1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/pgtable.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #include <asm/time.h> 51 #include <asm/runlatch.h> 52 #include <asm/syscalls.h> 53 #include <asm/switch_to.h> 54 #include <asm/tm.h> 55 #include <asm/debug.h> 56 #ifdef CONFIG_PPC64 57 #include <asm/firmware.h> 58 #include <asm/hw_irq.h> 59 #endif 60 #include <asm/code-patching.h> 61 #include <asm/exec.h> 62 #include <asm/livepatch.h> 63 #include <asm/cpu_has_feature.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/stacktrace.h> 66 #include <asm/hw_breakpoint.h> 67 68 #include <linux/kprobes.h> 69 #include <linux/kdebug.h> 70 71 /* Transactional Memory debug */ 72 #ifdef TM_DEBUG_SW 73 #define TM_DEBUG(x...) printk(KERN_INFO x) 74 #else 75 #define TM_DEBUG(x...) do { } while(0) 76 #endif 77 78 extern unsigned long _get_SP(void); 79 80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 81 /* 82 * Are we running in "Suspend disabled" mode? If so we have to block any 83 * sigreturn that would get us into suspended state, and we also warn in some 84 * other paths that we should never reach with suspend disabled. 85 */ 86 bool tm_suspend_disabled __ro_after_init = false; 87 88 static void check_if_tm_restore_required(struct task_struct *tsk) 89 { 90 /* 91 * If we are saving the current thread's registers, and the 92 * thread is in a transactional state, set the TIF_RESTORE_TM 93 * bit so that we know to restore the registers before 94 * returning to userspace. 95 */ 96 if (tsk == current && tsk->thread.regs && 97 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 98 !test_thread_flag(TIF_RESTORE_TM)) { 99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 100 set_thread_flag(TIF_RESTORE_TM); 101 } 102 } 103 104 #else 105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 107 108 bool strict_msr_control; 109 EXPORT_SYMBOL(strict_msr_control); 110 111 static int __init enable_strict_msr_control(char *str) 112 { 113 strict_msr_control = true; 114 pr_info("Enabling strict facility control\n"); 115 116 return 0; 117 } 118 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 119 120 /* notrace because it's called by restore_math */ 121 unsigned long notrace msr_check_and_set(unsigned long bits) 122 { 123 unsigned long oldmsr = mfmsr(); 124 unsigned long newmsr; 125 126 newmsr = oldmsr | bits; 127 128 #ifdef CONFIG_VSX 129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 130 newmsr |= MSR_VSX; 131 #endif 132 133 if (oldmsr != newmsr) 134 mtmsr_isync(newmsr); 135 136 return newmsr; 137 } 138 EXPORT_SYMBOL_GPL(msr_check_and_set); 139 140 /* notrace because it's called by restore_math */ 141 void notrace __msr_check_and_clear(unsigned long bits) 142 { 143 unsigned long oldmsr = mfmsr(); 144 unsigned long newmsr; 145 146 newmsr = oldmsr & ~bits; 147 148 #ifdef CONFIG_VSX 149 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 150 newmsr &= ~MSR_VSX; 151 #endif 152 153 if (oldmsr != newmsr) 154 mtmsr_isync(newmsr); 155 } 156 EXPORT_SYMBOL(__msr_check_and_clear); 157 158 #ifdef CONFIG_PPC_FPU 159 static void __giveup_fpu(struct task_struct *tsk) 160 { 161 unsigned long msr; 162 163 save_fpu(tsk); 164 msr = tsk->thread.regs->msr; 165 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 166 #ifdef CONFIG_VSX 167 if (cpu_has_feature(CPU_FTR_VSX)) 168 msr &= ~MSR_VSX; 169 #endif 170 tsk->thread.regs->msr = msr; 171 } 172 173 void giveup_fpu(struct task_struct *tsk) 174 { 175 check_if_tm_restore_required(tsk); 176 177 msr_check_and_set(MSR_FP); 178 __giveup_fpu(tsk); 179 msr_check_and_clear(MSR_FP); 180 } 181 EXPORT_SYMBOL(giveup_fpu); 182 183 /* 184 * Make sure the floating-point register state in the 185 * the thread_struct is up to date for task tsk. 186 */ 187 void flush_fp_to_thread(struct task_struct *tsk) 188 { 189 if (tsk->thread.regs) { 190 /* 191 * We need to disable preemption here because if we didn't, 192 * another process could get scheduled after the regs->msr 193 * test but before we have finished saving the FP registers 194 * to the thread_struct. That process could take over the 195 * FPU, and then when we get scheduled again we would store 196 * bogus values for the remaining FP registers. 197 */ 198 preempt_disable(); 199 if (tsk->thread.regs->msr & MSR_FP) { 200 /* 201 * This should only ever be called for current or 202 * for a stopped child process. Since we save away 203 * the FP register state on context switch, 204 * there is something wrong if a stopped child appears 205 * to still have its FP state in the CPU registers. 206 */ 207 BUG_ON(tsk != current); 208 giveup_fpu(tsk); 209 } 210 preempt_enable(); 211 } 212 } 213 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 214 215 void enable_kernel_fp(void) 216 { 217 unsigned long cpumsr; 218 219 WARN_ON(preemptible()); 220 221 cpumsr = msr_check_and_set(MSR_FP); 222 223 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 224 check_if_tm_restore_required(current); 225 /* 226 * If a thread has already been reclaimed then the 227 * checkpointed registers are on the CPU but have definitely 228 * been saved by the reclaim code. Don't need to and *cannot* 229 * giveup as this would save to the 'live' structure not the 230 * checkpointed structure. 231 */ 232 if (!MSR_TM_ACTIVE(cpumsr) && 233 MSR_TM_ACTIVE(current->thread.regs->msr)) 234 return; 235 __giveup_fpu(current); 236 } 237 } 238 EXPORT_SYMBOL(enable_kernel_fp); 239 240 static int restore_fp(struct task_struct *tsk) 241 { 242 if (tsk->thread.load_fp) { 243 load_fp_state(¤t->thread.fp_state); 244 current->thread.load_fp++; 245 return 1; 246 } 247 return 0; 248 } 249 #else 250 static int restore_fp(struct task_struct *tsk) { return 0; } 251 #endif /* CONFIG_PPC_FPU */ 252 253 #ifdef CONFIG_ALTIVEC 254 #define loadvec(thr) ((thr).load_vec) 255 256 static void __giveup_altivec(struct task_struct *tsk) 257 { 258 unsigned long msr; 259 260 save_altivec(tsk); 261 msr = tsk->thread.regs->msr; 262 msr &= ~MSR_VEC; 263 #ifdef CONFIG_VSX 264 if (cpu_has_feature(CPU_FTR_VSX)) 265 msr &= ~MSR_VSX; 266 #endif 267 tsk->thread.regs->msr = msr; 268 } 269 270 void giveup_altivec(struct task_struct *tsk) 271 { 272 check_if_tm_restore_required(tsk); 273 274 msr_check_and_set(MSR_VEC); 275 __giveup_altivec(tsk); 276 msr_check_and_clear(MSR_VEC); 277 } 278 EXPORT_SYMBOL(giveup_altivec); 279 280 void enable_kernel_altivec(void) 281 { 282 unsigned long cpumsr; 283 284 WARN_ON(preemptible()); 285 286 cpumsr = msr_check_and_set(MSR_VEC); 287 288 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 289 check_if_tm_restore_required(current); 290 /* 291 * If a thread has already been reclaimed then the 292 * checkpointed registers are on the CPU but have definitely 293 * been saved by the reclaim code. Don't need to and *cannot* 294 * giveup as this would save to the 'live' structure not the 295 * checkpointed structure. 