xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 545e4006)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50 
51 extern unsigned long _get_SP(void);
52 
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_vsx = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59 
60 /*
61  * Make sure the floating-point register state in the
62  * the thread_struct is up to date for task tsk.
63  */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66 	if (tsk->thread.regs) {
67 		/*
68 		 * We need to disable preemption here because if we didn't,
69 		 * another process could get scheduled after the regs->msr
70 		 * test but before we have finished saving the FP registers
71 		 * to the thread_struct.  That process could take over the
72 		 * FPU, and then when we get scheduled again we would store
73 		 * bogus values for the remaining FP registers.
74 		 */
75 		preempt_disable();
76 		if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78 			/*
79 			 * This should only ever be called for current or
80 			 * for a stopped child process.  Since we save away
81 			 * the FP register state on context switch on SMP,
82 			 * there is something wrong if a stopped child appears
83 			 * to still have its FP state in the CPU registers.
84 			 */
85 			BUG_ON(tsk != current);
86 #endif
87 			giveup_fpu(tsk);
88 		}
89 		preempt_enable();
90 	}
91 }
92 
93 void enable_kernel_fp(void)
94 {
95 	WARN_ON(preemptible());
96 
97 #ifdef CONFIG_SMP
98 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99 		giveup_fpu(current);
100 	else
101 		giveup_fpu(NULL);	/* just enables FP for kernel */
102 #else
103 	giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107 
108 #ifdef CONFIG_ALTIVEC
109 void enable_kernel_altivec(void)
110 {
111 	WARN_ON(preemptible());
112 
113 #ifdef CONFIG_SMP
114 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
115 		giveup_altivec(current);
116 	else
117 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
118 #else
119 	giveup_altivec(last_task_used_altivec);
120 #endif /* CONFIG_SMP */
121 }
122 EXPORT_SYMBOL(enable_kernel_altivec);
123 
124 /*
125  * Make sure the VMX/Altivec register state in the
126  * the thread_struct is up to date for task tsk.
127  */
128 void flush_altivec_to_thread(struct task_struct *tsk)
129 {
130 	if (tsk->thread.regs) {
131 		preempt_disable();
132 		if (tsk->thread.regs->msr & MSR_VEC) {
133 #ifdef CONFIG_SMP
134 			BUG_ON(tsk != current);
135 #endif
136 			giveup_altivec(tsk);
137 		}
138 		preempt_enable();
139 	}
140 }
141 #endif /* CONFIG_ALTIVEC */
142 
143 #ifdef CONFIG_VSX
144 #if 0
145 /* not currently used, but some crazy RAID module might want to later */
146 void enable_kernel_vsx(void)
147 {
148 	WARN_ON(preemptible());
149 
150 #ifdef CONFIG_SMP
151 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
152 		giveup_vsx(current);
153 	else
154 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
155 #else
156 	giveup_vsx(last_task_used_vsx);
157 #endif /* CONFIG_SMP */
158 }
159 EXPORT_SYMBOL(enable_kernel_vsx);
160 #endif
161 
162 void giveup_vsx(struct task_struct *tsk)
163 {
164 	giveup_fpu(tsk);
165 	giveup_altivec(tsk);
166 	__giveup_vsx(tsk);
167 }
168 
169 void flush_vsx_to_thread(struct task_struct *tsk)
170 {
171 	if (tsk->thread.regs) {
172 		preempt_disable();
173 		if (tsk->thread.regs->msr & MSR_VSX) {
174 #ifdef CONFIG_SMP
175 			BUG_ON(tsk != current);
176 #endif
177 			giveup_vsx(tsk);
178 		}
179 		preempt_enable();
180 	}
181 }
182 #endif /* CONFIG_VSX */
183 
184 #ifdef CONFIG_SPE
185 
186 void enable_kernel_spe(void)
187 {
188 	WARN_ON(preemptible());
189 
190 #ifdef CONFIG_SMP
191 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
192 		giveup_spe(current);
193 	else
194 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
195 #else
196 	giveup_spe(last_task_used_spe);
197 #endif /* __SMP __ */
198 }
199 EXPORT_SYMBOL(enable_kernel_spe);
200 
201 void flush_spe_to_thread(struct task_struct *tsk)
202 {
203 	if (tsk->thread.regs) {
204 		preempt_disable();
205 		if (tsk->thread.regs->msr & MSR_SPE) {
206 #ifdef CONFIG_SMP
207 			BUG_ON(tsk != current);
208 #endif
209 			giveup_spe(tsk);
210 		}
211 		preempt_enable();
212 	}
213 }
214 #endif /* CONFIG_SPE */
215 
216 #ifndef CONFIG_SMP
217 /*
218  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
219  * and the current task has some state, discard it.
