xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 64c70b1c)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50 
51 extern unsigned long _get_SP(void);
52 
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
58 
59 /*
60  * Make sure the floating-point register state in the
61  * the thread_struct is up to date for task tsk.
62  */
63 void flush_fp_to_thread(struct task_struct *tsk)
64 {
65 	if (tsk->thread.regs) {
66 		/*
67 		 * We need to disable preemption here because if we didn't,
68 		 * another process could get scheduled after the regs->msr
69 		 * test but before we have finished saving the FP registers
70 		 * to the thread_struct.  That process could take over the
71 		 * FPU, and then when we get scheduled again we would store
72 		 * bogus values for the remaining FP registers.
73 		 */
74 		preempt_disable();
75 		if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
77 			/*
78 			 * This should only ever be called for current or
79 			 * for a stopped child process.  Since we save away
80 			 * the FP register state on context switch on SMP,
81 			 * there is something wrong if a stopped child appears
82 			 * to still have its FP state in the CPU registers.
83 			 */
84 			BUG_ON(tsk != current);
85 #endif
86 			giveup_fpu(current);
87 		}
88 		preempt_enable();
89 	}
90 }
91 
92 void enable_kernel_fp(void)
93 {
94 	WARN_ON(preemptible());
95 
96 #ifdef CONFIG_SMP
97 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 		giveup_fpu(current);
99 	else
100 		giveup_fpu(NULL);	/* just enables FP for kernel */
101 #else
102 	giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
104 }
105 EXPORT_SYMBOL(enable_kernel_fp);
106 
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
108 {
109 	if (!tsk->thread.regs)
110 		return 0;
111 	flush_fp_to_thread(current);
112 
113 	memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
114 
115 	return 1;
116 }
117 
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
120 {
121 	WARN_ON(preemptible());
122 
123 #ifdef CONFIG_SMP
124 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 		giveup_altivec(current);
126 	else
127 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
128 #else
129 	giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
131 }
132 EXPORT_SYMBOL(enable_kernel_altivec);
133 
134 /*
135  * Make sure the VMX/Altivec register state in the
136  * the thread_struct is up to date for task tsk.
137  */
138 void flush_altivec_to_thread(struct task_struct *tsk)
139 {
140 	if (tsk->thread.regs) {
141 		preempt_disable();
142 		if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 			BUG_ON(tsk != current);
145 #endif
146 			giveup_altivec(current);
147 		}
148 		preempt_enable();
149 	}
150 }
151 
152 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
153 {
154 	flush_altivec_to_thread(current);
155 	memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
156 	return 1;
157 }
158 #endif /* CONFIG_ALTIVEC */
159 
160 #ifdef CONFIG_SPE
161 
162 void enable_kernel_spe(void)
163 {
164 	WARN_ON(preemptible());
165 
166 #ifdef CONFIG_SMP
167 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
168 		giveup_spe(current);
169 	else
170 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
171 #else
172 	giveup_spe(last_task_used_spe);
173 #endif /* __SMP __ */
174 }
175 EXPORT_SYMBOL(enable_kernel_spe);
176 
177 void flush_spe_to_thread(struct task_struct *tsk)
178 {
179 	if (tsk->thread.regs) {
180 		preempt_disable();
181 		if (tsk->thread.regs->msr & MSR_SPE) {
182 #ifdef CONFIG_SMP
183 			BUG_ON(tsk != current);
184 #endif
185 			giveup_spe(current);
186 		}
187 		preempt_enable();
188 	}
189 }
190 
191 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
192 {
193 	flush_spe_to_thread(current);
194 	/* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
195 	memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
196 	return 1;
197 }
198 #endif /* CONFIG_SPE */
199 
200 #ifndef CONFIG_SMP
201 /*
202  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
203  * and the current task has some state, discard it.
