xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 79a93295)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63 
64 #include <linux/kprobes.h>
65 #include <linux/kdebug.h>
66 
67 #ifdef CONFIG_CC_STACKPROTECTOR
68 #include <linux/stackprotector.h>
69 unsigned long __stack_chk_guard __read_mostly;
70 EXPORT_SYMBOL(__stack_chk_guard);
71 #endif
72 
73 /* Transactional Memory debug */
74 #ifdef TM_DEBUG_SW
75 #define TM_DEBUG(x...) printk(KERN_INFO x)
76 #else
77 #define TM_DEBUG(x...) do { } while(0)
78 #endif
79 
80 extern unsigned long _get_SP(void);
81 
82 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
83 static void check_if_tm_restore_required(struct task_struct *tsk)
84 {
85 	/*
86 	 * If we are saving the current thread's registers, and the
87 	 * thread is in a transactional state, set the TIF_RESTORE_TM
88 	 * bit so that we know to restore the registers before
89 	 * returning to userspace.
90 	 */
91 	if (tsk == current && tsk->thread.regs &&
92 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
93 	    !test_thread_flag(TIF_RESTORE_TM)) {
94 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
95 		set_thread_flag(TIF_RESTORE_TM);
96 	}
97 }
98 
99 static inline bool msr_tm_active(unsigned long msr)
100 {
101 	return MSR_TM_ACTIVE(msr);
102 }
103 #else
104 static inline bool msr_tm_active(unsigned long msr) { return false; }
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107 
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
110 
111 static int __init enable_strict_msr_control(char *str)
112 {
113 	strict_msr_control = true;
114 	pr_info("Enabling strict facility control\n");
115 
116 	return 0;
117 }
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119 
120 unsigned long msr_check_and_set(unsigned long bits)
121 {
122 	unsigned long oldmsr = mfmsr();
123 	unsigned long newmsr;
124 
125 	newmsr = oldmsr | bits;
126 
127 #ifdef CONFIG_VSX
128 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 		newmsr |= MSR_VSX;
130 #endif
131 
132 	if (oldmsr != newmsr)
133 		mtmsr_isync(newmsr);
134 
135 	return newmsr;
136 }
137 
138 void __msr_check_and_clear(unsigned long bits)
139 {
140 	unsigned long oldmsr = mfmsr();
141 	unsigned long newmsr;
142 
143 	newmsr = oldmsr & ~bits;
144 
145 #ifdef CONFIG_VSX
146 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 		newmsr &= ~MSR_VSX;
148 #endif
149 
150 	if (oldmsr != newmsr)
151 		mtmsr_isync(newmsr);
152 }
153 EXPORT_SYMBOL(__msr_check_and_clear);
154 
155 #ifdef CONFIG_PPC_FPU
156 void __giveup_fpu(struct task_struct *tsk)
157 {
158 	unsigned long msr;
159 
160 	save_fpu(tsk);
161 	msr = tsk->thread.regs->msr;
162 	msr &= ~MSR_FP;
163 #ifdef CONFIG_VSX
164 	if (cpu_has_feature(CPU_FTR_VSX))
165 		msr &= ~MSR_VSX;
166 #endif
167 	tsk->thread.regs->msr = msr;
168 }
169 
170 void giveup_fpu(struct task_struct *tsk)
171 {
172 	check_if_tm_restore_required(tsk);
173 
174 	msr_check_and_set(MSR_FP);
175 	__giveup_fpu(tsk);
176 	msr_check_and_clear(MSR_FP);
177 }
178 EXPORT_SYMBOL(giveup_fpu);
179 
180 /*
181  * Make sure the floating-point register state in the
182  * the thread_struct is up to date for task tsk.
183  */
184 void flush_fp_to_thread(struct task_struct *tsk)
185 {
186 	if (tsk->thread.regs) {
187 		/*
188 		 * We need to disable preemption here because if we didn't,
189 		 * another process could get scheduled after the regs->msr
190 		 * test but before we have finished saving the FP registers
191 		 * to the thread_struct.  That process could take over the
192 		 * FPU, and then when we get scheduled again we would store
193 		 * bogus values for the remaining FP registers.
194 		 */
195 		preempt_disable();
196 		if (tsk->thread.regs->msr & MSR_FP) {
197 			/*
198 			 * This should only ever be called for current or
199 			 * for a stopped child process.  Since we save away
200 			 * the FP register state on context switch,
201 			 * there is something wrong if a stopped child appears
202 			 * to still have its FP state in the CPU registers.
203 			 */
204 			BUG_ON(tsk != current);
205 			giveup_fpu(tsk);
206 		}
207 		preempt_enable();
208 	}
209 }
210 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
211 
212 void enable_kernel_fp(void)
213 {
214 	unsigned long cpumsr;
215 
216 	WARN_ON(preemptible());
217 
218 	cpumsr = msr_check_and_set(MSR_FP);
219 
220 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
221 		check_if_tm_restore_required(current);
222 		/*
223 		 * If a thread has already been reclaimed then the
224 		 * checkpointed registers are on the CPU but have definitely
225 		 * been saved by the reclaim code. Don't need to and *cannot*
226 		 * giveup as this would save  to the 'live' structure not the
227 		 * checkpointed structure.
228 		 */
229 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
230 			return;
231 		__giveup_fpu(current);
232 	}
233 }
234 EXPORT_SYMBOL(enable_kernel_fp);
235 
236 static int restore_fp(struct task_struct *tsk) {
237 	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
238 		load_fp_state(&current->thread.fp_state);
239 		current->thread.load_fp++;
240 		return 1;
241 	}
242 	return 0;
243 }
244 #else
245 static int restore_fp(struct task_struct *tsk) { return 0; }
246 #endif /* CONFIG_PPC_FPU */
247 
248 #ifdef CONFIG_ALTIVEC
249 #define loadvec(thr) ((thr).load_vec)
250 
251 static void __giveup_altivec(struct task_struct *tsk)
252 {
253 	unsigned long msr;
254 
255 	save_altivec(tsk);
256 	msr = tsk->thread.regs->msr;
257 	msr &= ~MSR_VEC;
258 #ifdef CONFIG_VSX
259 	if (cpu_has_feature(CPU_FTR_VSX))
260 		msr &= ~MSR_VSX;
261 #endif
262 	tsk->thread.regs->msr = msr;
263 }
264 
265 void giveup_altivec(struct task_struct *tsk)
266 {
267 	check_if_tm_restore_required(tsk);
268 
269 	msr_check_and_set(MSR_VEC);
270 	__giveup_altivec(tsk);
271 	msr_check_and_clear(MSR_VEC);
272 }
273 EXPORT_SYMBOL(giveup_altivec);
274 
275 void enable_kernel_altivec(void)
276 {
277 	unsigned long cpumsr;
278 
279 	WARN_ON(preemptible());
280 
281 	cpumsr = msr_check_and_set(MSR_VEC);
282 
283 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
284 		check_if_tm_restore_required(current);
285 		/*
286 		 * If a thread has already been reclaimed then the
287 		 * checkpointed registers are on the CPU but have definitely
288 		 * been saved by the reclaim code. Don't need to and *cannot*
289 		 * giveup as this would save  to the 'live' structure not the
290 		 * checkpointed structure.
291 		 */
292 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
293 			return;
294 		__giveup_altivec(current);
295 	}
296 }
297 EXPORT_SYMBOL(enable_kernel_altivec);
298 
299 /*
300  * Make sure the VMX/Altivec register state in the
301  * the thread_struct is up to date for task tsk.
