1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/module.h> 32 #include <linux/kallsyms.h> 33 #include <linux/mqueue.h> 34 #include <linux/hardirq.h> 35 #include <linux/utsname.h> 36 37 #include <asm/pgtable.h> 38 #include <asm/uaccess.h> 39 #include <asm/system.h> 40 #include <asm/io.h> 41 #include <asm/processor.h> 42 #include <asm/mmu.h> 43 #include <asm/prom.h> 44 #include <asm/machdep.h> 45 #include <asm/time.h> 46 #include <asm/syscalls.h> 47 #ifdef CONFIG_PPC64 48 #include <asm/firmware.h> 49 #endif 50 51 extern unsigned long _get_SP(void); 52 53 #ifndef CONFIG_SMP 54 struct task_struct *last_task_used_math = NULL; 55 struct task_struct *last_task_used_altivec = NULL; 56 struct task_struct *last_task_used_vsx = NULL; 57 struct task_struct *last_task_used_spe = NULL; 58 #endif 59 60 /* 61 * Make sure the floating-point register state in the 62 * the thread_struct is up to date for task tsk. 63 */ 64 void flush_fp_to_thread(struct task_struct *tsk) 65 { 66 if (tsk->thread.regs) { 67 /* 68 * We need to disable preemption here because if we didn't, 69 * another process could get scheduled after the regs->msr 70 * test but before we have finished saving the FP registers 71 * to the thread_struct. That process could take over the 72 * FPU, and then when we get scheduled again we would store 73 * bogus values for the remaining FP registers. 74 */ 75 preempt_disable(); 76 if (tsk->thread.regs->msr & MSR_FP) { 77 #ifdef CONFIG_SMP 78 /* 79 * This should only ever be called for current or 80 * for a stopped child process. Since we save away 81 * the FP register state on context switch on SMP, 82 * there is something wrong if a stopped child appears 83 * to still have its FP state in the CPU registers. 84 */ 85 BUG_ON(tsk != current); 86 #endif 87 giveup_fpu(tsk); 88 } 89 preempt_enable(); 90 } 91 } 92 93 void enable_kernel_fp(void) 94 { 95 WARN_ON(preemptible()); 96 97 #ifdef CONFIG_SMP 98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 99 giveup_fpu(current); 100 else 101 giveup_fpu(NULL); /* just enables FP for kernel */ 102 #else 103 giveup_fpu(last_task_used_math); 104 #endif /* CONFIG_SMP */ 105 } 106 EXPORT_SYMBOL(enable_kernel_fp); 107 108 #ifdef CONFIG_ALTIVEC 109 void enable_kernel_altivec(void) 110 { 111 WARN_ON(preemptible()); 112 113 #ifdef CONFIG_SMP 114 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 115 giveup_altivec(current); 116 else 117 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 118 #else 119 giveup_altivec(last_task_used_altivec); 120 #endif /* CONFIG_SMP */ 121 } 122 EXPORT_SYMBOL(enable_kernel_altivec); 123 124 /* 125 * Make sure the VMX/Altivec register state in the 126 * the thread_struct is up to date for task tsk. 127 */ 128 void flush_altivec_to_thread(struct task_struct *tsk) 129 { 130 if (tsk->thread.regs) { 131 preempt_disable(); 132 if (tsk->thread.regs->msr & MSR_VEC) { 133 #ifdef CONFIG_SMP 134 BUG_ON(tsk != current); 135 #endif 136 giveup_altivec(tsk); 137 } 138 preempt_enable(); 139 } 140 } 141 #endif /* CONFIG_ALTIVEC */ 142 143 #ifdef CONFIG_VSX 144 #if 0 145 /* not currently used, but some crazy RAID module might want to later */ 146 void enable_kernel_vsx(void) 147 { 148 WARN_ON(preemptible()); 149 150 #ifdef CONFIG_SMP 151 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) 152 giveup_vsx(current); 153 else 154 giveup_vsx(NULL); /* just enable vsx for kernel - force */ 155 #else 156 giveup_vsx(last_task_used_vsx); 157 #endif /* CONFIG_SMP */ 158 } 159 EXPORT_SYMBOL(enable_kernel_vsx); 160 #endif 