296 */ 297 if (!MSR_TM_ACTIVE(cpumsr) && 298 MSR_TM_ACTIVE(current->thread.regs->msr)) 299 return; 300 __giveup_altivec(current); 301 } 302 } 303 EXPORT_SYMBOL(enable_kernel_altivec); 304 305 /* 306 * Make sure the VMX/Altivec register state in the 307 * the thread_struct is up to date for task tsk. 308 */ 309 void flush_altivec_to_thread(struct task_struct *tsk) 310 { 311 if (tsk->thread.regs) { 312 preempt_disable(); 313 if (tsk->thread.regs->msr & MSR_VEC) { 314 BUG_ON(tsk != current); 315 giveup_altivec(tsk); 316 } 317 preempt_enable(); 318 } 319 } 320 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 321 322 static int restore_altivec(struct task_struct *tsk) 323 { 324 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) { 325 load_vr_state(&tsk->thread.vr_state); 326 tsk->thread.used_vr = 1; 327 tsk->thread.load_vec++; 328 329 return 1; 330 } 331 return 0; 332 } 333 #else 334 #define loadvec(thr) 0 335 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 336 #endif /* CONFIG_ALTIVEC */ 337 338 #ifdef CONFIG_VSX 339 static void __giveup_vsx(struct task_struct *tsk) 340 { 341 unsigned long msr = tsk->thread.regs->msr; 342 343 /* 344 * We should never be ssetting MSR_VSX without also setting 345 * MSR_FP and MSR_VEC 346 */ 347 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 348 349 /* __giveup_fpu will clear MSR_VSX */ 350 if (msr & MSR_FP) 351 __giveup_fpu(tsk); 352 if (msr & MSR_VEC) 353 __giveup_altivec(tsk); 354 } 355 356 static void giveup_vsx(struct task_struct *tsk) 357 { 358 check_if_tm_restore_required(tsk); 359 360 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 361 __giveup_vsx(tsk); 362 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 363 } 364 365 void enable_kernel_vsx(void) 366 { 367 unsigned long cpumsr; 368 369 WARN_ON(preemptible()); 370 371 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 372 373 if (current->thread.regs && 374 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 375 check_if_tm_restore_required(current); 376 /* 377 * If a thread has already been reclaimed then the 378 * checkpointed registers are on the CPU but have definitely 379 * been saved by the reclaim code. Don't need to and *cannot* 380 * giveup as this would save to the 'live' structure not the 381 * checkpointed structure. 382 */ 383 if (!MSR_TM_ACTIVE(cpumsr) && 384 MSR_TM_ACTIVE(current->thread.regs->msr)) 385 return; 386 __giveup_vsx(current); 387 } 388 } 389 EXPORT_SYMBOL(enable_kernel_vsx); 390 391 void flush_vsx_to_thread(struct task_struct *tsk) 392 { 393 if (tsk->thread.regs) { 394 preempt_disable(); 395 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 396 BUG_ON(tsk != current); 397 giveup_vsx(tsk); 398 } 399 preempt_enable(); 400 } 401 } 402 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 403 404 static int restore_vsx(struct task_struct *tsk) 405 { 406 if (cpu_has_feature(CPU_FTR_VSX)) { 407 tsk->thread.used_vsr = 1; 408 return 1; 409 } 410 411 return 0; 412 } 413 #else 414 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 415 #endif /* CONFIG_VSX */ 416 417 #ifdef CONFIG_SPE 418 void giveup_spe(struct task_struct *tsk) 419 { 420 check_if_tm_restore_required(tsk); 421 422 msr_check_and_set(MSR_SPE); 423 __giveup_spe(tsk); 424 msr_check_and_clear(MSR_SPE); 425 } 426 EXPORT_SYMBOL(giveup_spe); 427 428 void enable_kernel_spe(void) 429 { 430 WARN_ON(preemptible()); 431 432 msr_check_and_set(MSR_SPE); 433 434 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 435 check_if_tm_restore_required(current); 436 __giveup_spe(current); 437 } 438 } 439 EXPORT_SYMBOL(enable_kernel_spe); 440 441 void flush_spe_to_thread(struct task_struct *tsk) 442 { 443 if (tsk->thread.regs) { 444 preempt_disable(); 445 if (tsk->thread.regs->msr & MSR_SPE) { 446 BUG_ON(tsk != current); 447 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 448 giveup_spe(tsk); 449 } 450 preempt_enable(); 451 } 452 } 453 #endif /* CONFIG_SPE */ 454 455 static unsigned long msr_all_available; 456 457 static int __init init_msr_all_available(void) 458 { 459 #ifdef CONFIG_PPC_FPU 460 msr_all_available |= MSR_FP; 461 #endif 462 #ifdef CONFIG_ALTIVEC 463 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 464 msr_all_available |= MSR_VEC; 465 #endif 466 #ifdef CONFIG_VSX 467 if (cpu_has_feature(CPU_FTR_VSX)) 468 msr_all_available |= MSR_VSX; 469 #endif 470 #ifdef CONFIG_SPE 471 if (cpu_has_feature(CPU_FTR_SPE)) 472 msr_all_available |= MSR_SPE; 473 #endif 474 475 return 0; 476 } 477 early_initcall(init_msr_all_available); 478 479 void giveup_all(struct task_struct *tsk) 480 { 481 unsigned long usermsr; 482 483 if (!tsk->thread.regs) 484 return; 485 486 check_if_tm_restore_required(tsk); 487 488 usermsr = tsk->thread.regs->msr; 489 490 if ((usermsr & msr_all_available) == 0) 491 return; 492 493 msr_check_and_set(msr_all_available); 494 495 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 496 497 #ifdef CONFIG_PPC_FPU 498 if (usermsr & MSR_FP) 499 __giveup_fpu(tsk); 500 #endif 501 #ifdef CONFIG_ALTIVEC 502 if (usermsr & MSR_VEC) 503 __giveup_altivec(tsk); 504 #endif 505 #ifdef CONFIG_SPE 506 if (usermsr & MSR_SPE) 507 __giveup_spe(tsk); 508 #endif 509 510 msr_check_and_clear(msr_all_available); 511 } 512 EXPORT_SYMBOL(giveup_all); 513 514 /* 515 * The exception exit path calls restore_math() with interrupts hard disabled 516 * but the soft irq state not "reconciled". ftrace code that calls 517 * local_irq_save/restore causes warnings. 518 * 519 * Rather than complicate the exit path, just don't trace restore_math. This 520 * could be done by having ftrace entry code check for this un-reconciled 521 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 522 * temporarily fix it up for the duration of the ftrace call. 523 */ 524 void notrace restore_math(struct pt_regs *regs) 525 { 526 unsigned long msr; 527 528 if (!MSR_TM_ACTIVE(regs->msr) && 529 !current->thread.load_fp && !loadvec(current->thread)) 530 return; 531 532 msr = regs->msr; 533 msr_check_and_set(msr_all_available); 534 535 /* 536 * Only reload if the bit is not set in the user MSR, the bit BEING set 537 * indicates that the registers are hot 538 */ 539 if ((!(msr & MSR_FP)) && restore_fp(current)) 540 msr |= MSR_FP | current->thread.fpexc_mode; 541 542 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 543 msr |= MSR_VEC; 544 545 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 546 restore_vsx(current)) { 547 msr |= MSR_VSX; 548 } 549 550 msr_check_and_clear(msr_all_available); 551 552 regs->msr = msr; 553 } 554 555 static void save_all(struct task_struct *tsk) 556 { 557 unsigned long usermsr; 558 559 if (!tsk->thread.regs) 560 return; 561 562 usermsr = tsk->thread.regs->msr; 563 564 if ((usermsr & msr_all_available) == 0) 565 return; 566 567 msr_check_and_set(msr_all_available); 568 569 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 570 571 if (usermsr & MSR_FP) 572 save_fpu(tsk); 573 574 if (usermsr & MSR_VEC) 575 save_altivec(tsk); 576 577 if (usermsr & MSR_SPE) 578 __giveup_spe(tsk); 579 580 msr_check_and_clear(msr_all_available); 581 thread_pkey_regs_save(&tsk->thread); 582 } 583 584 void flush_all_to_thread(struct task_struct *tsk) 585 { 586 if (tsk->thread.regs) { 587 preempt_disable(); 588 BUG_ON(tsk != current); 589 #ifdef CONFIG_SPE 590 if (tsk->thread.regs->msr & MSR_SPE) 591 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 592 #endif 593 save_all(tsk); 594 595 preempt_enable(); 596 } 597 } 598 EXPORT_SYMBOL(flush_all_to_thread); 599 600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 601 void do_send_trap(struct pt_regs *regs, unsigned long address, 602 unsigned long error_code, int breakpt) 603 { 604 current->thread.trap_nr = TRAP_HWBKPT; 605 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 606 11, SIGSEGV) == NOTIFY_STOP) 607 return; 608 609 /* Deliver the signal to userspace */ 610 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 611 (void __user *)address); 612 } 613 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 614 void do_break (struct pt_regs *regs, unsigned long address, 615 unsigned long error_code) 616 { 617 current->thread.trap_nr = TRAP_HWBKPT; 618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 619 11, SIGSEGV) == NOTIFY_STOP) 620 return; 621 622 if (debugger_break_match(regs)) 623 return; 624 625 /* Clear the breakpoint */ 626 hw_breakpoint_disable(); 627 628 /* Deliver the signal to userspace */ 629 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 630 } 631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 632 633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 634 635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 636 /* 637 * Set the debug registers back to their default "safe" values. 