302  */
303 void flush_altivec_to_thread(struct task_struct *tsk)
304 {
305 	if (tsk->thread.regs) {
306 		preempt_disable();
307 		if (tsk->thread.regs->msr & MSR_VEC) {
308 			BUG_ON(tsk != current);
309 			giveup_altivec(tsk);
310 		}
311 		preempt_enable();
312 	}
313 }
314 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
315 
316 static int restore_altivec(struct task_struct *tsk)
317 {
318 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
319 		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
320 		load_vr_state(&tsk->thread.vr_state);
321 		tsk->thread.used_vr = 1;
322 		tsk->thread.load_vec++;
323 
324 		return 1;
325 	}
326 	return 0;
327 }
328 #else
329 #define loadvec(thr) 0
330 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
331 #endif /* CONFIG_ALTIVEC */
332 
333 #ifdef CONFIG_VSX
334 static void __giveup_vsx(struct task_struct *tsk)
335 {
336 	if (tsk->thread.regs->msr & MSR_FP)
337 		__giveup_fpu(tsk);
338 	if (tsk->thread.regs->msr & MSR_VEC)
339 		__giveup_altivec(tsk);
340 	tsk->thread.regs->msr &= ~MSR_VSX;
341 }
342 
343 static void giveup_vsx(struct task_struct *tsk)
344 {
345 	check_if_tm_restore_required(tsk);
346 
347 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
348 	__giveup_vsx(tsk);
349 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
350 }
351 
352 static void save_vsx(struct task_struct *tsk)
353 {
354 	if (tsk->thread.regs->msr & MSR_FP)
355 		save_fpu(tsk);
356 	if (tsk->thread.regs->msr & MSR_VEC)
357 		save_altivec(tsk);
358 }
359 
360 void enable_kernel_vsx(void)
361 {
362 	unsigned long cpumsr;
363 
364 	WARN_ON(preemptible());
365 
366 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
367 
368 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
369 		check_if_tm_restore_required(current);
370 		/*
371 		 * If a thread has already been reclaimed then the
372 		 * checkpointed registers are on the CPU but have definitely
373 		 * been saved by the reclaim code. Don't need to and *cannot*
374 		 * giveup as this would save  to the 'live' structure not the
375 		 * checkpointed structure.
376 		 */
377 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
378 			return;
379 		if (current->thread.regs->msr & MSR_FP)
380 			__giveup_fpu(current);
381 		if (current->thread.regs->msr & MSR_VEC)
382 			__giveup_altivec(current);
383 		__giveup_vsx(current);
384 	}
385 }
386 EXPORT_SYMBOL(enable_kernel_vsx);
387 
388 void flush_vsx_to_thread(struct task_struct *tsk)
389 {
390 	if (tsk->thread.regs) {
391 		preempt_disable();
392 		if (tsk->thread.regs->msr & MSR_VSX) {
393 			BUG_ON(tsk != current);
394 			giveup_vsx(tsk);
395 		}
396 		preempt_enable();
397 	}
398 }
399 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
400 
401 static int restore_vsx(struct task_struct *tsk)
402 {
403 	if (cpu_has_feature(CPU_FTR_VSX)) {
404 		tsk->thread.used_vsr = 1;
405 		return 1;
406 	}
407 
408 	return 0;
409 }
410 #else
411 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
412 static inline void save_vsx(struct task_struct *tsk) { }
413 #endif /* CONFIG_VSX */
414 
415 #ifdef CONFIG_SPE
416 void giveup_spe(struct task_struct *tsk)
417 {
418 	check_if_tm_restore_required(tsk);
419 
420 	msr_check_and_set(MSR_SPE);
421 	__giveup_spe(tsk);
422 	msr_check_and_clear(MSR_SPE);
423 }
424 EXPORT_SYMBOL(giveup_spe);
425 
426 void enable_kernel_spe(void)
427 {
428 	WARN_ON(preemptible());
429 
430 	msr_check_and_set(MSR_SPE);
431 
432 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
433 		check_if_tm_restore_required(current);
434 		__giveup_spe(current);
435 	}
436 }
437 EXPORT_SYMBOL(enable_kernel_spe);
438 
439 void flush_spe_to_thread(struct task_struct *tsk)
440 {
441 	if (tsk->thread.regs) {
442 		preempt_disable();
443 		if (tsk->thread.regs->msr & MSR_SPE) {
444 			BUG_ON(tsk != current);
445 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
446 			giveup_spe(tsk);
447 		}
448 		preempt_enable();
449 	}
450 }
451 #endif /* CONFIG_SPE */
452 
453 static unsigned long msr_all_available;
454 
455 static int __init init_msr_all_available(void)
456 {
457 #ifdef CONFIG_PPC_FPU
458 	msr_all_available |= MSR_FP;
459 #endif
460 #ifdef CONFIG_ALTIVEC
461 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
462 		msr_all_available |= MSR_VEC;
463 #endif
464 #ifdef CONFIG_VSX
465 	if (cpu_has_feature(CPU_FTR_VSX))
466 		msr_all_available |= MSR_VSX;
467 #endif
468 #ifdef CONFIG_SPE
469 	if (cpu_has_feature(CPU_FTR_SPE))
470 		msr_all_available |= MSR_SPE;
471 #endif
472 
473 	return 0;
474 }
475 early_initcall(init_msr_all_available);
476 
477 void giveup_all(struct task_struct *tsk)
478 {
479 	unsigned long usermsr;
480 
481 	if (!tsk->thread.regs)
482 		return;
483 
484 	usermsr = tsk->thread.regs->msr;
485 
486 	if ((usermsr & msr_all_available) == 0)
487 		return;
488 
489 	msr_check_and_set(msr_all_available);
490 	check_if_tm_restore_required(tsk);
491 
492 #ifdef CONFIG_PPC_FPU
493 	if (usermsr & MSR_FP)
494 		__giveup_fpu(tsk);
495 #endif
496 #ifdef CONFIG_ALTIVEC
497 	if (usermsr & MSR_VEC)
498 		__giveup_altivec(tsk);
499 #endif
500 #ifdef CONFIG_VSX
501 	if (usermsr & MSR_VSX)
502 		__giveup_vsx(tsk);
503 #endif
504 #ifdef CONFIG_SPE
505 	if (usermsr & MSR_SPE)
506 		__giveup_spe(tsk);
507 #endif
508 
509 	msr_check_and_clear(msr_all_available);
510 }
511 EXPORT_SYMBOL(giveup_all);
512 
513 void restore_math(struct pt_regs *regs)
514 {
515 	unsigned long msr;
516 
517 	if (!msr_tm_active(regs->msr) &&
518 		!current->thread.load_fp && !loadvec(current->thread))
519 		return;
520 
521 	msr = regs->msr;
522 	msr_check_and_set(msr_all_available);
523 
524 	/*
525 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
526 	 * indicates that the registers are hot
527 	 */
528 	if ((!(msr & MSR_FP)) && restore_fp(current))
529 		msr |= MSR_FP | current->thread.fpexc_mode;
530 
531 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
532 		msr |= MSR_VEC;
533 
534 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
535 			restore_vsx(current)) {
536 		msr |= MSR_VSX;
537 	}
538 
539 	msr_check_and_clear(msr_all_available);
540 
541 	regs->msr = msr;
542 }
543 
544 void save_all(struct task_struct *tsk)
545 {
546 	unsigned long usermsr;
547 
548 	if (!tsk->thread.regs)
549 		return;
550 
551 	usermsr = tsk->thread.regs->msr;
552 
553 	if ((usermsr & msr_all_available) == 0)
554 		return;
555 
556 	msr_check_and_set(msr_all_available);
557 
558 	/*
559 	 * Saving the way the register space is in hardware, save_vsx boils
560 	 * down to a save_fpu() and save_altivec()
561 	 */
562 	if (usermsr & MSR_VSX) {
563 		save_vsx(tsk);
564 	} else {
565 		if (usermsr & MSR_FP)
566 			save_fpu(tsk);
567 
568 		if (usermsr & MSR_VEC)
569 			save_altivec(tsk);
570 	}
571 
572 	if (usermsr & MSR_SPE)
573 		__giveup_spe(tsk);
574 
575 	msr_check_and_clear(msr_all_available);
576 }
577 
578 void flush_all_to_thread(struct task_struct *tsk)
579 {
580 	if (tsk->thread.regs) {
581 		preempt_disable();
582 		BUG_ON(tsk != current);
583 		save_all(tsk);
584 
585 #ifdef CONFIG_SPE
586 		if (tsk->thread.regs->msr & MSR_SPE)
587 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
588 #endif
589 
590 		preempt_enable();
591 	}
592 }
593 EXPORT_SYMBOL(flush_all_to_thread);
594 
