1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/module.h> 32 #include <linux/kallsyms.h> 33 #include <linux/mqueue.h> 34 #include <linux/hardirq.h> 35 #include <linux/utsname.h> 36 37 #include <asm/pgtable.h> 38 #include <asm/uaccess.h> 39 #include <asm/system.h> 40 #include <asm/io.h> 41 #include <asm/processor.h> 42 #include <asm/mmu.h> 43 #include <asm/prom.h> 44 #include <asm/machdep.h> 45 #include <asm/time.h> 46 #include <asm/syscalls.h> 47 #ifdef CONFIG_PPC64 48 #include <asm/firmware.h> 49 #endif 50 51 extern unsigned long _get_SP(void); 52 53 #ifndef CONFIG_SMP 54 struct task_struct *last_task_used_math = NULL; 55 struct task_struct *last_task_used_altivec = NULL; 56 struct task_struct *last_task_used_spe = NULL; 57 #endif 58 59 /* 60 * Make sure the floating-point register state in the 61 * the thread_struct is up to date for task tsk. 62 */ 63 void flush_fp_to_thread(struct task_struct *tsk) 64 { 65 if (tsk->thread.regs) { 66 /* 67 * We need to disable preemption here because if we didn't, 68 * another process could get scheduled after the regs->msr 69 * test but before we have finished saving the FP registers 70 * to the thread_struct. That process could take over the 71 * FPU, and then when we get scheduled again we would store 72 * bogus values for the remaining FP registers. 73 */ 74 preempt_disable(); 75 if (tsk->thread.regs->msr & MSR_FP) { 76 #ifdef CONFIG_SMP 77 /* 78 * This should only ever be called for current or 79 * for a stopped child process. Since we save away 80 * the FP register state on context switch on SMP, 81 * there is something wrong if a stopped child appears 82 * to still have its FP state in the CPU registers. 83 */ 84 BUG_ON(tsk != current); 85 #endif 86 giveup_fpu(current); 87 } 88 preempt_enable(); 89 } 90 } 91 92 void enable_kernel_fp(void) 93 { 94 WARN_ON(preemptible()); 95 96 #ifdef CONFIG_SMP 97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 98 giveup_fpu(current); 99 else 100 giveup_fpu(NULL); /* just enables FP for kernel */ 101 #else 102 giveup_fpu(last_task_used_math); 103 #endif /* CONFIG_SMP */ 104 } 105 EXPORT_SYMBOL(enable_kernel_fp); 106 107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) 108 { 109 if (!tsk->thread.regs) 110 return 0; 111 flush_fp_to_thread(current); 112 113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); 114 115 return 1; 116 } 117 118 #ifdef CONFIG_ALTIVEC 119 void enable_kernel_altivec(void) 120 { 121 WARN_ON(preemptible()); 122 123 #ifdef CONFIG_SMP 124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 125 giveup_altivec(current); 126 else 127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 128 #else 129 giveup_altivec(last_task_used_altivec); 130 #endif /* CONFIG_SMP */ 131 } 132 EXPORT_SYMBOL(enable_kernel_altivec); 133 134 /* 135 * Make sure the VMX/Altivec register state in the 136 * the thread_struct is up to date for task tsk. 137 */ 138 void flush_altivec_to_thread(struct task_struct *tsk) 139 { 140 if (tsk->thread.regs) { 141 preempt_disable(); 142 if (tsk->thread.regs->msr & MSR_VEC) { 143 #ifdef CONFIG_SMP 144 BUG_ON(tsk != current); 145 #endif 146 giveup_altivec(current); 147 } 148 preempt_enable(); 149 } 150 } 151 152 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) 153 { 154 flush_altivec_to_thread(current); 155 memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); 156 return 1; 157 } 158 #endif /* CONFIG_ALTIVEC */ 159 160 #ifdef CONFIG_SPE 161 162 void enable_kernel_spe(void) 163 { 164 WARN_ON(preemptible()); 165 166 #ifdef CONFIG_SMP 167 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 168 giveup_spe(current); 169 else 170 giveup_spe(NULL); /* just enable SPE for kernel - force */ 171 #else 172 giveup_spe(last_task_used_spe); 173 #endif /* __SMP __ */ 174 } 175 EXPORT_SYMBOL(enable_kernel_spe); 176 177 void flush_spe_to_thread(struct task_struct *tsk) 178 { 179 if (tsk->thread.regs) { 180 preempt_disable(); 181 if (tsk->thread.regs->msr & MSR_SPE) { 182 #ifdef CONFIG_SMP 183 BUG_ON(tsk != current); 184 #endif 185 giveup_spe(current); 186 } 187 preempt_enable(); 188 } 189 } 190 191 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) 192 { 193 flush_spe_to_thread(current); 194 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ 195 memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); 196 return 1; 197 } 198 #endif /* CONFIG_SPE */ 199 200 #ifndef CONFIG_SMP 201 /* 202 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 203 * and the current task has some state, discard it. 204 */ 205 void discard_lazy_cpu_state(void) 206 { 207 preempt_disable(); 208 if (last_task_used_math == current) 209 last_task_used_math = NULL; 210 #ifdef CONFIG_ALTIVEC 211 if (last_task_used_altivec == current) 212 last_task_used_altivec = NULL; 213 #endif /* CONFIG_ALTIVEC */ 214 #ifdef CONFIG_SPE 215 if (last_task_used_spe == current) 216 last_task_used_spe = NULL; 217 #endif 218 preempt_enable(); 219 } 220 #endif /* CONFIG_SMP */ 221 222 #ifdef CONFIG_PPC_MERGE /* XXX for now */ 223 int set_dabr(unsigned long dabr) 224 { 225 if (ppc_md.set_dabr) 226 return ppc_md.set_dabr(dabr); 227 228 mtspr(SPRN_DABR, dabr); 229 return 0; 230 } 231 #endif 232 233 #ifdef CONFIG_PPC64 234 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 235 static DEFINE_PER_CPU(unsigned long, current_dabr); 236 #endif 237 238 struct task_struct *__switch_to(struct task_struct *prev, 239 struct task_struct *new) 240 { 241 struct thread_struct *new_thread, *old_thread; 242 unsigned long flags; 243 struct task_struct *last; 244 245 #ifdef CONFIG_SMP 246 /* avoid complexity of lazy save/restore of fpu 247 * by just saving it every time we switch out if 248 * this task used the fpu during the last quantum. 249 * 250 * If it tries to use the fpu again, it'll trap and 251 * reload its fp regs. So we don't have to do a restore 252 * every switch, just a save. 253 * -- Cort 254 */ 255 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 256 giveup_fpu(prev); 257 #ifdef CONFIG_ALTIVEC 258 /* 259 * If the previous thread used altivec in the last quantum 260 * (thus changing altivec regs) then save them. 261 * We used to check the VRSAVE register but not all apps 262 * set it, so we don't rely on it now (and in fact we need 263 * to save & restore VSCR even if VRSAVE == 0). -- paulus 264 * 265 * On SMP we always save/restore altivec regs just to avoid the 266 * complexity of changing processors. 267 * -- Cort 268 */ 269 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 270 giveup_altivec(prev); 271 #endif /* CONFIG_ALTIVEC */ 272 #ifdef CONFIG_SPE 273 /* 274 * If the previous thread used spe in the last quantum 275 * (thus changing spe regs) then save them. 276 * 277 * On SMP we always save/restore spe regs just to avoid the 278 * complexity of changing processors. 279 */ 280 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 281 giveup_spe(prev); 282 #endif /* CONFIG_SPE */ 283 284 #else /* CONFIG_SMP */ 285 #ifdef CONFIG_ALTIVEC 286 /* Avoid the trap. On smp this this never happens since 287 * we don't set last_task_used_altivec -- Cort 288 */ 289 if (new->thread.regs && last_task_used_altivec == new) 290 new->thread.regs->msr |= MSR_VEC; 291 #endif /* CONFIG_ALTIVEC */ 292 #ifdef CONFIG_SPE 293 /* Avoid the trap. On smp this this never happens since 294 * we don't set last_task_used_spe 295 */ 296 if (new->thread.regs && last_task_used_spe == new) 