161 162 void giveup_vsx(struct task_struct *tsk) 163 { 164 giveup_fpu(tsk); 165 giveup_altivec(tsk); 166 __giveup_vsx(tsk); 167 } 168 169 void flush_vsx_to_thread(struct task_struct *tsk) 170 { 171 if (tsk->thread.regs) { 172 preempt_disable(); 173 if (tsk->thread.regs->msr & MSR_VSX) { 174 #ifdef CONFIG_SMP 175 BUG_ON(tsk != current); 176 #endif 177 giveup_vsx(tsk); 178 } 179 preempt_enable(); 180 } 181 } 182 #endif /* CONFIG_VSX */ 183 184 #ifdef CONFIG_SPE 185 186 void enable_kernel_spe(void) 187 { 188 WARN_ON(preemptible()); 189 190 #ifdef CONFIG_SMP 191 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 192 giveup_spe(current); 193 else 194 giveup_spe(NULL); /* just enable SPE for kernel - force */ 195 #else 196 giveup_spe(last_task_used_spe); 197 #endif /* __SMP __ */ 198 } 199 EXPORT_SYMBOL(enable_kernel_spe); 200 201 void flush_spe_to_thread(struct task_struct *tsk) 202 { 203 if (tsk->thread.regs) { 204 preempt_disable(); 205 if (tsk->thread.regs->msr & MSR_SPE) { 206 #ifdef CONFIG_SMP 207 BUG_ON(tsk != current); 208 #endif 209 giveup_spe(tsk); 210 } 211 preempt_enable(); 212 } 213 } 214 #endif /* CONFIG_SPE */ 215 216 #ifndef CONFIG_SMP 217 /* 218 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 219 * and the current task has some state, discard it. 220 */ 221 void discard_lazy_cpu_state(void) 222 { 223 preempt_disable(); 224 if (last_task_used_math == current) 225 last_task_used_math = NULL; 226 #ifdef CONFIG_ALTIVEC 227 if (last_task_used_altivec == current) 228 last_task_used_altivec = NULL; 229 #endif /* CONFIG_ALTIVEC */ 230 #ifdef CONFIG_VSX 231 if (last_task_used_vsx == current) 232 last_task_used_vsx = NULL; 233 #endif /* CONFIG_VSX */ 234 #ifdef CONFIG_SPE 235 if (last_task_used_spe == current) 236 last_task_used_spe = NULL; 237 #endif 238 preempt_enable(); 239 } 240 #endif /* CONFIG_SMP */ 241 242 static DEFINE_PER_CPU(unsigned long, current_dabr); 243 244 int set_dabr(unsigned long dabr) 245 { 246 __get_cpu_var(current_dabr) = dabr; 247 248 #ifdef CONFIG_PPC_MERGE /* XXX for now */ 249 if (ppc_md.set_dabr) 250 return ppc_md.set_dabr(dabr); 251 #endif 252 253 /* XXX should we have a CPU_FTR_HAS_DABR ? */ 254 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx) 255 mtspr(SPRN_DABR, dabr); 256 #endif 257 return 0; 258 } 259 260 #ifdef CONFIG_PPC64 261 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 262 #endif 263 264 struct task_struct *__switch_to(struct task_struct *prev, 265 struct task_struct *new) 266 { 267 struct thread_struct *new_thread, *old_thread; 268 unsigned long flags; 269 struct task_struct *last; 270 271 #ifdef CONFIG_SMP 272 /* avoid complexity of lazy save/restore of fpu 273 * by just saving it every time we switch out if 274 * this task used the fpu during the last quantum. 275 * 276 * If it tries to use the fpu again, it'll trap and 277 * reload its fp regs. So we don't have to do a restore 278 * every switch, just a save. 279 * -- Cort 280 */ 281 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 282 giveup_fpu(prev); 283 #ifdef CONFIG_ALTIVEC 284 /* 285 * If the previous thread used altivec in the last quantum 286 * (thus changing altivec regs) then save them. 287 * We used to check the VRSAVE register but not all apps 288 * set it, so we don't rely on it now (and in fact we need 289 * to save & restore VSCR even if VRSAVE == 0). -- paulus 290 * 291 * On SMP we always save/restore altivec regs just to avoid the 292 * complexity of changing processors. 