xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 643d1f7f)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50 
51 extern unsigned long _get_SP(void);
52 
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
58 
59 /*
60  * Make sure the floating-point register state in the
61  * the thread_struct is up to date for task tsk.
62  */
63 void flush_fp_to_thread(struct task_struct *tsk)
64 {
65 	if (tsk->thread.regs) {
66 		/*
67 		 * We need to disable preemption here because if we didn't,
68 		 * another process could get scheduled after the regs->msr
69 		 * test but before we have finished saving the FP registers
70 		 * to the thread_struct.  That process could take over the
71 		 * FPU, and then when we get scheduled again we would store
72 		 * bogus values for the remaining FP registers.
73 		 */
74 		preempt_disable();
75 		if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
77 			/*
78 			 * This should only ever be called for current or
79 			 * for a stopped child process.  Since we save away
80 			 * the FP register state on context switch on SMP,
81 			 * there is something wrong if a stopped child appears
82 			 * to still have its FP state in the CPU registers.
83 			 */
84 			BUG_ON(tsk != current);
85 #endif
86 			giveup_fpu(tsk);
87 		}
88 		preempt_enable();
89 	}
90 }
91 
92 void enable_kernel_fp(void)
93 {
94 	WARN_ON(preemptible());
95 
96 #ifdef CONFIG_SMP
97 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 		giveup_fpu(current);
99 	else
100 		giveup_fpu(NULL);	/* just enables FP for kernel */
101 #else
102 	giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
104 }
105 EXPORT_SYMBOL(enable_kernel_fp);
106 
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
108 {
109 	if (!tsk->thread.regs)
110 		return 0;
111 	flush_fp_to_thread(current);
112 
113 	memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
114 
115 	return 1;
116 }
117 
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
120 {
121 	WARN_ON(preemptible());
122 
123 #ifdef CONFIG_SMP
124 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 		giveup_altivec(current);
126 	else
127 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
128 #else
129 	giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
131 }
132 EXPORT_SYMBOL(enable_kernel_altivec);
133 
134 /*
135  * Make sure the VMX/Altivec register state in the
136  * the thread_struct is up to date for task tsk.
137  */
138 void flush_altivec_to_thread(struct task_struct *tsk)
139 {
140 	if (tsk->thread.regs) {
141 		preempt_disable();
142 		if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 			BUG_ON(tsk != current);
145 #endif
146 			giveup_altivec(tsk);
147 		}
148 		preempt_enable();
149 	}
150 }
151 
152 int dump_task_altivec(struct task_struct *tsk, elf_vrregset_t *vrregs)
153 {
154 	/* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
155 	 * separately, see below */
156 	const int nregs = ELF_NVRREG - 2;
157 	elf_vrreg_t *reg;
158 	u32 *dest;
159 
160 	if (tsk == current)
161 		flush_altivec_to_thread(tsk);
162 
163 	reg = (elf_vrreg_t *)vrregs;
164 
165 	/* copy the 32 vr registers */
166 	memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
167 	reg += nregs;
168 
169 	/* copy the vscr */
170 	memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
171 	reg++;
172 
173 	/* vrsave is stored in the high 32bit slot of the final 128bits */
174 	memset(reg, 0, sizeof(*reg));
175 	dest = (u32 *)reg;
176 	*dest = tsk->thread.vrsave;
177 
178 	return 1;
179 }
180 #endif /* CONFIG_ALTIVEC */
181 
182 #ifdef CONFIG_SPE
183 
184 void enable_kernel_spe(void)
185 {
186 	WARN_ON(preemptible());
187 
188 #ifdef CONFIG_SMP
189 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
190 		giveup_spe(current);
191 	else
192 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
193 #else
194 	giveup_spe(last_task_used_spe);
195 #endif /* __SMP __ */
196 }
197 EXPORT_SYMBOL(enable_kernel_spe);
198 
199 void flush_spe_to_thread(struct task_struct *tsk)
200 {
201 	if (tsk->thread.regs) {
202 		preempt_disable();
203 		if (tsk->thread.regs->msr & MSR_SPE) {
204 #ifdef CONFIG_SMP
205 			BUG_ON(tsk != current);
206 #endif
207 			giveup_spe(tsk);
208 		}
209 		preempt_enable();
210 	}
211 }
212 
213 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
214 {
215 	flush_spe_to_thread(current);
216 	/* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
217 	memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
218 	return 1;
219 }
220 #endif /* CONFIG_SPE */
221 
222 #ifndef CONFIG_SMP
223 /*
224  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225  * and the current task has some state, discard it.