297 new->thread.regs->msr |= MSR_SPE; 298 #endif /* CONFIG_SPE */ 299 300 #endif /* CONFIG_SMP */ 301 302 #ifdef CONFIG_PPC64 /* for now */ 303 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) { 304 set_dabr(new->thread.dabr); 305 __get_cpu_var(current_dabr) = new->thread.dabr; 306 } 307 #endif /* CONFIG_PPC64 */ 308 309 new_thread = &new->thread; 310 old_thread = ¤t->thread; 311 312 #ifdef CONFIG_PPC64 313 /* 314 * Collect processor utilization data per process 315 */ 316 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 317 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 318 long unsigned start_tb, current_tb; 319 start_tb = old_thread->start_tb; 320 cu->current_tb = current_tb = mfspr(SPRN_PURR); 321 old_thread->accum_tb += (current_tb - start_tb); 322 new_thread->start_tb = current_tb; 323 } 324 #endif 325 326 local_irq_save(flags); 327 328 account_system_vtime(current); 329 account_process_vtime(current); 330 calculate_steal_time(); 331 332 last = _switch(old_thread, new_thread); 333 334 local_irq_restore(flags); 335 336 return last; 337 } 338 339 static int instructions_to_print = 16; 340 341 static void show_instructions(struct pt_regs *regs) 342 { 343 int i; 344 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 345 sizeof(int)); 346 347 printk("Instruction dump:"); 348 349 for (i = 0; i < instructions_to_print; i++) { 350 int instr; 351 352 if (!(i % 8)) 353 printk("\n"); 354 355 /* We use __get_user here *only* to avoid an OOPS on a 356 * bad address because the pc *should* only be a 357 * kernel address. 358 */ 359 if (!__kernel_text_address(pc) || 360 __get_user(instr, (unsigned int __user *)pc)) { 361 printk("XXXXXXXX "); 362 } else { 363 if (regs->nip == pc) 364 printk("<%08x> ", instr); 365 else 366 printk("%08x ", instr); 367 } 368 369 pc += sizeof(int); 370 } 371 372 printk("\n"); 373 } 374 375 static struct regbit { 376 unsigned long bit; 377 const char *name; 378 } msr_bits[] = { 379 {MSR_EE, "EE"}, 380 {MSR_PR, "PR"}, 381 {MSR_FP, "FP"}, 382 {MSR_ME, "ME"}, 383 {MSR_IR, "IR"}, 384 {MSR_DR, "DR"}, 385 {0, NULL} 386 }; 387 388 static void printbits(unsigned long val, struct regbit *bits) 389 { 390 const char *sep = ""; 391 392 printk("<"); 393 for (; bits->bit; ++bits) 394 if (val & bits->bit) { 395 printk("%s%s", sep, bits->name); 396 sep = ","; 397 } 398 printk(">"); 399 } 400 401 #ifdef CONFIG_PPC64 402 #define REG "%016lx" 403 #define REGS_PER_LINE 4 404 #define LAST_VOLATILE 13 405 #else 406 #define REG "%08lx" 407 #define REGS_PER_LINE 8 408 #define LAST_VOLATILE 12 409 #endif 410 411 void show_regs(struct pt_regs * regs) 412 { 413 int i, trap; 414 415 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 416 regs->nip, regs->link, regs->ctr); 417 printk("REGS: %p TRAP: %04lx %s (%s)\n", 418 regs, regs->trap, print_tainted(), init_utsname()->release); 419 printk("MSR: "REG" ", regs->msr); 420 printbits(regs->msr, msr_bits); 421 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 422 trap = TRAP(regs); 423 if (trap == 0x300 || trap == 0x600) 424 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 425 printk("TASK = %p[%d] '%s' THREAD: %p", 426 current, current->pid, current->comm, task_thread_info(current)); 427 428 #ifdef CONFIG_SMP 429 printk(" CPU: %d", smp_processor_id()); 430 #endif /* CONFIG_SMP */ 431 432 for (i = 0; i < 32; i++) { 433 if ((i % REGS_PER_LINE) == 0) 434 printk("\n" KERN_INFO "GPR%02d: ", i); 435 printk(REG " ", regs->gpr[i]); 436 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 437 break; 438 } 439 printk("\n"); 440 #ifdef CONFIG_KALLSYMS 441 /* 442 * Lookup NIP late so we have the best change of getting the 443 * above info out without failing 