1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/module.h> 32 #include <linux/kallsyms.h> 33 #include <linux/mqueue.h> 34 #include <linux/hardirq.h> 35 #include <linux/utsname.h> 36 37 #include <asm/pgtable.h> 38 #include <asm/uaccess.h> 39 #include <asm/system.h> 40 #include <asm/io.h> 41 #include <asm/processor.h> 42 #include <asm/mmu.h> 43 #include <asm/prom.h> 44 #include <asm/machdep.h> 45 #include <asm/time.h> 46 #include <asm/syscalls.h> 47 #ifdef CONFIG_PPC64 48 #include <asm/firmware.h> 49 #endif 50 51 extern unsigned long _get_SP(void); 52 53 #ifndef CONFIG_SMP 54 struct task_struct *last_task_used_math = NULL; 55 struct task_struct *last_task_used_altivec = NULL; 56 struct task_struct *last_task_used_spe = NULL; 57 #endif 58 59 /* 60 * Make sure the floating-point register state in the 61 * the thread_struct is up to date for task tsk. 62 */ 63 void flush_fp_to_thread(struct task_struct *tsk) 64 { 65 if (tsk->thread.regs) { 66 /* 67 * We need to disable preemption here because if we didn't, 68 * another process could get scheduled after the regs->msr 69 * test but before we have finished saving the FP registers 70 * to the thread_struct. That process could take over the 71 * FPU, and then when we get scheduled again we would store 72 * bogus values for the remaining FP registers. 73 */ 74 preempt_disable(); 75 if (tsk->thread.regs->msr & MSR_FP) { 76 #ifdef CONFIG_SMP 77 /* 78 * This should only ever be called for current or 79 * for a stopped child process. Since we save away 80 * the FP register state on context switch on SMP, 81 * there is something wrong if a stopped child appears 82 * to still have its FP state in the CPU registers. 83 */ 84 BUG_ON(tsk != current); 85 #endif 86 giveup_fpu(tsk); 87 } 88 preempt_enable(); 89 } 90 } 91 92 void enable_kernel_fp(void) 93 { 94 WARN_ON(preemptible()); 95 96 #ifdef CONFIG_SMP 97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 98 giveup_fpu(current); 99 else 100 giveup_fpu(NULL); /* just enables FP for kernel */ 101 #else 102 giveup_fpu(last_task_used_math); 103 #endif /* CONFIG_SMP */ 104 } 105 EXPORT_SYMBOL(enable_kernel_fp); 106 107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) 108 { 109 if (!tsk->thread.regs) 110 return 0; 111 flush_fp_to_thread(current); 112 113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); 114 115 return 1; 116 } 117 118 #ifdef CONFIG_ALTIVEC 119 void enable_kernel_altivec(void) 120 { 121 WARN_ON(preemptible()); 122 123 #ifdef CONFIG_SMP 124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 125 giveup_altivec(current); 126 else 127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 128 #else 129 giveup_altivec(last_task_used_altivec); 130 #endif /* CONFIG_SMP */ 131 } 132 EXPORT_SYMBOL(enable_kernel_altivec); 133 134 /* 135 * Make sure the VMX/Altivec register state in the 136 * the thread_struct is up to date for task tsk. 137 */ 138 void flush_altivec_to_thread(struct task_struct *tsk) 139 { 140 if (tsk->thread.regs) { 141 preempt_disable(); 142 if (tsk->thread.regs->msr & MSR_VEC) { 143 #ifdef CONFIG_SMP 144 BUG_ON(tsk != current); 145 #endif 146 giveup_altivec(tsk); 147 } 148 preempt_enable(); 149 } 150 } 151 152 int dump_task_altivec(struct task_struct *tsk, elf_vrregset_t *vrregs) 153 { 154 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save 155 * separately, see below */ 156 const int nregs = ELF_NVRREG - 2; 157 elf_vrreg_t *reg; 