595 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
596 void do_send_trap(struct pt_regs *regs, unsigned long address,
597 		  unsigned long error_code, int signal_code, int breakpt)
598 {
599 	siginfo_t info;
600 
601 	current->thread.trap_nr = signal_code;
602 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
603 			11, SIGSEGV) == NOTIFY_STOP)
604 		return;
605 
606 	/* Deliver the signal to userspace */
607 	info.si_signo = SIGTRAP;
608 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
609 	info.si_code = signal_code;
610 	info.si_addr = (void __user *)address;
611 	force_sig_info(SIGTRAP, &info, current);
612 }
613 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
614 void do_break (struct pt_regs *regs, unsigned long address,
615 		    unsigned long error_code)
616 {
617 	siginfo_t info;
618 
619 	current->thread.trap_nr = TRAP_HWBKPT;
620 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
621 			11, SIGSEGV) == NOTIFY_STOP)
622 		return;
623 
624 	if (debugger_break_match(regs))
625 		return;
626 
627 	/* Clear the breakpoint */
628 	hw_breakpoint_disable();
629 
630 	/* Deliver the signal to userspace */
631 	info.si_signo = SIGTRAP;
632 	info.si_errno = 0;
633 	info.si_code = TRAP_HWBKPT;
634 	info.si_addr = (void __user *)address;
635 	force_sig_info(SIGTRAP, &info, current);
636 }
637 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
638 
639 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
640 
641 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
642 /*
643  * Set the debug registers back to their default "safe" values.
644  */
645 static void set_debug_reg_defaults(struct thread_struct *thread)
646 {
647 	thread->debug.iac1 = thread->debug.iac2 = 0;
648 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
649 	thread->debug.iac3 = thread->debug.iac4 = 0;
650 #endif
651 	thread->debug.dac1 = thread->debug.dac2 = 0;
652 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
653 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
654 #endif
655 	thread->debug.dbcr0 = 0;
656 #ifdef CONFIG_BOOKE
657 	/*
658 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
659 	 */
660 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
661 			DBCR1_IAC3US | DBCR1_IAC4US;
662 	/*
663 	 * Force Data Address Compare User/Supervisor bits to be User-only
664 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
665 	 */
666 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
667 #else
668 	thread->debug.dbcr1 = 0;
669 #endif
670 }
671 
672 static void prime_debug_regs(struct debug_reg *debug)
673 {
674 	/*
675 	 * We could have inherited MSR_DE from userspace, since
676 	 * it doesn't get cleared on exception entry.  Make sure
677 	 * MSR_DE is clear before we enable any debug events.
678 	 */
679 	mtmsr(mfmsr() & ~MSR_DE);
680 
681 	mtspr(SPRN_IAC1, debug->iac1);
682 	mtspr(SPRN_IAC2, debug->iac2);
683 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
684 	mtspr(SPRN_IAC3, debug->iac3);
685 	mtspr(SPRN_IAC4, debug->iac4);
686 #endif
687 	mtspr(SPRN_DAC1, debug->dac1);
688 	mtspr(SPRN_DAC2, debug->dac2);
689 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
690 	mtspr(SPRN_DVC1, debug->dvc1);
691 	mtspr(SPRN_DVC2, debug->dvc2);
692 #endif
693 	mtspr(SPRN_DBCR0, debug->dbcr0);
694 	mtspr(SPRN_DBCR1, debug->dbcr1);
695 #ifdef CONFIG_BOOKE
696 	mtspr(SPRN_DBCR2, debug->dbcr2);
697 #endif
698 }
699 /*
700  * Unless neither the old or new thread are making use of the
701  * debug registers, set the debug registers from the values
702  * stored in the new thread.
703  */
704 void switch_booke_debug_regs(struct debug_reg *new_debug)
705 {
706 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
707 		|| (new_debug->dbcr0 & DBCR0_IDM))
708 			prime_debug_regs(new_debug);
709 }
710 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
711 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
712 #ifndef CONFIG_HAVE_HW_BREAKPOINT
713 static void set_debug_reg_defaults(struct thread_struct *thread)
714 {
715 	thread->hw_brk.address = 0;
716 	thread->hw_brk.type = 0;
717 	set_breakpoint(&thread->hw_brk);
718 }
719 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
720 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
721 
722 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
723 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
724 {
725 	mtspr(SPRN_DAC1, dabr);
726 #ifdef CONFIG_PPC_47x
727 	isync();
728 #endif
729 	return 0;
730 }
731 #elif defined(CONFIG_PPC_BOOK3S)
732 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
733 {
734 	mtspr(SPRN_DABR, dabr);
735 	if (cpu_has_feature(CPU_FTR_DABRX))
736 		mtspr(SPRN_DABRX, dabrx);
737 	return 0;
738 }
739 #else
740 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
741 {
742 	return -EINVAL;
743 }
744 #endif
745 
746 static inline int set_dabr(struct arch_hw_breakpoint *brk)
747 {
748 	unsigned long dabr, dabrx;
749 
750 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
751 	dabrx = ((brk->type >> 3) & 0x7);
752 
753 	if (ppc_md.set_dabr)
754 		return ppc_md.set_dabr(dabr, dabrx);
755 
756 	return __set_dabr(dabr, dabrx);
757 }
758 
759 static inline int set_dawr(struct arch_hw_breakpoint *brk)
760 {
761 	unsigned long dawr, dawrx, mrd;
762 
763 	dawr = brk->address;
764 
765 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
766 		                   << (63 - 58); //* read/write bits */
767 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
768 		                   << (63 - 59); //* translate */
769 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
770 		                   >> 3; //* PRIM bits */
771 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
772 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
773 	   0b111111=64DW.
774 	   brk->len is in bytes.
775 	   This aligns up to double word size, shifts and does the bias.
776 	*/
777 	mrd = ((brk->len + 7) >> 3) - 1;
778 	dawrx |= (mrd & 0x3f) << (63 - 53);
779 
780 	if (ppc_md.set_dawr)
781 		return ppc_md.set_dawr(dawr, dawrx);
782 	mtspr(SPRN_DAWR, dawr);
783 	mtspr(SPRN_DAWRX, dawrx);
784 	return 0;
785 }
786 
787 void __set_breakpoint(struct arch_hw_breakpoint *brk)
788 {
789 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
790 
791 	if (cpu_has_feature(CPU_FTR_DAWR))
792 		set_dawr(brk);
793 	else
794 		set_dabr(brk);
795 }
796 
797 void set_breakpoint(struct arch_hw_breakpoint *brk)
798 {
799 	preempt_disable();
800 	__set_breakpoint(brk);
801 	preempt_enable();
802 }
803 
804 #ifdef CONFIG_PPC64
805 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
806 #endif
807 
808 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
809 			      struct arch_hw_breakpoint *b)
810 {
811 	if (a->address != b->address)
812 		return false;
813 	if (a->type != b->type)
814 		return false;
815 	if (a->len != b->len)
816 		return false;
817 	return true;
818 }
819 
820 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
821 
822 static inline bool tm_enabled(struct task_struct *tsk)
823 {
824 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
825 }
826 
827 static void tm_reclaim_thread(struct thread_struct *thr,
828 			      struct thread_info *ti, uint8_t cause)
829 {
830 	/*
831 	 * Use the current MSR TM suspended bit to track if we have
832 	 * checkpointed state outstanding.