293 * -- Cort 294 */ 295 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 296 giveup_altivec(prev); 297 #endif /* CONFIG_ALTIVEC */ 298 #ifdef CONFIG_VSX 299 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) 300 /* VMX and FPU registers are already save here */ 301 __giveup_vsx(prev); 302 #endif /* CONFIG_VSX */ 303 #ifdef CONFIG_SPE 304 /* 305 * If the previous thread used spe in the last quantum 306 * (thus changing spe regs) then save them. 307 * 308 * On SMP we always save/restore spe regs just to avoid the 309 * complexity of changing processors. 310 */ 311 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 312 giveup_spe(prev); 313 #endif /* CONFIG_SPE */ 314 315 #else /* CONFIG_SMP */ 316 #ifdef CONFIG_ALTIVEC 317 /* Avoid the trap. On smp this this never happens since 318 * we don't set last_task_used_altivec -- Cort 319 */ 320 if (new->thread.regs && last_task_used_altivec == new) 321 new->thread.regs->msr |= MSR_VEC; 322 #endif /* CONFIG_ALTIVEC */ 323 #ifdef CONFIG_VSX 324 if (new->thread.regs && last_task_used_vsx == new) 325 new->thread.regs->msr |= MSR_VSX; 326 #endif /* CONFIG_VSX */ 327 #ifdef CONFIG_SPE 328 /* Avoid the trap. On smp this this never happens since 329 * we don't set last_task_used_spe 330 */ 331 if (new->thread.regs && last_task_used_spe == new) 332 new->thread.regs->msr |= MSR_SPE; 333 #endif /* CONFIG_SPE */ 334 335 #endif /* CONFIG_SMP */ 336 337 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) 338 set_dabr(new->thread.dabr); 339 340 new_thread = &new->thread; 341 old_thread = ¤t->thread; 342 343 #ifdef CONFIG_PPC64 344 /* 345 * Collect processor utilization data per process 346 */ 347 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 348 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 349 long unsigned start_tb, current_tb; 350 start_tb = old_thread->start_tb; 351 cu->current_tb = current_tb = mfspr(SPRN_PURR); 352 old_thread->accum_tb += (current_tb - start_tb); 353 new_thread->start_tb = current_tb; 354 } 355 #endif 356 357 local_irq_save(flags); 358 359 account_system_vtime(current); 360 account_process_vtime(current); 361 calculate_steal_time(); 362 363 /* 364 * We can't take a PMU exception inside _switch() since there is a 365 * window where the kernel stack SLB and the kernel stack are out 366 * of sync. Hard disable here. 367 */ 368 hard_irq_disable(); 369 last = _switch(old_thread, new_thread); 370 371 local_irq_restore(flags); 372 373 return last; 374 } 375 376 static int instructions_to_print = 16; 377 378 static void show_instructions(struct pt_regs *regs) 379 { 380 int i; 381 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 382 sizeof(int)); 383 384 printk("Instruction dump:"); 385 386 for (i = 0; i < instructions_to_print; i++) { 387 int instr; 388 389 if (!(i % 8)) 390 printk("\n"); 391 392 #if !defined(CONFIG_BOOKE) 393 /* If executing with the IMMU off, adjust pc rather 394 * than print XXXXXXXX. 395 */ 396 if (!(regs->msr & MSR_IR)) 397 pc = (unsigned long)phys_to_virt(pc); 398 #endif 399 400 /* We use __get_user here *only* to avoid an OOPS on a 401 * bad address because the pc *should* only be a 402 * kernel address. 403 */ 404 if (!