204  */
205 void discard_lazy_cpu_state(void)
206 {
207 	preempt_disable();
208 	if (last_task_used_math == current)
209 		last_task_used_math = NULL;
210 #ifdef CONFIG_ALTIVEC
211 	if (last_task_used_altivec == current)
212 		last_task_used_altivec = NULL;
213 #endif /* CONFIG_ALTIVEC */
214 #ifdef CONFIG_SPE
215 	if (last_task_used_spe == current)
216 		last_task_used_spe = NULL;
217 #endif
218 	preempt_enable();
219 }
220 #endif /* CONFIG_SMP */
221 
222 #ifdef CONFIG_PPC_MERGE		/* XXX for now */
223 int set_dabr(unsigned long dabr)
224 {
225 	if (ppc_md.set_dabr)
226 		return ppc_md.set_dabr(dabr);
227 
228 	mtspr(SPRN_DABR, dabr);
229 	return 0;
230 }
231 #endif
232 
233 #ifdef CONFIG_PPC64
234 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
235 static DEFINE_PER_CPU(unsigned long, current_dabr);
236 #endif
237 
238 struct task_struct *__switch_to(struct task_struct *prev,
239 	struct task_struct *new)
240 {
241 	struct thread_struct *new_thread, *old_thread;
242 	unsigned long flags;
243 	struct task_struct *last;
244 
245 #ifdef CONFIG_SMP
246 	/* avoid complexity of lazy save/restore of fpu
247 	 * by just saving it every time we switch out if
248 	 * this task used the fpu during the last quantum.
249 	 *
250 	 * If it tries to use the fpu again, it'll trap and
251 	 * reload its fp regs.  So we don't have to do a restore
252 	 * every switch, just a save.
253 	 *  -- Cort
254 	 */
255 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
256 		giveup_fpu(prev);
257 #ifdef CONFIG_ALTIVEC
258 	/*
259 	 * If the previous thread used altivec in the last quantum
260 	 * (thus changing altivec regs) then save them.
261 	 * We used to check the VRSAVE register but not all apps
262 	 * set it, so we don't rely on it now (and in fact we need
263 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
264 	 *
265 	 * On SMP we always save/restore altivec regs just to avoid the
266 	 * complexity of changing processors.
267 	 *  -- Cort
268 	 */
269 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
270 		giveup_altivec(prev);
271 #endif /* CONFIG_ALTIVEC */
272 #ifdef CONFIG_SPE
273 	/*
274 	 * If the previous thread used spe in the last quantum
275 	 * (thus changing spe regs) then save them.
276 	 *
277 	 * On SMP we always save/restore spe regs just to avoid the
278 	 * complexity of changing processors.
279 	 */
280 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
281 		giveup_spe(prev);
282 #endif /* CONFIG_SPE */
283 
284 #else  /* CONFIG_SMP */
285 #ifdef CONFIG_ALTIVEC
286 	/* Avoid the trap.  On smp this this never happens since
287 	 * we don't set last_task_used_altivec -- Cort
288 	 */
289 	if (new->thread.regs && last_task_used_altivec == new)
290 		new->thread.regs->msr |= MSR_VEC;
291 #endif /* CONFIG_ALTIVEC */
292 #ifdef CONFIG_SPE
293 	/* Avoid the trap.  On smp this this never happens since
294 	 * we don't set last_task_used_spe
295 	 */
296 	if (new->thread.regs && last_task_used_spe == new)
297 		new->thread.regs->msr |= MSR_SPE;
298 #endif /* CONFIG_SPE */
299 
300 #endif /* CONFIG_SMP */
301 
302 #ifdef CONFIG_PPC64	/* for now */
303 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
304 		set_dabr(new->thread.dabr);
305 		__get_cpu_var(current_dabr) = new->thread.dabr;
306 	}
307 #endif /* CONFIG_PPC64 */
308 
309 	new_thread = &new->thread;
310 	old_thread = &current->thread;
311 
312 #ifdef CONFIG_PPC64
313 	/*
314 	 * Collect processor utilization data per process
315 	 */
316 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
317 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
318 		long unsigned start_tb, current_tb;
319 		start_tb = old_thread->start_tb;
320 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
321 		old_thread->accum_tb += (current_tb - start_tb);
322 		new_thread->start_tb = current_tb;
323 	}
324 #endif
325 
326 	local_irq_save(flags);
327 
328 	account_system_vtime(current);
329 	account_process_vtime(current);
330 	calculate_steal_time();
331 
332 	last = _switch(old_thread, new_thread);
333 
334 	local_irq_restore(flags);
335 
336 	return last;
337 }
338 
339 static int instructions_to_print = 16;
340 
341 static void show_instructions(struct pt_regs *regs)
342 {
343 	int i;
344 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
345 			sizeof(int));
346 
347 	printk("Instruction dump:");
348 
349 	for (i = 0; i < instructions_to_print; i++) {
350 		int instr;
351 
352 		if (!(i % 8))
353 			printk("\n");
354 
355 		/* We use __get_user here *only* to avoid an OOPS on a
356 		 * bad address because the pc *should* only be a
357 		 * kernel address.