226  */
227 void discard_lazy_cpu_state(void)
228 {
229 	preempt_disable();
230 	if (last_task_used_math == current)
231 		last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233 	if (last_task_used_altivec == current)
234 		last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_SPE
237 	if (last_task_used_spe == current)
238 		last_task_used_spe = NULL;
239 #endif
240 	preempt_enable();
241 }
242 #endif /* CONFIG_SMP */
243 
244 int set_dabr(unsigned long dabr)
245 {
246 #ifdef CONFIG_PPC_MERGE		/* XXX for now */
247 	if (ppc_md.set_dabr)
248 		return ppc_md.set_dabr(dabr);
249 #endif
250 
251 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
252 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
253 	mtspr(SPRN_DABR, dabr);
254 #endif
255 	return 0;
256 }
257 
258 #ifdef CONFIG_PPC64
259 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
260 #endif
261 
262 static DEFINE_PER_CPU(unsigned long, current_dabr);
263 
264 struct task_struct *__switch_to(struct task_struct *prev,
265 	struct task_struct *new)
266 {
267 	struct thread_struct *new_thread, *old_thread;
268 	unsigned long flags;
269 	struct task_struct *last;
270 
271 #ifdef CONFIG_SMP
272 	/* avoid complexity of lazy save/restore of fpu
273 	 * by just saving it every time we switch out if
274 	 * this task used the fpu during the last quantum.
275 	 *
276 	 * If it tries to use the fpu again, it'll trap and
277 	 * reload its fp regs.  So we don't have to do a restore
278 	 * every switch, just a save.
279 	 *  -- Cort
280 	 */
281 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
282 		giveup_fpu(prev);
283 #ifdef CONFIG_ALTIVEC
284 	/*
285 	 * If the previous thread used altivec in the last quantum
286 	 * (thus changing altivec regs) then save them.
287 	 * We used to check the VRSAVE register but not all apps
288 	 * set it, so we don't rely on it now (and in fact we need
289 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
290 	 *
291 	 * On SMP we always save/restore altivec regs just to avoid the
292 	 * complexity of changing processors.
293 	 *  -- Cort
294 	 */
295 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
296 		giveup_altivec(prev);
297 #endif /* CONFIG_ALTIVEC */
298 #ifdef CONFIG_SPE
299 	/*
300 	 * If the previous thread used spe in the last quantum
301 	 * (thus changing spe regs) then save them.
302 	 *
303 	 * On SMP we always save/restore spe regs just to avoid the
304 	 * complexity of changing processors.
305 	 */
306 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
307 		giveup_spe(prev);
308 #endif /* CONFIG_SPE */
309 
310 #else  /* CONFIG_SMP */
311 #ifdef CONFIG_ALTIVEC
312 	/* Avoid the trap.  On smp this this never happens since
313 	 * we don't set last_task_used_altivec -- Cort
314 	 */
315 	if (new->thread.regs && last_task_used_altivec == new)
316 		new->thread.regs->msr |= MSR_VEC;
317 #endif /* CONFIG_ALTIVEC */
318 #ifdef CONFIG_SPE
319 	/* Avoid the trap.  On smp this this never happens since
320 	 * we don't set last_task_used_spe
321 	 */
322 	if (new->thread.regs && last_task_used_spe == new)
323 		new->thread.regs->msr |= MSR_SPE;
324 #endif /* CONFIG_SPE */
325 
326 #endif /* CONFIG_SMP */
327 
328 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
329 		set_dabr(new->thread.dabr);
330 		__get_cpu_var(current_dabr) = new->thread.dabr;
331 	}
332 
333 	new_thread = &new->thread;
334 	old_thread = &current->thread;
335 
336 #ifdef CONFIG_PPC64
337 	/*
338 	 * Collect processor utilization data per process
339 	 */
340 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
341 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
342 		long unsigned start_tb, current_tb;
343 		start_tb = old_thread->start_tb;
344 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
345 		old_thread->accum_tb += (current_tb - start_tb);
346 		new_thread->start_tb = current_tb;
347 	}
348 #endif
349 
350 	local_irq_save(flags);
351 
352 	account_system_vtime(current);
353 	account_process_vtime(current);
354 	calculate_steal_time();
355 
356 	last = _switch(old_thread, new_thread);
357 
358 	local_irq_restore(flags);
359 
360 	return last;
361 }
362 
363 static int instructions_to_print = 16;
364 
365 static void show_instructions(struct pt_regs *regs)
366 {
367 	int i;
368 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
369 			sizeof(int));
370 
371 	printk("Instruction dump:");
372 
373 	for (i = 0; i < instructions_to_print; i++) {
374 		int instr;
375 
376 		if (!(i % 8))
377 			printk("\n");
378 
379 #if !defined(CONFIG_BOOKE)
380 		/* If executing with the IMMU off, adjust pc rather
381 		 * than print XXXXXXXX.
