1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/mqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/utsname.h> 35 #include <linux/ftrace.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/personality.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 41 #include <asm/pgtable.h> 42 #include <asm/uaccess.h> 43 #include <asm/io.h> 44 #include <asm/processor.h> 45 #include <asm/mmu.h> 46 #include <asm/prom.h> 47 #include <asm/machdep.h> 48 #include <asm/time.h> 49 #include <asm/runlatch.h> 50 #include <asm/syscalls.h> 51 #include <asm/switch_to.h> 52 #include <asm/tm.h> 53 #include <asm/debug.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/firmware.h> 56 #endif 57 #include <asm/code-patching.h> 58 #include <linux/kprobes.h> 59 #include <linux/kdebug.h> 60 61 /* Transactional Memory debug */ 62 #ifdef TM_DEBUG_SW 63 #define TM_DEBUG(x...) printk(KERN_INFO x) 64 #else 65 #define TM_DEBUG(x...) do { } while(0) 66 #endif 67 68 extern unsigned long _get_SP(void); 69 70 #ifndef CONFIG_SMP 71 struct task_struct *last_task_used_math = NULL; 72 struct task_struct *last_task_used_altivec = NULL; 73 struct task_struct *last_task_used_vsx = NULL; 74 struct task_struct *last_task_used_spe = NULL; 75 #endif 76 77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 78 void giveup_fpu_maybe_transactional(struct task_struct *tsk) 79 { 80 /* 81 * If we are saving the current thread's registers, and the 82 * thread is in a transactional state, set the TIF_RESTORE_TM 83 * bit so that we know to restore the registers before 84 * returning to userspace. 85 */ 86 if (tsk == current && tsk->thread.regs && 87 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 88 !test_thread_flag(TIF_RESTORE_TM)) { 89 tsk->thread.tm_orig_msr = tsk->thread.regs->msr; 90 set_thread_flag(TIF_RESTORE_TM); 91 } 92 93 giveup_fpu(tsk); 94 } 95 96 void giveup_altivec_maybe_transactional(struct task_struct *tsk) 97 { 98 /* 99 * If we are saving the current thread's registers, and the 100 * thread is in a transactional state, set the TIF_RESTORE_TM 101 * bit so that we know to restore the registers before 102 * returning to userspace. 103 */ 104 if (tsk == current && tsk->thread.regs && 105 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 106 !test_thread_flag(TIF_RESTORE_TM)) { 107 tsk->thread.tm_orig_msr = tsk->thread.regs->msr; 108 set_thread_flag(TIF_RESTORE_TM); 109 } 110 111 giveup_altivec(tsk); 112 } 113 114 #else 115 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk) 116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk) 117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 118 119 #ifdef CONFIG_PPC_FPU 120 /* 121 * Make sure the floating-point register state in the 122 * the thread_struct is up to date for task tsk. 123 */ 124 void flush_fp_to_thread(struct task_struct *tsk) 125 { 126 if (tsk->thread.regs) { 127 /* 128 * We need to disable preemption here because if we didn't, 129 * another process could get scheduled after the regs->msr 130 * test but before we have finished saving the FP registers 131 * to the thread_struct. That process could take over the 132 * FPU, and then when we get scheduled again we would store 133 * bogus values for the remaining FP registers. 134 */ 135 preempt_disable(); 136 if (tsk->thread.regs->msr & MSR_FP) { 137 #ifdef CONFIG_SMP 138 /* 139 * This should only ever be called for current or 140 * for a stopped child process. Since we save away 141 * the FP register state on context switch on SMP, 142 * there is something wrong if a stopped child appears 143 * to still have its FP state in the CPU registers. 144 */ 145 BUG_ON(tsk != current); 146 #endif 147 giveup_fpu_maybe_transactional(tsk); 148 } 149 preempt_enable(); 150 } 151 } 152 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 153 #endif /* CONFIG_PPC_FPU */ 154 155 void enable_kernel_fp(void) 156 { 157 WARN_ON(preemptible()); 158 159 #ifdef CONFIG_SMP 160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 161 giveup_fpu_maybe_transactional(current); 162 else 163 giveup_fpu(NULL); /* just enables FP for kernel */ 164 #else 165 giveup_fpu_maybe_transactional(last_task_used_math); 166 #endif /* CONFIG_SMP */ 167 } 168 EXPORT_SYMBOL(enable_kernel_fp); 169 170 #ifdef CONFIG_ALTIVEC 171 void enable_kernel_altivec(void) 172 { 173 WARN_ON(preemptible()); 174 175 #ifdef CONFIG_SMP 176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 177 giveup_altivec_maybe_transactional(current); 178 else 179 giveup_altivec_notask(); 180 #else 181 giveup_altivec_maybe_transactional(last_task_used_altivec); 182 #endif /* CONFIG_SMP */ 183 } 184 EXPORT_SYMBOL(enable_kernel_altivec); 185 186 /* 187 * Make sure the VMX/Altivec register state in the 188 * the thread_struct is up to date for task tsk. 189 */ 190 void flush_altivec_to_thread(struct task_struct *tsk) 191 { 192 if (tsk->thread.regs) { 193 preempt_disable(); 194 if (tsk->thread.regs->msr & MSR_VEC) { 195 #ifdef CONFIG_SMP 196 BUG_ON(tsk != current); 197 #endif 198 giveup_altivec_maybe_transactional(tsk); 199 } 200 preempt_enable(); 201 } 202 } 203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 204 #endif /* CONFIG_ALTIVEC */ 205 206 #ifdef CONFIG_VSX 207 #if 0 208 /* not currently used, but some crazy RAID module might want to later */ 209 void enable_kernel_vsx(void) 210 { 211 WARN_ON(preemptible()); 212 213 #ifdef CONFIG_SMP 214 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) 215 giveup_vsx(current); 216 else 217 giveup_vsx(NULL); /* just enable vsx for kernel - force */ 218 #else 219 giveup_vsx(last_task_used_vsx); 220 #endif /* CONFIG_SMP */ 221 } 222 EXPORT_SYMBOL(enable_kernel_vsx); 223 #endif 224 225 void giveup_vsx(struct task_struct *tsk) 226 { 227 giveup_fpu_maybe_transactional(tsk); 228 giveup_altivec_maybe_transactional(tsk); 229 __giveup_vsx(tsk); 230 } 231 EXPORT_SYMBOL(giveup_vsx); 232 233 void flush_vsx_to_thread(struct task_struct *tsk) 234 { 235 if (tsk->thread.regs) { 236 preempt_disable(); 237 if (tsk->thread.regs->msr & MSR_VSX) { 238 #ifdef CONFIG_SMP 239 BUG_ON(tsk != current); 240 #endif 241 giveup_vsx(tsk); 242 } 243 preempt_enable(); 244 } 245 } 246 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 247 #endif /* CONFIG_VSX */ 248 249 #ifdef CONFIG_SPE 250 251 void enable_kernel_spe(void) 252 { 253 WARN_ON(preemptible()); 254 255 #ifdef CONFIG_SMP 256 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 257 giveup_spe(current); 258 else 259 giveup_spe(NULL); /* just enable SPE for kernel - force */ 260 #else 261 giveup_spe(last_task_used_spe); 262 #endif /* __SMP __ */ 263 } 264 EXPORT_SYMBOL(enable_kernel_spe); 265 266 void flush_spe_to_thread(struct task_struct *tsk) 267 { 268 if (tsk->thread.regs) { 269 preempt_disable(); 270 if (tsk->thread.regs->msr & MSR_SPE) { 271 #ifdef CONFIG_SMP 272 BUG_ON(tsk != current); 273 #endif 274 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 275 giveup_spe(tsk); 276 } 277 preempt_enable(); 278 } 279 } 280 #endif /* CONFIG_SPE */ 281 282 #ifndef CONFIG_SMP 283 /* 284 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 285 * and the current task has some state, discard it. 286 */ 287 void discard_lazy_cpu_state(void) 288 { 289 preempt_disable(); 290 if (last_task_used_math == current) 291 last_task_used_math = NULL; 292 #ifdef CONFIG_ALTIVEC 293 if (last_task_used_altivec == current) 294 last_task_used_altivec = NULL; 295 #endif /* CONFIG_ALTIVEC */ 296 #ifdef CONFIG_VSX 297 if (last_task_used_vsx == current) 298 last_task_used_vsx = NULL; 299 #endif /* CONFIG_VSX */ 300 #ifdef CONFIG_SPE 301 if (last_task_used_spe == current) 302 last_task_used_spe = NULL; 303 #endif 304 preempt_enable(); 305 } 306 #endif /* CONFIG_SMP */ 307 308 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 309 void do_send_trap(struct pt_regs *regs, unsigned long address, 310 unsigned long error_code, int signal_code, int breakpt) 311 { 312 siginfo_t info; 313 314 current->thread.trap_nr = signal_code; 315 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 316 11, SIGSEGV) == NOTIFY_STOP) 317 return; 318 319 /* Deliver the signal to userspace */ 320 info.si_signo = SIGTRAP; 321 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 322 info.si_code = signal_code; 323 info.si_addr = (void __user *)address; 324 force_sig_info(SIGTRAP, &info, current); 325 } 326 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 327 void do_break (struct pt_regs *regs, unsigned long address, 328 unsigned long error_code) 329 { 330 siginfo_t info; 331 332 current->thread.trap_nr = TRAP_HWBKPT; 333 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 334 11, SIGSEGV) == NOTIFY_STOP) 335 return; 336 337 if (debugger_break_match(regs)) 338 return; 339 340 /* Clear the breakpoint */ 341 hw_breakpoint_disable(); 342 343 /* Deliver the signal to userspace */ 344 info.si_signo = SIGTRAP; 345 info.si_errno = 0; 346 info.si_code = TRAP_HWBKPT; 347 info.si_addr = (void __user *)address; 348 force_sig_info(SIGTRAP, &info, current); 349 } 350 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 351 352 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 353 354 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 355 /* 356 * Set the debug registers back to their default "safe" values. 357 */ 358 static void set_debug_reg_defaults(struct thread_struct *thread) 359 { 360 thread->debug.iac1 = thread->debug.iac2 = 0; 361 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 362 thread->debug.iac3 = thread->debug.iac4 = 0; 363 #endif 364 thread->debug.dac1 = thread->debug.dac2 = 0; 365 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 366 thread->debug.dvc1 = thread->debug.dvc2 = 0; 367 #endif 368 thread->debug.dbcr0 = 0; 369 #ifdef CONFIG_BOOKE 370 /* 371 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 372 */ 373 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 374 DBCR1_IAC3US | DBCR1_IAC4US; 375 /* 376 * Force Data Address Compare User/Supervisor bits to be User-only 377 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 378 */ 379 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 380 #else 381 thread->debug.dbcr1 = 0; 382 #endif 383 } 384 385 static void prime_debug_regs(struct debug_reg *debug) 386 { 387 /* 388 * We could have inherited MSR_DE from userspace, since 389 * it doesn't get cleared on exception entry. Make sure 390 * MSR_DE is clear before we enable any debug events. 391 */ 392 mtmsr(mfmsr() & ~MSR_DE); 393 394 mtspr(SPRN_IAC1, debug->iac1); 395 mtspr(SPRN_IAC2, debug->iac2); 396 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 397 mtspr(SPRN_IAC3, debug->iac3); 398 mtspr(SPRN_IAC4, debug->iac4); 399 #endif 400 mtspr(SPRN_DAC1, debug->dac1); 401 mtspr(SPRN_DAC2, debug->dac2); 402 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 403 mtspr(SPRN_DVC1, debug->dvc1); 404 mtspr(SPRN_DVC2, debug->dvc2); 405 #endif 406 mtspr(SPRN_DBCR0, debug->dbcr0); 407 mtspr(SPRN_DBCR1, debug->dbcr1); 408 #ifdef CONFIG_BOOKE 409 mtspr(SPRN_DBCR2, debug->dbcr2); 410 #endif 411 } 412 /* 413 * Unless neither the old or new thread are making use of the 414 * debug registers, set the debug registers from the values 415 * stored in the new thread. 416 */ 417 void switch_booke_debug_regs(struct debug_reg *new_debug) 418 { 419 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 420 || (new_debug->dbcr0 & DBCR0_IDM)) 421 prime_debug_regs(new_debug); 422 } 423 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 424 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 425 #ifndef CONFIG_HAVE_HW_BREAKPOINT 426 static void set_debug_reg_defaults(struct thread_struct *thread) 427 { 428 thread->hw_brk.address = 0; 429 thread->hw_brk.type = 0; 430 set_breakpoint(&thread->hw_brk); 431 } 432 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 433 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 434 435 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 436 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 437 { 438 mtspr(SPRN_DAC1, dabr); 439 #ifdef CONFIG_PPC_47x 440 isync(); 441 #endif 442 return 0; 443 } 444 #elif defined(CONFIG_PPC_BOOK3S) 445 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 