358 		 */
359 		if (!__kernel_text_address(pc) ||
360 		     __get_user(instr, (unsigned int __user *)pc)) {
361 			printk("XXXXXXXX ");
362 		} else {
363 			if (regs->nip == pc)
364 				printk("<%08x> ", instr);
365 			else
366 				printk("%08x ", instr);
367 		}
368 
369 		pc += sizeof(int);
370 	}
371 
372 	printk("\n");
373 }
374 
375 static struct regbit {
376 	unsigned long bit;
377 	const char *name;
378 } msr_bits[] = {
379 	{MSR_EE,	"EE"},
380 	{MSR_PR,	"PR"},
381 	{MSR_FP,	"FP"},
382 	{MSR_ME,	"ME"},
383 	{MSR_IR,	"IR"},
384 	{MSR_DR,	"DR"},
385 	{0,		NULL}
386 };
387 
388 static void printbits(unsigned long val, struct regbit *bits)
389 {
390 	const char *sep = "";
391 
392 	printk("<");
393 	for (; bits->bit; ++bits)
394 		if (val & bits->bit) {
395 			printk("%s%s", sep, bits->name);
396 			sep = ",";
397 		}
398 	printk(">");
399 }
400 
401 #ifdef CONFIG_PPC64
402 #define REG		"%016lx"
403 #define REGS_PER_LINE	4
404 #define LAST_VOLATILE	13
405 #else
406 #define REG		"%08lx"
407 #define REGS_PER_LINE	8
408 #define LAST_VOLATILE	12
409 #endif
410 
411 void show_regs(struct pt_regs * regs)
412 {
413 	int i, trap;
414 
415 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
416 	       regs->nip, regs->link, regs->ctr);
417 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
418 	       regs, regs->trap, print_tainted(), init_utsname()->release);
419 	printk("MSR: "REG" ", regs->msr);
420 	printbits(regs->msr, msr_bits);
421 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
422 	trap = TRAP(regs);
423 	if (trap == 0x300 || trap == 0x600)
424 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
425 	printk("TASK = %p[%d] '%s' THREAD: %p",
426 	       current, current->pid, current->comm, task_thread_info(current));
427 
428 #ifdef CONFIG_SMP
429 	printk(" CPU: %d", smp_processor_id());
430 #endif /* CONFIG_SMP */
431 
432 	for (i = 0;  i < 32;  i++) {
433 		if ((i % REGS_PER_LINE) == 0)
434 			printk("\n" KERN_INFO "GPR%02d: ", i);
435 		printk(REG " ", regs->gpr[i]);
436 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
437 			break;
438 	}
439 	printk("\n");
440 #ifdef CONFIG_KALLSYMS
441 	/*
442 	 * Lookup NIP late so we have the best change of getting the
443 	 * above info out without failing
444 	 */
445 	printk("NIP ["REG"] ", regs->nip);
446 	print_symbol("%s\n", regs->nip);
447 	printk("LR ["REG"] ", regs->link);
448 	print_symbol("%s\n", regs->link);
449 #endif
450 	show_stack(current, (unsigned long *) regs->gpr[1]);
451 	if (!user_mode(regs))
452 		show_instructions(regs);
453 }
454 
455 void exit_thread(void)
456 {
457 	discard_lazy_cpu_state();
458 }
459 
460 void flush_thread(void)
461 {
462 #ifdef CONFIG_PPC64
463 	struct thread_info *t = current_thread_info();
464 
465 	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
466 		clear_ti_thread_flag(t, TIF_ABI_PENDING);
467 		if (test_ti_thread_flag(t, TIF_32BIT))
468 			clear_ti_thread_flag(t, TIF_32BIT);
469 		else
470 			set_ti_thread_flag(t, TIF_32BIT);
471 	}
472 #endif
473 
474 	discard_lazy_cpu_state();
475 
476 #ifdef CONFIG_PPC64	/* for now */
477 	if (current->thread.dabr) {
478 		current->thread.dabr = 0;
479 		set_dabr(0);
480 	}
481 #endif
482 }
483 
484 void
485 release_thread(struct task_struct *t)
486 {
487 }
488 
489 /*
490  * This gets called before we allocate a new thread and copy
491  * the current task into it.