158 u32 *dest; 159 160 if (tsk == current) 161 flush_altivec_to_thread(tsk); 162 163 reg = (elf_vrreg_t *)vrregs; 164 165 /* copy the 32 vr registers */ 166 memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg)); 167 reg += nregs; 168 169 /* copy the vscr */ 170 memcpy(reg, &tsk->thread.vscr, sizeof(*reg)); 171 reg++; 172 173 /* vrsave is stored in the high 32bit slot of the final 128bits */ 174 memset(reg, 0, sizeof(*reg)); 175 dest = (u32 *)reg; 176 *dest = tsk->thread.vrsave; 177 178 return 1; 179 } 180 #endif /* CONFIG_ALTIVEC */ 181 182 #ifdef CONFIG_SPE 183 184 void enable_kernel_spe(void) 185 { 186 WARN_ON(preemptible()); 187 188 #ifdef CONFIG_SMP 189 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 190 giveup_spe(current); 191 else 192 giveup_spe(NULL); /* just enable SPE for kernel - force */ 193 #else 194 giveup_spe(last_task_used_spe); 195 #endif /* __SMP __ */ 196 } 197 EXPORT_SYMBOL(enable_kernel_spe); 198 199 void flush_spe_to_thread(struct task_struct *tsk) 200 { 201 if (tsk->thread.regs) { 202 preempt_disable(); 203 if (tsk->thread.regs->msr & MSR_SPE) { 204 #ifdef CONFIG_SMP 205 BUG_ON(tsk != current); 206 #endif 207 giveup_spe(tsk); 208 } 209 preempt_enable(); 210 } 211 } 212 213 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) 214 { 215 flush_spe_to_thread(current); 216 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ 217 memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); 218 return 1; 219 } 220 #endif /* CONFIG_SPE */ 221 222 #ifndef CONFIG_SMP 223 /* 224 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 225 * and the current task has some state, discard it. 226 */ 227 void discard_lazy_cpu_state(void) 228 { 229 preempt_disable(); 230 if (last_task_used_math == current) 231 last_task_used_math = NULL; 232 #ifdef CONFIG_ALTIVEC 233 if (last_task_used_altivec == current) 234 last_task_used_altivec = NULL; 235 #endif /* CONFIG_ALTIVEC */ 236 #ifdef CONFIG_SPE 237 if (last_task_used_spe == current) 238 last_task_used_spe = NULL; 239 #endif 240 preempt_enable(); 241 } 242 #endif /* CONFIG_SMP */ 243 244 int set_dabr(unsigned long dabr) 245 { 246 #ifdef CONFIG_PPC_MERGE /* XXX for now */ 247 if (ppc_md.set_dabr) 248 return ppc_md.set_dabr(dabr); 249 #endif 250 251 /* XXX should we have a CPU_FTR_HAS_DABR ? */ 252 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx) 253 mtspr(SPRN_DABR, dabr); 254 #endif 255 return 0; 256 } 257 258 #ifdef CONFIG_PPC64 259 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 260 #endif 261 262 static DEFINE_PER_CPU(unsigned long, current_dabr); 263 264 struct task_struct *__switch_to(struct task_struct *prev, 265 struct task_struct *new) 266 { 267 struct thread_struct *new_thread, *old_thread; 268 unsigned long flags; 269 struct task_struct *last; 270 271 #ifdef CONFIG_SMP 272 /* avoid complexity of lazy save/restore of fpu 273 * by just saving it every time we switch out if 274 * this task used the fpu during the last quantum. 275 * 276 * If it tries to use the fpu again, it'll trap and 277 * reload its fp regs. So we don't have to do a restore 278 * every switch, just a save. 279 * -- Cort 280 */ 281 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 282 giveup_fpu(prev); 283 #ifdef CONFIG_ALTIVEC 284 /* 285 * If the previous thread used altivec in the last quantum 286 * (thus changing altivec regs) then save them. 287 * We used to check the VRSAVE register but not all apps 288 * set it, so we don't rely on it now (and in fact we need 289 * to save & restore VSCR even if VRSAVE == 0). -- paulus 290 * 291 * On SMP we always save/restore altivec regs just to avoid the 292 * complexity of changing processors. 