638 */ 639 static void set_debug_reg_defaults(struct thread_struct *thread) 640 { 641 thread->debug.iac1 = thread->debug.iac2 = 0; 642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 643 thread->debug.iac3 = thread->debug.iac4 = 0; 644 #endif 645 thread->debug.dac1 = thread->debug.dac2 = 0; 646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 647 thread->debug.dvc1 = thread->debug.dvc2 = 0; 648 #endif 649 thread->debug.dbcr0 = 0; 650 #ifdef CONFIG_BOOKE 651 /* 652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 653 */ 654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 655 DBCR1_IAC3US | DBCR1_IAC4US; 656 /* 657 * Force Data Address Compare User/Supervisor bits to be User-only 658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 659 */ 660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 661 #else 662 thread->debug.dbcr1 = 0; 663 #endif 664 } 665 666 static void prime_debug_regs(struct debug_reg *debug) 667 { 668 /* 669 * We could have inherited MSR_DE from userspace, since 670 * it doesn't get cleared on exception entry. Make sure 671 * MSR_DE is clear before we enable any debug events. 672 */ 673 mtmsr(mfmsr() & ~MSR_DE); 674 675 mtspr(SPRN_IAC1, debug->iac1); 676 mtspr(SPRN_IAC2, debug->iac2); 677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 678 mtspr(SPRN_IAC3, debug->iac3); 679 mtspr(SPRN_IAC4, debug->iac4); 680 #endif 681 mtspr(SPRN_DAC1, debug->dac1); 682 mtspr(SPRN_DAC2, debug->dac2); 683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 684 mtspr(SPRN_DVC1, debug->dvc1); 685 mtspr(SPRN_DVC2, debug->dvc2); 686 #endif 687 mtspr(SPRN_DBCR0, debug->dbcr0); 688 mtspr(SPRN_DBCR1, debug->dbcr1); 689 #ifdef CONFIG_BOOKE 690 mtspr(SPRN_DBCR2, debug->dbcr2); 691 #endif 692 } 693 /* 694 * Unless neither the old or new thread are making use of the 695 * debug registers, set the debug registers from the values 696 * stored in the new thread. 697 */ 698 void switch_booke_debug_regs(struct debug_reg *new_debug) 699 { 700 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 701 || (new_debug->dbcr0 & DBCR0_IDM)) 702 prime_debug_regs(new_debug); 703 } 704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 706 #ifndef CONFIG_HAVE_HW_BREAKPOINT 707 static void set_breakpoint(struct arch_hw_breakpoint *brk) 708 { 709 preempt_disable(); 710 __set_breakpoint(brk); 711 preempt_enable(); 712 } 713 714 static void set_debug_reg_defaults(struct thread_struct *thread) 715 { 716 thread->hw_brk.address = 0; 717 thread->hw_brk.type = 0; 718 thread->hw_brk.len = 0; 719 thread->hw_brk.hw_len = 0; 720 if (ppc_breakpoint_available()) 721 set_breakpoint(&thread->hw_brk); 722 } 723 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 724 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 725 726 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 727 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 728 { 729 mtspr(SPRN_DAC1, dabr); 730 #ifdef CONFIG_PPC_47x 731 isync(); 732 #endif 733 return 0; 734 } 735 #elif defined(CONFIG_PPC_BOOK3S) 736 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 737 { 738 mtspr(SPRN_DABR, dabr); 739 if (cpu_has_feature(CPU_FTR_DABRX)) 740 mtspr(SPRN_DABRX, dabrx); 741 return 0; 742 } 743 #elif defined(CONFIG_PPC_8xx) 744 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 745 { 746 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 747 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 748 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 749 750 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 751 lctrl1 |= 0xa0000; 752 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 753 lctrl1 |= 0xf0000; 754 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 755 lctrl2 = 0; 756 757 mtspr(SPRN_LCTRL2, 0); 758 mtspr(SPRN_CMPE, addr); 759 mtspr(SPRN_CMPF, addr + 4); 760 mtspr(SPRN_LCTRL1, lctrl1); 761 mtspr(SPRN_LCTRL2, lctrl2); 762 763 return 0; 764 } 765 #else 766 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 767 { 768 return -EINVAL; 769 } 770 #endif 771 772 static inline int set_dabr(struct arch_hw_breakpoint *brk) 773 { 774 unsigned long dabr, dabrx; 775 776 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 777 dabrx = ((brk->type >> 3) & 0x7); 778 779 if (ppc_md.set_dabr) 780 return ppc_md.set_dabr(dabr, dabrx); 781 782 return __set_dabr(dabr, dabrx); 783 } 784 785 void __set_breakpoint(struct arch_hw_breakpoint *brk) 786 { 787 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 788 789 if (dawr_enabled()) 790 // Power8 or later 791 set_dawr(brk); 792 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 793 // Power7 or earlier 794 set_dabr(brk); 795 else 796 // Shouldn't happen due to higher level checks 797 WARN_ON_ONCE(1); 798 } 799 800 /* Check if we have DAWR or DABR hardware */ 801 bool ppc_breakpoint_available(void) 802 { 803 if (dawr_enabled()) 804 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 805 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 806 return false; /* POWER9 with DAWR disabled */ 807 /* DABR: Everything but POWER8 and POWER9 */ 808 return true; 809 } 810 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 811 812 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 813 struct arch_hw_breakpoint *b) 814 { 815 if (a->address != b->address) 816 return false; 817 if (a->type != b->type) 818 return false; 819 if (a->len != b->len) 820 return false; 821 /* no need to check hw_len. it's calculated from address and len */ 822 return true; 823 } 824 825 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 826 827 static inline bool tm_enabled(struct task_struct *tsk) 828 { 829 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 830 } 831 832 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 833 { 834 /* 835 * Use the current MSR TM suspended bit to track if we have 836 * checkpointed state outstanding. 837 * On signal delivery, we'd normally reclaim the checkpointed 838 * state to obtain stack pointer (see:get_tm_stackpointer()). 839 * This will then directly return to userspace without going 840 * through __switch_to(). However, if the stack frame is bad, 841 * we need to exit this thread which calls __switch_to() which 842 * will again attempt to reclaim the already saved tm state. 843 * Hence we need to check that we've not already reclaimed 844 * this state. 845 * We do this using the current MSR, rather tracking it in 846 * some specific thread_struct bit, as it has the additional 847 * benefit of checking for a potential TM bad thing exception. 848 */ 849 if (!MSR_TM_SUSPENDED(mfmsr())) 850 return; 851 852 giveup_all(container_of(thr, struct task_struct, thread)); 853 854 tm_reclaim(thr, cause); 855 856 /* 857 * If we are in a transaction and FP is off then we can't have 858 * used FP inside that transaction. Hence the checkpointed 859 * state is the same as the live state. We need to copy the 860 * live state to the checkpointed state so that when the 861 * transaction is restored, the checkpointed state is correct 862 * and the aborted transaction sees the correct state. We use 863 * ckpt_regs.msr here as that's what tm_reclaim will use to 864 * determine if it's going to write the checkpointed state or 865 * not. So either this will write the checkpointed registers, 866 * or reclaim will. Similarly for VMX. 867 */ 868 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 869 memcpy(&thr->ckfp_state, &thr->fp_state, 870 sizeof(struct thread_fp_state)); 871 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 872 memcpy(&thr->ckvr_state, &thr->vr_state, 873 sizeof(struct thread_vr_state)); 874 } 875 876 void tm_reclaim_current(uint8_t cause) 877 { 878 tm_enable(); 879 tm_reclaim_thread(¤t->thread, cause); 880 } 881 882 static inline void tm_reclaim_task(struct task_struct *tsk) 883 { 884 /* We have to work out if we're switching from/to a task that's in the 885 * middle of a transaction. 