446 { 447 mtspr(SPRN_DABR, dabr); 448 if (cpu_has_feature(CPU_FTR_DABRX)) 449 mtspr(SPRN_DABRX, dabrx); 450 return 0; 451 } 452 #else 453 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 454 { 455 return -EINVAL; 456 } 457 #endif 458 459 static inline int set_dabr(struct arch_hw_breakpoint *brk) 460 { 461 unsigned long dabr, dabrx; 462 463 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 464 dabrx = ((brk->type >> 3) & 0x7); 465 466 if (ppc_md.set_dabr) 467 return ppc_md.set_dabr(dabr, dabrx); 468 469 return __set_dabr(dabr, dabrx); 470 } 471 472 static inline int set_dawr(struct arch_hw_breakpoint *brk) 473 { 474 unsigned long dawr, dawrx, mrd; 475 476 dawr = brk->address; 477 478 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 479 << (63 - 58); //* read/write bits */ 480 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 481 << (63 - 59); //* translate */ 482 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 483 >> 3; //* PRIM bits */ 484 /* dawr length is stored in field MDR bits 48:53. Matches range in 485 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 486 0b111111=64DW. 487 brk->len is in bytes. 488 This aligns up to double word size, shifts and does the bias. 489 */ 490 mrd = ((brk->len + 7) >> 3) - 1; 491 dawrx |= (mrd & 0x3f) << (63 - 53); 492 493 if (ppc_md.set_dawr) 494 return ppc_md.set_dawr(dawr, dawrx); 495 mtspr(SPRN_DAWR, dawr); 496 mtspr(SPRN_DAWRX, dawrx); 497 return 0; 498 } 499 500 void __set_breakpoint(struct arch_hw_breakpoint *brk) 501 { 502 __get_cpu_var(current_brk) = *brk; 503 504 if (cpu_has_feature(CPU_FTR_DAWR)) 505 set_dawr(brk); 506 else 507 set_dabr(brk); 508 } 509 510 void set_breakpoint(struct arch_hw_breakpoint *brk) 511 { 512 preempt_disable(); 513 __set_breakpoint(brk); 514 preempt_enable(); 515 } 516 517 #ifdef CONFIG_PPC64 518 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 519 #endif 520 521 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 522 struct arch_hw_breakpoint *b) 523 { 524 if (a->address != b->address) 525 return false; 526 if (a->type != b->type) 527 return false; 528 if (a->len != b->len) 529 return false; 530 return true; 531 } 532 533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 534 static void tm_reclaim_thread(struct thread_struct *thr, 535 struct thread_info *ti, uint8_t cause) 536 { 537 unsigned long msr_diff = 0; 538 539 /* 540 * If FP/VSX registers have been already saved to the 541 * thread_struct, move them to the transact_fp array. 542 * We clear the TIF_RESTORE_TM bit since after the reclaim 543 * the thread will no longer be transactional. 544 */ 545 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) { 546 msr_diff = thr->tm_orig_msr & ~thr->regs->msr; 547 if (msr_diff & MSR_FP) 548 memcpy(&thr->transact_fp, &thr->fp_state, 549 sizeof(struct thread_fp_state)); 550 if (msr_diff & MSR_VEC) 551 memcpy(&thr->transact_vr, &thr->vr_state, 552 sizeof(struct thread_vr_state)); 553 clear_ti_thread_flag(ti, TIF_RESTORE_TM); 554 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1; 555 } 556 557 tm_reclaim(thr, thr->regs->msr, cause); 558 559 /* Having done the reclaim, we now have the checkpointed 560 * FP/VSX values in the registers. These might be valid 561 * even if we have previously called enable_kernel_fp() or 562 * flush_fp_to_thread(), so update thr->regs->msr to 563 * indicate their current validity. 564 */ 565 thr->regs->msr |= msr_diff; 566 } 567 568 void tm_reclaim_current(uint8_t cause) 569 { 570 tm_enable(); 571 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 572 } 573 574 static inline void tm_reclaim_task(struct task_struct *tsk) 575 { 576 /* We have to work out if we're switching from/to a task that's in the 577 * middle of a transaction. 578 * 579 * In switching we need to maintain a 2nd register state as 580 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 581 * checkpointed (tbegin) state in ckpt_regs and saves the transactional 582 * (current) FPRs into oldtask->thread.transact_fpr[]. 583 * 584 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 585 */ 586 struct thread_struct *thr = &tsk->thread; 587 588 if (!thr->regs) 589 return; 590 591 if (!MSR_TM_ACTIVE(thr->regs->msr)) 592 goto out_and_saveregs; 593 594 /* Stash the original thread MSR, as giveup_fpu et al will 595 * modify it. We hold onto it to see whether the task used 596 * FP & vector regs. If the TIF_RESTORE_TM flag is set, 597 * tm_orig_msr is already set. 598 */ 599 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM)) 600 thr->tm_orig_msr = thr->regs->msr; 601 602 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 603 "ccr=%lx, msr=%lx, trap=%lx)\n", 604 tsk->pid, thr->regs->nip, 605 thr->regs->ccr, thr->regs->msr, 606 thr->regs->trap); 607 608 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 609 610 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 611 tsk->pid); 612 613 out_and_saveregs: 614 /* Always save the regs here, even if a transaction's not active. 615 * This context-switches a thread's TM info SPRs. We do it here to 616 * be consistent with the restore path (in recheckpoint) which 617 * cannot happen later in _switch(). 618 */ 619 tm_save_sprs(thr); 620 } 621 622 extern void __tm_recheckpoint(struct thread_struct *thread, 623 unsigned long orig_msr); 624 625 void tm_recheckpoint(struct thread_struct *thread, 626 unsigned long orig_msr) 627 { 628 unsigned long flags; 629 630 /* We really can't be interrupted here as the TEXASR registers can't 631 * change and later in the trecheckpoint code, we have a userspace R1. 632 * So let's hard disable over this region. 633 */ 634 local_irq_save(flags); 635 hard_irq_disable(); 636 637 /* The TM SPRs are restored here, so that TEXASR.FS can be set 638 * before the trecheckpoint and no explosion occurs. 