444 */ 445 printk("NIP ["REG"] ", regs->nip); 446 print_symbol("%s\n", regs->nip); 447 printk("LR ["REG"] ", regs->link); 448 print_symbol("%s\n", regs->link); 449 #endif 450 show_stack(current, (unsigned long *) regs->gpr[1]); 451 if (!user_mode(regs)) 452 show_instructions(regs); 453 } 454 455 void exit_thread(void) 456 { 457 discard_lazy_cpu_state(); 458 } 459 460 void flush_thread(void) 461 { 462 #ifdef CONFIG_PPC64 463 struct thread_info *t = current_thread_info(); 464 465 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) { 466 clear_ti_thread_flag(t, TIF_ABI_PENDING); 467 if (test_ti_thread_flag(t, TIF_32BIT)) 468 clear_ti_thread_flag(t, TIF_32BIT); 469 else 470 set_ti_thread_flag(t, TIF_32BIT); 471 } 472 #endif 473 474 discard_lazy_cpu_state(); 475 476 #ifdef CONFIG_PPC64 /* for now */ 477 if (current->thread.dabr) { 478 current->thread.dabr = 0; 479 set_dabr(0); 480 } 481 #endif 482 } 483 484 void 485 release_thread(struct task_struct *t) 486 { 487 } 488 489 /* 490 * This gets called before we allocate a new thread and copy 491 * the current task into it. 492 */ 493 void prepare_to_copy(struct task_struct *tsk) 494 { 495 flush_fp_to_thread(current); 496 flush_altivec_to_thread(current); 497 flush_spe_to_thread(current); 498 } 499 500 /* 501 * Copy a thread.. 502 */ 503 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 504 unsigned long unused, struct task_struct *p, 505 struct pt_regs *regs) 506 { 507 struct pt_regs *childregs, *kregs; 508 extern void ret_from_fork(void); 509 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 510 511 CHECK_FULL_REGS(regs); 512 /* Copy registers */ 513 sp -= sizeof(struct pt_regs); 514 childregs = (struct pt_regs *) sp; 515 *childregs = *regs; 516 if ((childregs->msr & MSR_PR) == 0) { 517 /* for kernel thread, set `current' and stackptr in new task */ 518 childregs->gpr[1] = sp + sizeof(struct pt_regs); 519 #ifdef CONFIG_PPC32 520 childregs->gpr[2] = (unsigned long) p; 521 #else 522 clear_tsk_thread_flag(p, TIF_32BIT); 523 #endif 524 p->thread.regs = NULL; /* no user register state */ 525 } else { 526 childregs->gpr[1] = usp; 527 p->thread.regs = childregs; 528 if (clone_flags & CLONE_SETTLS) { 529 #ifdef CONFIG_PPC64 530 if (!test_thread_flag(TIF_32BIT)) 531 childregs->gpr[13] = childregs->gpr[6]; 532 else 533 #endif 534 childregs->gpr[2] = childregs->gpr[6]; 535 } 536 } 537 childregs->gpr[3] = 0; /* Result from fork() */ 538 sp -= STACK_FRAME_OVERHEAD; 539 540 /* 541 * The way this works is that at some point in the future 542 * some task will call _switch to switch to the new task. 543 * That will pop off the stack frame created below and start 544 * the new task running at ret_from_fork. The new task will 545 * do some house keeping and then return from the fork or clone 546 * system call, using the stack frame created above. 547 */ 548 sp -= sizeof(struct pt_regs); 549 kregs = (struct pt_regs *) sp; 550 sp -= STACK_FRAME_OVERHEAD; 551 p->thread.ksp = sp; 552 553 #ifdef CONFIG_PPC64 554 if (cpu_has_feature(CPU_FTR_SLB)) { 555 unsigned long sp_vsid = get_kernel_vsid(sp); 556 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 557 558 sp_vsid <<= SLB_VSID_SHIFT; 559 sp_vsid |= SLB_VSID_KERNEL | llp; 560 p->thread.ksp_vsid = sp_vsid; 561 } 562 563 /* 564 * The PPC64 ABI makes use of a TOC to contain function 565 * pointers. The function (ret_from_except) is actually a pointer 566 * to the TOC entry. The first entry is a pointer to the actual 567 * function. 