__kernel_text_address(pc) || 405 __get_user(instr, (unsigned int __user *)pc)) { 406 printk("XXXXXXXX "); 407 } else { 408 if (regs->nip == pc) 409 printk("<%08x> ", instr); 410 else 411 printk("%08x ", instr); 412 } 413 414 pc += sizeof(int); 415 } 416 417 printk("\n"); 418 } 419 420 static struct regbit { 421 unsigned long bit; 422 const char *name; 423 } msr_bits[] = { 424 {MSR_EE, "EE"}, 425 {MSR_PR, "PR"}, 426 {MSR_FP, "FP"}, 427 {MSR_VEC, "VEC"}, 428 {MSR_VSX, "VSX"}, 429 {MSR_ME, "ME"}, 430 {MSR_IR, "IR"}, 431 {MSR_DR, "DR"}, 432 {0, NULL} 433 }; 434 435 static void printbits(unsigned long val, struct regbit *bits) 436 { 437 const char *sep = ""; 438 439 printk("<"); 440 for (; bits->bit; ++bits) 441 if (val & bits->bit) { 442 printk("%s%s", sep, bits->name); 443 sep = ","; 444 } 445 printk(">"); 446 } 447 448 #ifdef CONFIG_PPC64 449 #define REG "%016lx" 450 #define REGS_PER_LINE 4 451 #define LAST_VOLATILE 13 452 #else 453 #define REG "%08lx" 454 #define REGS_PER_LINE 8 455 #define LAST_VOLATILE 12 456 #endif 457 458 void show_regs(struct pt_regs * regs) 459 { 460 int i, trap; 461 462 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 463 regs->nip, regs->link, regs->ctr); 464 printk("REGS: %p TRAP: %04lx %s (%s)\n", 465 regs, regs->trap, print_tainted(), init_utsname()->release); 466 printk("MSR: "REG" ", regs->msr); 467 printbits(regs->msr, msr_bits); 468 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 469 trap = TRAP(regs); 470 if (trap == 0x300 || trap == 0x600) 471 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 472 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); 473 #else 474 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 475 #endif 476 printk("TASK = %p[%d] '%s' THREAD: %p", 477 current, task_pid_nr(current), current->comm, task_thread_info(current)); 478 479 #ifdef CONFIG_SMP 480 printk(" CPU: %d", raw_smp_processor_id()); 481 #endif /* CONFIG_SMP */ 482 483 for (i = 0; i < 32; i++) { 484 if ((i % REGS_PER_LINE) == 0) 485 printk("\n" KERN_INFO "GPR%02d: ", i); 486 printk(REG " ", regs->gpr[i]); 487 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 488 break; 489 } 490 printk("\n"); 491 #ifdef CONFIG_KALLSYMS 492 /* 493 * Lookup NIP late so we have the best change of getting the 494 * above info out without failing 495 */ 496 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 497 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 498 #endif 499 show_stack(current, (unsigned long *) regs->gpr[1]); 500 if (!user_mode(regs)) 501 show_instructions(regs); 502 } 503 504 void exit_thread(void) 505 { 506 discard_lazy_cpu_state(); 507 } 508 509 void flush_thread(void) 510 { 511 #ifdef CONFIG_PPC64 512 struct thread_info *t = current_thread_info(); 513 514 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) { 515 clear_ti_thread_flag(t, TIF_ABI_PENDING); 516 if (test_ti_thread_flag(t, TIF_32BIT)) 517 clear_ti_thread_flag(t, TIF_32BIT); 518 else 519 set_ti_thread_flag(t, TIF_32BIT); 520 } 521 #endif 522 523 discard_lazy_cpu_state(); 524 525 if (current->thread.dabr) { 526 current->thread.dabr = 0; 527 set_dabr(0); 528 } 529 } 530 531 void 532 release_thread(struct task_struct *t) 533 { 534 } 535 536 /* 537 * This gets called before we allocate a new thread and copy 538 * the current task into it. 539 */ 540 void prepare_to_copy(struct task_struct *tsk) 541 { 542 flush_fp_to_thread(current); 543 flush_altivec_to_thread(current); 544 flush_vsx_to_thread(current); 545 flush_spe_to_thread(current); 546 } 547 548 /* 549 * Copy a thread.. 