639 */ 640 tm_restore_sprs(thread); 641 642 __tm_recheckpoint(thread, orig_msr); 643 644 local_irq_restore(flags); 645 } 646 647 static inline void tm_recheckpoint_new_task(struct task_struct *new) 648 { 649 unsigned long msr; 650 651 if (!cpu_has_feature(CPU_FTR_TM)) 652 return; 653 654 /* Recheckpoint the registers of the thread we're about to switch to. 655 * 656 * If the task was using FP, we non-lazily reload both the original and 657 * the speculative FP register states. This is because the kernel 658 * doesn't see if/when a TM rollback occurs, so if we take an FP 659 * unavoidable later, we are unable to determine which set of FP regs 660 * need to be restored. 661 */ 662 if (!new->thread.regs) 663 return; 664 665 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 666 tm_restore_sprs(&new->thread); 667 return; 668 } 669 msr = new->thread.tm_orig_msr; 670 /* Recheckpoint to restore original checkpointed register state. */ 671 TM_DEBUG("*** tm_recheckpoint of pid %d " 672 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 673 new->pid, new->thread.regs->msr, msr); 674 675 /* This loads the checkpointed FP/VEC state, if used */ 676 tm_recheckpoint(&new->thread, msr); 677 678 /* This loads the speculative FP/VEC state, if used */ 679 if (msr & MSR_FP) { 680 do_load_up_transact_fpu(&new->thread); 681 new->thread.regs->msr |= 682 (MSR_FP | new->thread.fpexc_mode); 683 } 684 #ifdef CONFIG_ALTIVEC 685 if (msr & MSR_VEC) { 686 do_load_up_transact_altivec(&new->thread); 687 new->thread.regs->msr |= MSR_VEC; 688 } 689 #endif 690 /* We may as well turn on VSX too since all the state is restored now */ 691 if (msr & MSR_VSX) 692 new->thread.regs->msr |= MSR_VSX; 693 694 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 695 "(kernel msr 0x%lx)\n", 696 new->pid, mfmsr()); 697 } 698 699 static inline void __switch_to_tm(struct task_struct *prev) 700 { 701 if (cpu_has_feature(CPU_FTR_TM)) { 702 tm_enable(); 703 tm_reclaim_task(prev); 704 } 705 } 706 707 /* 708 * This is called if we are on the way out to userspace and the 709 * TIF_RESTORE_TM flag is set. It checks if we need to reload 710 * FP and/or vector state and does so if necessary. 711 * If userspace is inside a transaction (whether active or 712 * suspended) and FP/VMX/VSX instructions have ever been enabled 713 * inside that transaction, then we have to keep them enabled 714 * and keep the FP/VMX/VSX state loaded while ever the transaction 715 * continues. The reason is that if we didn't, and subsequently 716 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 717 * we don't know whether it's the same transaction, and thus we 718 * don't know which of the checkpointed state and the transactional 719 * state to use. 720 */ 721 void restore_tm_state(struct pt_regs *regs) 722 { 723 unsigned long msr_diff; 724 725 clear_thread_flag(TIF_RESTORE_TM); 726 if (!MSR_TM_ACTIVE(regs->msr)) 727 return; 728 729 msr_diff = current->thread.tm_orig_msr & ~regs->msr; 730 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 731 if (msr_diff & MSR_FP) { 732 fp_enable(); 733 load_fp_state(¤t->thread.fp_state); 734 regs->msr |= current->thread.fpexc_mode; 735 } 736 if (msr_diff & MSR_VEC) { 737 vec_enable(); 738 load_vr_state(¤t->thread.vr_state); 739 } 740 regs->msr |= msr_diff; 741 } 742 743 #else 744 #define tm_recheckpoint_new_task(new) 745 #define __switch_to_tm(prev) 746 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 747 748 struct task_struct *__switch_to(struct task_struct *prev, 749 struct task_struct *new) 750 { 751 struct thread_struct *new_thread, *old_thread; 752 struct task_struct *last; 753 #ifdef CONFIG_PPC_BOOK3S_64 754 struct ppc64_tlb_batch *batch; 755 #endif 756 757 WARN_ON(!irqs_disabled()); 758 759 /* Back up the TAR and DSCR across context switches. 760 * Note that the TAR is not available for use in the kernel. (To 761 * provide this, the TAR should be backed up/restored on exception 762 * entry/exit instead, and be in pt_regs. FIXME, this should be in 763 * pt_regs anyway (for debug).) 764 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as 765 * these will change them. 766 */ 767 save_early_sprs(&prev->thread); 768 769 __switch_to_tm(prev); 770 771 #ifdef CONFIG_SMP 772 /* avoid complexity of lazy save/restore of fpu 773 * by just saving it every time we switch out if 774 * this task used the fpu during the last quantum. 775 * 776 * If it tries to use the fpu again, it'll trap and 777 * reload its fp regs. So we don't have to do a restore 778 * every switch, just a save. 779 * -- Cort 780 */ 781 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 782 giveup_fpu(prev); 783 #ifdef CONFIG_ALTIVEC 784 /* 785 * If the previous thread used altivec in the last quantum 786 * (thus changing altivec regs) then save them. 787 * We used to check the VRSAVE register but not all apps 788 * set it, so we don't rely on it now (and in fact we need 789 * to save & restore VSCR even if VRSAVE == 0). -- paulus 790 * 791 * On SMP we always save/restore altivec regs just to avoid the 792 * complexity of changing processors. 793 * -- Cort 794 */ 795 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 796 giveup_altivec(prev); 797 #endif /* CONFIG_ALTIVEC */ 798 #ifdef CONFIG_VSX 799 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) 800 /* VMX and FPU registers are already save here */ 801 __giveup_vsx(prev); 802 #endif /* CONFIG_VSX */ 803 #ifdef CONFIG_SPE 804 /* 805 * If the previous thread used spe in the last quantum 806 * (thus changing spe regs) then save them. 807 * 808 * On SMP we always save/restore spe regs just to avoid the 809 * complexity of changing processors. 