220  */
221 void discard_lazy_cpu_state(void)
222 {
223 	preempt_disable();
224 	if (last_task_used_math == current)
225 		last_task_used_math = NULL;
226 #ifdef CONFIG_ALTIVEC
227 	if (last_task_used_altivec == current)
228 		last_task_used_altivec = NULL;
229 #endif /* CONFIG_ALTIVEC */
230 #ifdef CONFIG_VSX
231 	if (last_task_used_vsx == current)
232 		last_task_used_vsx = NULL;
233 #endif /* CONFIG_VSX */
234 #ifdef CONFIG_SPE
235 	if (last_task_used_spe == current)
236 		last_task_used_spe = NULL;
237 #endif
238 	preempt_enable();
239 }
240 #endif /* CONFIG_SMP */
241 
242 static DEFINE_PER_CPU(unsigned long, current_dabr);
243 
244 int set_dabr(unsigned long dabr)
245 {
246 	__get_cpu_var(current_dabr) = dabr;
247 
248 #ifdef CONFIG_PPC_MERGE		/* XXX for now */
249 	if (ppc_md.set_dabr)
250 		return ppc_md.set_dabr(dabr);
251 #endif
252 
253 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
254 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
255 	mtspr(SPRN_DABR, dabr);
256 #endif
257 	return 0;
258 }
259 
260 #ifdef CONFIG_PPC64
261 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
262 #endif
263 
264 struct task_struct *__switch_to(struct task_struct *prev,
265 	struct task_struct *new)
266 {
267 	struct thread_struct *new_thread, *old_thread;
268 	unsigned long flags;
269 	struct task_struct *last;
270 
271 #ifdef CONFIG_SMP
272 	/* avoid complexity of lazy save/restore of fpu
273 	 * by just saving it every time we switch out if
274 	 * this task used the fpu during the last quantum.
275 	 *
276 	 * If it tries to use the fpu again, it'll trap and
277 	 * reload its fp regs.  So we don't have to do a restore
278 	 * every switch, just a save.
279 	 *  -- Cort
280 	 */
281 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
282 		giveup_fpu(prev);
283 #ifdef CONFIG_ALTIVEC
284 	/*
285 	 * If the previous thread used altivec in the last quantum
286 	 * (thus changing altivec regs) then save them.
287 	 * We used to check the VRSAVE register but not all apps
288 	 * set it, so we don't rely on it now (and in fact we need
289 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
290 	 *
291 	 * On SMP we always save/restore altivec regs just to avoid the
292 	 * complexity of changing processors.
293 	 *  -- Cort
294 	 */
295 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
296 		giveup_altivec(prev);
297 #endif /* CONFIG_ALTIVEC */
298 #ifdef CONFIG_VSX
299 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
300 		/* VMX and FPU registers are already save here */
301 		__giveup_vsx(prev);
302 #endif /* CONFIG_VSX */
303 #ifdef CONFIG_SPE
304 	/*
305 	 * If the previous thread used spe in the last quantum
306 	 * (thus changing spe regs) then save them.
307 	 *
308 	 * On SMP we always save/restore spe regs just to avoid the
309 	 * complexity of changing processors.