382 		 */
383 		if (!(regs->msr & MSR_IR))
384 			pc = (unsigned long)phys_to_virt(pc);
385 #endif
386 
387 		/* We use __get_user here *only* to avoid an OOPS on a
388 		 * bad address because the pc *should* only be a
389 		 * kernel address.
390 		 */
391 		if (!__kernel_text_address(pc) ||
392 		     __get_user(instr, (unsigned int __user *)pc)) {
393 			printk("XXXXXXXX ");
394 		} else {
395 			if (regs->nip == pc)
396 				printk("<%08x> ", instr);
397 			else
398 				printk("%08x ", instr);
399 		}
400 
401 		pc += sizeof(int);
402 	}
403 
404 	printk("\n");
405 }
406 
407 static struct regbit {
408 	unsigned long bit;
409 	const char *name;
410 } msr_bits[] = {
411 	{MSR_EE,	"EE"},
412 	{MSR_PR,	"PR"},
413 	{MSR_FP,	"FP"},
414 	{MSR_ME,	"ME"},
415 	{MSR_IR,	"IR"},
416 	{MSR_DR,	"DR"},
417 	{0,		NULL}
418 };
419 
420 static void printbits(unsigned long val, struct regbit *bits)
421 {
422 	const char *sep = "";
423 
424 	printk("<");
425 	for (; bits->bit; ++bits)
426 		if (val & bits->bit) {
427 			printk("%s%s", sep, bits->name);
428 			sep = ",";
429 		}
430 	printk(">");
431 }
432 
433 #ifdef CONFIG_PPC64
434 #define REG		"%016lx"
435 #define REGS_PER_LINE	4
436 #define LAST_VOLATILE	13
437 #else
438 #define REG		"%08lx"
439 #define REGS_PER_LINE	8
440 #define LAST_VOLATILE	12
441 #endif
442 
443 void show_regs(struct pt_regs * regs)
444 {
445 	int i, trap;
446 
447 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
448 	       regs->nip, regs->link, regs->ctr);
449 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
450 	       regs, regs->trap, print_tainted(), init_utsname()->release);
451 	printk("MSR: "REG" ", regs->msr);
452 	printbits(regs->msr, msr_bits);
453 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
454 	trap = TRAP(regs);
455 	if (trap == 0x300 || trap == 0x600)
456 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
457 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
458 #else
459 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
460 #endif
461 	printk("TASK = %p[%d] '%s' THREAD: %p",
462 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
463 
464 #ifdef CONFIG_SMP
465 	printk(" CPU: %d", smp_processor_id());
466 #endif /* CONFIG_SMP */
467 
468 	for (i = 0;  i < 32;  i++) {
469 		if ((i % REGS_PER_LINE) == 0)
470 			printk("\n" KERN_INFO "GPR%02d: ", i);
471 		printk(REG " ", regs->gpr[i]);
472 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
473 			break;
474 	}
475 	printk("\n");
476 #ifdef CONFIG_KALLSYMS
477 	/*
478 	 * Lookup NIP late so we have the best change of getting the
479 	 * above info out without failing
480 	 */
481 	printk("NIP ["REG"] ", regs->nip);
482 	print_symbol("%s\n", regs->nip);
483 	printk("LR ["REG"] ", regs->link);
484 	print_symbol("%s\n", regs->link);
485 #endif
486 	show_stack(current, (unsigned long *) regs->gpr[1]);
487 	if (!user_mode(regs))
488 		show_instructions(regs);
489 }
490 
491 void exit_thread(void)
492 {
493 	discard_lazy_cpu_state();
494 }
495 
496 void flush_thread(void)
497 {
498 #ifdef CONFIG_PPC64
499 	struct thread_info *t = current_thread_info();
500 
501 	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
502 		clear_ti_thread_flag(t, TIF_ABI_PENDING);
503 		if (test_ti_thread_flag(t, TIF_32BIT))
504 			clear_ti_thread_flag(t, TIF_32BIT);
505 		else
506 			set_ti_thread_flag(t, TIF_32BIT);
507 	}
508 #endif
509 
510 	discard_lazy_cpu_state();
511 
512 	if (current->thread.dabr) {
513 		current->thread.dabr = 0;
514 		set_dabr(0);
515 	}
516 }
517 
518 void
519 release_thread(struct task_struct *t)
520 {
521 }
522 
523 /*
524  * This gets called before we allocate a new thread and copy
525  * the current task into it.