810 */ 811 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 812 giveup_spe(prev); 813 #endif /* CONFIG_SPE */ 814 815 #else /* CONFIG_SMP */ 816 #ifdef CONFIG_ALTIVEC 817 /* Avoid the trap. On smp this this never happens since 818 * we don't set last_task_used_altivec -- Cort 819 */ 820 if (new->thread.regs && last_task_used_altivec == new) 821 new->thread.regs->msr |= MSR_VEC; 822 #endif /* CONFIG_ALTIVEC */ 823 #ifdef CONFIG_VSX 824 if (new->thread.regs && last_task_used_vsx == new) 825 new->thread.regs->msr |= MSR_VSX; 826 #endif /* CONFIG_VSX */ 827 #ifdef CONFIG_SPE 828 /* Avoid the trap. On smp this this never happens since 829 * we don't set last_task_used_spe 830 */ 831 if (new->thread.regs && last_task_used_spe == new) 832 new->thread.regs->msr |= MSR_SPE; 833 #endif /* CONFIG_SPE */ 834 835 #endif /* CONFIG_SMP */ 836 837 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 838 switch_booke_debug_regs(&new->thread.debug); 839 #else 840 /* 841 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 842 * schedule DABR 843 */ 844 #ifndef CONFIG_HAVE_HW_BREAKPOINT 845 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk))) 846 __set_breakpoint(&new->thread.hw_brk); 847 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 848 #endif 849 850 851 new_thread = &new->thread; 852 old_thread = ¤t->thread; 853 854 #ifdef CONFIG_PPC64 855 /* 856 * Collect processor utilization data per process 857 */ 858 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 859 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 860 long unsigned start_tb, current_tb; 861 start_tb = old_thread->start_tb; 862 cu->current_tb = current_tb = mfspr(SPRN_PURR); 863 old_thread->accum_tb += (current_tb - start_tb); 864 new_thread->start_tb = current_tb; 865 } 866 #endif /* CONFIG_PPC64 */ 867 868 #ifdef CONFIG_PPC_BOOK3S_64 869 batch = &__get_cpu_var(ppc64_tlb_batch); 870 if (batch->active) { 871 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 872 if (batch->index) 873 __flush_tlb_pending(batch); 874 batch->active = 0; 875 } 876 #endif /* CONFIG_PPC_BOOK3S_64 */ 877 878 /* 879 * We can't take a PMU exception inside _switch() since there is a 880 * window where the kernel stack SLB and the kernel stack are out 881 * of sync. Hard disable here. 882 */ 883 hard_irq_disable(); 884 885 tm_recheckpoint_new_task(new); 886 887 last = _switch(old_thread, new_thread); 888 889 #ifdef CONFIG_PPC_BOOK3S_64 890 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 891 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 892 batch = &__get_cpu_var(ppc64_tlb_batch); 893 batch->active = 1; 894 } 895 #endif /* CONFIG_PPC_BOOK3S_64 */ 896 897 return last; 898 } 899 900 static int instructions_to_print = 16; 901 902 static void show_instructions(struct pt_regs *regs) 903 { 904 int i; 905 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 906 sizeof(int)); 907 908 printk("Instruction dump:"); 909 910 for (i = 0; i < instructions_to_print; i++) { 911 int instr; 912 913 if (!(i % 8)) 914 printk("\n"); 915 916 #if !defined(CONFIG_BOOKE) 917 /* If executing with the IMMU off, adjust pc rather 918 * than print XXXXXXXX. 919 */ 920 if (!(regs->msr & MSR_IR)) 921 pc = (unsigned long)phys_to_virt(pc); 922 #endif 923 924 /* We use __get_user here *only* to avoid an OOPS on a 925 * bad address because the pc *should* only be a 926 * kernel address. 927 */ 928 if (!__kernel_text_address(pc) || 929 __get_user(instr, (unsigned int __user *)pc)) { 930 printk(KERN_CONT "XXXXXXXX "); 931 } else { 932 if (regs->nip == pc) 933 printk(KERN_CONT "<%08x> ", instr); 934 else 935 printk(KERN_CONT "%08x ", instr); 936 } 937 938 pc += sizeof(int); 939 } 940 941 printk("\n"); 942 } 943 944 static struct regbit { 945 unsigned long bit; 946 const char *name; 947 } msr_bits[] = { 948 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 949 {MSR_SF, "SF"}, 950 {MSR_HV, "HV"}, 951 #endif 952 {MSR_VEC, "VEC"}, 953 {MSR_VSX, "VSX"}, 954 #ifdef CONFIG_BOOKE 955 {MSR_CE, "CE"}, 956 #endif 957 {MSR_EE, "EE"}, 958 {MSR_PR, "PR"}, 959 {MSR_FP, "FP"}, 960 {MSR_ME, "ME"}, 961 #ifdef CONFIG_BOOKE 962 {MSR_DE, "DE"}, 963 #else 964 {MSR_SE, "SE"}, 965 {MSR_BE, "BE"}, 966 #endif 967 {MSR_IR, "IR"}, 968 {MSR_DR, "DR"}, 969 {MSR_PMM, "PMM"}, 970 #ifndef CONFIG_BOOKE 971 {MSR_RI, "RI"}, 972 {MSR_LE, "LE"}, 973 #endif 974 {0, NULL} 975 }; 976 977 static void printbits(unsigned long val, struct regbit *bits) 978 { 979 const char *sep = ""; 980 981 printk("<"); 982 for (; bits->bit; ++bits) 983 if (val & bits->bit) { 984 printk("%s%s", sep, bits->name); 985 sep = ","; 986 } 987 printk(">"); 988 } 989 990 #ifdef CONFIG_PPC64 991 #define REG "%016lx" 992 #define REGS_PER_LINE 4 993 #define LAST_VOLATILE 13 994 #else 995 #define REG "%08lx" 996 #define REGS_PER_LINE 8 997 #define LAST_VOLATILE 12 998 #endif 999 1000 void show_regs(struct pt_regs * regs) 1001 { 1002 int i, trap; 1003 1004 show_regs_print_info(KERN_DEFAULT); 1005 1006 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1007 regs->nip, regs->link, regs->ctr); 1008 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1009 regs, regs->trap, print_tainted(), init_utsname()->release); 1010 printk("MSR: "REG" ", regs->msr); 1011 printbits(regs->msr, msr_bits); 1012 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1013 trap = TRAP(regs); 1014 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1015 printk("CFAR: "REG" ", regs->orig_gpr3); 1016 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1017 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1018 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1019 #else 1020 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1021 #endif 1022 #ifdef CONFIG_PPC64 1023 printk("SOFTE: %ld ", regs->softe); 1024 #endif 1025 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1026 if (MSR_TM_ACTIVE(regs->msr)) 1027 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1028 #endif 1029 1030 for (i = 0; i < 32; i++) { 1031 if ((i % REGS_PER_LINE) == 0) 1032 printk("\nGPR%02d: ", i); 1033 printk(REG " ", regs->gpr[i]); 1034 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1035 break; 1036 } 1037 printk("\n"); 1038 #ifdef CONFIG_KALLSYMS 1039 /* 1040 * Lookup NIP late so we have the best change of getting the 1041 * above info out without failing 1042 */ 1043 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1044 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1045 #endif 1046 show_stack(current, (unsigned long *) regs->gpr[1]); 1047 if (!user_mode(regs)) 1048 show_instructions(regs); 1049 } 1050 1051 void exit_thread(void) 1052 { 1053 discard_lazy_cpu_state(); 1054 } 1055 1056 void flush_thread(void) 1057 { 1058 discard_lazy_cpu_state(); 1059 1060 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1061 flush_ptrace_hw_breakpoint(current); 1062 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1063 set_debug_reg_defaults(¤t->thread); 1064 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1065 } 1066 1067 void 1068 release_thread(struct task_struct *t) 1069 { 1070 } 1071 1072 /* 1073 * this gets called so that we can store coprocessor state into memory and 1074 * copy the current task into the new thread. 