310 	 */
311 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
312 		giveup_spe(prev);
313 #endif /* CONFIG_SPE */
314 
315 #else  /* CONFIG_SMP */
316 #ifdef CONFIG_ALTIVEC
317 	/* Avoid the trap.  On smp this this never happens since
318 	 * we don't set last_task_used_altivec -- Cort
319 	 */
320 	if (new->thread.regs && last_task_used_altivec == new)
321 		new->thread.regs->msr |= MSR_VEC;
322 #endif /* CONFIG_ALTIVEC */
323 #ifdef CONFIG_VSX
324 	if (new->thread.regs && last_task_used_vsx == new)
325 		new->thread.regs->msr |= MSR_VSX;
326 #endif /* CONFIG_VSX */
327 #ifdef CONFIG_SPE
328 	/* Avoid the trap.  On smp this this never happens since
329 	 * we don't set last_task_used_spe
330 	 */
331 	if (new->thread.regs && last_task_used_spe == new)
332 		new->thread.regs->msr |= MSR_SPE;
333 #endif /* CONFIG_SPE */
334 
335 #endif /* CONFIG_SMP */
336 
337 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
338 		set_dabr(new->thread.dabr);
339 
340 	new_thread = &new->thread;
341 	old_thread = &current->thread;
342 
343 #ifdef CONFIG_PPC64
344 	/*
345 	 * Collect processor utilization data per process
346 	 */
347 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
348 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
349 		long unsigned start_tb, current_tb;
350 		start_tb = old_thread->start_tb;
351 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
352 		old_thread->accum_tb += (current_tb - start_tb);
353 		new_thread->start_tb = current_tb;
354 	}
355 #endif
356 
357 	local_irq_save(flags);
358 
359 	account_system_vtime(current);
360 	account_process_vtime(current);
361 	calculate_steal_time();
362 
363 	/*
364 	 * We can't take a PMU exception inside _switch() since there is a
365 	 * window where the kernel stack SLB and the kernel stack are out
366 	 * of sync. Hard disable here.
367 	 */
368 	hard_irq_disable();
369 	last = _switch(old_thread, new_thread);
370 
371 	local_irq_restore(flags);
372 
373 	return last;
374 }
375 
376 static int instructions_to_print = 16;
377 
378 static void show_instructions(struct pt_regs *regs)
379 {
380 	int i;
381 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
382 			sizeof(int));
383 
384 	printk("Instruction dump:");
385 
386 	for (i = 0; i < instructions_to_print; i++) {
387 		int instr;
388 
389 		if (!(i % 8))
390 			printk("\n");
391 
392 #if !defined(CONFIG_BOOKE)
393 		/* If executing with the IMMU off, adjust pc rather
394 		 * than print XXXXXXXX.
395 		 */
396 		if (!(regs->msr & MSR_IR))
397 			pc = (unsigned long)phys_to_virt(pc);
398 #endif
399 
400 		/* We use __get_user here *only* to avoid an OOPS on a
401 		 * bad address because the pc *should* only be a
402 		 * kernel address.
403 		 */
404 		if (!__kernel_text_address(pc) ||
405 		     __get_user(instr, (unsigned int __user *)pc)) {
406 			printk("XXXXXXXX ");
407 		} else {
408 			if (regs->nip == pc)
409 				printk("<%08x> ", instr);
410 			else
411 				printk("%08x ", instr);
412 		}
413 
414 		pc += sizeof(int);
415 	}
416 
417 	printk("\n");
418 }
419 
420 static struct regbit {
421 	unsigned long bit;
422 	const char *name;
423 } msr_bits[] = {
424 	{MSR_EE,	"EE"},
425 	{MSR_PR,	"PR"},
426 	{MSR_FP,	"FP"},
427 	{MSR_VEC,	"VEC"},
428 	{MSR_VSX,	"VSX"},
429 	{MSR_ME,	"ME"},
430 	{MSR_IR,	"IR"},
431 	{MSR_DR,	"DR"},
432 	{0,		NULL}
433 };
434 
435 static void printbits(unsigned long val, struct regbit *bits)
436 {
437 	const char *sep = "";
438 
439 	printk("<");
440 	for (; bits->bit; ++bits)
441 		if (val & bits->bit) {
442 			printk("%s%s", sep, bits->name);
443 			sep = ",";
444 		}
445 	printk(">");
446 }
447 
448 #ifdef CONFIG_PPC64
449 #define REG		"%016lx"
450 #define REGS_PER_LINE	4
451 #define LAST_VOLATILE	13
452 #else
453 #define REG		"%08lx"
454 #define REGS_PER_LINE	8
455 #define LAST_VOLATILE	12
456 #endif
457 
458 void show_regs(struct pt_regs * regs)
459 {
460 	int i, trap;
461 
462 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
463 	       regs->nip, regs->link, regs->ctr);