526  */
527 void prepare_to_copy(struct task_struct *tsk)
528 {
529 	flush_fp_to_thread(current);
530 	flush_altivec_to_thread(current);
531 	flush_spe_to_thread(current);
532 }
533 
534 /*
535  * Copy a thread..
536  */
537 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
538 		unsigned long unused, struct task_struct *p,
539 		struct pt_regs *regs)
540 {
541 	struct pt_regs *childregs, *kregs;
542 	extern void ret_from_fork(void);
543 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
544 
545 	CHECK_FULL_REGS(regs);
546 	/* Copy registers */
547 	sp -= sizeof(struct pt_regs);
548 	childregs = (struct pt_regs *) sp;
549 	*childregs = *regs;
550 	if ((childregs->msr & MSR_PR) == 0) {
551 		/* for kernel thread, set `current' and stackptr in new task */
552 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
553 #ifdef CONFIG_PPC32
554 		childregs->gpr[2] = (unsigned long) p;
555 #else
556 		clear_tsk_thread_flag(p, TIF_32BIT);
557 #endif
558 		p->thread.regs = NULL;	/* no user register state */
559 	} else {
560 		childregs->gpr[1] = usp;
561 		p->thread.regs = childregs;
562 		if (clone_flags & CLONE_SETTLS) {
563 #ifdef CONFIG_PPC64
564 			if (!test_thread_flag(TIF_32BIT))
565 				childregs->gpr[13] = childregs->gpr[6];
566 			else
567 #endif
568 				childregs->gpr[2] = childregs->gpr[6];
569 		}
570 	}
571 	childregs->gpr[3] = 0;  /* Result from fork() */
572 	sp -= STACK_FRAME_OVERHEAD;
573 
574 	/*
575 	 * The way this works is that at some point in the future
576 	 * some task will call _switch to switch to the new task.
577 	 * That will pop off the stack frame created below and start
578 	 * the new task running at ret_from_fork.  The new task will
579 	 * do some house keeping and then return from the fork or clone
580 	 * system call, using the stack frame created above.
581 	 */
582 	sp -= sizeof(struct pt_regs);
583 	kregs = (struct pt_regs *) sp;
584 	sp -= STACK_FRAME_OVERHEAD;
585 	p->thread.ksp = sp;
586 
587 #ifdef CONFIG_PPC64
588 	if (cpu_has_feature(CPU_FTR_SLB)) {
589 		unsigned long sp_vsid;
590 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
591 
592 		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
593 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
594 				<< SLB_VSID_SHIFT_1T;
595 		else
596 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
597 				<< SLB_VSID_SHIFT;
598 		sp_vsid |= SLB_VSID_KERNEL | llp;
599 		p->thread.ksp_vsid = sp_vsid;
600 	}
601 
602 	/*
603 	 * The PPC64 ABI makes use of a TOC to contain function
604 	 * pointers.  The function (ret_from_except) is actually a pointer
605 	 * to the TOC entry.  The first entry is a pointer to the actual
606 	 * function.
607  	 */
608 	kregs->nip = *((unsigned long *)ret_from_fork);
609 #else
610 	kregs->nip = (unsigned long)ret_from_fork;
611 #endif
612 
613 	return 0;
614 }
615 
616 /*
617  * Set up a thread for executing a new program
618  */
619 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
620 {
621 #ifdef CONFIG_PPC64
622 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
623 #endif
624 
625 	set_fs(USER_DS);
626 
627 	/*
628 	 * If we exec out of a kernel thread then thread.regs will not be
629 	 * set.  Do it now.