550 */ 551 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 552 unsigned long unused, struct task_struct *p, 553 struct pt_regs *regs) 554 { 555 struct pt_regs *childregs, *kregs; 556 extern void ret_from_fork(void); 557 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 558 559 CHECK_FULL_REGS(regs); 560 /* Copy registers */ 561 sp -= sizeof(struct pt_regs); 562 childregs = (struct pt_regs *) sp; 563 *childregs = *regs; 564 if ((childregs->msr & MSR_PR) == 0) { 565 /* for kernel thread, set `current' and stackptr in new task */ 566 childregs->gpr[1] = sp + sizeof(struct pt_regs); 567 #ifdef CONFIG_PPC32 568 childregs->gpr[2] = (unsigned long) p; 569 #else 570 clear_tsk_thread_flag(p, TIF_32BIT); 571 #endif 572 p->thread.regs = NULL; /* no user register state */ 573 } else { 574 childregs->gpr[1] = usp; 575 p->thread.regs = childregs; 576 if (clone_flags & CLONE_SETTLS) { 577 #ifdef CONFIG_PPC64 578 if (!test_thread_flag(TIF_32BIT)) 579 childregs->gpr[13] = childregs->gpr[6]; 580 else 581 #endif 582 childregs->gpr[2] = childregs->gpr[6]; 583 } 584 } 585 childregs->gpr[3] = 0; /* Result from fork() */ 586 sp -= STACK_FRAME_OVERHEAD; 587 588 /* 589 * The way this works is that at some point in the future 590 * some task will call _switch to switch to the new task. 591 * That will pop off the stack frame created below and start 592 * the new task running at ret_from_fork. The new task will 593 * do some house keeping and then return from the fork or clone 594 * system call, using the stack frame created above. 595 */ 596 sp -= sizeof(struct pt_regs); 597 kregs = (struct pt_regs *) sp; 598 sp -= STACK_FRAME_OVERHEAD; 599 p->thread.ksp = sp; 600 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 601 _ALIGN_UP(sizeof(struct thread_info), 16); 602 603 #ifdef CONFIG_PPC64 604 if (cpu_has_feature(CPU_FTR_SLB)) { 605 unsigned long sp_vsid; 606 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 607 608 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) 609 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 610 << SLB_VSID_SHIFT_1T; 611 else 612 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 613 << SLB_VSID_SHIFT; 614 sp_vsid |= SLB_VSID_KERNEL | llp; 615 p->thread.ksp_vsid = sp_vsid; 616 } 617 618 /* 619 * The PPC64 ABI makes use of a TOC to contain function 620 * pointers. The function (ret_from_except) is actually a pointer 621 * to the TOC entry. The first entry is a pointer to the actual 622 * function. 623 */ 624 kregs->nip = *((unsigned long *)ret_from_fork); 625 #else 626 kregs->nip = (unsigned long)ret_from_fork; 627 #endif 628 629 return 0; 630 } 631 632 /* 633 * Set up a thread for executing a new program 634 */ 635 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 636 { 637 #ifdef CONFIG_PPC64 638 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 639 #endif 640 641 set_fs(USER_DS); 642 643 /* 644 * If we exec out of a kernel thread then thread.regs will not be 645 * set. Do it now. 646 */ 647 if (!current->thread.regs) { 648 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 649 current->thread.regs = regs - 1; 650 } 651 652 memset(regs->gpr, 0, sizeof(regs->gpr)); 653 regs->ctr = 0; 654 regs->link = 0; 655 regs->xer = 0; 656 regs->ccr = 0; 657 regs->gpr[1] = sp; 658 659 /* 660 * We have just cleared all the nonvolatile GPRs, so make 661 * FULL_REGS(regs) return true. This is necessary to allow 662 * ptrace to examine the thread immediately after exec. 663 */ 664 regs->trap &= ~1UL; 665 666 #ifdef CONFIG_PPC32 667 regs->mq = 0; 668 regs->nip = start; 669 regs->msr = MSR_USER; 670 #else 671 if (!test_thread_flag(TIF_32BIT)) { 672 unsigned long entry, toc; 673 674 /* start is a relocated pointer to the function descriptor for 675 * the elf _start routine. The first entry in the function 676 * descriptor is the entry address of _start and the second 677 * entry is the TOC value we need to