464 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
465 	       regs, regs->trap, print_tainted(), init_utsname()->release);
466 	printk("MSR: "REG" ", regs->msr);
467 	printbits(regs->msr, msr_bits);
468 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
469 	trap = TRAP(regs);
470 	if (trap == 0x300 || trap == 0x600)
471 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
472 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
473 #else
474 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
475 #endif
476 	printk("TASK = %p[%d] '%s' THREAD: %p",
477 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
478 
479 #ifdef CONFIG_SMP
480 	printk(" CPU: %d", raw_smp_processor_id());
481 #endif /* CONFIG_SMP */
482 
483 	for (i = 0;  i < 32;  i++) {
484 		if ((i % REGS_PER_LINE) == 0)
485 			printk("\n" KERN_INFO "GPR%02d: ", i);
486 		printk(REG " ", regs->gpr[i]);
487 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
488 			break;
489 	}
490 	printk("\n");
491 #ifdef CONFIG_KALLSYMS
492 	/*
493 	 * Lookup NIP late so we have the best change of getting the
494 	 * above info out without failing
495 	 */
496 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
497 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
498 #endif
499 	show_stack(current, (unsigned long *) regs->gpr[1]);
500 	if (!user_mode(regs))
501 		show_instructions(regs);
502 }
503 
504 void exit_thread(void)
505 {
506 	discard_lazy_cpu_state();
507 }
508 
509 void flush_thread(void)
510 {
511 #ifdef CONFIG_PPC64
512 	struct thread_info *t = current_thread_info();
513 
514 	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
515 		clear_ti_thread_flag(t, TIF_ABI_PENDING);
516 		if (test_ti_thread_flag(t, TIF_32BIT))
517 			clear_ti_thread_flag(t, TIF_32BIT);
518 		else
519 			set_ti_thread_flag(t, TIF_32BIT);
520 	}
521 #endif
522 
523 	discard_lazy_cpu_state();
524 
525 	if (current->thread.dabr) {
526 		current->thread.dabr = 0;
527 		set_dabr(0);
528 	}
529 }
530 
531 void
532 release_thread(struct task_struct *t)
533 {
534 }
535 
536 /*
537  * This gets called before we allocate a new thread and copy
538  * the current task into it.
539  */
540 void prepare_to_copy(struct task_struct *tsk)
541 {
542 	flush_fp_to_thread(current);
543 	flush_altivec_to_thread(current);
544 	flush_vsx_to_thread(current);
545 	flush_spe_to_thread(current);
546 }
547 
548 /*
549  * Copy a thread..
550  */
551 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
552 		unsigned long unused, struct task_struct *p,
553 		struct pt_regs *regs)
554 {
555 	struct pt_regs *childregs, *kregs;
556 	extern void ret_from_fork(void);
557 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
558 
559 	CHECK_FULL_REGS(regs);
560 	/* Copy registers */
561 	sp -= sizeof(struct pt_regs);
562 	childregs = (struct pt_regs *) sp;
563 	*childregs = *regs;
564 	if ((childregs->msr & MSR_PR) == 0) {
565 		/* for kernel thread, set `current' and stackptr in new task */
566 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
567 #ifdef CONFIG_PPC32
568 		childregs->gpr[2] = (unsigned long) p;
569 #else
570 		clear_tsk_thread_flag(p, TIF_32BIT);
571 #endif
572 		p->thread.regs = NULL;	/* no user register state */
573 	} else {
574 		childregs->gpr[1] = usp;
575 		p->thread.regs = childregs;
576 		if (clone_flags & CLONE_SETTLS) {
577 #ifdef CONFIG_PPC64
578 			if (!test_thread_flag(TIF_32BIT))
579 				childregs->gpr[13] = childregs->gpr[6];
580 			else
581 #endif
582 				childregs->gpr[2] = childregs->gpr[6];
583 		}
584 	}
585 	childregs->gpr[3] = 0;  /* Result from fork() */
586 	sp -= STACK_FRAME_OVERHEAD;
587 
588 	/*
589 	 * The way this works is that at some point in the future
590 	 * some task will call _switch to switch to the new task.
591 	 * That will pop off the stack frame created below and start
592 	 * the new task running at ret_from_fork.  The new task will
593 	 * do some house keeping and then return from the fork or clone
594 	 * system call, using the stack frame created above.