492  */
493 void prepare_to_copy(struct task_struct *tsk)
494 {
495 	flush_fp_to_thread(current);
496 	flush_altivec_to_thread(current);
497 	flush_spe_to_thread(current);
498 }
499 
500 /*
501  * Copy a thread..
502  */
503 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
504 		unsigned long unused, struct task_struct *p,
505 		struct pt_regs *regs)
506 {
507 	struct pt_regs *childregs, *kregs;
508 	extern void ret_from_fork(void);
509 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
510 
511 	CHECK_FULL_REGS(regs);
512 	/* Copy registers */
513 	sp -= sizeof(struct pt_regs);
514 	childregs = (struct pt_regs *) sp;
515 	*childregs = *regs;
516 	if ((childregs->msr & MSR_PR) == 0) {
517 		/* for kernel thread, set `current' and stackptr in new task */
518 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
519 #ifdef CONFIG_PPC32
520 		childregs->gpr[2] = (unsigned long) p;
521 #else
522 		clear_tsk_thread_flag(p, TIF_32BIT);
523 #endif
524 		p->thread.regs = NULL;	/* no user register state */
525 	} else {
526 		childregs->gpr[1] = usp;
527 		p->thread.regs = childregs;
528 		if (clone_flags & CLONE_SETTLS) {
529 #ifdef CONFIG_PPC64
530 			if (!test_thread_flag(TIF_32BIT))
531 				childregs->gpr[13] = childregs->gpr[6];
532 			else
533 #endif
534 				childregs->gpr[2] = childregs->gpr[6];
535 		}
536 	}
537 	childregs->gpr[3] = 0;  /* Result from fork() */
538 	sp -= STACK_FRAME_OVERHEAD;
539 
540 	/*
541 	 * The way this works is that at some point in the future
542 	 * some task will call _switch to switch to the new task.
543 	 * That will pop off the stack frame created below and start
544 	 * the new task running at ret_from_fork.  The new task will
545 	 * do some house keeping and then return from the fork or clone
546 	 * system call, using the stack frame created above.
547 	 */
548 	sp -= sizeof(struct pt_regs);
549 	kregs = (struct pt_regs *) sp;
550 	sp -= STACK_FRAME_OVERHEAD;
551 	p->thread.ksp = sp;
552 
553 #ifdef CONFIG_PPC64
554 	if (cpu_has_feature(CPU_FTR_SLB)) {
555 		unsigned long sp_vsid = get_kernel_vsid(sp);
556 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
557 
558 		sp_vsid <<= SLB_VSID_SHIFT;
559 		sp_vsid |= SLB_VSID_KERNEL | llp;
560 		p->thread.ksp_vsid = sp_vsid;
561 	}
562 
563 	/*
564 	 * The PPC64 ABI makes use of a TOC to contain function
565 	 * pointers.  The function (ret_from_except) is actually a pointer
566 	 * to the TOC entry.  The first entry is a pointer to the actual
567 	 * function.
568  	 */
569 	kregs->nip = *((unsigned long *)ret_from_fork);
570 #else
571 	kregs->nip = (unsigned long)ret_from_fork;
572 #endif
573 
574 	return 0;
575 }
576 
577 /*
578  * Set up a thread for executing a new program
579  */
580 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
581 {
582 #ifdef CONFIG_PPC64
583 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
584 #endif
585 
586 	set_fs(USER_DS);
587 
588 	/*
589 	 * If we exec out of a kernel thread then thread.regs will not be
590 	 * set.  Do it now.