293 * -- Cort 294 */ 295 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 296 giveup_altivec(prev); 297 #endif /* CONFIG_ALTIVEC */ 298 #ifdef CONFIG_SPE 299 /* 300 * If the previous thread used spe in the last quantum 301 * (thus changing spe regs) then save them. 302 * 303 * On SMP we always save/restore spe regs just to avoid the 304 * complexity of changing processors. 305 */ 306 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 307 giveup_spe(prev); 308 #endif /* CONFIG_SPE */ 309 310 #else /* CONFIG_SMP */ 311 #ifdef CONFIG_ALTIVEC 312 /* Avoid the trap. On smp this this never happens since 313 * we don't set last_task_used_altivec -- Cort 314 */ 315 if (new->thread.regs && last_task_used_altivec == new) 316 new->thread.regs->msr |= MSR_VEC; 317 #endif /* CONFIG_ALTIVEC */ 318 #ifdef CONFIG_SPE 319 /* Avoid the trap. On smp this this never happens since 320 * we don't set last_task_used_spe 321 */ 322 if (new->thread.regs && last_task_used_spe == new) 323 new->thread.regs->msr |= MSR_SPE; 324 #endif /* CONFIG_SPE */ 325 326 #endif /* CONFIG_SMP */ 327 328 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) { 329 set_dabr(new->thread.dabr); 330 __get_cpu_var(current_dabr) = new->thread.dabr; 331 } 332 333 new_thread = &new->thread; 334 old_thread = ¤t->thread; 335 336 #ifdef CONFIG_PPC64 337 /* 338 * Collect processor utilization data per process 339 */ 340 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 341 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 342 long unsigned start_tb, current_tb; 343 start_tb = old_thread->start_tb; 344 cu->current_tb = current_tb = mfspr(SPRN_PURR); 345 old_thread->accum_tb += (current_tb - start_tb); 346 new_thread->start_tb = current_tb; 347 } 348 #endif 349 350 local_irq_save(flags); 351 352 account_system_vtime(current); 353 account_process_vtime(current); 354 calculate_steal_time(); 355 356 last = _switch(old_thread, new_thread); 357 358 local_irq_restore(flags); 359 360 return last; 361 } 362 363 static int instructions_to_print = 16; 364 365 static void show_instructions(struct pt_regs *regs) 366 { 367 int i; 368 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 369 sizeof(int)); 370 371 printk("Instruction dump:"); 372 373 for (i = 0; i < instructions_to_print; i++) { 374 int instr; 375 376 if (!(i % 8)) 377 printk("\n"); 378 379 #if !defined(CONFIG_BOOKE) 380 /* If executing with the IMMU off, adjust pc rather 381 * than print XXXXXXXX. 382 */ 383 if (!(regs->msr & MSR_IR)) 384 pc = (unsigned long)phys_to_virt(pc); 385 #endif 386 387 /* We use __get_user here *only* to avoid an OOPS on a 388 * bad address because the pc *should* only be a 389 * kernel address. 390 */ 391 if (!