568 */ 569 kregs->nip = *((unsigned long *)ret_from_fork); 570 #else 571 kregs->nip = (unsigned long)ret_from_fork; 572 #endif 573 574 return 0; 575 } 576 577 /* 578 * Set up a thread for executing a new program 579 */ 580 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 581 { 582 #ifdef CONFIG_PPC64 583 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 584 #endif 585 586 set_fs(USER_DS); 587 588 /* 589 * If we exec out of a kernel thread then thread.regs will not be 590 * set. Do it now. 591 */ 592 if (!current->thread.regs) { 593 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 594 current->thread.regs = regs - 1; 595 } 596 597 memset(regs->gpr, 0, sizeof(regs->gpr)); 598 regs->ctr = 0; 599 regs->link = 0; 600 regs->xer = 0; 601 regs->ccr = 0; 602 regs->gpr[1] = sp; 603 604 #ifdef CONFIG_PPC32 605 regs->mq = 0; 606 regs->nip = start; 607 regs->msr = MSR_USER; 608 #else 609 if (!test_thread_flag(TIF_32BIT)) { 610 unsigned long entry, toc; 611 612 /* start is a relocated pointer to the function descriptor for 613 * the elf _start routine. The first entry in the function 614 * descriptor is the entry address of _start and the second 615 * entry is the TOC value we need to use. 616 */ 617 __get_user(entry, (unsigned long __user *)start); 618 __get_user(toc, (unsigned long __user *)start+1); 619 620 /* Check whether the e_entry function descriptor entries 621 * need to be relocated before we can use them. 622 */ 623 if (load_addr != 0) { 624 entry += load_addr; 625 toc += load_addr; 626 } 627 regs->nip = entry; 628 regs->gpr[2] = toc; 629 regs->msr = MSR_USER64; 630 } else { 631 regs->nip = start; 632 regs->gpr[2] = 0; 633 regs->msr = MSR_USER32; 634 } 635 #endif 636 637 discard_lazy_cpu_state(); 638 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 639 current->thread.fpscr.val = 0; 640 #ifdef CONFIG_ALTIVEC 641 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 642 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 643 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 644 current->thread.vrsave = 0; 645 current->thread.used_vr = 0; 646 #endif /* CONFIG_ALTIVEC */ 647 #ifdef CONFIG_SPE 648 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 649 current->thread.acc = 0; 650 current->thread.spefscr = 0; 651 current->thread.used_spe = 0; 652 #endif /* CONFIG_SPE */ 653 } 654 655 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 656 | PR_FP_EXC_RES | PR_FP_EXC_INV) 657 658 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 659 { 660 struct pt_regs *regs = tsk->thread.regs; 661 662 /* This is a bit hairy. If we are an SPE enabled processor 663 * (have embedded fp) we store the IEEE exception enable flags in 664 * fpexc_mode. fpexc_mode is also used for setting FP exception 665 * mode (asyn, precise, disabled) for 'Classic' FP. */ 666 if (val & PR_FP_EXC_SW_ENABLE) { 667 #ifdef CONFIG_SPE 668 tsk->thread.fpexc_mode = val & 669 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 670 return 0; 671 #else 672 return -EINVAL; 673 #endif 674 } 675 676 /* on a CONFIG_SPE this does not hurt us. The bits that 677 * __pack_fe01 use do not overlap with bits used for 678 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 679 * on CONFIG_SPE implementations are reserved so writing to 680 * them does not change anything */ 681 if (val > PR_FP_EXC_PRECISE) 682 return -EINVAL; 683 tsk->thread.fpexc_mode = __pack_fe01(val); 684 if (regs != NULL && (regs->msr & MSR_FP) != 0) 685 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 686 | tsk->thread.fpexc_mode; 687 return 0; 688 } 689 690 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 691 { 692 unsigned int val; 693 694 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 695 #ifdef CONFIG_SPE 696 val = tsk->thread.fpexc_mode; 697 #else 698 return -EINVAL; 699 #endif 700 else 701 val = __unpack_fe01(tsk->thread.fpexc_mode); 702 return put_user(val, (unsigned int __user *) adr); 703 } 704 705 int set_endian(struct task_struct *tsk, unsigned int val) 706 { 707 struct pt_regs *regs = tsk->thread.regs; 708 709 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 710 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 711 return -EINVAL; 712 713 if (regs == NULL) 714 return -EINVAL; 715 716 if (val == PR_ENDIAN_BIG) 717 regs->msr &= ~MSR_LE; 718 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 719 regs->msr |= MSR_LE; 720 else 721 return -EINVAL; 722 723 return 0; 724 } 725 726 int get_endian(struct task_struct *tsk, unsigned long adr) 727 { 728 struct pt_regs *regs = tsk->thread.regs; 729 unsigned int val; 730 731 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 732 !cpu_has_feature(CPU_FTR_REAL_LE)) 733 return -EINVAL; 734 735 if (regs == NULL) 736 return -EINVAL; 737 738 if (regs->msr & MSR_LE) { 739 if (cpu_has_feature(CPU_FTR_REAL_LE)) 740 val = PR_ENDIAN_LITTLE; 741 else 742 val = PR_ENDIAN_PPC_LITTLE; 743 } else 744 val = PR_ENDIAN_BIG; 745 746 return put_user(val, (unsigned int __user *)adr); 747 } 748 749 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 750 { 751 tsk->thread.align_ctl = val; 752 return 0; 753 } 754 755 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 756 { 757 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 758 } 759 760 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 761 762 int sys_clone(unsigned long clone_flags, unsigned long usp, 763 int __user *parent_tidp, void __user *child_threadptr, 764 int __user *child_tidp, int p6, 765 struct pt_regs *regs) 766 { 767 CHECK_FULL_REGS(regs); 768 if (usp == 0) 769 usp = regs->gpr[1]; /* stack pointer for child */ 770 #ifdef CONFIG_PPC64 771 if (test_thread_flag(TIF_32BIT)) { 772 parent_tidp = TRUNC_PTR(parent_tidp); 773 child_tidp = TRUNC_PTR(child_tidp); 774 } 775 #endif 776 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 777 } 778 779 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 780 unsigned long p4, unsigned long p5, unsigned long p6, 781 struct pt_regs *regs) 782 { 783 CHECK_FULL_REGS(regs); 784 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 785 } 786 787 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 788 unsigned long p4, unsigned long p5, unsigned long p6, 789 struct pt_regs *regs) 790 { 791 CHECK_FULL_REGS(regs); 792 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 793 regs, 0, NULL, NULL); 794 } 795 796 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 797 unsigned long a3, unsigned long a4, unsigned long a5, 798 struct pt_regs *regs) 799 { 800 int error; 801 char *filename; 802 803 filename = getname((char __user *) a0); 804 error = PTR_ERR(filename); 805 if (IS_ERR(filename)) 806 goto out; 807 flush_fp_to_thread(current); 808 flush_altivec_to_thread(current); 809 flush_spe_to_thread(current); 810 error = do_execve(filename, (char __user * __user *) a1, 811 (char __user * __user *) a2, regs); 812 if (error == 0) { 813 task_lock(current); 814 current->ptrace &= ~PT_DTRACE; 815 task_unlock(current); 816 } 817 putname(filename); 818 out: 819 return error; 820 } 821 822 #ifdef CONFIG_IRQSTACKS 823 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 824 unsigned long nbytes) 825 { 826 unsigned long stack_page; 827 unsigned long cpu = task_cpu(p); 828 829 /* 830 * Avoid crashing if the stack has overflowed and corrupted 831 * task_cpu(p), which is in the thread_info struct. 