833 	 * On signal delivery, we'd normally reclaim the checkpointed
834 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
835 	 * This will then directly return to userspace without going
836 	 * through __switch_to(). However, if the stack frame is bad,
837 	 * we need to exit this thread which calls __switch_to() which
838 	 * will again attempt to reclaim the already saved tm state.
839 	 * Hence we need to check that we've not already reclaimed
840 	 * this state.
841 	 * We do this using the current MSR, rather tracking it in
842 	 * some specific thread_struct bit, as it has the additional
843 	 * benefit of checking for a potential TM bad thing exception.
844 	 */
845 	if (!MSR_TM_SUSPENDED(mfmsr()))
846 		return;
847 
848 	giveup_all(container_of(thr, struct task_struct, thread));
849 
850 	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
851 }
852 
853 void tm_reclaim_current(uint8_t cause)
854 {
855 	tm_enable();
856 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
857 }
858 
859 static inline void tm_reclaim_task(struct task_struct *tsk)
860 {
861 	/* We have to work out if we're switching from/to a task that's in the
862 	 * middle of a transaction.
863 	 *
864 	 * In switching we need to maintain a 2nd register state as
865 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
866 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
867 	 * ckvr_state
868 	 *
869 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
870 	 */
871 	struct thread_struct *thr = &tsk->thread;
872 
873 	if (!thr->regs)
874 		return;
875 
876 	if (!MSR_TM_ACTIVE(thr->regs->msr))
877 		goto out_and_saveregs;
878 
879 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
880 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
881 		 tsk->pid, thr->regs->nip,
882 		 thr->regs->ccr, thr->regs->msr,
883 		 thr->regs->trap);
884 
885 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
886 
887 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
888 		 tsk->pid);
889 
890 out_and_saveregs:
891 	/* Always save the regs here, even if a transaction's not active.
892 	 * This context-switches a thread's TM info SPRs.  We do it here to
893 	 * be consistent with the restore path (in recheckpoint) which
894 	 * cannot happen later in _switch().
895 	 */
896 	tm_save_sprs(thr);
897 }
898 
899 extern void __tm_recheckpoint(struct thread_struct *thread,
900 			      unsigned long orig_msr);
901 
902 void tm_recheckpoint(struct thread_struct *thread,
903 		     unsigned long orig_msr)
904 {
905 	unsigned long flags;
906 
907 	if (!(thread->regs->msr & MSR_TM))
908 		return;
909 
910 	/* We really can't be interrupted here as the TEXASR registers can't
911 	 * change and later in the trecheckpoint code, we have a userspace R1.
912 	 * So let's hard disable over this region.
913 	 */
914 	local_irq_save(flags);
915 	hard_irq_disable();
916 
917 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
918 	 * before the trecheckpoint and no explosion occurs.
919 	 */
920 	tm_restore_sprs(thread);
921 
922 	__tm_recheckpoint(thread, orig_msr);
923 
924 	local_irq_restore(flags);
925 }
926 
927 static inline void tm_recheckpoint_new_task(struct task_struct *new)
928 {
929 	unsigned long msr;
930 
931 	if (!cpu_has_feature(CPU_FTR_TM))
932 		return;
933 
934 	/* Recheckpoint the registers of the thread we're about to switch to.
935 	 *
936 	 * If the task was using FP, we non-lazily reload both the original and
937 	 * the speculative FP register states.  This is because the kernel
938 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
939 	 * unavailable later, we are unable to determine which set of FP regs
940 	 * need to be restored.
941 	 */
942 	if (!tm_enabled(new))
943 		return;
944 
945 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
946 		tm_restore_sprs(&new->thread);
947 		return;
948 	}
949 	msr = new->thread.ckpt_regs.msr;
950 	/* Recheckpoint to restore original checkpointed register state. */
951 	TM_DEBUG("*** tm_recheckpoint of pid %d "
952 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
953 		 new->pid, new->thread.regs->msr, msr);
954 
955 	tm_recheckpoint(&new->thread, msr);
956 
957 	/*
958 	 * The checkpointed state has been restored but the live state has
959 	 * not, ensure all the math functionality is turned off to trigger
960 	 * restore_math() to reload.
961 	 */
962 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
963 
964 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
965 		 "(kernel msr 0x%lx)\n",
966 		 new->pid, mfmsr());
967 }
968 
969 static inline void __switch_to_tm(struct task_struct *prev,
970 		struct task_struct *new)
971 {
972 	if (cpu_has_feature(CPU_FTR_TM)) {
973 		if (tm_enabled(prev) || tm_enabled(new))
974 			tm_enable();
975 
976 		if (tm_enabled(prev)) {
977 			prev->thread.load_tm++;
978 			tm_reclaim_task(prev);
979 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
980 				prev->thread.regs->msr &= ~MSR_TM;
981 		}
982 
983 		tm_recheckpoint_new_task(new);
984 	}
985 }
986 
987 /*
988  * This is called if we are on the way out to userspace and the
989  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
990  * FP and/or vector state and does so if necessary.
991  * If userspace is inside a transaction (whether active or
992  * suspended) and FP/VMX/VSX instructions have ever been enabled
993  * inside that transaction, then we have to keep them enabled
994  * and keep the FP/VMX/VSX state loaded while ever the transaction
995  * continues.  The reason is that if we didn't, and subsequently
996  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
997  * we don't know whether it's the same transaction, and thus we
998  * don't know which of the checkpointed state and the transactional
999  * state to use.
1000  */
1001 void restore_tm_state(struct pt_regs *regs)
1002 {
1003 	unsigned long msr_diff;
1004 
1005 	/*
1006 	 * This is the only moment we should clear TIF_RESTORE_TM as
1007 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1008 	 * again, anything else could lead to an incorrect ckpt_msr being
1009 	 * saved and therefore incorrect signal contexts.
1010 	 */
1011 	clear_thread_flag(TIF_RESTORE_TM);
1012 	if (!MSR_TM_ACTIVE(regs->msr))
1013 		return;
1014 
1015 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1016 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1017 
1018 	/* Ensure that restore_math() will restore */
1019 	if (msr_diff & MSR_FP)
1020 		current->thread.load_fp = 1;
1021 #ifdef CONFIG_ALTIVEC
1022 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1023 		current->thread.load_vec = 1;
1024 #endif
1025 	restore_math(regs);
1026 
1027 	regs->msr |= msr_diff;
1028 }
1029 
1030 #else
1031 #define tm_recheckpoint_new_task(new)
1032 #define __switch_to_tm(prev, new)
1033 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1034 
1035 static inline void save_sprs(struct thread_struct *t)
1036 {
1037 #ifdef CONFIG_ALTIVEC
1038 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1039 		t->vrsave = mfspr(SPRN_VRSAVE);
1040 #endif
1041 #ifdef CONFIG_PPC_BOOK3S_64
1042 	if (cpu_has_feature(CPU_FTR_DSCR))
1043 		t->dscr = mfspr(SPRN_DSCR);
1044 
1045 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1046 		t->bescr = mfspr(SPRN_BESCR);
1047 		t->ebbhr = mfspr(SPRN_EBBHR);
1048 		t->ebbrr = mfspr(SPRN_EBBRR);
1049 
1050 		t->fscr = mfspr(SPRN_FSCR);
1051 
1052 		/*
1053 		 * Note that the TAR is not available for use in the kernel.