630 	 */
631 	if (!current->thread.regs) {
632 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
633 		current->thread.regs = regs - 1;
634 	}
635 
636 	memset(regs->gpr, 0, sizeof(regs->gpr));
637 	regs->ctr = 0;
638 	regs->link = 0;
639 	regs->xer = 0;
640 	regs->ccr = 0;
641 	regs->gpr[1] = sp;
642 
643 	/*
644 	 * We have just cleared all the nonvolatile GPRs, so make
645 	 * FULL_REGS(regs) return true.  This is necessary to allow
646 	 * ptrace to examine the thread immediately after exec.
647 	 */
648 	regs->trap &= ~1UL;
649 
650 #ifdef CONFIG_PPC32
651 	regs->mq = 0;
652 	regs->nip = start;
653 	regs->msr = MSR_USER;
654 #else
655 	if (!test_thread_flag(TIF_32BIT)) {
656 		unsigned long entry, toc;
657 
658 		/* start is a relocated pointer to the function descriptor for
659 		 * the elf _start routine.  The first entry in the function
660 		 * descriptor is the entry address of _start and the second
661 		 * entry is the TOC value we need to use.
662 		 */
663 		__get_user(entry, (unsigned long __user *)start);
664 		__get_user(toc, (unsigned long __user *)start+1);
665 
666 		/* Check whether the e_entry function descriptor entries
667 		 * need to be relocated before we can use them.
668 		 */
669 		if (load_addr != 0) {
670 			entry += load_addr;
671 			toc   += load_addr;
672 		}
673 		regs->nip = entry;
674 		regs->gpr[2] = toc;
675 		regs->msr = MSR_USER64;
676 	} else {
677 		regs->nip = start;
678 		regs->gpr[2] = 0;
679 		regs->msr = MSR_USER32;
680 	}
681 #endif
682 
683 	discard_lazy_cpu_state();
684 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
685 	current->thread.fpscr.val = 0;
686 #ifdef CONFIG_ALTIVEC
687 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
688 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
689 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
690 	current->thread.vrsave = 0;
691 	current->thread.used_vr = 0;
692 #endif /* CONFIG_ALTIVEC */
693 #ifdef CONFIG_SPE
694 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
695 	current->thread.acc = 0;
696 	current->thread.spefscr = 0;
697 	current->thread.used_spe = 0;
698 #endif /* CONFIG_SPE */
699 }
700 
701 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
702 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
703 
704 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
705 {
706 	struct pt_regs *regs = tsk->thread.regs;
707 
708 	/* This is a bit hairy.  If we are an SPE enabled  processor
709 	 * (have embedded fp) we store the IEEE exception enable flags in
710 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
711 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
712 	if (val & PR_FP_EXC_SW_ENABLE) {
713 #ifdef CONFIG_SPE
714 		if (cpu_has_feature(CPU_FTR_SPE)) {
715 			tsk->thread.fpexc_mode = val &
716 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
717 			return 0;
718 		} else {
719 			return -EINVAL;
720 		}
721 #else
722 		return -EINVAL;
723 #endif
724 	}
725 
726 	/* on a CONFIG_SPE this does not hurt us.  The bits that
727 	 * __pack_fe01 use do not overlap with bits used for
728 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
729 	 * on CONFIG_SPE implementations are reserved so writing to
730 	 * them does not change anything */
731 	if (val > PR_FP_EXC_PRECISE)
732 		return -EINVAL;
733 	tsk->thread.fpexc_mode = __pack_fe01(val);
734 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
735 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
736 			| tsk->thread.fpexc_mode;
737 	return 0;
738 }
739 
740 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
741 {
742 	unsigned int val;
743 
744 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
745 #ifdef CONFIG_SPE
746 		if (cpu_has_feature(CPU_FTR_SPE))
747 			val = tsk->thread.fpexc_mode;