1075 */ 1076 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1077 { 1078 flush_fp_to_thread(src); 1079 flush_altivec_to_thread(src); 1080 flush_vsx_to_thread(src); 1081 flush_spe_to_thread(src); 1082 /* 1083 * Flush TM state out so we can copy it. __switch_to_tm() does this 1084 * flush but it removes the checkpointed state from the current CPU and 1085 * transitions the CPU out of TM mode. Hence we need to call 1086 * tm_recheckpoint_new_task() (on the same task) to restore the 1087 * checkpointed state back and the TM mode. 1088 */ 1089 __switch_to_tm(src); 1090 tm_recheckpoint_new_task(src); 1091 1092 *dst = *src; 1093 1094 clear_task_ebb(dst); 1095 1096 return 0; 1097 } 1098 1099 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1100 { 1101 #ifdef CONFIG_PPC_STD_MMU_64 1102 unsigned long sp_vsid; 1103 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1104 1105 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1106 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1107 << SLB_VSID_SHIFT_1T; 1108 else 1109 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1110 << SLB_VSID_SHIFT; 1111 sp_vsid |= SLB_VSID_KERNEL | llp; 1112 p->thread.ksp_vsid = sp_vsid; 1113 #endif 1114 } 1115 1116 /* 1117 * Copy a thread.. 1118 */ 1119 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */ 1120 1121 int copy_thread(unsigned long clone_flags, unsigned long usp, 1122 unsigned long arg, struct task_struct *p) 1123 { 1124 struct pt_regs *childregs, *kregs; 1125 extern void ret_from_fork(void); 1126 extern void ret_from_kernel_thread(void); 1127 void (*f)(void); 1128 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1129 1130 /* Copy registers */ 1131 sp -= sizeof(struct pt_regs); 1132 childregs = (struct pt_regs *) sp; 1133 if (unlikely(p->flags & PF_KTHREAD)) { 1134 struct thread_info *ti = (void *)task_stack_page(p); 1135 memset(childregs, 0, sizeof(struct pt_regs)); 1136 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1137 /* function */ 1138 if (usp) 1139 childregs->gpr[14] = ppc_function_entry((void *)usp); 1140 #ifdef CONFIG_PPC64 1141 clear_tsk_thread_flag(p, TIF_32BIT); 1142 childregs->softe = 1; 1143 #endif 1144 childregs->gpr[15] = arg; 1145 p->thread.regs = NULL; /* no user register state */ 1146 ti->flags |= _TIF_RESTOREALL; 1147 f = ret_from_kernel_thread; 1148 } else { 1149 struct pt_regs *regs = current_pt_regs(); 1150 CHECK_FULL_REGS(regs); 1151 *childregs = *regs; 1152 if (usp) 1153 childregs->gpr[1] = usp; 1154 p->thread.regs = childregs; 1155 childregs->gpr[3] = 0; /* Result from fork() */ 1156 if (clone_flags & CLONE_SETTLS) { 1157 #ifdef CONFIG_PPC64 1158 if (!is_32bit_task()) 1159 childregs->gpr[13] = childregs->gpr[6]; 1160 else 1161 #endif 1162 childregs->gpr[2] = childregs->gpr[6]; 1163 } 1164 1165 f = ret_from_fork; 1166 } 1167 sp -= STACK_FRAME_OVERHEAD; 1168 1169 /* 1170 * The way this works is that at some point in the future 1171 * some task will call _switch to switch to the new task. 1172 * That will pop off the stack frame created below and start 1173 * the new task running at ret_from_fork. The new task will 1174 * do some house keeping and then return from the fork or clone 1175 * system call, using the stack frame created above. 1176 */ 1177 ((unsigned long *)sp)[0] = 0; 1178 sp -= sizeof(struct pt_regs); 1179 kregs = (struct pt_regs *) sp; 1180 sp -= STACK_FRAME_OVERHEAD; 1181 p->thread.ksp = sp; 1182 #ifdef CONFIG_PPC32 1183 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1184 _ALIGN_UP(sizeof(struct thread_info), 16); 1185 #endif 1186 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1187 p->thread.ptrace_bps[0] = NULL; 1188 #endif 1189 1190 p->thread.fp_save_area = NULL; 1191 #ifdef CONFIG_ALTIVEC 1192 p->thread.vr_save_area = NULL; 1193 #endif 1194 1195 setup_ksp_vsid(p, sp); 1196 1197 #ifdef CONFIG_PPC64 1198 if (cpu_has_feature(CPU_FTR_DSCR)) { 1199 p->thread.dscr_inherit = current->thread.dscr_inherit; 1200 p->thread.dscr = current->thread.dscr; 1201 } 1202 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1203 p->thread.ppr = INIT_PPR; 1204 #endif 1205 kregs->nip = ppc_function_entry(f); 1206 return 0; 1207 } 1208 1209 /* 1210 * Set up a thread for executing a new program 1211 */ 1212 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1213 { 1214 #ifdef CONFIG_PPC64 1215 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1216 #endif 1217 1218 /* 1219 * If we exec out of a kernel thread then thread.regs will not be 1220 * set. Do it now. 1221 */ 1222 if (!current->thread.regs) { 1223 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1224 current->thread.regs = regs - 1; 1225 } 1226 1227 memset(regs->gpr, 0, sizeof(regs->gpr)); 1228 regs->ctr = 0; 1229 regs->link = 0; 1230 regs->xer = 0; 1231 regs->ccr = 0; 1232 regs->gpr[1] = sp; 1233 1234 /* 1235 * We have just cleared all the nonvolatile GPRs, so make 1236 * FULL_REGS(regs) return true. This is necessary to allow 1237 * ptrace to examine the thread immediately after exec. 1238 */ 1239 regs->trap &= ~1UL; 1240 1241 #ifdef CONFIG_PPC32 1242 regs->mq = 0; 1243 regs->nip = start; 1244 regs->msr = MSR_USER; 1245 #else 1246 if (!is_32bit_task()) { 1247 unsigned long entry; 1248 1249 if (is_elf2_task()) { 1250 /* Look ma, no function descriptors! */ 1251 entry = start; 1252 1253 /* 1254 * Ulrich says: 1255 * The latest iteration of the ABI requires that when 1256 * calling a function (at its global entry point), 1257 * the caller must ensure r12 holds the entry point 1258 * address (so that the function can quickly 1259 * establish addressability). 