1054 		 * (To provide this, the TAR should be backed up/restored on
1055 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1056 		 * this should be in pt_regs anyway (for debug).)
1057 		 */
1058 		t->tar = mfspr(SPRN_TAR);
1059 	}
1060 #endif
1061 }
1062 
1063 static inline void restore_sprs(struct thread_struct *old_thread,
1064 				struct thread_struct *new_thread)
1065 {
1066 #ifdef CONFIG_ALTIVEC
1067 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1068 	    old_thread->vrsave != new_thread->vrsave)
1069 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1070 #endif
1071 #ifdef CONFIG_PPC_BOOK3S_64
1072 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1073 		u64 dscr = get_paca()->dscr_default;
1074 		if (new_thread->dscr_inherit)
1075 			dscr = new_thread->dscr;
1076 
1077 		if (old_thread->dscr != dscr)
1078 			mtspr(SPRN_DSCR, dscr);
1079 	}
1080 
1081 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1082 		if (old_thread->bescr != new_thread->bescr)
1083 			mtspr(SPRN_BESCR, new_thread->bescr);
1084 		if (old_thread->ebbhr != new_thread->ebbhr)
1085 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1086 		if (old_thread->ebbrr != new_thread->ebbrr)
1087 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1088 
1089 		if (old_thread->fscr != new_thread->fscr)
1090 			mtspr(SPRN_FSCR, new_thread->fscr);
1091 
1092 		if (old_thread->tar != new_thread->tar)
1093 			mtspr(SPRN_TAR, new_thread->tar);
1094 	}
1095 #endif
1096 }
1097 
1098 struct task_struct *__switch_to(struct task_struct *prev,
1099 	struct task_struct *new)
1100 {
1101 	struct thread_struct *new_thread, *old_thread;
1102 	struct task_struct *last;
1103 #ifdef CONFIG_PPC_BOOK3S_64
1104 	struct ppc64_tlb_batch *batch;
1105 #endif
1106 
1107 	new_thread = &new->thread;
1108 	old_thread = &current->thread;
1109 
1110 	WARN_ON(!irqs_disabled());
1111 
1112 #ifdef CONFIG_PPC64
1113 	/*
1114 	 * Collect processor utilization data per process
1115 	 */
1116 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1117 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1118 		long unsigned start_tb, current_tb;
1119 		start_tb = old_thread->start_tb;
1120 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1121 		old_thread->accum_tb += (current_tb - start_tb);
1122 		new_thread->start_tb = current_tb;
1123 	}
1124 #endif /* CONFIG_PPC64 */
1125 
1126 #ifdef CONFIG_PPC_STD_MMU_64
1127 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1128 	if (batch->active) {
1129 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1130 		if (batch->index)
1131 			__flush_tlb_pending(batch);
1132 		batch->active = 0;
1133 	}
1134 #endif /* CONFIG_PPC_STD_MMU_64 */
1135 
1136 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1137 	switch_booke_debug_regs(&new->thread.debug);
1138 #else
1139 /*
1140  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1141  * schedule DABR
1142  */
1143 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1144 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1145 		__set_breakpoint(&new->thread.hw_brk);
1146 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1147 #endif
1148 
1149 	/*
1150 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1151 	 * change a number of them.
1152 	 */
1153 	save_sprs(&prev->thread);
1154 
1155 	/* Save FPU, Altivec, VSX and SPE state */
1156 	giveup_all(prev);
1157 
1158 	__switch_to_tm(prev, new);
1159 
1160 	/*
1161 	 * We can't take a PMU exception inside _switch() since there is a
1162 	 * window where the kernel stack SLB and the kernel stack are out
1163 	 * of sync. Hard disable here.
1164 	 */
1165 	hard_irq_disable();
1166 
1167 	/*
1168 	 * Call restore_sprs() before calling _switch(). If we move it after
1169 	 * _switch() then we miss out on calling it for new tasks. The reason
1170 	 * for this is we manually create a stack frame for new tasks that
1171 	 * directly returns through ret_from_fork() or
1172 	 * ret_from_kernel_thread(). See copy_thread() for details.
1173 	 */
1174 	restore_sprs(old_thread, new_thread);
1175 
1176 	last = _switch(old_thread, new_thread);
1177 
1178 #ifdef CONFIG_PPC_STD_MMU_64
1179 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1180 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1181 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1182 		batch->active = 1;
1183 	}
1184 
1185 	if (current_thread_info()->task->thread.regs)
1186 		restore_math(current_thread_info()->task->thread.regs);
1187 #endif /* CONFIG_PPC_STD_MMU_64 */
1188 
1189 	return last;
1190 }
1191 
1192 static int instructions_to_print = 16;
1193 
1194 static void show_instructions(struct pt_regs *regs)
1195 {
1196 	int i;
1197 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1198 			sizeof(int));
1199 
1200 	printk("Instruction dump:");
1201 
1202 	for (i = 0; i < instructions_to_print; i++) {
1203 		int instr;
1204 
1205 		if (!(i % 8))
1206 			pr_cont("\n");
1207 
1208 #if !defined(CONFIG_BOOKE)
1209 		/* If executing with the IMMU off, adjust pc rather
1210 		 * than print XXXXXXXX.
1211 		 */
1212 		if (!(regs->msr & MSR_IR))
1213 			pc = (unsigned long)phys_to_virt(pc);
1214 #endif
1215 
1216 		if (!__kernel_text_address(pc) ||
1217 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1218 			pr_cont("XXXXXXXX ");
1219 		} else {
1220 			if (regs->nip == pc)
1221 				pr_cont("<%08x> ", instr);
1222 			else
1223 				pr_cont("%08x ", instr);
1224 		}
1225 
1226 		pc += sizeof(int);
1227 	}
1228 
1229 	pr_cont("\n");
1230 }
1231 
1232 struct regbit {
1233 	unsigned long bit;
1234 	const char *name;
1235 };
1236 
1237 static struct regbit msr_bits[] = {
1238 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1239 	{MSR_SF,	"SF"},
1240 	{MSR_HV,	"HV"},
1241 #endif
1242 	{MSR_VEC,	"VEC"},
1243 	{MSR_VSX,	"VSX"},
1244 #ifdef CONFIG_BOOKE
1245 	{MSR_CE,	"CE"},
1246 #endif
1247 	{MSR_EE,	"EE"},
1248 	{MSR_PR,	"PR"},
1249 	{MSR_FP,	"FP"},
1250 	{MSR_ME,	"ME"},
1251 #ifdef CONFIG_BOOKE
1252 	{MSR_DE,	"DE"},
1253 #else
1254 	{MSR_SE,	"SE"},
1255 	{MSR_BE,	"BE"},
1256 #endif
1257 	{MSR_IR,	"IR"},
1258 	{MSR_DR,	"DR"},
1259 	{MSR_PMM,	"PMM"},
1260 #ifndef CONFIG_BOOKE
1261 	{MSR_RI,	"RI"},
1262 	{MSR_LE,	"LE"},
1263 #endif
1264 	{0,		NULL}
1265 };
1266 
1267 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1268 {
1269 	const char *s = "";
1270 
1271 	for (; bits->bit; ++bits)
1272 		if (val & bits->bit) {
1273 			pr_cont("%s%s", s, bits->name);
1274 			s = sep;
1275 		}
1276 }
1277 
1278 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1279 static struct regbit msr_tm_bits[] = {
1280 	{MSR_TS_T,	"T"},
1281 	{MSR_TS_S,	"S"},
1282 	{MSR_TM,	"E"},
1283 	{0,		NULL}
1284 };
1285 
1286 static void print_tm_bits(unsigned long val)
1287 {
1288 /*
1289  * This only prints something if at least one of the TM bit is set.