886 * 887 * In switching we need to maintain a 2nd register state as 888 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 889 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 890 * ckvr_state 891 * 892 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 893 */ 894 struct thread_struct *thr = &tsk->thread; 895 896 if (!thr->regs) 897 return; 898 899 if (!MSR_TM_ACTIVE(thr->regs->msr)) 900 goto out_and_saveregs; 901 902 WARN_ON(tm_suspend_disabled); 903 904 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 905 "ccr=%lx, msr=%lx, trap=%lx)\n", 906 tsk->pid, thr->regs->nip, 907 thr->regs->ccr, thr->regs->msr, 908 thr->regs->trap); 909 910 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 911 912 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 913 tsk->pid); 914 915 out_and_saveregs: 916 /* Always save the regs here, even if a transaction's not active. 917 * This context-switches a thread's TM info SPRs. We do it here to 918 * be consistent with the restore path (in recheckpoint) which 919 * cannot happen later in _switch(). 920 */ 921 tm_save_sprs(thr); 922 } 923 924 extern void __tm_recheckpoint(struct thread_struct *thread); 925 926 void tm_recheckpoint(struct thread_struct *thread) 927 { 928 unsigned long flags; 929 930 if (!(thread->regs->msr & MSR_TM)) 931 return; 932 933 /* We really can't be interrupted here as the TEXASR registers can't 934 * change and later in the trecheckpoint code, we have a userspace R1. 935 * So let's hard disable over this region. 936 */ 937 local_irq_save(flags); 938 hard_irq_disable(); 939 940 /* The TM SPRs are restored here, so that TEXASR.FS can be set 941 * before the trecheckpoint and no explosion occurs. 942 */ 943 tm_restore_sprs(thread); 944 945 __tm_recheckpoint(thread); 946 947 local_irq_restore(flags); 948 } 949 950 static inline void tm_recheckpoint_new_task(struct task_struct *new) 951 { 952 if (!cpu_has_feature(CPU_FTR_TM)) 953 return; 954 955 /* Recheckpoint the registers of the thread we're about to switch to. 956 * 957 * If the task was using FP, we non-lazily reload both the original and 958 * the speculative FP register states. This is because the kernel 959 * doesn't see if/when a TM rollback occurs, so if we take an FP 960 * unavailable later, we are unable to determine which set of FP regs 961 * need to be restored. 962 */ 963 if (!tm_enabled(new)) 964 return; 965 966 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 967 tm_restore_sprs(&new->thread); 968 return; 969 } 970 /* Recheckpoint to restore original checkpointed register state. */ 971 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 972 new->pid, new->thread.regs->msr); 973 974 tm_recheckpoint(&new->thread); 975 976 /* 977 * The checkpointed state has been restored but the live state has 978 * not, ensure all the math functionality is turned off to trigger 979 * restore_math() to reload. 980 */ 981 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 982 983 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 984 "(kernel msr 0x%lx)\n", 985 new->pid, mfmsr()); 986 } 987 988 static inline void __switch_to_tm(struct task_struct *prev, 989 struct task_struct *new) 990 { 991 if (cpu_has_feature(CPU_FTR_TM)) { 992 if (tm_enabled(prev) || tm_enabled(new)) 993 tm_enable(); 994 995 if (tm_enabled(prev)) { 996 prev->thread.load_tm++; 997 tm_reclaim_task(prev); 998 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 999 prev->thread.regs->msr &= ~MSR_TM; 1000 } 1001 1002 tm_recheckpoint_new_task(new); 1003 } 1004 } 1005 1006 /* 1007 * This is called if we are on the way out to userspace and the 1008 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1009 * FP and/or vector state and does so if necessary. 1010 * If userspace is inside a transaction (whether active or 1011 * suspended) and FP/VMX/VSX instructions have ever been enabled 1012 * inside that transaction, then we have to keep them enabled 1013 * and keep the FP/VMX/VSX state loaded while ever the transaction 1014 * continues. The reason is that if we didn't, and subsequently 1015 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1016 * we don't know whether it's the same transaction, and thus we 1017 * don't know which of the checkpointed state and the transactional 1018 * state to use. 1019 */ 1020 void restore_tm_state(struct pt_regs *regs) 1021 { 1022 unsigned long msr_diff; 1023 1024 /* 1025 * This is the only moment we should clear TIF_RESTORE_TM as 1026 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1027 * again, anything else could lead to an incorrect ckpt_msr being 1028 * saved and therefore incorrect signal contexts. 1029 */ 1030 clear_thread_flag(TIF_RESTORE_TM); 1031 if (!MSR_TM_ACTIVE(regs->msr)) 1032 return; 1033 1034 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1035 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1036 1037 /* Ensure that restore_math() will restore */ 1038 if (msr_diff & MSR_FP) 1039 current->thread.load_fp = 1; 1040 #ifdef CONFIG_ALTIVEC 1041 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1042 current->thread.load_vec = 1; 1043 #endif 1044 restore_math(regs); 1045 1046 regs->msr |= msr_diff; 1047 } 1048 1049 #else 1050 #define tm_recheckpoint_new_task(new) 1051 #define __switch_to_tm(prev, new) 1052 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1053 1054 static inline void save_sprs(struct thread_struct *t) 1055 { 1056 #ifdef CONFIG_ALTIVEC 1057 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1058 t->vrsave = mfspr(SPRN_VRSAVE); 1059 #endif 1060 #ifdef CONFIG_PPC_BOOK3S_64 1061 if (cpu_has_feature(CPU_FTR_DSCR)) 1062 t->dscr = mfspr(SPRN_DSCR); 1063 1064 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1065 t->bescr = mfspr(SPRN_BESCR); 1066 t->ebbhr = mfspr(SPRN_EBBHR); 1067 t->ebbrr = mfspr(SPRN_EBBRR); 1068 1069 t->fscr = mfspr(SPRN_FSCR); 1070 1071 /* 1072 * Note that the TAR is not available for use in the kernel. 1073 * (To provide this, the TAR should be backed up/restored on 1074 * exception entry/exit instead, and be in pt_regs. FIXME, 1075 * this should be in pt_regs anyway (for debug).) 1076 */ 1077 t->tar = mfspr(SPRN_TAR); 1078 } 1079 #endif 1080 1081 thread_pkey_regs_save(t); 1082 } 1083 1084 static inline void restore_sprs(struct thread_struct *old_thread, 1085 struct thread_struct *new_thread) 1086 { 1087 #ifdef CONFIG_ALTIVEC 1088 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1089 old_thread->vrsave != new_thread->vrsave) 1090 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1091 #endif 1092 #ifdef CONFIG_PPC_BOOK3S_64 1093 if (cpu_has_feature(CPU_FTR_DSCR)) { 1094 u64 dscr = get_paca()->dscr_default; 1095 if (new_thread->dscr_inherit) 1096 dscr = new_thread->dscr; 1097 1098 if (old_thread->dscr != dscr) 1099 mtspr(SPRN_DSCR, dscr); 1100 } 1101 1102 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1103 if (old_thread->bescr != new_thread->bescr) 1104 mtspr(SPRN_BESCR, new_thread->bescr); 1105 if (old_thread->ebbhr != new_thread->ebbhr) 1106 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1107 if (old_thread->ebbrr != new_thread->ebbrr) 1108 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1109 1110 if (old_thread->fscr != new_thread->fscr) 1111 mtspr(SPRN_FSCR, new_thread->fscr); 1112 1113 if (old_thread->tar != new_thread->tar) 1114 mtspr(SPRN_TAR, new_thread->tar); 1115 } 1116 1117 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1118 old_thread->tidr != new_thread->tidr) 1119 