use. 678 */ 679 __get_user(entry, (unsigned long __user *)start); 680 __get_user(toc, (unsigned long __user *)start+1); 681 682 /* Check whether the e_entry function descriptor entries 683 * need to be relocated before we can use them. 684 */ 685 if (load_addr != 0) { 686 entry += load_addr; 687 toc += load_addr; 688 } 689 regs->nip = entry; 690 regs->gpr[2] = toc; 691 regs->msr = MSR_USER64; 692 } else { 693 regs->nip = start; 694 regs->gpr[2] = 0; 695 regs->msr = MSR_USER32; 696 } 697 #endif 698 699 discard_lazy_cpu_state(); 700 #ifdef CONFIG_VSX 701 current->thread.used_vsr = 0; 702 #endif 703 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 704 current->thread.fpscr.val = 0; 705 #ifdef CONFIG_ALTIVEC 706 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 707 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 708 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 709 current->thread.vrsave = 0; 710 current->thread.used_vr = 0; 711 #endif /* CONFIG_ALTIVEC */ 712 #ifdef CONFIG_SPE 713 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 714 current->thread.acc = 0; 715 current->thread.spefscr = 0; 716 current->thread.used_spe = 0; 717 #endif /* CONFIG_SPE */ 718 } 719 720 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 721 | PR_FP_EXC_RES | PR_FP_EXC_INV) 722 723 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 724 { 725 struct pt_regs *regs = tsk->thread.regs; 726 727 /* This is a bit hairy. If we are an SPE enabled processor 728 * (have embedded fp) we store the IEEE exception enable flags in 729 * fpexc_mode. fpexc_mode is also used for setting FP exception 730 * mode (asyn, precise, disabled) for 'Classic' FP. */ 731 if (val & PR_FP_EXC_SW_ENABLE) { 732 #ifdef CONFIG_SPE 733 if (cpu_has_feature(CPU_FTR_SPE)) { 734 tsk->thread.fpexc_mode = val & 735 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 736 return 0; 737 } else { 738 return -EINVAL; 739 } 740 #else 741 return -EINVAL; 742 #endif 743 } 744 745 /* on a CONFIG_SPE this does not hurt us. The bits that 746 * __pack_fe01 use do not overlap with bits used for 747 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 748 * on CONFIG_SPE implementations are reserved so writing to 749 * them does not change anything */ 750 if (val > PR_FP_EXC_PRECISE) 751 return -EINVAL; 752 tsk->thread.fpexc_mode = __pack_fe01(val); 753 if (regs != NULL && (regs->msr & MSR_FP) != 0) 754 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 755 | tsk->thread.fpexc_mode; 756 return 0; 757 } 758 759 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 760 { 761 unsigned int val; 762 763 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 764 #ifdef CONFIG_SPE 765 if (cpu_has_feature(CPU_FTR_SPE)) 766 val = tsk->thread.fpexc_mode; 767 else 768 return -EINVAL; 769 #else 770 return -EINVAL; 771 #endif 772 else 773 val = __unpack_fe01(tsk->thread.fpexc_mode); 774 return put_user(val, (unsigned int __user *) adr); 775 } 776 777 int set_endian(struct task_struct *tsk, unsigned int val) 778 { 779 struct pt_regs *regs = tsk->thread.regs; 780 781 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 782 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 783 return -EINVAL; 784 785 if (regs == NULL) 786 return -EINVAL; 787 788 if (val == PR_ENDIAN_BIG) 789 regs->msr &= ~MSR_LE; 790 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 791 regs->msr |= MSR_LE; 792 else 793 return -EINVAL; 794 795 return 0; 796 } 797 798 int get_endian(struct task_struct *tsk, unsigned long adr) 799 { 800 struct