591 	 */
592 	if (!current->thread.regs) {
593 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
594 		current->thread.regs = regs - 1;
595 	}
596 
597 	memset(regs->gpr, 0, sizeof(regs->gpr));
598 	regs->ctr = 0;
599 	regs->link = 0;
600 	regs->xer = 0;
601 	regs->ccr = 0;
602 	regs->gpr[1] = sp;
603 
604 #ifdef CONFIG_PPC32
605 	regs->mq = 0;
606 	regs->nip = start;
607 	regs->msr = MSR_USER;
608 #else
609 	if (!test_thread_flag(TIF_32BIT)) {
610 		unsigned long entry, toc;
611 
612 		/* start is a relocated pointer to the function descriptor for
613 		 * the elf _start routine.  The first entry in the function
614 		 * descriptor is the entry address of _start and the second
615 		 * entry is the TOC value we need to use.
616 		 */
617 		__get_user(entry, (unsigned long __user *)start);
618 		__get_user(toc, (unsigned long __user *)start+1);
619 
620 		/* Check whether the e_entry function descriptor entries
621 		 * need to be relocated before we can use them.
622 		 */
623 		if (load_addr != 0) {
624 			entry += load_addr;
625 			toc   += load_addr;
626 		}
627 		regs->nip = entry;
628 		regs->gpr[2] = toc;
629 		regs->msr = MSR_USER64;
630 	} else {
631 		regs->nip = start;
632 		regs->gpr[2] = 0;
633 		regs->msr = MSR_USER32;
634 	}
635 #endif
636 
637 	discard_lazy_cpu_state();
638 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
639 	current->thread.fpscr.val = 0;
640 #ifdef CONFIG_ALTIVEC
641 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
642 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
643 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
644 	current->thread.vrsave = 0;
645 	current->thread.used_vr = 0;
646 #endif /* CONFIG_ALTIVEC */
647 #ifdef CONFIG_SPE
648 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
649 	current->thread.acc = 0;
650 	current->thread.spefscr = 0;
651 	current->thread.used_spe = 0;
652 #endif /* CONFIG_SPE */
653 }
654 
655 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
656 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
657 
658 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
659 {
660 	struct pt_regs *regs = tsk->thread.regs;
661 
662 	/* This is a bit hairy.  If we are an SPE enabled  processor
663 	 * (have embedded fp) we store the IEEE exception enable flags in
664 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
665 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
666 	if (val & PR_FP_EXC_SW_ENABLE) {
667 #ifdef CONFIG_SPE
668 		tsk->thread.fpexc_mode = val &
669 			(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
670 		return 0;
671 #else
672 		return -EINVAL;
673 #endif
674 	}
675 
676 	/* on a CONFIG_SPE this does not hurt us.  The bits that
677 	 * __pack_fe01 use do not overlap with bits used for
678 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
679 	 * on CONFIG_SPE implementations are reserved so writing to
680 	 * them does not change anything */
681 	if (val > PR_FP_EXC_PRECISE)
682 		return -EINVAL;
683 	tsk->thread.fpexc_mode = __pack_fe01(val);
684 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
685 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
686 			| tsk->thread.fpexc_mode;
687 	return 0;
688 }
689 
690 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
691 {
692 	unsigned int val;
693 
694 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
695 #ifdef CONFIG_SPE
696 		val = tsk->thread.fpexc_mode;
697 #else
698 		return -EINVAL;
699 #endif
700 	else
701 		val = __unpack_fe01(tsk->thread.fpexc_mode);
702 	return put_user(val, (unsigned int __user *) adr);
703 }