1260 */ 1261 regs->gpr[12] = start; 1262 /* Make sure that's restored on entry to userspace. */ 1263 set_thread_flag(TIF_RESTOREALL); 1264 } else { 1265 unsigned long toc; 1266 1267 /* start is a relocated pointer to the function 1268 * descriptor for the elf _start routine. The first 1269 * entry in the function descriptor is the entry 1270 * address of _start and the second entry is the TOC 1271 * value we need to use. 1272 */ 1273 __get_user(entry, (unsigned long __user *)start); 1274 __get_user(toc, (unsigned long __user *)start+1); 1275 1276 /* Check whether the e_entry function descriptor entries 1277 * need to be relocated before we can use them. 1278 */ 1279 if (load_addr != 0) { 1280 entry += load_addr; 1281 toc += load_addr; 1282 } 1283 regs->gpr[2] = toc; 1284 } 1285 regs->nip = entry; 1286 regs->msr = MSR_USER64; 1287 } else { 1288 regs->nip = start; 1289 regs->gpr[2] = 0; 1290 regs->msr = MSR_USER32; 1291 } 1292 #endif 1293 discard_lazy_cpu_state(); 1294 #ifdef CONFIG_VSX 1295 current->thread.used_vsr = 0; 1296 #endif 1297 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1298 current->thread.fp_save_area = NULL; 1299 #ifdef CONFIG_ALTIVEC 1300 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1301 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1302 current->thread.vr_save_area = NULL; 1303 current->thread.vrsave = 0; 1304 current->thread.used_vr = 0; 1305 #endif /* CONFIG_ALTIVEC */ 1306 #ifdef CONFIG_SPE 1307 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1308 current->thread.acc = 0; 1309 current->thread.spefscr = 0; 1310 current->thread.used_spe = 0; 1311 #endif /* CONFIG_SPE */ 1312 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1313 if (cpu_has_feature(CPU_FTR_TM)) 1314 regs->msr |= MSR_TM; 1315 current->thread.tm_tfhar = 0; 1316 current->thread.tm_texasr = 0; 1317 current->thread.tm_tfiar = 0; 1318 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1319 } 1320 EXPORT_SYMBOL(start_thread); 1321 1322 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1323 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1324 1325 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1326 { 1327 struct pt_regs *regs = tsk->thread.regs; 1328 1329 /* This is a bit hairy. If we are an SPE enabled processor 1330 * (have embedded fp) we store the IEEE exception enable flags in 1331 * fpexc_mode. fpexc_mode is also used for setting FP exception 1332 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1333 if (val & PR_FP_EXC_SW_ENABLE) { 1334 #ifdef CONFIG_SPE 1335 if (cpu_has_feature(CPU_FTR_SPE)) { 1336 /* 1337 * When the sticky exception bits are set 1338 * directly by userspace, it must call prctl 1339 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1340 * in the existing prctl settings) or 1341 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1342 * the bits being set). <fenv.h> functions 1343 * saving and restoring the whole 1344 * floating-point environment need to do so 1345 * anyway to restore the prctl settings from 1346 * the saved environment. 1347 */ 1348 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1349 tsk->thread.fpexc_mode = val & 1350 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1351 return 0; 1352 } else { 1353 return -EINVAL; 1354 } 1355 #else 1356 return -EINVAL; 1357 #endif 1358 } 1359 1360 /* on a CONFIG_SPE this does not hurt us. The bits that 1361 * __pack_fe01 use do not overlap with bits used for 1362 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1363 * on CONFIG_SPE implementations are reserved so writing to 1364 * them does not change anything */ 1365 if (val > PR_FP_EXC_PRECISE) 1366 return -EINVAL; 1367 tsk->thread.fpexc_mode = __pack_fe01(val); 1368 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1369 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1370 | tsk->thread.fpexc_mode; 1371 return 0; 1372 } 1373 1374 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1375 { 1376 unsigned int val; 1377 1378 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1379 #ifdef CONFIG_SPE 1380 if (cpu_has_feature(CPU_FTR_SPE)) { 1381 /* 1382 * When the sticky exception bits are set 1383 * directly by userspace, it must call prctl 1384 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1385 * in the existing prctl settings) or 1386 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1387 * the bits being set). <fenv.h> functions 1388 * saving and restoring the whole 1389 * floating-point environment need to do so 1390 * anyway to restore the prctl settings from 1391 * the saved environment. 1392 */ 1393 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1394 val = tsk->thread.fpexc_mode; 1395 } else 1396 return -EINVAL; 1397 #else 1398 return -EINVAL; 1399 #endif 1400 else 1401 val = __unpack_fe01(tsk->thread.fpexc_mode); 1402 return put_user(val, (unsigned int __user *) adr); 1403 } 1404 1405 int set_endian(struct task_struct *tsk, unsigned int val) 1406 { 1407 struct pt_regs *regs = tsk->thread.regs; 1408 1409 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1410 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1411 return -EINVAL; 1412 1413 if (regs == NULL) 1414 return -EINVAL; 1415 1416 if (val == PR_ENDIAN_BIG) 1417 regs->msr &= ~MSR_LE; 1418 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1419 regs->msr |= MSR_LE; 1420 else 1421 return -EINVAL; 1422 1423 return 0; 1424 } 1425 1426 int get_endian(struct task_struct *tsk, unsigned long adr) 1427 { 1428 struct pt_regs *regs = tsk->thread.regs; 1429 unsigned int val; 1430 1431 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1432 !cpu_has_feature(CPU_FTR_REAL_LE)) 1433 return -EINVAL; 1434 1435 if (regs == NULL) 1436 return -EINVAL; 1437 1438 if (regs->msr & MSR_LE) { 1439 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1440 val = PR_ENDIAN_LITTLE; 1441 else 1442 val = PR_ENDIAN_PPC_LITTLE; 1443 } else 1444 val = PR_ENDIAN_BIG; 1445 1446 return put_user(val, (unsigned int __user *)adr); 1447 } 1448 1449 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1450 { 1451 tsk->thread.align_ctl = val; 1452 return 0; 1453 } 1454 1455 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1456 { 1457 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1458 } 1459 1460 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1461 unsigned long nbytes) 1462 { 1463 unsigned long stack_page; 1464 unsigned long cpu = task_cpu(p); 1465 1466 /* 1467 * Avoid crashing if the stack has overflowed and corrupted 1468 * task_cpu(p), which is in the thread_info struct. 