pt_regs *regs = tsk->thread.regs; 801 unsigned int val; 802 803 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 804 !cpu_has_feature(CPU_FTR_REAL_LE)) 805 return -EINVAL; 806 807 if (regs == NULL) 808 return -EINVAL; 809 810 if (regs->msr & MSR_LE) { 811 if (cpu_has_feature(CPU_FTR_REAL_LE)) 812 val = PR_ENDIAN_LITTLE; 813 else 814 val = PR_ENDIAN_PPC_LITTLE; 815 } else 816 val = PR_ENDIAN_BIG; 817 818 return put_user(val, (unsigned int __user *)adr); 819 } 820 821 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 822 { 823 tsk->thread.align_ctl = val; 824 return 0; 825 } 826 827 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 828 { 829 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 830 } 831 832 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 833 834 int sys_clone(unsigned long clone_flags, unsigned long usp, 835 int __user *parent_tidp, void __user *child_threadptr, 836 int __user *child_tidp, int p6, 837 struct pt_regs *regs) 838 { 839 CHECK_FULL_REGS(regs); 840 if (usp == 0) 841 usp = regs->gpr[1]; /* stack pointer for child */ 842 #ifdef CONFIG_PPC64 843 if (test_thread_flag(TIF_32BIT)) { 844 parent_tidp = TRUNC_PTR(parent_tidp); 845 child_tidp = TRUNC_PTR(child_tidp); 846 } 847 #endif 848 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 849 } 850 851 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 852 unsigned long p4, unsigned long p5, unsigned long p6, 853 struct pt_regs *regs) 854 { 855 CHECK_FULL_REGS(regs); 856 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 857 } 858 859 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 860 unsigned long p4, unsigned long p5, unsigned long p6, 861 struct pt_regs *regs) 862 { 863 CHECK_FULL_REGS(regs); 864 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 865 regs, 0, NULL, NULL); 866 } 867 868 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 869 unsigned long a3, unsigned long a4, unsigned long a5, 870 struct pt_regs *regs) 871 { 872 int error; 873 char *filename; 874 875 filename = getname((char __user *) a0); 876 error = PTR_ERR(filename); 877 if (IS_ERR(filename)) 878 goto out; 879 flush_fp_to_thread(current); 880 flush_altivec_to_thread(current); 881 flush_spe_to_thread(current); 882 error = do_execve(filename, (char __user * __user *) a1, 883 (char __user * __user *) a2, regs); 884 putname(filename); 885 out: 886 return error; 887 } 888 889 #ifdef CONFIG_IRQSTACKS 890 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 891 unsigned long nbytes) 892 { 893 unsigned long stack_page; 894 unsigned long cpu = task_cpu(p); 895 896 /* 897 * Avoid crashing if the stack has overflowed and corrupted 898 * task_cpu(p), which is in the thread_info struct. 899 */ 900 if (cpu < NR_CPUS && cpu_possible(cpu)) { 901 stack_page = (unsigned long) hardirq_ctx[cpu]; 902 if (sp >= stack_page + sizeof(struct thread_struct) 903 && sp <= stack_page + THREAD_SIZE - nbytes) 904 return 1; 905 906 stack_page = (unsigned long) softirq_ctx[cpu]; 907 if (sp >= stack_page + sizeof(struct thread_struct) 908 && sp <= stack_page + THREAD_SIZE - nbytes) 909 return 1; 910 } 911 return 0; 912 } 913 914 #else 915 #define valid_irq_stack(sp, p, nb) 0 916 #endif /* CONFIG_IRQSTACKS */ 917 918 int validate_sp(unsigned long sp, struct task_struct *p, 919 unsigned long nbytes) 920 { 921 unsigned long stack_page = (unsigned long)task_stack_page(p); 922 923 if (sp >= stack_page + sizeof(struct thread_struct) 924 && sp <= stack_page + THREAD_SIZE - nbytes) 925 return 1; 926 927 return