mtspr(SPRN_TIDR, new_thread->tidr); 1120 #endif 1121 1122 thread_pkey_regs_restore(new_thread, old_thread); 1123 } 1124 1125 struct task_struct *__switch_to(struct task_struct *prev, 1126 struct task_struct *new) 1127 { 1128 struct thread_struct *new_thread, *old_thread; 1129 struct task_struct *last; 1130 #ifdef CONFIG_PPC_BOOK3S_64 1131 struct ppc64_tlb_batch *batch; 1132 #endif 1133 1134 new_thread = &new->thread; 1135 old_thread = ¤t->thread; 1136 1137 WARN_ON(!irqs_disabled()); 1138 1139 #ifdef CONFIG_PPC_BOOK3S_64 1140 batch = this_cpu_ptr(&ppc64_tlb_batch); 1141 if (batch->active) { 1142 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1143 if (batch->index) 1144 __flush_tlb_pending(batch); 1145 batch->active = 0; 1146 } 1147 #endif /* CONFIG_PPC_BOOK3S_64 */ 1148 1149 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1150 switch_booke_debug_regs(&new->thread.debug); 1151 #else 1152 /* 1153 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1154 * schedule DABR 1155 */ 1156 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1157 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1158 __set_breakpoint(&new->thread.hw_brk); 1159 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1160 #endif 1161 1162 /* 1163 * We need to save SPRs before treclaim/trecheckpoint as these will 1164 * change a number of them. 1165 */ 1166 save_sprs(&prev->thread); 1167 1168 /* Save FPU, Altivec, VSX and SPE state */ 1169 giveup_all(prev); 1170 1171 __switch_to_tm(prev, new); 1172 1173 if (!radix_enabled()) { 1174 /* 1175 * We can't take a PMU exception inside _switch() since there 1176 * is a window where the kernel stack SLB and the kernel stack 1177 * are out of sync. Hard disable here. 1178 */ 1179 hard_irq_disable(); 1180 } 1181 1182 /* 1183 * Call restore_sprs() before calling _switch(). If we move it after 1184 * _switch() then we miss out on calling it for new tasks. The reason 1185 * for this is we manually create a stack frame for new tasks that 1186 * directly returns through ret_from_fork() or 1187 * ret_from_kernel_thread(). See copy_thread() for details. 1188 */ 1189 restore_sprs(old_thread, new_thread); 1190 1191 last = _switch(old_thread, new_thread); 1192 1193 #ifdef CONFIG_PPC_BOOK3S_64 1194 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1195 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1196 batch = this_cpu_ptr(&ppc64_tlb_batch); 1197 batch->active = 1; 1198 } 1199 1200 if (current->thread.regs) { 1201 restore_math(current->thread.regs); 1202 1203 /* 1204 * The copy-paste buffer can only store into foreign real 1205 * addresses, so unprivileged processes can not see the 1206 * data or use it in any way unless they have foreign real 1207 * mappings. If the new process has the foreign real address 1208 * mappings, we must issue a cp_abort to clear any state and 1209 * prevent snooping, corruption or a covert channel. 1210 */ 1211 if (current->thread.used_vas) 1212 asm volatile(PPC_CP_ABORT); 1213 } 1214 #endif /* CONFIG_PPC_BOOK3S_64 */ 1215 1216 return last; 1217 } 1218 1219 #define NR_INSN_TO_PRINT 16 1220 1221 static void show_instructions(struct pt_regs *regs) 1222 { 1223 int i; 1224 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1225 1226 printk("Instruction dump:"); 1227 1228 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1229 int instr; 1230 1231 if (!(i % 8)) 1232 pr_cont("\n"); 1233 1234 #if !defined(CONFIG_BOOKE) 1235 /* If executing with the IMMU off, adjust pc rather 1236 * than print XXXXXXXX. 1237 */ 1238 if (!(regs->msr & MSR_IR)) 1239 pc = (unsigned long)phys_to_virt(pc); 1240 #endif 1241 1242 if (!__kernel_text_address(pc) || 1243 probe_kernel_address((const void *)pc, instr)) { 1244 pr_cont("XXXXXXXX "); 1245 } else { 1246 if (regs->nip == pc) 1247 pr_cont("<%08x> ", instr); 1248 else 1249 pr_cont("%08x ", instr); 1250 } 1251 1252 pc += sizeof(int); 1253 } 1254 1255 pr_cont("\n"); 1256 } 1257 1258 void show_user_instructions(struct pt_regs *regs) 1259 { 1260 unsigned long pc; 1261 int n = NR_INSN_TO_PRINT; 1262 struct seq_buf s; 1263 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1264 1265 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1266 1267 /* 1268 * Make sure the NIP points at userspace, not kernel text/data or 1269 * elsewhere. 1270 */ 1271 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1272 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1273 current->comm, current->pid); 1274 return; 1275 } 1276 1277 seq_buf_init(&s, buf, sizeof(buf)); 1278 1279 while (n) { 1280 int i; 1281 1282 seq_buf_clear(&s); 1283 1284 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1285 int instr; 1286 1287 if (probe_kernel_address((const void *)pc, instr)) { 1288 seq_buf_printf(&s, "XXXXXXXX "); 1289 continue; 1290 } 1291 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1292 } 1293 1294 if (!seq_buf_has_overflowed(&s)) 1295 pr_info("%s[%d]: code: %s\n", current->comm, 1296 current->pid, s.buffer); 1297 } 1298 } 1299 1300 struct regbit { 1301 unsigned long bit; 1302 const char *name; 1303 }; 1304 1305 static struct regbit msr_bits[] = { 1306 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1307 {MSR_SF, "SF"}, 1308 {MSR_HV, "HV"}, 1309 #endif 1310 {MSR_VEC, "VEC"}, 1311 {MSR_VSX, "VSX"}, 1312 #ifdef CONFIG_BOOKE 1313 {MSR_CE, "CE"}, 1314 #endif 1315 {MSR_EE, "EE"}, 1316 {MSR_PR, "PR"}, 1317 {MSR_FP, "FP"}, 1318 {MSR_ME, "ME"}, 1319 #ifdef CONFIG_BOOKE 1320 {MSR_DE, "DE"}, 1321 #else 1322 {MSR_SE, "SE"}, 1323 {MSR_BE, "BE"}, 1324 #endif 1325 {MSR_IR, "IR"}, 1326 {MSR_DR, "DR"}, 1327 {MSR_PMM, "PMM"}, 1328 #ifndef CONFIG_BOOKE 1329 {MSR_RI, "RI"}, 1330 {MSR_LE, "LE"}, 1331 #endif 1332 {0, NULL} 1333 }; 1334 1335 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1336 { 1337 const char *s = ""; 1338 1339 for (; bits->bit; ++bits) 1340 if (val & bits->bit) { 1341 pr_cont("%s%s", s, bits->name); 1342 s = sep; 1343 } 1344 } 1345 1346 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1347 static struct regbit msr_tm_bits[] = { 1348 {MSR_TS_T, "T"}, 1349 {MSR_TS_S, "S"}, 1350 {MSR_TM, "E"}, 1351 {0, NULL} 1352 }; 1353 1354 static void print_tm_bits(unsigned long val) 1355 { 1356 /* 1357 * This only prints something if at least one of the TM bit is set. 1358 * Inside the TM[], the output means: 1359 * E: Enabled (bit 32) 1360 * S: Suspended (bit 33) 1361 * T: Transactional (bit 34) 1362 */ 1363 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1364 pr_cont(",TM["); 1365 print_bits(val, msr_tm_bits, ""); 1366 pr_cont("]"); 1367 } 1368 } 1369 #else 1370 static void print_tm_bits(unsigned long val) {} 1371 #endif 1372 1373 static void print_msr_bits(unsigned long val) 1374 { 1375 pr_cont("<"); 1376 print_bits(val, msr_bits, ","); 1377 print_tm_bits(val); 1378 pr_cont(">"); 1379 } 1380 1381 #ifdef CONFIG_PPC64 1382 #define REG "%016lx" 1383 #define REGS_PER_LINE 4 1384 #define LAST_VOLATILE 13 1385 #else 1386 #define REG "%08lx" 1387 #define REGS_PER_LINE 8 1388 #define LAST_VOLATILE 12 1389 #endif 1390 1391 void show_regs(struct pt_regs * regs) 1392 { 1393 int i, trap; 1394 1395 show_regs_print_info(KERN_DEFAULT); 1396 1397 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1398 regs->nip, regs->link, regs->ctr); 1399 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1400 regs, regs->trap, print_tainted(), init_utsname()->release); 1401 printk("MSR: "REG" ", regs->msr); 1402 print_msr_bits(regs->msr); 1403 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1404 trap = TRAP(regs); 1405 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1406 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1407 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1408 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1409 