704 
705 int set_endian(struct task_struct *tsk, unsigned int val)
706 {
707 	struct pt_regs *regs = tsk->thread.regs;
708 
709 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
710 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
711 		return -EINVAL;
712 
713 	if (regs == NULL)
714 		return -EINVAL;
715 
716 	if (val == PR_ENDIAN_BIG)
717 		regs->msr &= ~MSR_LE;
718 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
719 		regs->msr |= MSR_LE;
720 	else
721 		return -EINVAL;
722 
723 	return 0;
724 }
725 
726 int get_endian(struct task_struct *tsk, unsigned long adr)
727 {
728 	struct pt_regs *regs = tsk->thread.regs;
729 	unsigned int val;
730 
731 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
732 	    !cpu_has_feature(CPU_FTR_REAL_LE))
733 		return -EINVAL;
734 
735 	if (regs == NULL)
736 		return -EINVAL;
737 
738 	if (regs->msr & MSR_LE) {
739 		if (cpu_has_feature(CPU_FTR_REAL_LE))
740 			val = PR_ENDIAN_LITTLE;
741 		else
742 			val = PR_ENDIAN_PPC_LITTLE;
743 	} else
744 		val = PR_ENDIAN_BIG;
745 
746 	return put_user(val, (unsigned int __user *)adr);
747 }
748 
749 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
750 {
751 	tsk->thread.align_ctl = val;
752 	return 0;
753 }
754 
755 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
756 {
757 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
758 }
759 
760 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
761 
762 int sys_clone(unsigned long clone_flags, unsigned long usp,
763 	      int __user *parent_tidp, void __user *child_threadptr,
764 	      int __user *child_tidp, int p6,
765 	      struct pt_regs *regs)
766 {
767 	CHECK_FULL_REGS(regs);
768 	if (usp == 0)
769 		usp = regs->gpr[1];	/* stack pointer for child */
770 #ifdef CONFIG_PPC64
771 	if (test_thread_flag(TIF_32BIT)) {
772 		parent_tidp = TRUNC_PTR(parent_tidp);
773 		child_tidp = TRUNC_PTR(child_tidp);
774 	}
775 #endif
776  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
777 }
778 
779 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
780 	     unsigned long p4, unsigned long p5, unsigned long p6,
781 	     struct pt_regs *regs)
782 {
783 	CHECK_FULL_REGS(regs);
784 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
785 }
786 
787 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
788 	      unsigned long p4, unsigned long p5, unsigned long p6,
789 	      struct pt_regs *regs)
790 {
791 	CHECK_FULL_REGS(regs);
792 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
793 			regs, 0, NULL, NULL);
794 }
795 
796 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
797 	       unsigned long a3, unsigned long a4, unsigned long a5,
798 	       struct pt_regs *regs)
799 {
800 	int error;
801 	char *filename;
802 
803 	filename = getname((char __user *) a0);
804 	error = PTR_ERR(filename);
805 	if (IS_ERR(filename))
806 		goto out;
807 	flush_fp_to_thread(current);
808 	flush_altivec_to_thread(current);
809 	flush_spe_to_thread(current);
810 	error = do_execve(filename, (char __user * __user *) a1,
811 			  (char __user * __user *) a2, regs);
812 	if (error == 0) {
813 		task_lock(current);
814 		current->ptrace &= ~PT_DTRACE;
815 		task_unlock(current);
816 	}
817 	putname(filename);
818 out:
819 	return error;
820 }
821 
822 #ifdef CONFIG_IRQSTACKS
823 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
824 				  unsigned long nbytes)
825 {
826 	unsigned long stack_page;
827 	unsigned long cpu = task_cpu(p);
828 
829 	/*
830 	 * Avoid crashing if the stack has overflowed and corrupted
831 	 * task_cpu(p), which is in the thread_info struct.