__kernel_text_address(pc) || 392 __get_user(instr, (unsigned int __user *)pc)) { 393 printk("XXXXXXXX "); 394 } else { 395 if (regs->nip == pc) 396 printk("<%08x> ", instr); 397 else 398 printk("%08x ", instr); 399 } 400 401 pc += sizeof(int); 402 } 403 404 printk("\n"); 405 } 406 407 static struct regbit { 408 unsigned long bit; 409 const char *name; 410 } msr_bits[] = { 411 {MSR_EE, "EE"}, 412 {MSR_PR, "PR"}, 413 {MSR_FP, "FP"}, 414 {MSR_ME, "ME"}, 415 {MSR_IR, "IR"}, 416 {MSR_DR, "DR"}, 417 {0, NULL} 418 }; 419 420 static void printbits(unsigned long val, struct regbit *bits) 421 { 422 const char *sep = ""; 423 424 printk("<"); 425 for (; bits->bit; ++bits) 426 if (val & bits->bit) { 427 printk("%s%s", sep, bits->name); 428 sep = ","; 429 } 430 printk(">"); 431 } 432 433 #ifdef CONFIG_PPC64 434 #define REG "%016lx" 435 #define REGS_PER_LINE 4 436 #define LAST_VOLATILE 13 437 #else 438 #define REG "%08lx" 439 #define REGS_PER_LINE 8 440 #define LAST_VOLATILE 12 441 #endif 442 443 void show_regs(struct pt_regs * regs) 444 { 445 int i, trap; 446 447 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 448 regs->nip, regs->link, regs->ctr); 449 printk("REGS: %p TRAP: %04lx %s (%s)\n", 450 regs, regs->trap, print_tainted(), init_utsname()->release); 451 printk("MSR: "REG" ", regs->msr); 452 printbits(regs->msr, msr_bits); 453 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 454 trap = TRAP(regs); 455 if (trap == 0x300 || trap == 0x600) 456 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 457 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); 458 #else 459 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 460 #endif 461 printk("TASK = %p[%d] '%s' THREAD: %p", 462 current, task_pid_nr(current), current->comm, task_thread_info(current)); 463 464 #ifdef CONFIG_SMP 465 printk(" CPU: %d", smp_processor_id()); 466 #endif /* CONFIG_SMP */ 467 468 for (i = 0; i < 32; i++) { 469 if ((i % REGS_PER_LINE) == 0) 470 printk("\n" KERN_INFO "GPR%02d: ", i); 471 printk(REG " ", regs->gpr[i]); 472 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 473 break; 474 } 475 printk("\n"); 476 #ifdef CONFIG_KALLSYMS 477 /* 478 * Lookup NIP late so we have the best change of getting the 479 * above info out without failing 480 */ 481 printk("NIP ["REG"] ", regs->nip); 482 print_symbol("%s\n", regs->nip); 483 printk("LR ["REG"] ", regs->link); 484 print_symbol("%s\n", regs->link); 485 #endif 486 show_stack(current, (unsigned long *) regs->gpr[1]); 487 if (!user_mode(regs)) 488 show_instructions(regs); 489 } 490 491 void exit_thread(void) 492 { 493 discard_lazy_cpu_state(); 494 } 495 496 void flush_thread(void) 497 { 498 #ifdef CONFIG_PPC64 499 struct thread_info *t = current_thread_info(); 500 501 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) { 502 clear_ti_thread_flag(t, TIF_ABI_PENDING); 503 if (test_ti_thread_flag(t, TIF_32BIT)) 504 clear_ti_thread_flag(t, TIF_32BIT); 505 else 506 set_ti_thread_flag(t, TIF_32BIT); 507 } 508 #endif 509 510 discard_lazy_cpu_state(); 511 512 if (current->thread.dabr) { 513 current->thread.dabr = 0; 514 set_dabr(0); 515 } 516 } 517 518 void 519 release_thread(struct task_struct *t) 520 { 521 } 522 523 /* 524 * This gets called before we allocate a new thread and copy 525 * the current task into it. 526 */ 527 void prepare_to_copy(struct task_struct *tsk) 528 { 529 flush_fp_to_thread(current); 530 flush_altivec_to_thread(current); 531 flush_spe_to_thread(current); 532 } 533 534 /* 535 * Copy a thread.. 