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1410 #else 1411 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1412 #endif 1413 #ifdef CONFIG_PPC64 1414 pr_cont("IRQMASK: %lx ", regs->softe); 1415 #endif 1416 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1417 if (MSR_TM_ACTIVE(regs->msr)) 1418 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1419 #endif 1420 1421 for (i = 0; i < 32; i++) { 1422 if ((i % REGS_PER_LINE) == 0) 1423 pr_cont("\nGPR%02d: ", i); 1424 pr_cont(REG " ", regs->gpr[i]); 1425 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1426 break; 1427 } 1428 pr_cont("\n"); 1429 #ifdef CONFIG_KALLSYMS 1430 /* 1431 * Lookup NIP late so we have the best change of getting the 1432 * above info out without failing 1433 */ 1434 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1435 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1436 #endif 1437 show_stack(current, (unsigned long *) regs->gpr[1]); 1438 if (!user_mode(regs)) 1439 show_instructions(regs); 1440 } 1441 1442 void flush_thread(void) 1443 { 1444 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1445 flush_ptrace_hw_breakpoint(current); 1446 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1447 set_debug_reg_defaults(¤t->thread); 1448 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1449 } 1450 1451 #ifdef CONFIG_PPC_BOOK3S_64 1452 void arch_setup_new_exec(void) 1453 { 1454 if (radix_enabled()) 1455 return; 1456 hash__setup_new_exec(); 1457 } 1458 #endif 1459 1460 int set_thread_uses_vas(void) 1461 { 1462 #ifdef CONFIG_PPC_BOOK3S_64 1463 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1464 return -EINVAL; 1465 1466 current->thread.used_vas = 1; 1467 1468 /* 1469 * Even a process that has no foreign real address mapping can use 1470 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1471 * to clear any pending COPY and prevent a covert channel. 1472 * 1473 * __switch_to() will issue CP_ABORT on future context switches. 1474 */ 1475 asm volatile(PPC_CP_ABORT); 1476 1477 #endif /* CONFIG_PPC_BOOK3S_64 */ 1478 return 0; 1479 } 1480 1481 #ifdef CONFIG_PPC64 1482 /** 1483 * Assign a TIDR (thread ID) for task @t and set it in the thread 1484 * structure. For now, we only support setting TIDR for 'current' task. 1485 * 1486 * Since the TID value is a truncated form of it PID, it is possible 1487 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1488 * that 2 threads share the same TID and are waiting, one of the following 1489 * cases will happen: 1490 * 1491 * 1. The correct thread is running, the wrong thread is not 1492 * In this situation, the correct thread is woken and proceeds to pass it's 1493 * condition check. 1494 * 1495 * 2. Neither threads are running 1496 * In this situation, neither thread will be woken. When scheduled, the waiting 1497 * threads will execute either a wait, which will return immediately, followed 1498 * by a condition check, which will pass for the correct thread and fail 1499 * for the wrong thread, or they will execute the condition check immediately. 1500 * 1501 * 3. The wrong thread is running, the correct thread is not 1502 * The wrong thread will be woken, but will fail it's condition check and 1503 * re-execute wait. The correct thread, when scheduled, will execute either 1504 * it's condition check (which will pass), or wait, which returns immediately 1505 * when called the first time after the thread is scheduled, followed by it's 1506 * condition check (which will pass). 1507 * 1508 * 4. Both threads are running 1509 * Both threads will be woken. The wrong thread will fail it's condition check 1510 * and execute another wait, while the correct thread will pass it's condition 1511 * check. 1512 * 1513 * @t: the task to set the thread ID for 1514 */ 1515 int set_thread_tidr(struct task_struct *t) 1516 { 1517 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1518 return -EINVAL; 1519 1520 if (t != current) 1521 return -EINVAL; 1522 1523 if (t->thread.tidr) 1524 return 0; 1525 1526 t->thread.tidr = (u16)task_pid_nr(t); 1527 mtspr(SPRN_TIDR, t->thread.tidr); 1528 1529 return 0; 1530 } 1531 EXPORT_SYMBOL_GPL(set_thread_tidr); 1532 1533 #endif /* CONFIG_PPC64 */ 1534 1535 void 1536 release_thread(struct task_struct *t) 1537 { 1538 } 1539 1540 /* 1541 * this gets called so that we can store coprocessor state into memory and 1542 * copy the current task into the new thread. 1543 */ 1544 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1545 { 1546 flush_all_to_thread(src); 1547 /* 1548 * Flush TM state out so we can copy it. __switch_to_tm() does this 1549 * flush but it removes the checkpointed state from the current CPU and 1550 * transitions the CPU out of TM mode. Hence we need to call 1551 * tm_recheckpoint_new_task() (on the same task) to restore the 1552 * checkpointed state back and the TM mode. 1553 * 1554 * Can't pass dst because it isn't ready. Doesn't matter, passing 1555 * dst is only important for __switch_to() 1556 */ 1557 __switch_to_tm(src, src); 1558 1559 *dst = *src; 1560 1561 clear_task_ebb(dst); 1562 1563 return 0; 1564 } 1565 1566 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1567 { 1568 #ifdef CONFIG_PPC_BOOK3S_64 1569 unsigned long sp_vsid; 1570 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1571 1572 if (radix_enabled()) 1573 return; 1574 1575 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1576 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1577 << SLB_VSID_SHIFT_1T; 1578 else 1579 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1580 << SLB_VSID_SHIFT; 1581 sp_vsid |= SLB_VSID_KERNEL | llp; 1582 p->thread.ksp_vsid = sp_vsid; 1583 #endif 1584 } 1585 1586 /* 1587 * Copy a thread.. 1588 */ 1589 1590 /* 1591 * Copy architecture-specific thread state 1592 */ 1593 int copy_thread_tls(unsigned long clone_flags, unsigned long usp, 1594 unsigned long kthread_arg, struct task_struct *p, 1595 unsigned long tls) 1596 { 1597 struct pt_regs *childregs, *kregs; 1598 extern void ret_from_fork(void); 1599 extern void ret_from_kernel_thread(void); 1600 void (*f)(void); 1601 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1602 struct thread_info *ti = task_thread_info(p); 1603 1604 klp_init_thread_info(p); 1605 1606 /* Copy registers */ 1607 sp -= sizeof(struct pt_regs); 1608 childregs = (struct pt_regs *) sp; 1609 if (unlikely(p->flags & PF_KTHREAD)) { 1610 /* kernel thread */ 1611 memset(childregs, 0, sizeof(struct pt_regs)); 1612 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1613 /* function */ 1614 if (usp) 1615 childregs->gpr[14] = ppc_function_entry((void *)usp); 1616 #ifdef CONFIG_PPC64 1617 clear_tsk_thread_flag(p, TIF_32BIT); 1618 childregs->softe = IRQS_ENABLED; 1619 #endif 1620 childregs->gpr[15] = kthread_arg; 1621 p->thread.regs = NULL; /* no user register state */ 1622 ti->flags |= _TIF_RESTOREALL; 1623 f = ret_from_kernel_thread; 1624 } else { 1625 /* user thread */ 1626 struct pt_regs *regs = current_pt_regs(); 1627 CHECK_FULL_REGS(regs); 1628 *childregs = *regs; 1629 if (usp) 1630 childregs->gpr[1] = usp; 1631 p->thread.regs = childregs; 1632 childregs->gpr[3] = 0; /* Result from fork() */ 1633 if (clone_flags & CLONE_SETTLS) { 1634 #ifdef CONFIG_PPC64 1635 if (!is_32bit_task()) 1636 childregs->gpr[13] = tls; 1637 else 1638 #endif 1639 childregs->gpr[2] = tls; 1640 } 1641 1642 f = ret_from_fork; 1643 } 1644 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1645 sp -= STACK_FRAME_OVERHEAD; 1646 1647 /* 1648 * The way this works is that at some point in the future 1649 * some task will call _switch to switch to the new task. 1650 * That will pop off the stack frame created below and start 1651 * the new task running at ret_from_fork. The new task will 1652 * do some house keeping and then return from the fork or clone 1653 * system call, using the stack frame created above. 