832 */ 833 if (cpu < NR_CPUS && cpu_possible(cpu)) { 834 stack_page = (unsigned long) hardirq_ctx[cpu]; 835 if (sp >= stack_page + sizeof(struct thread_struct) 836 && sp <= stack_page + THREAD_SIZE - nbytes) 837 return 1; 838 839 stack_page = (unsigned long) softirq_ctx[cpu]; 840 if (sp >= stack_page + sizeof(struct thread_struct) 841 && sp <= stack_page + THREAD_SIZE - nbytes) 842 return 1; 843 } 844 return 0; 845 } 846 847 #else 848 #define valid_irq_stack(sp, p, nb) 0 849 #endif /* CONFIG_IRQSTACKS */ 850 851 int validate_sp(unsigned long sp, struct task_struct *p, 852 unsigned long nbytes) 853 { 854 unsigned long stack_page = (unsigned long)task_stack_page(p); 855 856 if (sp >= stack_page + sizeof(struct thread_struct) 857 && sp <= stack_page + THREAD_SIZE - nbytes) 858 return 1; 859 860 return valid_irq_stack(sp, p, nbytes); 861 } 862 863 #ifdef CONFIG_PPC64 864 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */ 865 #define FRAME_LR_SAVE 2 866 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288) 867 #define REGS_MARKER 0x7265677368657265ul 868 #define FRAME_MARKER 12 869 #else 870 #define MIN_STACK_FRAME 16 871 #define FRAME_LR_SAVE 1 872 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) 873 #define REGS_MARKER 0x72656773ul 874 #define FRAME_MARKER 2 875 #endif 876 877 EXPORT_SYMBOL(validate_sp); 878 879 unsigned long get_wchan(struct task_struct *p) 880 { 881 unsigned long ip, sp; 882 int count = 0; 883 884 if (!p || p == current || p->state == TASK_RUNNING) 885 return 0; 886 887 sp = p->thread.ksp; 888 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 889 return 0; 890 891 do { 892 sp = *(unsigned long *)sp; 893 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 894 return 0; 895 if (count > 0) { 896 ip = ((unsigned long *)sp)[FRAME_LR_SAVE]; 897 if (!in_sched_functions(ip)) 898 return ip; 899 } 900 } while (count++ < 16); 901 return 0; 902 } 903 904 static int kstack_depth_to_print = 64; 905 906 void show_stack(struct task_struct *tsk, unsigned long *stack) 907 { 908 unsigned long sp, ip, lr, newsp; 909 int count = 0; 910 int firstframe = 1; 911 912 sp = (unsigned long) stack; 913 if (tsk == NULL) 914 tsk = current; 915 if (sp == 0) { 916 if (tsk == current) 917 asm("mr %0,1" : "=r" (sp)); 918 else 919 sp = tsk->thread.ksp; 920 } 921 922 lr = 0; 923 printk("Call Trace:\n"); 924 do { 925 if (!validate_sp(sp, tsk, MIN_STACK_FRAME)) 926 return; 927 928 stack = (unsigned long *) sp; 929 newsp = stack[0]; 930 ip = stack[FRAME_LR_SAVE]; 931 if (!firstframe || ip != lr) { 932 printk("["REG"] ["REG"] ", sp, ip); 933 print_symbol("%s", ip); 934 if (firstframe) 935 printk(" (unreliable)"); 936 printk("\n"); 937 } 938 firstframe = 0; 939 940 /* 941 * See if this is an exception frame. 942 * We look for the "regshere" marker in the current frame. 943 */ 944 if (validate_sp(sp, tsk, INT_FRAME_SIZE) 945 && stack[FRAME_MARKER] == REGS_MARKER) { 946 struct pt_regs *regs = (struct pt_regs *) 947 (sp + STACK_FRAME_OVERHEAD); 948 printk("--- Exception: %lx", regs->trap); 949 print_symbol(" at %s\n", regs->nip); 950 lr = regs->link; 951 print_symbol(" LR = %s\n", lr); 952 firstframe = 1; 953 } 954 955 sp = newsp; 956 } while (count++ < kstack_depth_to_print); 957 } 958 959 void dump_stack(void) 960 { 961 show_stack(current, NULL); 962 } 963 EXPORT_SYMBOL(dump_stack); 964 965 #ifdef CONFIG_PPC64 966 void ppc64_runlatch_on(void) 967 { 968 unsigned long ctrl; 969 970 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { 971 HMT_medium(); 972 973 ctrl = mfspr(SPRN_CTRLF); 974 ctrl |= CTRL_RUNLATCH; 975 mtspr(SPRN_CTRLT, ctrl); 976 977 set_thread_flag(TIF_RUNLATCH); 978 } 979 } 980 981 void ppc64_runlatch_off(void) 982 { 983 unsigned long ctrl; 984 985 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) { 986 HMT_medium(); 987 988 clear_thread_flag(TIF_RUNLATCH); 989 990 ctrl = mfspr(SPRN_CTRLF); 991 ctrl &= ~CTRL_RUNLATCH; 992 mtspr(SPRN_CTRLT, ctrl); 993 } 994 } 995 #endif 996