1290  * Inside the TM[], the output means:
1291  *   E: Enabled		(bit 32)
1292  *   S: Suspended	(bit 33)
1293  *   T: Transactional	(bit 34)
1294  */
1295 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1296 		pr_cont(",TM[");
1297 		print_bits(val, msr_tm_bits, "");
1298 		pr_cont("]");
1299 	}
1300 }
1301 #else
1302 static void print_tm_bits(unsigned long val) {}
1303 #endif
1304 
1305 static void print_msr_bits(unsigned long val)
1306 {
1307 	pr_cont("<");
1308 	print_bits(val, msr_bits, ",");
1309 	print_tm_bits(val);
1310 	pr_cont(">");
1311 }
1312 
1313 #ifdef CONFIG_PPC64
1314 #define REG		"%016lx"
1315 #define REGS_PER_LINE	4
1316 #define LAST_VOLATILE	13
1317 #else
1318 #define REG		"%08lx"
1319 #define REGS_PER_LINE	8
1320 #define LAST_VOLATILE	12
1321 #endif
1322 
1323 void show_regs(struct pt_regs * regs)
1324 {
1325 	int i, trap;
1326 
1327 	show_regs_print_info(KERN_DEFAULT);
1328 
1329 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1330 	       regs->nip, regs->link, regs->ctr);
1331 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1332 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1333 	printk("MSR: "REG" ", regs->msr);
1334 	print_msr_bits(regs->msr);
1335 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1336 	trap = TRAP(regs);
1337 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1338 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1339 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1340 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1341 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1342 #else
1343 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1344 #endif
1345 #ifdef CONFIG_PPC64
1346 	pr_cont("SOFTE: %ld ", regs->softe);
1347 #endif
1348 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1349 	if (MSR_TM_ACTIVE(regs->msr))
1350 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1351 #endif
1352 
1353 	for (i = 0;  i < 32;  i++) {
1354 		if ((i % REGS_PER_LINE) == 0)
1355 			pr_cont("\nGPR%02d: ", i);
1356 		pr_cont(REG " ", regs->gpr[i]);
1357 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1358 			break;
1359 	}
1360 	pr_cont("\n");
1361 #ifdef CONFIG_KALLSYMS
1362 	/*
1363 	 * Lookup NIP late so we have the best change of getting the
1364 	 * above info out without failing
1365 	 */
1366 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1367 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1368 #endif
1369 	show_stack(current, (unsigned long *) regs->gpr[1]);
1370 	if (!user_mode(regs))
1371 		show_instructions(regs);
1372 }
1373 
1374 void flush_thread(void)
1375 {
1376 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1377 	flush_ptrace_hw_breakpoint(current);
1378 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1379 	set_debug_reg_defaults(&current->thread);
1380 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1381 }
1382 
1383 void
1384 release_thread(struct task_struct *t)
1385 {
1386 }
1387 
1388 /*
1389  * this gets called so that we can store coprocessor state into memory and
1390  * copy the current task into the new thread.
1391  */
1392 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1393 {
1394 	flush_all_to_thread(src);
1395 	/*
1396 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1397 	 * flush but it removes the checkpointed state from the current CPU and
1398 	 * transitions the CPU out of TM mode.  Hence we need to call
1399 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1400 	 * checkpointed state back and the TM mode.
1401 	 *
1402 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1403 	 * dst is only important for __switch_to()
1404 	 */
1405 	__switch_to_tm(src, src);
1406 
1407 	*dst = *src;
1408 
1409 	clear_task_ebb(dst);
1410 
1411 	return 0;
1412 }
1413 
1414 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1415 {
1416 #ifdef CONFIG_PPC_STD_MMU_64
1417 	unsigned long sp_vsid;
1418 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1419 
1420 	if (radix_enabled())
1421 		return;
1422 
1423 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1424 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1425 			<< SLB_VSID_SHIFT_1T;
1426 	else
1427 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1428 			<< SLB_VSID_SHIFT;
1429 	sp_vsid |= SLB_VSID_KERNEL | llp;
1430 	p->thread.ksp_vsid = sp_vsid;
1431 #endif
1432 }
1433 
1434 /*
1435  * Copy a thread..
1436  */
1437 
1438 /*
1439  * Copy architecture-specific thread state
1440  */
1441 int copy_thread(unsigned long clone_flags, unsigned long usp,
1442 		unsigned long kthread_arg, struct task_struct *p)
1443 {
1444 	struct pt_regs *childregs, *kregs;
1445 	extern void ret_from_fork(void);
1446 	extern void ret_from_kernel_thread(void);
1447 	void (*f)(void);
1448 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1449 	struct thread_info *ti = task_thread_info(p);
1450 
1451 	klp_init_thread_info(ti);
1452 
1453 	/* Copy registers */
1454 	sp -= sizeof(struct pt_regs);
1455 	childregs = (struct pt_regs *) sp;
1456 	if (unlikely(p->flags & PF_KTHREAD)) {
1457 		/* kernel thread */
1458 		memset(childregs, 0, sizeof(struct pt_regs));
1459 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1460 		/* function */
1461 		if (usp)
1462 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1463 #ifdef CONFIG_PPC64
1464 		clear_tsk_thread_flag(p, TIF_32BIT);
1465 		childregs->softe = 1;
1466 #endif
1467 		childregs->gpr[15] = kthread_arg;
1468 		p->thread.regs = NULL;	/* no user register state */
1469 		ti->flags |= _TIF_RESTOREALL;
1470 		f = ret_from_kernel_thread;
1471 	} else {
1472 		/* user thread */
1473 		struct pt_regs *regs = current_pt_regs();
1474 		CHECK_FULL_REGS(regs);
1475 		*childregs = *regs;
1476 		if (usp)
1477 			childregs->gpr[1] = usp;
1478 		p->thread.regs = childregs;
1479 		childregs->gpr[3] = 0;  /* Result from fork() */
1480 		if (clone_flags & CLONE_SETTLS) {
1481 #ifdef CONFIG_PPC64
1482 			if (!is_32bit_task())
1483 				childregs->gpr[13] = childregs->gpr[6];
1484 			else
1485 #endif
1486 				childregs->gpr[2] = childregs->gpr[6];
1487 		}
1488 
1489 		f = ret_from_fork;
1490 	}
1491 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1492 	sp -= STACK_FRAME_OVERHEAD;
1493 
1494 	/*
1495 	 * The way this works is that at some point in the future
1496 	 * some task will call _switch to switch to the new task.
1497 	 * That will pop off the stack frame created below and start
1498 	 * the new task running at ret_from_fork.  The new task will
1499 	 * do some house keeping and then return from the fork or clone
1500 	 * system call, using the stack frame created above.