1654 */ 1655 ((unsigned long *)sp)[0] = 0; 1656 sp -= sizeof(struct pt_regs); 1657 kregs = (struct pt_regs *) sp; 1658 sp -= STACK_FRAME_OVERHEAD; 1659 p->thread.ksp = sp; 1660 #ifdef CONFIG_PPC32 1661 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1662 #endif 1663 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1664 p->thread.ptrace_bps[0] = NULL; 1665 #endif 1666 1667 p->thread.fp_save_area = NULL; 1668 #ifdef CONFIG_ALTIVEC 1669 p->thread.vr_save_area = NULL; 1670 #endif 1671 1672 setup_ksp_vsid(p, sp); 1673 1674 #ifdef CONFIG_PPC64 1675 if (cpu_has_feature(CPU_FTR_DSCR)) { 1676 p->thread.dscr_inherit = current->thread.dscr_inherit; 1677 p->thread.dscr = mfspr(SPRN_DSCR); 1678 } 1679 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1680 childregs->ppr = DEFAULT_PPR; 1681 1682 p->thread.tidr = 0; 1683 #endif 1684 kregs->nip = ppc_function_entry(f); 1685 return 0; 1686 } 1687 1688 void preload_new_slb_context(unsigned long start, unsigned long sp); 1689 1690 /* 1691 * Set up a thread for executing a new program 1692 */ 1693 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1694 { 1695 #ifdef CONFIG_PPC64 1696 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1697 1698 #ifdef CONFIG_PPC_BOOK3S_64 1699 if (!radix_enabled()) 1700 preload_new_slb_context(start, sp); 1701 #endif 1702 #endif 1703 1704 /* 1705 * If we exec out of a kernel thread then thread.regs will not be 1706 * set. Do it now. 1707 */ 1708 if (!current->thread.regs) { 1709 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1710 current->thread.regs = regs - 1; 1711 } 1712 1713 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1714 /* 1715 * Clear any transactional state, we're exec()ing. The cause is 1716 * not important as there will never be a recheckpoint so it's not 1717 * user visible. 1718 */ 1719 if (MSR_TM_SUSPENDED(mfmsr())) 1720 tm_reclaim_current(0); 1721 #endif 1722 1723 memset(regs->gpr, 0, sizeof(regs->gpr)); 1724 regs->ctr = 0; 1725 regs->link = 0; 1726 regs->xer = 0; 1727 regs->ccr = 0; 1728 regs->gpr[1] = sp; 1729 1730 /* 1731 * We have just cleared all the nonvolatile GPRs, so make 1732 * FULL_REGS(regs) return true. This is necessary to allow 1733 * ptrace to examine the thread immediately after exec. 1734 */ 1735 regs->trap &= ~1UL; 1736 1737 #ifdef CONFIG_PPC32 1738 regs->mq = 0; 1739 regs->nip = start; 1740 regs->msr = MSR_USER; 1741 #else 1742 if (!is_32bit_task()) { 1743 unsigned long entry; 1744 1745 if (is_elf2_task()) { 1746 /* Look ma, no function descriptors! */ 1747 entry = start; 1748 1749 /* 1750 * Ulrich says: 1751 * The latest iteration of the ABI requires that when 1752 * calling a function (at its global entry point), 1753 * the caller must ensure r12 holds the entry point 1754 * address (so that the function can quickly 1755 * establish addressability). 1756 */ 1757 regs->gpr[12] = start; 1758 /* Make sure that's restored on entry to userspace. */ 1759 set_thread_flag(TIF_RESTOREALL); 1760 } else { 1761 unsigned long toc; 1762 1763 /* start is a relocated pointer to the function 1764 * descriptor for the elf _start routine. The first 1765 * entry in the function descriptor is the entry 1766 * address of _start and the second entry is the TOC 1767 * value we need to use. 1768 */ 1769 __get_user(entry, (unsigned long __user *)start); 1770 __get_user(toc, (unsigned long __user *)start+1); 1771 1772 /* Check whether the e_entry function descriptor entries 1773 * need to be relocated before we can use them. 1774 */ 1775 if (load_addr != 0) { 1776 entry += load_addr; 1777 toc += load_addr; 1778 } 1779 regs->gpr[2] = toc; 1780 } 1781 regs->nip = entry; 1782 regs->msr = MSR_USER64; 1783 } else { 1784 regs->nip = start; 1785 regs->gpr[2] = 0; 1786 regs->msr = MSR_USER32; 1787 } 1788 #endif 1789 #ifdef CONFIG_VSX 1790 current->thread.used_vsr = 0; 1791 #endif 1792 current->thread.load_slb = 0; 1793 current->thread.load_fp = 0; 1794 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1795 current->thread.fp_save_area = NULL; 1796 #ifdef CONFIG_ALTIVEC 1797 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1798 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1799 current->thread.vr_save_area = NULL; 1800 current->thread.vrsave = 0; 1801 current->thread.used_vr = 0; 1802 current->thread.load_vec = 0; 1803 #endif /* CONFIG_ALTIVEC */ 1804 #ifdef CONFIG_SPE 1805 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1806 current->thread.acc = 0; 1807 current->thread.spefscr = 0; 1808 current->thread.used_spe = 0; 1809 #endif /* CONFIG_SPE */ 1810 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1811 current->thread.tm_tfhar = 0; 1812 current->thread.tm_texasr = 0; 1813 current->thread.tm_tfiar = 0; 1814 current->thread.load_tm = 0; 1815 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1816 1817 thread_pkey_regs_init(¤t->thread); 1818 } 1819 EXPORT_SYMBOL(start_thread); 1820 1821 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1822 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1823 1824 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1825 { 1826 struct pt_regs *regs = tsk->thread.regs; 1827 1828 /* This is a bit hairy. If we are an SPE enabled processor 1829 * (have embedded fp) we store the IEEE exception enable flags in 1830 * fpexc_mode. fpexc_mode is also used for setting FP exception 1831 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1832 if (val & PR_FP_EXC_SW_ENABLE) { 1833 #ifdef CONFIG_SPE 1834 if (cpu_has_feature(CPU_FTR_SPE)) { 1835 /* 1836 * When the sticky exception bits are set 1837 * directly by userspace, it must call prctl 1838 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1839 * in the existing prctl settings) or 1840 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1841 * the bits being set). <fenv.h> functions 1842 * saving and restoring the whole 1843 * floating-point environment need to do so 1844 * anyway to restore the prctl settings from 1845 * the saved environment. 1846 */ 1847 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1848 tsk->thread.fpexc_mode = val & 1849 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1850 return 0; 1851 } else { 1852 return -EINVAL; 1853 } 1854 #else 1855 return -EINVAL; 1856 #endif 1857 } 1858 1859 /* on a CONFIG_SPE this does not hurt us. The bits that 1860 * __pack_fe01 use do not overlap with bits used for 1861 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1862 * on CONFIG_SPE implementations are reserved so writing to 1863 * them does not change anything */ 1864 if (val > PR_FP_EXC_PRECISE) 1865 return -EINVAL; 1866 tsk->thread.fpexc_mode = __pack_fe01(val); 1867 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1868 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1869 | tsk->thread.fpexc_mode; 1870 return 0; 1871 } 1872 1873 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1874 { 1875 unsigned int val; 1876 1877 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1878 #ifdef CONFIG_SPE 1879 if (cpu_has_feature(CPU_FTR_SPE)) { 1880 /* 1881 * When the sticky exception bits are set 1882 * directly by userspace, it must call prctl 1883 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1884 * in the existing prctl settings) or 1885 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1886 * the bits being set). <fenv.h> functions 1887 * saving and restoring the whole 1888 * floating-point environment need to do so 1889 * anyway to restore the prctl settings from 1890 * the saved environment. 