1469 */ 1470 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1471 stack_page = (unsigned long) hardirq_ctx[cpu]; 1472 if (sp >= stack_page + sizeof(struct thread_struct) 1473 && sp <= stack_page + THREAD_SIZE - nbytes) 1474 return 1; 1475 1476 stack_page = (unsigned long) softirq_ctx[cpu]; 1477 if (sp >= stack_page + sizeof(struct thread_struct) 1478 && sp <= stack_page + THREAD_SIZE - nbytes) 1479 return 1; 1480 } 1481 return 0; 1482 } 1483 1484 int validate_sp(unsigned long sp, struct task_struct *p, 1485 unsigned long nbytes) 1486 { 1487 unsigned long stack_page = (unsigned long)task_stack_page(p); 1488 1489 if (sp >= stack_page + sizeof(struct thread_struct) 1490 && sp <= stack_page + THREAD_SIZE - nbytes) 1491 return 1; 1492 1493 return valid_irq_stack(sp, p, nbytes); 1494 } 1495 1496 EXPORT_SYMBOL(validate_sp); 1497 1498 unsigned long get_wchan(struct task_struct *p) 1499 { 1500 unsigned long ip, sp; 1501 int count = 0; 1502 1503 if (!p || p == current || p->state == TASK_RUNNING) 1504 return 0; 1505 1506 sp = p->thread.ksp; 1507 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1508 return 0; 1509 1510 do { 1511 sp = *(unsigned long *)sp; 1512 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1513 return 0; 1514 if (count > 0) { 1515 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1516 if (!in_sched_functions(ip)) 1517 return ip; 1518 } 1519 } while (count++ < 16); 1520 return 0; 1521 } 1522 1523 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1524 1525 void show_stack(struct task_struct *tsk, unsigned long *stack) 1526 { 1527 unsigned long sp, ip, lr, newsp; 1528 int count = 0; 1529 int firstframe = 1; 1530 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1531 int curr_frame = current->curr_ret_stack; 1532 extern void return_to_handler(void); 1533 unsigned long rth = (unsigned long)return_to_handler; 1534 unsigned long mrth = -1; 1535 #ifdef CONFIG_PPC64 1536 extern void mod_return_to_handler(void); 1537 rth = *(unsigned long *)rth; 1538 mrth = (unsigned long)mod_return_to_handler; 1539 mrth = *(unsigned long *)mrth; 1540 #endif 1541 #endif 1542 1543 sp = (unsigned long) stack; 1544 if (tsk == NULL) 1545 tsk = current; 1546 if (sp == 0) { 1547 if (tsk == current) 1548 sp = current_stack_pointer(); 1549 else 1550 sp = tsk->thread.ksp; 1551 } 1552 1553 lr = 0; 1554 printk("Call Trace:\n"); 1555 do { 1556 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1557 return; 1558 1559 stack = (unsigned long *) sp; 1560 newsp = stack[0]; 1561 ip = stack[STACK_FRAME_LR_SAVE]; 1562 if (!firstframe || ip != lr) { 1563 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1564 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1565 if ((ip == rth || ip == mrth) && curr_frame >= 0) { 1566 printk(" (%pS)", 1567 (void *)current->ret_stack[curr_frame].ret); 1568 curr_frame--; 1569 } 1570 #endif 1571 if (firstframe) 1572 printk(" (unreliable)"); 1573 printk("\n"); 1574 } 1575 firstframe = 0; 1576 1577 /* 1578 * See if this is an exception frame. 1579 * We look for the "regshere" marker in the current frame. 1580 */ 1581 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1582 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1583 struct pt_regs *regs = (struct pt_regs *) 1584 (sp + STACK_FRAME_OVERHEAD); 1585 lr = regs->link; 1586 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1587 regs->trap, (void *)regs->nip, (void *)lr); 1588 firstframe = 1; 1589 } 1590 1591 sp = newsp; 1592 } while (count++ < kstack_depth_to_print); 1593 } 1594 1595 #ifdef CONFIG_PPC64 1596 /* Called with hard IRQs off */ 1597 void notrace __ppc64_runlatch_on(void) 1598 { 1599 struct thread_info *ti = current_thread_info(); 1600 unsigned long ctrl; 1601 1602 ctrl = mfspr(SPRN_CTRLF); 1603 ctrl |= CTRL_RUNLATCH; 1604 mtspr(SPRN_CTRLT, ctrl); 1605 1606 ti->local_flags |= _TLF_RUNLATCH; 1607 } 1608 1609 /* Called with hard IRQs off */ 1610 void notrace __ppc64_runlatch_off(void) 1611 { 1612 struct thread_info *ti = current_thread_info(); 1613 unsigned long ctrl; 1614 1615 ti->local_flags &= ~_TLF_RUNLATCH; 1616 1617 ctrl = mfspr(SPRN_CTRLF); 1618 ctrl &= ~CTRL_RUNLATCH; 1619 mtspr(SPRN_CTRLT, ctrl); 1620 } 1621 #endif /* CONFIG_PPC64 */ 1622 1623 unsigned long arch_align_stack(unsigned long sp) 1624 { 1625 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1626 sp -= get_random_int() & ~PAGE_MASK; 1627 return sp & ~0xf; 1628 } 1629 1630 static inline unsigned long brk_rnd(void) 1631 { 1632 unsigned long rnd = 0; 1633 1634 /* 8MB for 32bit, 1GB for 64bit */ 1635 if (is_32bit_task()) 1636 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT))); 1637 else 1638 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT))); 1639 1640 return rnd << PAGE_SHIFT; 1641 } 1642 1643 unsigned long arch_randomize_brk(struct mm_struct *mm) 1644 { 1645 unsigned long base = mm->brk; 1646 unsigned long ret; 1647 1648 #ifdef CONFIG_PPC_STD_MMU_64 1649 /* 1650 * If we are using 1TB segments and we are allowed to randomise 1651 * the heap, we can put it above 1TB so it is backed by a 1TB 1652 * segment. Otherwise the heap will be in the bottom 1TB 1653 * which always uses 256MB segments and this may result in a 1654 * performance penalty. 1655 */ 1656 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1657 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1658 #endif 1659 1660 ret = PAGE_ALIGN(base + brk_rnd()); 1661 1662 if (ret < mm->brk) 1663 return mm->brk; 1664 1665 return ret; 1666 } 1667 1668 unsigned long randomize_et_dyn(unsigned long base) 1669 { 1670 unsigned long ret = PAGE_ALIGN(base + brk_rnd()); 1671 1672 if (ret < base) 1673 return base; 1674 1675 return ret; 1676 } 1677