valid_irq_stack(sp, p, nbytes); 928 } 929 930 EXPORT_SYMBOL(validate_sp); 931 932 unsigned long get_wchan(struct task_struct *p) 933 { 934 unsigned long ip, sp; 935 int count = 0; 936 937 if (!p || p == current || p->state == TASK_RUNNING) 938 return 0; 939 940 sp = p->thread.ksp; 941 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 942 return 0; 943 944 do { 945 sp = *(unsigned long *)sp; 946 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 947 return 0; 948 if (count > 0) { 949 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 950 if (!in_sched_functions(ip)) 951 return ip; 952 } 953 } while (count++ < 16); 954 return 0; 955 } 956 957 static int kstack_depth_to_print = 64; 958 959 void show_stack(struct task_struct *tsk, unsigned long *stack) 960 { 961 unsigned long sp, ip, lr, newsp; 962 int count = 0; 963 int firstframe = 1; 964 965 sp = (unsigned long) stack; 966 if (tsk == NULL) 967 tsk = current; 968 if (sp == 0) { 969 if (tsk == current) 970 asm("mr %0,1" : "=r" (sp)); 971 else 972 sp = tsk->thread.ksp; 973 } 974 975 lr = 0; 976 printk("Call Trace:\n"); 977 do { 978 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 979 return; 980 981 stack = (unsigned long *) sp; 982 newsp = stack[0]; 983 ip = stack[STACK_FRAME_LR_SAVE]; 984 if (!firstframe || ip != lr) { 985 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 986 if (firstframe) 987 printk(" (unreliable)"); 988 printk("\n"); 989 } 990 firstframe = 0; 991 992 /* 993 * See if this is an exception frame. 994 * We look for the "regshere" marker in the current frame. 995 */ 996 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 997 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 998 struct pt_regs *regs = (struct pt_regs *) 999 (sp + STACK_FRAME_OVERHEAD); 1000 lr = regs->link; 1001 printk("--- Exception: %lx at %pS\n LR = %pS\n", 1002 regs->trap, (void *)regs->nip, (void *)lr); 1003 firstframe = 1; 1004 } 1005 1006 sp = newsp; 1007 } while (count++ < kstack_depth_to_print); 1008 } 1009 1010 void dump_stack(void) 1011 { 1012 show_stack(current, NULL); 1013 } 1014 EXPORT_SYMBOL(dump_stack); 1015 1016 #ifdef CONFIG_PPC64 1017 void ppc64_runlatch_on(void) 1018 { 1019 unsigned long ctrl; 1020 1021 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { 1022 HMT_medium(); 1023 1024 ctrl = mfspr(SPRN_CTRLF); 1025 ctrl |= CTRL_RUNLATCH; 1026 mtspr(SPRN_CTRLT, ctrl); 1027 1028 set_thread_flag(TIF_RUNLATCH); 1029 } 1030 } 1031 1032 void ppc64_runlatch_off(void) 1033 { 1034 unsigned long ctrl; 1035 1036 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) { 1037 HMT_medium(); 1038 1039 clear_thread_flag(TIF_RUNLATCH); 1040 1041 ctrl = mfspr(SPRN_CTRLF); 1042 ctrl &= ~CTRL_RUNLATCH; 1043 mtspr(SPRN_CTRLT, ctrl); 1044 } 1045 } 1046 #endif 1047 1048 #if THREAD_SHIFT < PAGE_SHIFT 1049 1050 static struct kmem_cache *thread_info_cache; 1051 1052 struct thread_info *alloc_thread_info(struct task_struct *tsk) 1053 { 1054 struct thread_info *ti; 1055 1056 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL); 1057 if (unlikely(ti == NULL)) 1058 return NULL; 1059 #ifdef CONFIG_DEBUG_STACK_USAGE 1060 memset(ti, 0, THREAD_SIZE); 1061 #endif 1062 return ti; 1063 } 1064 1065 void free_thread_info(struct thread_info *ti) 1066 { 1067 kmem_cache_free(thread_info_cache, ti); 1068 } 1069 1070 void thread_info_cache_init(void) 1071 { 1072 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 1073 THREAD_SIZE, 0, NULL); 1074 BUG_ON(thread_info_cache == NULL); 1075 } 1076 1077 #endif /* THREAD_SHIFT < PAGE_SHIFT */ 1078