1891 */ 1892 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1893 val = tsk->thread.fpexc_mode; 1894 } else 1895 return -EINVAL; 1896 #else 1897 return -EINVAL; 1898 #endif 1899 else 1900 val = __unpack_fe01(tsk->thread.fpexc_mode); 1901 return put_user(val, (unsigned int __user *) adr); 1902 } 1903 1904 int set_endian(struct task_struct *tsk, unsigned int val) 1905 { 1906 struct pt_regs *regs = tsk->thread.regs; 1907 1908 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1909 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1910 return -EINVAL; 1911 1912 if (regs == NULL) 1913 return -EINVAL; 1914 1915 if (val == PR_ENDIAN_BIG) 1916 regs->msr &= ~MSR_LE; 1917 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1918 regs->msr |= MSR_LE; 1919 else 1920 return -EINVAL; 1921 1922 return 0; 1923 } 1924 1925 int get_endian(struct task_struct *tsk, unsigned long adr) 1926 { 1927 struct pt_regs *regs = tsk->thread.regs; 1928 unsigned int val; 1929 1930 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1931 !cpu_has_feature(CPU_FTR_REAL_LE)) 1932 return -EINVAL; 1933 1934 if (regs == NULL) 1935 return -EINVAL; 1936 1937 if (regs->msr & MSR_LE) { 1938 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1939 val = PR_ENDIAN_LITTLE; 1940 else 1941 val = PR_ENDIAN_PPC_LITTLE; 1942 } else 1943 val = PR_ENDIAN_BIG; 1944 1945 return put_user(val, (unsigned int __user *)adr); 1946 } 1947 1948 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1949 { 1950 tsk->thread.align_ctl = val; 1951 return 0; 1952 } 1953 1954 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1955 { 1956 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1957 } 1958 1959 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1960 unsigned long nbytes) 1961 { 1962 unsigned long stack_page; 1963 unsigned long cpu = task_cpu(p); 1964 1965 stack_page = (unsigned long)hardirq_ctx[cpu]; 1966 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1967 return 1; 1968 1969 stack_page = (unsigned long)softirq_ctx[cpu]; 1970 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1971 return 1; 1972 1973 return 0; 1974 } 1975 1976 int validate_sp(unsigned long sp, struct task_struct *p, 1977 unsigned long nbytes) 1978 { 1979 unsigned long stack_page = (unsigned long)task_stack_page(p); 1980 1981 if (sp < THREAD_SIZE) 1982 return 0; 1983 1984 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1985 return 1; 1986 1987 return valid_irq_stack(sp, p, nbytes); 1988 } 1989 1990 EXPORT_SYMBOL(validate_sp); 1991 1992 static unsigned long __get_wchan(struct task_struct *p) 1993 { 1994 unsigned long ip, sp; 1995 int count = 0; 1996 1997 if (!p || p == current || p->state == TASK_RUNNING) 1998 return 0; 1999 2000 sp = p->thread.ksp; 2001 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2002 return 0; 2003 2004 do { 2005 sp = *(unsigned long *)sp; 2006 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2007 p->state == TASK_RUNNING) 2008 return 0; 2009 if (count > 0) { 2010 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2011 if (!in_sched_functions(ip)) 2012 return ip; 2013 } 2014 } while (count++ < 16); 2015 return 0; 2016 } 2017 2018 unsigned long get_wchan(struct task_struct *p) 2019 { 2020 unsigned long ret; 2021 2022 if (!try_get_task_stack(p)) 2023 return 0; 2024 2025 ret = __get_wchan(p); 2026 2027 put_task_stack(p); 2028 2029 return ret; 2030 } 2031 2032 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2033 2034 void show_stack(struct task_struct *tsk, unsigned long *stack) 2035 { 2036 unsigned long sp, ip, lr, newsp; 2037 int count = 0; 2038 int firstframe = 1; 2039 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2040 unsigned long ret_addr; 2041 int ftrace_idx = 0; 2042 #endif 2043 2044 if (tsk == NULL) 2045 tsk = current; 2046 2047 if (!try_get_task_stack(tsk)) 2048 return; 2049 2050 sp = (unsigned long) stack; 2051 if (sp == 0) { 2052 if (tsk == current) 2053 sp = current_stack_pointer(); 2054 else 2055 sp = tsk->thread.ksp; 2056 } 2057 2058 lr = 0; 2059 printk("Call Trace:\n"); 2060 do { 2061 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2062 break; 2063 2064 stack = (unsigned long *) sp; 2065 newsp = stack[0]; 2066 ip = stack[STACK_FRAME_LR_SAVE]; 2067 if (!firstframe || ip != lr) { 2068 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2069 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2070 ret_addr = ftrace_graph_ret_addr(current, 2071 &ftrace_idx, ip, stack); 2072 if (ret_addr != ip) 2073 pr_cont(" (%pS)", (void *)ret_addr); 2074 #endif 2075 if (firstframe) 2076 pr_cont(" (unreliable)"); 2077 pr_cont("\n"); 2078 } 2079 firstframe = 0; 2080 2081 /* 2082 * See if this is an exception frame. 2083 * We look for the "regshere" marker in the current frame. 2084 */ 2085 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2086 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2087 struct pt_regs *regs = (struct pt_regs *) 2088 (sp + STACK_FRAME_OVERHEAD); 2089 lr = regs->link; 2090 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2091 regs->trap, (void *)regs->nip, (void *)lr); 2092 firstframe = 1; 2093 } 2094 2095 sp = newsp; 2096 } while (count++ < kstack_depth_to_print); 2097 2098 put_task_stack(tsk); 2099 } 2100 2101 #ifdef CONFIG_PPC64 2102 /* Called with hard IRQs off */ 2103 void notrace __ppc64_runlatch_on(void) 2104 { 2105 struct thread_info *ti = current_thread_info(); 2106 2107 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2108 /* 2109 * Least significant bit (RUN) is the only writable bit of 2110 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2111 * earliest ISA where this is the case, but it's convenient. 2112 */ 2113 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2114 } else { 2115 unsigned long ctrl; 2116 2117 /* 2118 * Some architectures (e.g., Cell) have writable fields other 2119 * than RUN, so do the read-modify-write. 2120 */ 2121 ctrl = mfspr(SPRN_CTRLF); 2122 ctrl |= CTRL_RUNLATCH; 2123 mtspr(SPRN_CTRLT, ctrl); 2124 } 2125 2126 ti->local_flags |= _TLF_RUNLATCH; 2127 } 2128 2129 /* Called with hard IRQs off */ 2130 void notrace __ppc64_runlatch_off(void) 2131 { 2132 struct thread_info *ti = current_thread_info(); 2133 2134 ti->local_flags &= ~_TLF_RUNLATCH; 2135 2136 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2137 mtspr(SPRN_CTRLT, 0); 2138 } else { 2139 unsigned long ctrl; 2140 2141 ctrl = mfspr(SPRN_CTRLF); 2142 ctrl &= ~CTRL_RUNLATCH; 2143 mtspr(SPRN_CTRLT, ctrl); 2144 } 2145 } 2146 #endif /* CONFIG_PPC64 */ 2147 2148 unsigned long arch_align_stack(unsigned long sp) 2149 { 2150 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2151 sp -= get_random_int() & ~PAGE_MASK; 2152 return sp & ~0xf; 2153 } 2154 2155 static inline unsigned long brk_rnd(void) 2156 { 2157 unsigned long rnd = 0; 2158 2159 /* 8MB for 32bit, 1GB for 64bit */ 2160 if (is_32bit_task()) 2161 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2162 else 2163 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2164 2165 return rnd << PAGE_SHIFT; 2166 } 2167 2168 unsigned long arch_randomize_brk(struct mm_struct *mm) 2169 { 2170 unsigned long base = mm->brk; 2171 unsigned long ret; 2172 2173 #ifdef CONFIG_PPC_BOOK3S_64 2174 /* 2175 * If we are using 1TB segments and we are allowed to randomise 2176 * the heap, we can put it above 1TB so it is backed by a 1TB 2177 * segment. Otherwise the heap will be in the bottom 1TB 2178 * which always uses 256MB segments and this may result in a 2179 * performance penalty. We don't need to worry about radix. For 2180 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2181 */ 2182 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2183 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2184 #endif 2185 2186 ret = PAGE_ALIGN(base + brk_rnd()); 2187 2188 if (ret < mm->brk) 2189 return mm->brk; 2190 2191 return ret; 2192 } 2193 2194