536 */ 537 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 538 unsigned long unused, struct task_struct *p, 539 struct pt_regs *regs) 540 { 541 struct pt_regs *childregs, *kregs; 542 extern void ret_from_fork(void); 543 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 544 545 CHECK_FULL_REGS(regs); 546 /* Copy registers */ 547 sp -= sizeof(struct pt_regs); 548 childregs = (struct pt_regs *) sp; 549 *childregs = *regs; 550 if ((childregs->msr & MSR_PR) == 0) { 551 /* for kernel thread, set `current' and stackptr in new task */ 552 childregs->gpr[1] = sp + sizeof(struct pt_regs); 553 #ifdef CONFIG_PPC32 554 childregs->gpr[2] = (unsigned long) p; 555 #else 556 clear_tsk_thread_flag(p, TIF_32BIT); 557 #endif 558 p->thread.regs = NULL; /* no user register state */ 559 } else { 560 childregs->gpr[1] = usp; 561 p->thread.regs = childregs; 562 if (clone_flags & CLONE_SETTLS) { 563 #ifdef CONFIG_PPC64 564 if (!test_thread_flag(TIF_32BIT)) 565 childregs->gpr[13] = childregs->gpr[6]; 566 else 567 #endif 568 childregs->gpr[2] = childregs->gpr[6]; 569 } 570 } 571 childregs->gpr[3] = 0; /* Result from fork() */ 572 sp -= STACK_FRAME_OVERHEAD; 573 574 /* 575 * The way this works is that at some point in the future 576 * some task will call _switch to switch to the new task. 577 * That will pop off the stack frame created below and start 578 * the new task running at ret_from_fork. The new task will 579 * do some house keeping and then return from the fork or clone 580 * system call, using the stack frame created above. 581 */ 582 sp -= sizeof(struct pt_regs); 583 kregs = (struct pt_regs *) sp; 584 sp -= STACK_FRAME_OVERHEAD; 585 p->thread.ksp = sp; 586 587 #ifdef CONFIG_PPC64 588 if (cpu_has_feature(CPU_FTR_SLB)) { 589 unsigned long sp_vsid; 590 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 591 592 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) 593 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 594 << SLB_VSID_SHIFT_1T; 595 else 596 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 597 << SLB_VSID_SHIFT; 598 sp_vsid |= SLB_VSID_KERNEL | llp; 599 p->thread.ksp_vsid = sp_vsid; 600 } 601 602 /* 603 * The PPC64 ABI makes use of a TOC to contain function 604 * pointers. The function (ret_from_except) is actually a pointer 605 * to the TOC entry. The first entry is a pointer to the actual 606 * function. 607 */ 608 kregs->nip = *((unsigned long *)ret_from_fork); 609 #else 610 kregs->nip = (unsigned long)ret_from_fork; 611 #endif 612 613 return 0; 614 } 615 616 /* 617 * Set up a thread for executing a new program 618 */ 619 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 620 { 621 #ifdef CONFIG_PPC64 622 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 623 #endif 624 625 set_fs(USER_DS); 626 627 /* 628 * If we exec out of a kernel thread then thread.regs will not be 629 * set. Do it now. 630 */ 631 if (!current->thread.regs) { 632 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 633 current->thread.regs = regs - 1; 634 } 635 636 memset(regs->gpr, 0, sizeof(regs->gpr)); 637 regs->ctr = 0; 638 regs->link = 0; 639 regs->xer = 0; 640 regs->ccr = 0; 641 regs->gpr[1] = sp; 642 643 /* 644 * We have just cleared all the nonvolatile GPRs, so make 645 * FULL_REGS(regs) return true. This is necessary to allow 646 * ptrace to examine the thread immediately after exec. 647 */ 648 regs->trap &= ~1UL; 649 650 #ifdef CONFIG_PPC32 651 regs->mq = 0; 652 regs->nip = start; 653 regs->msr = MSR_USER; 654 #else 655 if (!test_thread_flag(TIF_32BIT)) { 656 unsigned long entry, toc; 657 658 /* start is a relocated pointer to the function descriptor for 659 * the elf _start routine. The first entry in the function 660 * descriptor is the entry address of _start and the second 661 * entry is the TOC value we need to use. 662 */ 663 __get_user(entry, (unsigned long __user *)start); 664 __get_user(toc, (unsigned long __user *)start+1); 665 666 /* Check whether the e_entry function descriptor entries 667 * need to be relocated before we can use them. 668 */ 669 if (load_addr != 0) { 670 entry += load_addr; 671 toc += load_addr; 672 } 673 regs->nip = entry; 674 regs->gpr[2] = toc; 675 regs->msr = MSR_USER64; 676 } else { 677 regs->nip = start; 678 regs->gpr[2] = 0; 679 regs->msr = MSR_USER32; 680 } 681 #endif 682 683 discard_lazy_cpu_state(); 684 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 685 current->thread.fpscr.val = 0; 686 #ifdef CONFIG_ALTIVEC 687 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 688 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 689 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 690 current->thread.vrsave = 0; 691 current->thread.used_vr = 0; 692 #endif /* CONFIG_ALTIVEC */ 693 #ifdef CONFIG_SPE 694 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 695 current->thread.acc = 0; 696 current->thread.spefscr = 0; 697 current->thread.used_spe = 0; 698 #endif /* CONFIG_SPE */ 699 } 700 701 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 702 | PR_FP_EXC_RES | PR_FP_EXC_INV) 703 704 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 705 { 706 struct pt_regs *regs = tsk->thread.regs; 707 708 /* This is a bit hairy. If we are an SPE enabled processor 709 * (have embedded fp) we store the IEEE exception enable flags in 710 * fpexc_mode. fpexc_mode is also used for setting FP exception 711 * mode (asyn, precise, disabled) for 'Classic' FP. */ 712 if (val & PR_FP_EXC_SW_ENABLE) { 713 #ifdef CONFIG_SPE 714 if (cpu_has_feature(CPU_FTR_SPE)) { 715 tsk->thread.fpexc_mode = val & 716 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 717 return 0; 718 } else { 719 return -EINVAL; 720 } 721 #else 722 return -EINVAL; 723 #endif 724 } 725 726 /* on a CONFIG_SPE this does not hurt us. The bits that 727 * __pack_fe01 use do not overlap with bits used for 728 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 729 * on CONFIG_SPE implementations are reserved so writing to 730 * them does not change anything */ 731 if (val > PR_FP_EXC_PRECISE) 732 return -EINVAL; 733 tsk->thread.fpexc_mode = __pack_fe01(val); 734 if (regs != NULL && (regs->msr & MSR_FP) != 0) 735 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 736 | tsk->thread.fpexc_mode; 737 return 0; 738 } 739 740 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 741 { 742 unsigned int val; 743 744 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 745 #ifdef CONFIG_SPE 746 if (cpu_has_feature(CPU_FTR_SPE)) 747 val = tsk->thread.fpexc_mode; 748 else 749 return -EINVAL; 750 #else 751 return -EINVAL; 752 #endif 753 else 754 val = __unpack_fe01(tsk->thread.fpexc_mode); 755 return put_user(val, (unsigned int __user *) adr); 756 } 757 758 int set_endian(struct task_struct *tsk, unsigned int val) 759 { 760 struct pt_regs *regs = tsk->thread.regs; 761 762 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 763 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 764 return -EINVAL; 765 766 if (regs == NULL) 767 return -EINVAL; 768 769 if (val == PR_ENDIAN_BIG) 770 regs->msr &= ~MSR_LE; 771 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 772 regs->msr |= MSR_LE; 773 else 774 return -EINVAL; 775 776 return 0; 777 } 778 779 int get_endian(struct task_struct *tsk, unsigned long adr) 780 { 781 struct pt_regs *regs = tsk->thread.regs; 782 unsigned int val; 783 784 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 785 !cpu_has_feature(CPU_FTR_REAL_LE)) 786 return -EINVAL; 787 788 if (regs == NULL) 789 return -EINVAL; 790 791 if (regs->msr & MSR_LE) { 792 if (cpu_has_feature(CPU_FTR_REAL_LE)) 793 val = PR_ENDIAN_LITTLE; 794 else 795 val = PR_ENDIAN_PPC_LITTLE; 796 } else 797 val = PR_ENDIAN_BIG; 798 799 return put_user(val, (unsigned int __user *)adr); 800 } 801 802 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 803 { 804 tsk->thread.align_ctl = val; 805 return 0; 806 } 807 808 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 809 { 810 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 811 } 812 813 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 814 815 int sys_clone(unsigned long clone_flags, unsigned long usp, 816 int __user *parent_tidp, void __user *child_threadptr, 817 int __user *child_tidp, int p6, 818 struct pt_regs *regs) 819 { 820 CHECK_FULL_REGS(regs); 821 if (usp == 0) 822 usp = regs->gpr[1]; /* stack pointer for child */ 823 #ifdef CONFIG_PPC64 824 if (test_thread_flag(TIF_32BIT)) { 825 parent_tidp = TRUNC_PTR(parent_tidp); 826 child_tidp = TRUNC_PTR(child_tidp); 827 } 828 #endif 829 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 830 } 831 832 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 833 unsigned long p4, unsigned long p5, unsigned long p6, 834 struct pt_regs *regs) 835 { 836 CHECK_FULL_REGS(regs); 837 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 838 } 839 840 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 841 unsigned long p4, unsigned long p5, unsigned long p6, 842 struct pt_regs *regs) 843 { 844 CHECK_FULL_REGS(regs); 845 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 846 regs, 0, NULL, NULL); 847 } 848 849 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 850 unsigned long a3, unsigned long a4, unsigned long a5, 851 struct pt_regs *regs) 852 { 853 int error; 854 char *filename; 855 856 filename = getname((char __user *) a0); 857 error = PTR_ERR(filename); 858 if (IS_ERR(filename)) 859 goto out; 860 flush_fp_to_thread(current); 861 flush_altivec_to_thread(current); 862 flush_spe_to_thread(current); 863 error = do_execve(filename, (char __user * __user *) a1, 864 (char __user * __user *) a2, regs); 865 if (error == 0) { 866 task_lock(current); 867 current->ptrace &= ~PT_DTRACE; 868 task_unlock(current); 869 } 870 putname(filename); 871 out: 872 return error; 873 } 874 875 #ifdef CONFIG_IRQSTACKS 876 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 877 unsigned long nbytes) 878 { 879 unsigned long stack_page; 880 unsigned long cpu = task_cpu(p); 881 882 /* 883 * Avoid crashing if the stack has overflowed and corrupted 884 * task_cpu(p), which is in the thread_info struct. 885 */ 886 if (cpu < NR_CPUS && cpu_possible(cpu)) { 887 stack_page = (unsigned long) hardirq_ctx[cpu]; 888 if (sp >= stack_page + sizeof(struct thread_struct) 889 && sp <= stack_page + THREAD_SIZE - nbytes) 890 return 1; 891 892 stack_page = (unsigned long) softirq_ctx[cpu]; 893 if (sp >= stack_page + sizeof(struct thread_struct) 894 && sp <= stack_page + THREAD_SIZE - nbytes) 895 return 1; 896 } 897 return 0; 898 } 899 900 #else 901 #define valid_irq_stack(sp, p, nb) 0 902 #endif /* CONFIG_IRQSTACKS */ 903 904 int validate_sp(unsigned long sp, struct task_struct *p, 905 unsigned long