 else 1747 return -EINVAL; 1748 1749 return 0; 1750 } 1751 1752 int get_endian(struct task_struct *tsk, unsigned long adr) 1753 { 1754 struct pt_regs *regs = tsk->thread.regs; 1755 unsigned int val; 1756 1757 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1758 !cpu_has_feature(CPU_FTR_REAL_LE)) 1759 return -EINVAL; 1760 1761 if (regs == NULL) 1762 return -EINVAL; 1763 1764 if (regs->msr & MSR_LE) { 1765 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1766 val = PR_ENDIAN_LITTLE; 1767 else 1768 val = PR_ENDIAN_PPC_LITTLE; 1769 } else 1770 val = PR_ENDIAN_BIG; 1771 1772 return put_user(val, (unsigned int __user *)adr); 1773 } 1774 1775 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1776 { 1777 tsk->thread.align_ctl = val; 1778 return 0; 1779 } 1780 1781 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1782 { 1783 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1784 } 1785 1786 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1787 unsigned long nbytes) 1788 { 1789 unsigned long stack_page; 1790 unsigned long cpu = task_cpu(p); 1791 1792 /* 1793 * Avoid crashing if the stack has overflowed and corrupted 1794 * task_cpu(p), which is in the thread_info struct. 1795 */ 1796 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1797 stack_page = (unsigned long) hardirq_ctx[cpu]; 1798 if (sp >= stack_page + sizeof(struct thread_struct) 1799 && sp <= stack_page + THREAD_SIZE - nbytes) 1800 return 1; 1801 1802 stack_page = (unsigned long) softirq_ctx[cpu]; 1803 if (sp >= stack_page + sizeof(struct thread_struct) 1804 && sp <= stack_page + THREAD_SIZE - nbytes) 1805 return 1; 1806 } 1807 return 0; 1808 } 1809 1810 int validate_sp(unsigned long sp, struct task_struct *p, 1811 unsigned long nbytes) 1812 { 1813 unsigned long stack_page = (unsigned long)task_stack_page(p); 1814 1815 if (sp >= stack_page + sizeof(struct thread_struct) 1816 && sp <= stack_page + THREAD_SIZE - nbytes) 1817 return 1; 1818 1819 return valid_irq_stack(sp, p, nbytes); 1820 } 1821 1822 EXPORT_SYMBOL(validate_sp); 1823 1824 unsigned long get_wchan(struct task_struct *p) 1825 { 1826 unsigned long ip, sp; 1827 int count = 0; 1828 1829 if (!p || p == current || p->state == TASK_RUNNING) 1830 return 0; 1831 1832 sp = p->thread.ksp; 1833 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1834 return 0; 1835 1836 do { 1837 sp = *(unsigned long *)sp; 1838 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1839 return 0; 1840 if (count > 0) { 1841 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1842 if (!in_sched_functions(ip)) 1843 return ip; 1844 } 1845 } while (count++ < 16); 1846 return 0; 1847 } 1848 1849 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1850 1851 void show_stack(struct task_struct *tsk, unsigned long *stack) 1852 { 1853 unsigned long sp, ip, lr, newsp; 1854 int count = 0; 1855 int firstframe = 1; 1856 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1857 int curr_frame = current->curr_ret_stack; 1858 extern void return_to_handler(void); 1859 unsigned long rth = (unsigned long)return_to_handler; 1860 #endif 1861 1862 sp = (unsigned long) stack; 1863 if (tsk == NULL) 1864 tsk = current; 1865 if (sp == 0) { 1866 if (tsk == current) 1867 sp = current_stack_pointer(); 1868 else 1869 sp = tsk->thread.ksp; 1870 } 1871 1872 lr = 0; 1873 printk("Call Trace:\n"); 1874 do { 1875 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1876 return; 1877 1878 stack = (unsigned long *) sp; 1879 newsp = stack[0]; 1880 ip = stack[STACK_FRAME_LR_SAVE]; 1881 if (!firstframe || ip != lr) { 1882 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1883 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1884 if ((ip == rth) && curr_frame >= 0) { 1885 pr_cont(" (%pS)", 1886 (void *)current->ret_stack[curr_frame].ret); 1887 curr_frame--; 1888 } 1889 #endif 1890 if (firstframe) 1891 pr_cont(" (unreliable)"); 1892 pr_cont("\n"); 1893 } 1894 firstframe = 0; 1895 1896 /* 1897 * See if this is an exception frame. 1898 * We look for the "regshere" marker in the current frame. 1899 */ 1900 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1901 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1902 struct pt_regs *regs = (struct pt_regs *) 1903 (sp + STACK_FRAME_OVERHEAD); 1904 lr = regs->link; 1905 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1906 regs->trap, (void *)regs->nip, (void *)lr); 1907 firstframe = 1; 1908 } 1909 1910 sp = newsp; 1911 } while (count++ < kstack_depth_to_print); 1912 } 1913 1914 #ifdef CONFIG_PPC64 1915 /* Called with hard IRQs off */ 1916 void notrace __ppc64_runlatch_on(void) 1917 { 1918 struct thread_info *ti = current_thread_info(); 1919 unsigned long ctrl; 1920 1921 ctrl = mfspr(SPRN_CTRLF); 1922 ctrl |= CTRL_RUNLATCH; 1923 mtspr(SPRN_CTRLT, ctrl); 1924 1925 ti->local_flags |= _TLF_RUNLATCH; 1926 } 1927 1928 /* Called with hard IRQs off */ 1929 void notrace __ppc64_runlatch_off(void) 1930 { 1931 struct thread_info *ti = current_thread_info(); 1932 unsigned long ctrl; 1933 1934 ti->local_flags &= ~_TLF_RUNLATCH; 1935 1936 ctrl = mfspr(SPRN_CTRLF); 1937 ctrl &= ~CTRL_RUNLATCH; 1938 mtspr(SPRN_CTRLT, ctrl); 1939 } 1940 #endif /* CONFIG_PPC64 */ 1941 1942 unsigned long arch_align_stack(unsigned long sp) 1943 { 1944 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1945 sp -= get_random_int() & ~PAGE_MASK; 1946 return sp & ~0xf; 1947 } 1948 1949 static inline unsigned long brk_rnd(void) 1950 { 1951 unsigned long rnd = 0; 1952 1953 /* 8MB for 32bit, 1GB for 64bit */ 1954 if (is_32bit_task()) 1955 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 1956 else 1957 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 1958 1959 return rnd << PAGE_SHIFT; 1960 } 1961 1962 unsigned long arch_randomize_brk(struct mm_struct *mm) 1963 { 1964 unsigned long base = mm->brk; 1965 unsigned long ret; 1966 1967 #ifdef CONFIG_PPC_STD_MMU_64 1968 /* 1969 * If we are using 1TB segments and we are allowed to randomise 1970 * the heap, we can put it above 1TB so it is backed by a 1TB 1971 * segment. Otherwise the heap will be in the bottom 1TB 1972 * which always uses 256MB segments and this may result in a 1973 * performance penalty. We don't need to worry about radix. For 1974 * radix, mmu_highuser_ssize remains unchanged from 256MB. 1975 */ 1976 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1977 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1978 #endif 1979 1980 ret = PAGE_ALIGN(base + brk_rnd()); 1981 1982 if (ret < mm->brk) 1983 return mm->brk; 1984 1985 return ret; 1986 } 1987 1988