748 		else
749 			return -EINVAL;
750 #else
751 		return -EINVAL;
752 #endif
753 	else
754 		val = __unpack_fe01(tsk->thread.fpexc_mode);
755 	return put_user(val, (unsigned int __user *) adr);
756 }
757 
758 int set_endian(struct task_struct *tsk, unsigned int val)
759 {
760 	struct pt_regs *regs = tsk->thread.regs;
761 
762 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
763 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
764 		return -EINVAL;
765 
766 	if (regs == NULL)
767 		return -EINVAL;
768 
769 	if (val == PR_ENDIAN_BIG)
770 		regs->msr &= ~MSR_LE;
771 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
772 		regs->msr |= MSR_LE;
773 	else
774 		return -EINVAL;
775 
776 	return 0;
777 }
778 
779 int get_endian(struct task_struct *tsk, unsigned long adr)
780 {
781 	struct pt_regs *regs = tsk->thread.regs;
782 	unsigned int val;
783 
784 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
785 	    !cpu_has_feature(CPU_FTR_REAL_LE))
786 		return -EINVAL;
787 
788 	if (regs == NULL)
789 		return -EINVAL;
790 
791 	if (regs->msr & MSR_LE) {
792 		if (cpu_has_feature(CPU_FTR_REAL_LE))
793 			val = PR_ENDIAN_LITTLE;
794 		else
795 			val = PR_ENDIAN_PPC_LITTLE;
796 	} else
797 		val = PR_ENDIAN_BIG;
798 
799 	return put_user(val, (unsigned int __user *)adr);
800 }
801 
802 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
803 {
804 	tsk->thread.align_ctl = val;
805 	return 0;
806 }
807 
808 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
809 {
810 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
811 }
812 
813 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
814 
815 int sys_clone(unsigned long clone_flags, unsigned long usp,
816 	      int __user *parent_tidp, void __user *child_threadptr,
817 	      int __user *child_tidp, int p6,
818 	      struct pt_regs *regs)
819 {
820 	CHECK_FULL_REGS(regs);
821 	if (usp == 0)
822 		usp = regs->gpr[1];	/* stack pointer for child */
823 #ifdef CONFIG_PPC64
824 	if (test_thread_flag(TIF_32BIT)) {
825 		parent_tidp = TRUNC_PTR(parent_tidp);
826 		child_tidp = TRUNC_PTR(child_tidp);
827 	}
828 #endif
829  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
830 }
831 
832 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
833 	     unsigned long p4, unsigned long p5, unsigned long p6,
834 	     struct pt_regs *regs)
835 {
836 	CHECK_FULL_REGS(regs);
837 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
838 }
839 
840 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
841 	      unsigned long p4, unsigned long p5, unsigned long p6,
842 	      struct pt_regs *regs)
843 {
844 	CHECK_FULL_REGS(regs);
845 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
846 			regs, 0, NULL, NULL);
847 }
848 
849 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
850 	       unsigned long a3, unsigned long a4, unsigned long a5,
851 	       struct pt_regs *regs)
852 {
853 	int error;
854 	char *filename;
855 
856 	filename = getname((char __user *) a0);
857 	error = PTR_ERR(filename);
858 	if (IS_ERR(filename))
859 		goto out;
860 	flush_fp_to_thread(current);
861 	flush_altivec_to_thread(current);
862 	flush_spe_to_thread(current);
863 	error = do_execve(filename, (char __user * __user *) a1,
864 			  (char __user * __user *) a2, regs);
865 	if (error == 0) {
866 		task_lock(current);
867 		current->ptrace &= ~PT_DTRACE;
868 		task_unlock(current);
869 	}
870 	putname(filename);
871 out:
872 	return error;
873 }
874 
875 #ifdef CONFIG_IRQSTACKS
876 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
877 				  unsigned long nbytes)
878 {
879 	unsigned long stack_page;
880 	unsigned long cpu = task_cpu(p);
881 
882 	/*
883 	 * Avoid crashing if the stack has overflowed and corrupted
884 	 * task_cpu(p), which is in the thread_info struct.