1501 	 */
1502 	((unsigned long *)sp)[0] = 0;
1503 	sp -= sizeof(struct pt_regs);
1504 	kregs = (struct pt_regs *) sp;
1505 	sp -= STACK_FRAME_OVERHEAD;
1506 	p->thread.ksp = sp;
1507 #ifdef CONFIG_PPC32
1508 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1509 				_ALIGN_UP(sizeof(struct thread_info), 16);
1510 #endif
1511 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1512 	p->thread.ptrace_bps[0] = NULL;
1513 #endif
1514 
1515 	p->thread.fp_save_area = NULL;
1516 #ifdef CONFIG_ALTIVEC
1517 	p->thread.vr_save_area = NULL;
1518 #endif
1519 
1520 	setup_ksp_vsid(p, sp);
1521 
1522 #ifdef CONFIG_PPC64
1523 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1524 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1525 		p->thread.dscr = mfspr(SPRN_DSCR);
1526 	}
1527 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1528 		p->thread.ppr = INIT_PPR;
1529 #endif
1530 	kregs->nip = ppc_function_entry(f);
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Set up a thread for executing a new program
1536  */
1537 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1538 {
1539 #ifdef CONFIG_PPC64
1540 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1541 #endif
1542 
1543 	/*
1544 	 * If we exec out of a kernel thread then thread.regs will not be
1545 	 * set.  Do it now.
1546 	 */
1547 	if (!current->thread.regs) {
1548 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1549 		current->thread.regs = regs - 1;
1550 	}
1551 
1552 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1553 	/*
1554 	 * Clear any transactional state, we're exec()ing. The cause is
1555 	 * not important as there will never be a recheckpoint so it's not
1556 	 * user visible.
1557 	 */
1558 	if (MSR_TM_SUSPENDED(mfmsr()))
1559 		tm_reclaim_current(0);
1560 #endif
1561 
1562 	memset(regs->gpr, 0, sizeof(regs->gpr));
1563 	regs->ctr = 0;
1564 	regs->link = 0;
1565 	regs->xer = 0;
1566 	regs->ccr = 0;
1567 	regs->gpr[1] = sp;
1568 
1569 	/*
1570 	 * We have just cleared all the nonvolatile GPRs, so make
1571 	 * FULL_REGS(regs) return true.  This is necessary to allow
1572 	 * ptrace to examine the thread immediately after exec.
1573 	 */
1574 	regs->trap &= ~1UL;
1575 
1576 #ifdef CONFIG_PPC32
1577 	regs->mq = 0;
1578 	regs->nip = start;
1579 	regs->msr = MSR_USER;
1580 #else
1581 	if (!is_32bit_task()) {
1582 		unsigned long entry;
1583 
1584 		if (is_elf2_task()) {
1585 			/* Look ma, no function descriptors! */
1586 			entry = start;
1587 
1588 			/*
1589 			 * Ulrich says:
1590 			 *   The latest iteration of the ABI requires that when
1591 			 *   calling a function (at its global entry point),
1592 			 *   the caller must ensure r12 holds the entry point
1593 			 *   address (so that the function can quickly
1594 			 *   establish addressability).
1595 			 */
1596 			regs->gpr[12] = start;
1597 			/* Make sure that's restored on entry to userspace. */
1598 			set_thread_flag(TIF_RESTOREALL);
1599 		} else {
1600 			unsigned long toc;
1601 
1602 			/* start is a relocated pointer to the function
1603 			 * descriptor for the elf _start routine.  The first
1604 			 * entry in the function descriptor is the entry
1605 			 * address of _start and the second entry is the TOC
1606 			 * value we need to use.
1607 			 */
1608 			__get_user(entry, (unsigned long __user *)start);
1609 			__get_user(toc, (unsigned long __user *)start+1);
1610 
1611 			/* Check whether the e_entry function descriptor entries
1612 			 * need to be relocated before we can use them.
1613 			 */
1614 			if (load_addr != 0) {
1615 				entry += load_addr;
1616 				toc   += load_addr;
1617 			}
1618 			regs->gpr[2] = toc;
1619 		}
1620 		regs->nip = entry;
1621 		regs->msr = MSR_USER64;
1622 	} else {
1623 		regs->nip = start;
1624 		regs->gpr[2] = 0;
1625 		regs->msr = MSR_USER32;
1626 	}
1627 #endif
1628 #ifdef CONFIG_VSX
1629 	current->thread.used_vsr = 0;
1630 #endif
1631 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1632 	current->thread.fp_save_area = NULL;
1633 #ifdef CONFIG_ALTIVEC
1634 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1635 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1636 	current->thread.vr_save_area = NULL;
1637 	current->thread.vrsave = 0;
1638 	current->thread.used_vr = 0;
1639 #endif /* CONFIG_ALTIVEC */
1640 #ifdef CONFIG_SPE
1641 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1642 	current->thread.acc = 0;
1643 	current->thread.spefscr = 0;
1644 	current->thread.used_spe = 0;
1645 #endif /* CONFIG_SPE */
1646 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1647 	current->thread.tm_tfhar = 0;
1648 	current->thread.tm_texasr = 0;
1649 	current->thread.tm_tfiar = 0;
1650 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1651 }
1652 EXPORT_SYMBOL(start_thread);
1653 
1654 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1655 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1656 
1657 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1658 {
1659 	struct pt_regs *regs = tsk->thread.regs;
1660 
1661 	/* This is a bit hairy.  If we are an SPE enabled  processor
1662 	 * (have embedded fp) we store the IEEE exception enable flags in
1663 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1664 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1665 	if (val & PR_FP_EXC_SW_ENABLE) {
1666 #ifdef CONFIG_SPE
1667 		if (cpu_has_feature(CPU_FTR_SPE)) {
1668 			/*
1669 			 * When the sticky exception bits are set
1670 			 * directly by userspace, it must call prctl
1671 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1672 			 * in the existing prctl settings) or
1673 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1674 			 * the bits being set).  <fenv.h> functions
1675 			 * saving and restoring the whole
1676 			 * floating-point environment need to do so
1677 			 * anyway to restore the prctl settings from
1678 			 * the saved environment.
1679 			 */
1680 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1681 			tsk->thread.fpexc_mode = val &
1682 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1683 			return 0;
1684 		} else {
1685 			return -EINVAL;
1686 		}
1687 #else
1688 		return -EINVAL;
1689 #endif
1690 	}
1691 
1692 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1693 	 * __pack_fe01 use do not overlap with bits used for
1694 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1695 	 * on CONFIG_SPE implementations are reserved so writing to
1696 	 * them does not change anything */
1697 	if (val > PR_FP_EXC_PRECISE)
1698 		return -EINVAL;
1699 	tsk->thread.fpexc_mode = __pack_fe01(val);
1700 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1701 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1702 			| tsk->thread.fpexc_mode;
1703 	return 0;
1704 }
1705 
1706 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1707 {
1708 	unsigned int val;
1709 
1710 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1711 #ifdef CONFIG_SPE
1712 		if (cpu_has_feature(CPU_FTR_SPE)) {
1713 			/*
1714 			 * When the sticky exception bits are set
1715 			 * directly by userspace, it must call prctl
1716 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1717 			 * in the existing prctl settings) or
1718 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1719 			 * the bits being set).  <fenv.h> functions
1720 			 * saving and restoring the whole
1721 			 * floating-point environment need to do so
1722 			 * anyway to restore the prctl settings from
1723 			 * the saved environment.