nbytes) 906 { 907 unsigned long stack_page = (unsigned long)task_stack_page(p); 908 909 if (sp >= stack_page + sizeof(struct thread_struct) 910 && sp <= stack_page + THREAD_SIZE - nbytes) 911 return 1; 912 913 return valid_irq_stack(sp, p, nbytes); 914 } 915 916 #ifdef CONFIG_PPC64 917 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */ 918 #define FRAME_LR_SAVE 2 919 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288) 920 #define REGS_MARKER 0x7265677368657265ul 921 #define FRAME_MARKER 12 922 #else 923 #define MIN_STACK_FRAME 16 924 #define FRAME_LR_SAVE 1 925 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) 926 #define REGS_MARKER 0x72656773ul 927 #define FRAME_MARKER 2 928 #endif 929 930 EXPORT_SYMBOL(validate_sp); 931 932 unsigned long get_wchan(struct task_struct *p) 933 { 934 unsigned long ip, sp; 935 int count = 0; 936 937 if (!p || p == current || p->state == TASK_RUNNING) 938 return 0; 939 940 sp = p->thread.ksp; 941 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 942 return 0; 943 944 do { 945 sp = *(unsigned long *)sp; 946 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 947 return 0; 948 if (count > 0) { 949 ip = ((unsigned long *)sp)[FRAME_LR_SAVE]; 950 if (!in_sched_functions(ip)) 951 return ip; 952 } 953 } while (count++ < 16); 954 return 0; 955 } 956 957 static int kstack_depth_to_print = 64; 958 959 void show_stack(struct task_struct *tsk, unsigned long *stack) 960 { 961 unsigned long sp, ip, lr, newsp; 962 int count = 0; 963 int firstframe = 1; 964 965 sp = (unsigned long) stack; 966 if (tsk == NULL) 967 tsk = current; 968 if (sp == 0) { 969 if (tsk == current) 970 asm("mr %0,1" : "=r" (sp)); 971 else 972 sp = tsk->thread.ksp; 973 } 974 975 lr = 0; 976 printk("Call Trace:\n"); 977 do { 978 if (!validate_sp(sp, tsk, MIN_STACK_FRAME)) 979 return; 980 981 stack = (unsigned long *) sp; 982 newsp = stack[0]; 983 ip = stack[FRAME_LR_SAVE]; 984 if (!firstframe || ip != lr) { 985 printk("["REG"] ["REG"] ", sp, ip); 986 print_symbol("%s", ip); 987 if (firstframe) 988 printk(" (unreliable)"); 989 printk("\n"); 990 } 991 firstframe = 0; 992 993 /* 994 * See if this is an exception frame. 995 * We look for the "regshere" marker in the current frame. 996 */ 997 if (validate_sp(sp, tsk, INT_FRAME_SIZE) 998 && stack[FRAME_MARKER] == REGS_MARKER) { 999 struct pt_regs *regs = (struct pt_regs *) 1000 (sp + STACK_FRAME_OVERHEAD); 1001 printk("--- Exception: %lx", regs->trap); 1002 print_symbol(" at %s\n", regs->nip); 1003 lr = regs->link; 1004 print_symbol(" LR = %s\n", lr); 1005 firstframe = 1; 1006 } 1007 1008 sp = newsp; 1009 } while (count++ < kstack_depth_to_print); 1010 } 1011 1012 void dump_stack(void) 1013 { 1014 show_stack(current, NULL); 1015 } 1016 EXPORT_SYMBOL(dump_stack); 1017 1018 #ifdef CONFIG_PPC64 1019 void ppc64_runlatch_on(void) 1020 { 1021 unsigned long ctrl; 1022 1023 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { 1024 HMT_medium(); 1025 1026 ctrl = mfspr(SPRN_CTRLF); 1027 ctrl |= CTRL_RUNLATCH; 1028 mtspr(SPRN_CTRLT, ctrl); 1029 1030 set_thread_flag(TIF_RUNLATCH); 1031 } 1032 } 1033 1034 void ppc64_runlatch_off(void) 1035 { 1036 unsigned long ctrl; 1037 1038 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) { 1039 HMT_medium(); 1040 1041 clear_thread_flag(TIF_RUNLATCH); 1042 1043 ctrl = mfspr(SPRN_CTRLF); 1044 ctrl &= ~CTRL_RUNLATCH; 1045 mtspr(SPRN_CTRLT, ctrl); 1046 } 1047 } 1048 #endif 1049