885 	 */
886 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
887 		stack_page = (unsigned long) hardirq_ctx[cpu];
888 		if (sp >= stack_page + sizeof(struct thread_struct)
889 		    && sp <= stack_page + THREAD_SIZE - nbytes)
890 			return 1;
891 
892 		stack_page = (unsigned long) softirq_ctx[cpu];
893 		if (sp >= stack_page + sizeof(struct thread_struct)
894 		    && sp <= stack_page + THREAD_SIZE - nbytes)
895 			return 1;
896 	}
897 	return 0;
898 }
899 
900 #else
901 #define valid_irq_stack(sp, p, nb)	0
902 #endif /* CONFIG_IRQSTACKS */
903 
904 int validate_sp(unsigned long sp, struct task_struct *p,
905 		       unsigned long nbytes)
906 {
907 	unsigned long stack_page = (unsigned long)task_stack_page(p);
908 
909 	if (sp >= stack_page + sizeof(struct thread_struct)
910 	    && sp <= stack_page + THREAD_SIZE - nbytes)
911 		return 1;
912 
913 	return valid_irq_stack(sp, p, nbytes);
914 }
915 
916 #ifdef CONFIG_PPC64
917 #define MIN_STACK_FRAME	112	/* same as STACK_FRAME_OVERHEAD, in fact */
918 #define FRAME_LR_SAVE	2
919 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
920 #define REGS_MARKER	0x7265677368657265ul
921 #define FRAME_MARKER	12
922 #else
923 #define MIN_STACK_FRAME	16
924 #define FRAME_LR_SAVE	1
925 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
926 #define REGS_MARKER	0x72656773ul
927 #define FRAME_MARKER	2
928 #endif
929 
930 EXPORT_SYMBOL(validate_sp);
931 
932 unsigned long get_wchan(struct task_struct *p)
933 {
934 	unsigned long ip, sp;
935 	int count = 0;
936 
937 	if (!p || p == current || p->state == TASK_RUNNING)
938 		return 0;
939 
940 	sp = p->thread.ksp;
941 	if (!validate_sp(sp, p, MIN_STACK_FRAME))
942 		return 0;
943 
944 	do {
945 		sp = *(unsigned long *)sp;
946 		if (!validate_sp(sp, p, MIN_STACK_FRAME))
947 			return 0;
948 		if (count > 0) {
949 			ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
950 			if (!in_sched_functions(ip))
951 				return ip;
952 		}
953 	} while (count++ < 16);
954 	return 0;
955 }
956 
957 static int kstack_depth_to_print = 64;
958 
959 void show_stack(struct task_struct *tsk, unsigned long *stack)
960 {
961 	unsigned long sp, ip, lr, newsp;
962 	int count = 0;
963 	int firstframe = 1;
964 
965 	sp = (unsigned long) stack;
966 	if (tsk == NULL)
967 		tsk = current;
968 	if (sp == 0) {
969 		if (tsk == current)
970 			asm("mr %0,1" : "=r" (sp));
971 		else
972 			sp = tsk->thread.ksp;
973 	}
974 
975 	lr = 0;
976 	printk("Call Trace:\n");
977 	do {
978 		if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
979 			return;
980 
981 		stack = (unsigned long *) sp;
982 		newsp = stack[0];
983 		ip = stack[FRAME_LR_SAVE];
984 		if (!firstframe || ip != lr) {
985 			printk("["REG"] ["REG"] ", sp, ip);
986 			print_symbol("%s", ip);
987 			if (firstframe)
988 				printk(" (unreliable)");
989 			printk("\n");
990 		}
991 		firstframe = 0;
992 
993 		/*
994 		 * See if this is an exception frame.
995 		 * We look for the "regshere" marker in the current frame.
996 		 */
997 		if (validate_sp(sp, tsk, INT_FRAME_SIZE)
998 		    && stack[FRAME_MARKER] == REGS_MARKER) {
999 			struct pt_regs *regs = (struct pt_regs *)
1000 				(sp + STACK_FRAME_OVERHEAD);
1001 			printk("--- Exception: %lx", regs->trap);
1002 			print_symbol(" at %s\n", regs->nip);
1003 			lr = regs->link;
1004 			print_symbol("    LR = %s\n", lr);
1005 			firstframe = 1;
1006 		}
1007 
1008 		sp = newsp;
1009 	} while (count++ < kstack_depth_to_print);
1010 }
1011 
1012 void dump_stack(void)
1013 {
1014 	show_stack(current, NULL);
1015 }
1016 EXPORT_SYMBOL(dump_stack);
1017 
1018 #ifdef CONFIG_PPC64
1019 void ppc64_runlatch_on(void)
1020 {
1021 	unsigned long ctrl;
1022 
1023 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1024 		HMT_medium();
1025 
1026 		ctrl = mfspr(SPRN_CTRLF);
1027 		ctrl |= CTRL_RUNLATCH;
1028 		mtspr(SPRN_CTRLT, ctrl);
1029 
1030 		set_thread_flag(TIF_RUNLATCH);
1031 	}
1032 }
1033 
1034 void ppc64_runlatch_off(void)
1035 {
1036 	unsigned long ctrl;
1037 
1038 	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1039 		HMT_medium();
1040 
1041 		clear_thread_flag(TIF_RUNLATCH);
1042 
1043 		ctrl = mfspr(SPRN_CTRLF);
1044 		ctrl &= ~CTRL_RUNLATCH;
1045 		mtspr(SPRN_CTRLT, ctrl);
1046 	}
1047 }
1048 #endif
1049