1724 			 */
1725 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1726 			val = tsk->thread.fpexc_mode;
1727 		} else
1728 			return -EINVAL;
1729 #else
1730 		return -EINVAL;
1731 #endif
1732 	else
1733 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1734 	return put_user(val, (unsigned int __user *) adr);
1735 }
1736 
1737 int set_endian(struct task_struct *tsk, unsigned int val)
1738 {
1739 	struct pt_regs *regs = tsk->thread.regs;
1740 
1741 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1742 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1743 		return -EINVAL;
1744 
1745 	if (regs == NULL)
1746 		return -EINVAL;
1747 
1748 	if (val == PR_ENDIAN_BIG)
1749 		regs->msr &= ~MSR_LE;
1750 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1751 		regs->msr |= MSR_LE;
1752 	else
1753 		return -EINVAL;
1754 
1755 	return 0;
1756 }
1757 
1758 int get_endian(struct task_struct *tsk, unsigned long adr)
1759 {
1760 	struct pt_regs *regs = tsk->thread.regs;
1761 	unsigned int val;
1762 
1763 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1764 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1765 		return -EINVAL;
1766 
1767 	if (regs == NULL)
1768 		return -EINVAL;
1769 
1770 	if (regs->msr & MSR_LE) {
1771 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1772 			val = PR_ENDIAN_LITTLE;
1773 		else
1774 			val = PR_ENDIAN_PPC_LITTLE;
1775 	} else
1776 		val = PR_ENDIAN_BIG;
1777 
1778 	return put_user(val, (unsigned int __user *)adr);
1779 }
1780 
1781 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1782 {
1783 	tsk->thread.align_ctl = val;
1784 	return 0;
1785 }
1786 
1787 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1788 {
1789 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1790 }
1791 
1792 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1793 				  unsigned long nbytes)
1794 {
1795 	unsigned long stack_page;
1796 	unsigned long cpu = task_cpu(p);
1797 
1798 	/*
1799 	 * Avoid crashing if the stack has overflowed and corrupted
1800 	 * task_cpu(p), which is in the thread_info struct.
1801 	 */
1802 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1803 		stack_page = (unsigned long) hardirq_ctx[cpu];
1804 		if (sp >= stack_page + sizeof(struct thread_struct)
1805 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1806 			return 1;
1807 
1808 		stack_page = (unsigned long) softirq_ctx[cpu];
1809 		if (sp >= stack_page + sizeof(struct thread_struct)
1810 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1811 			return 1;
1812 	}
1813 	return 0;
1814 }
1815 
1816 int validate_sp(unsigned long sp, struct task_struct *p,
1817 		       unsigned long nbytes)
1818 {
1819 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1820 
1821 	if (sp >= stack_page + sizeof(struct thread_struct)
1822 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1823 		return 1;
1824 
1825 	return valid_irq_stack(sp, p, nbytes);
1826 }
1827 
1828 EXPORT_SYMBOL(validate_sp);
1829 
1830 unsigned long get_wchan(struct task_struct *p)
1831 {
1832 	unsigned long ip, sp;
1833 	int count = 0;
1834 
1835 	if (!p || p == current || p->state == TASK_RUNNING)
1836 		return 0;
1837 
1838 	sp = p->thread.ksp;
1839 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1840 		return 0;
1841 
1842 	do {
1843 		sp = *(unsigned long *)sp;
1844 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1845 			return 0;
1846 		if (count > 0) {
1847 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1848 			if (!in_sched_functions(ip))
1849 				return ip;
1850 		}
1851 	} while (count++ < 16);
1852 	return 0;
1853 }
1854 
1855 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1856 
1857 void show_stack(struct task_struct *tsk, unsigned long *stack)
1858 {
1859 	unsigned long sp, ip, lr, newsp;
1860 	int count = 0;
1861 	int firstframe = 1;
1862 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1863 	int curr_frame = current->curr_ret_stack;
1864 	extern void return_to_handler(void);
1865 	unsigned long rth = (unsigned long)return_to_handler;
1866 #endif
1867 
1868 	sp = (unsigned long) stack;
1869 	if (tsk == NULL)
1870 		tsk = current;
1871 	if (sp == 0) {
1872 		if (tsk == current)
1873 			sp = current_stack_pointer();
1874 		else
1875 			sp = tsk->thread.ksp;
1876 	}
1877 
1878 	lr = 0;
1879 	printk("Call Trace:\n");
1880 	do {
1881 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1882 			return;
1883 
1884 		stack = (unsigned long *) sp;
1885 		newsp = stack[0];
1886 		ip = stack[STACK_FRAME_LR_SAVE];
1887 		if (!firstframe || ip != lr) {
1888 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1889 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1890 			if ((ip == rth) && curr_frame >= 0) {
1891 				pr_cont(" (%pS)",
1892 				       (void *)current->ret_stack[curr_frame].ret);
1893 				curr_frame--;
1894 			}
1895 #endif
1896 			if (firstframe)
1897 				pr_cont(" (unreliable)");
1898 			pr_cont("\n");
1899 		}
1900 		firstframe = 0;
1901 
1902 		/*
1903 		 * See if this is an exception frame.
1904 		 * We look for the "regshere" marker in the current frame.
1905 		 */
1906 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1907 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1908 			struct pt_regs *regs = (struct pt_regs *)
1909 				(sp + STACK_FRAME_OVERHEAD);
1910 			lr = regs->link;
1911 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1912 			       regs->trap, (void *)regs->nip, (void *)lr);
1913 			firstframe = 1;
1914 		}
1915 
1916 		sp = newsp;
1917 	} while (count++ < kstack_depth_to_print);
1918 }
1919 
1920 #ifdef CONFIG_PPC64
1921 /* Called with hard IRQs off */
1922 void notrace __ppc64_runlatch_on(void)
1923 {
1924 	struct thread_info *ti = current_thread_info();
1925 	unsigned long ctrl;
1926 
1927 	ctrl = mfspr(SPRN_CTRLF);
1928 	ctrl |= CTRL_RUNLATCH;
1929 	mtspr(SPRN_CTRLT, ctrl);
1930 
1931 	ti->local_flags |= _TLF_RUNLATCH;
1932 }
1933 
1934 /* Called with hard IRQs off */
1935 void notrace __ppc64_runlatch_off(void)
1936 {
1937 	struct thread_info *ti = current_thread_info();
1938 	unsigned long ctrl;
1939 
1940 	ti->local_flags &= ~_TLF_RUNLATCH;
1941 
1942 	ctrl = mfspr(SPRN_CTRLF);
1943 	ctrl &= ~CTRL_RUNLATCH;
1944 	mtspr(SPRN_CTRLT, ctrl);
1945 }
1946 #endif /* CONFIG_PPC64 */
1947 
1948 unsigned long arch_align_stack(unsigned long sp)
1949 {
1950 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1951 		sp -= get_random_int() & ~PAGE_MASK;
1952 	return sp & ~0xf;
1953 }
1954 
1955 static inline unsigned long brk_rnd(void)
1956 {
1957         unsigned long rnd = 0;
1958 
1959 	/* 8MB for 32bit, 1GB for 64bit */
1960 	if (is_32bit_task())
1961 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1962 	else
1963 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1964 
1965 	return rnd << PAGE_SHIFT;
1966 }
1967 
1968 unsigned long arch_randomize_brk(struct mm_struct *mm)
1969 {
1970 	unsigned long base = mm->brk;
1971 	unsigned long ret;
1972 
1973 #ifdef CONFIG_PPC_STD_MMU_64
1974 	/*
1975 	 * If we are using 1TB segments and we are allowed to randomise
1976 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1977 	 * segment. Otherwise the heap will be in the bottom 1TB
1978 	 * which always uses 256MB segments and this may result in a
1979 	 * performance penalty. We don't need to worry about radix. For
1980 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1981 	 */
1982 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1983 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1984 #endif
1985 
1986 	ret = PAGE_ALIGN(base + brk_rnd());
1987 
1988 	if (ret < mm->brk)
1989 		return mm->brk;
1990 
1991 	return ret;
1992 }
1993 
1994