832 	 */
833 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
834 		stack_page = (unsigned long) hardirq_ctx[cpu];
835 		if (sp >= stack_page + sizeof(struct thread_struct)
836 		    && sp <= stack_page + THREAD_SIZE - nbytes)
837 			return 1;
838 
839 		stack_page = (unsigned long) softirq_ctx[cpu];
840 		if (sp >= stack_page + sizeof(struct thread_struct)
841 		    && sp <= stack_page + THREAD_SIZE - nbytes)
842 			return 1;
843 	}
844 	return 0;
845 }
846 
847 #else
848 #define valid_irq_stack(sp, p, nb)	0
849 #endif /* CONFIG_IRQSTACKS */
850 
851 int validate_sp(unsigned long sp, struct task_struct *p,
852 		       unsigned long nbytes)
853 {
854 	unsigned long stack_page = (unsigned long)task_stack_page(p);
855 
856 	if (sp >= stack_page + sizeof(struct thread_struct)
857 	    && sp <= stack_page + THREAD_SIZE - nbytes)
858 		return 1;
859 
860 	return valid_irq_stack(sp, p, nbytes);
861 }
862 
863 #ifdef CONFIG_PPC64
864 #define MIN_STACK_FRAME	112	/* same as STACK_FRAME_OVERHEAD, in fact */
865 #define FRAME_LR_SAVE	2
866 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
867 #define REGS_MARKER	0x7265677368657265ul
868 #define FRAME_MARKER	12
869 #else
870 #define MIN_STACK_FRAME	16
871 #define FRAME_LR_SAVE	1
872 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
873 #define REGS_MARKER	0x72656773ul
874 #define FRAME_MARKER	2
875 #endif
876 
877 EXPORT_SYMBOL(validate_sp);
878 
879 unsigned long get_wchan(struct task_struct *p)
880 {
881 	unsigned long ip, sp;
882 	int count = 0;
883 
884 	if (!p || p == current || p->state == TASK_RUNNING)
885 		return 0;
886 
887 	sp = p->thread.ksp;
888 	if (!validate_sp(sp, p, MIN_STACK_FRAME))
889 		return 0;
890 
891 	do {
892 		sp = *(unsigned long *)sp;
893 		if (!validate_sp(sp, p, MIN_STACK_FRAME))
894 			return 0;
895 		if (count > 0) {
896 			ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
897 			if (!in_sched_functions(ip))
898 				return ip;
899 		}
900 	} while (count++ < 16);
901 	return 0;
902 }
903 
904 static int kstack_depth_to_print = 64;
905 
906 void show_stack(struct task_struct *tsk, unsigned long *stack)
907 {
908 	unsigned long sp, ip, lr, newsp;
909 	int count = 0;
910 	int firstframe = 1;
911 
912 	sp = (unsigned long) stack;
913 	if (tsk == NULL)
914 		tsk = current;
915 	if (sp == 0) {
916 		if (tsk == current)
917 			asm("mr %0,1" : "=r" (sp));
918 		else
919 			sp = tsk->thread.ksp;
920 	}
921 
922 	lr = 0;
923 	printk("Call Trace:\n");
924 	do {
925 		if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
926 			return;
927 
928 		stack = (unsigned long *) sp;
929 		newsp = stack[0];
930 		ip = stack[FRAME_LR_SAVE];
931 		if (!firstframe || ip != lr) {
932 			printk("["REG"] ["REG"] ", sp, ip);
933 			print_symbol("%s", ip);
934 			if (firstframe)
935 				printk(" (unreliable)");
936 			printk("\n");
937 		}
938 		firstframe = 0;
939 
940 		/*
941 		 * See if this is an exception frame.
942 		 * We look for the "regshere" marker in the current frame.
943 		 */
944 		if (validate_sp(sp, tsk, INT_FRAME_SIZE)
945 		    && stack[FRAME_MARKER] == REGS_MARKER) {
946 			struct pt_regs *regs = (struct pt_regs *)
947 				(sp + STACK_FRAME_OVERHEAD);
948 			printk("--- Exception: %lx", regs->trap);
949 			print_symbol(" at %s\n", regs->nip);
950 			lr = regs->link;
951 			print_symbol("    LR = %s\n", lr);
952 			firstframe = 1;
953 		}
954 
955 		sp = newsp;
956 	} while (count++ < kstack_depth_to_print);
957 }
958 
959 void dump_stack(void)
960 {
961 	show_stack(current, NULL);
962 }
963 EXPORT_SYMBOL(dump_stack);
964 
965 #ifdef CONFIG_PPC64
966 void ppc64_runlatch_on(void)
967 {
968 	unsigned long ctrl;
969 
970 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
971 		HMT_medium();
972 
973 		ctrl = mfspr(SPRN_CTRLF);
974 		ctrl |= CTRL_RUNLATCH;
975 		mtspr(SPRN_CTRLT, ctrl);
976 
977 		set_thread_flag(TIF_RUNLATCH);
978 	}
979 }
980 
981 void ppc64_runlatch_off(void)
982 {
983 	unsigned long ctrl;
984 
985 	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
986 		HMT_medium();
987 
988 		clear_thread_flag(TIF_RUNLATCH);
989 
990 		ctrl = mfspr(SPRN_CTRLF);
991 		ctrl &= ~CTRL_RUNLATCH;
992 		mtspr(SPRN_CTRLT, ctrl);
993 	}
994 }
995 #endif
996