595 	 */
596 	sp -= sizeof(struct pt_regs);
597 	kregs = (struct pt_regs *) sp;
598 	sp -= STACK_FRAME_OVERHEAD;
599 	p->thread.ksp = sp;
600 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
601 				_ALIGN_UP(sizeof(struct thread_info), 16);
602 
603 #ifdef CONFIG_PPC64
604 	if (cpu_has_feature(CPU_FTR_SLB)) {
605 		unsigned long sp_vsid;
606 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
607 
608 		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
609 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
610 				<< SLB_VSID_SHIFT_1T;
611 		else
612 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
613 				<< SLB_VSID_SHIFT;
614 		sp_vsid |= SLB_VSID_KERNEL | llp;
615 		p->thread.ksp_vsid = sp_vsid;
616 	}
617 
618 	/*
619 	 * The PPC64 ABI makes use of a TOC to contain function
620 	 * pointers.  The function (ret_from_except) is actually a pointer
621 	 * to the TOC entry.  The first entry is a pointer to the actual
622 	 * function.
623  	 */
624 	kregs->nip = *((unsigned long *)ret_from_fork);
625 #else
626 	kregs->nip = (unsigned long)ret_from_fork;
627 #endif
628 
629 	return 0;
630 }
631 
632 /*
633  * Set up a thread for executing a new program
634  */
635 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
636 {
637 #ifdef CONFIG_PPC64
638 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
639 #endif
640 
641 	set_fs(USER_DS);
642 
643 	/*
644 	 * If we exec out of a kernel thread then thread.regs will not be
645 	 * set.  Do it now.
646 	 */
647 	if (!current->thread.regs) {
648 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
649 		current->thread.regs = regs - 1;
650 	}
651 
652 	memset(regs->gpr, 0, sizeof(regs->gpr));
653 	regs->ctr = 0;
654 	regs->link = 0;
655 	regs->xer = 0;
656 	regs->ccr = 0;
657 	regs->gpr[1] = sp;
658 
659 	/*
660 	 * We have just cleared all the nonvolatile GPRs, so make
661 	 * FULL_REGS(regs) return true.  This is necessary to allow
662 	 * ptrace to examine the thread immediately after exec.
663 	 */
664 	regs->trap &= ~1UL;
665 
666 #ifdef CONFIG_PPC32
667 	regs->mq = 0;
668 	regs->nip = start;
669 	regs->msr = MSR_USER;
670 #else
671 	if (!test_thread_flag(TIF_32BIT)) {
672 		unsigned long entry, toc;
673 
674 		/* start is a relocated pointer to the function descriptor for
675 		 * the elf _start routine.  The first entry in the function
676 		 * descriptor is the entry address of _start and the second
677 		 * entry is the TOC value we need to use.
678 		 */
679 		__get_user(entry, (unsigned long __user *)start);
680 		__get_user(toc, (unsigned long __user *)start+1);
681 
682 		/* Check whether the e_entry function descriptor entries
683 		 * need to be relocated before we can use them.
684 		 */
685 		if (load_addr != 0) {
686 			entry += load_addr;
687 			toc   += load_addr;
688 		}
689 		regs->nip = entry;
690 		regs->gpr[2] = toc;
691 		regs->msr = MSR_USER64;
692 	} else {
693 		regs->nip = start;
694 		regs->gpr[2] = 0;
695 		regs->msr = MSR_USER32;
696 	}
697 #endif
698 
699 	discard_lazy_cpu_state();
700 #ifdef CONFIG_VSX
701 	current->thread.used_vsr = 0;
702 #endif
703 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
704 	current->thread.fpscr.val = 0;
705 #ifdef CONFIG_ALTIVEC
706 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
707 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
708 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
709 	current->thread.vrsave = 0;
710 	current->thread.used_vr = 0;
711 #endif /* CONFIG_ALTIVEC */
712 #ifdef CONFIG_SPE
713 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
714 	current->thread.acc = 0;
715 	current->thread.spefscr = 0;
716 	current->thread.used_spe = 0;
717 #endif /* CONFIG_SPE */
718 }
719 
720 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
721 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
722 
723 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
724 {
725 	struct pt_regs *regs = tsk->thread.regs;
726 
727 	/* This is a bit hairy.  If we are an SPE enabled  processor
728 	 * (have embedded fp) we store the IEEE exception enable flags in
729 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
730 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
731 	if (val & PR_FP_EXC_SW_ENABLE) {
732 #ifdef CONFIG_SPE
733 		if (cpu_has_feature(CPU_FTR_SPE)) {
734 			tsk->thread.fpexc_mode = val &
735 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
736 			return 0;
737 		} else {
738 			return -EINVAL;
739 		}
740 #else
741 		return -EINVAL;
742 #endif
743 	}
744 
745 	/* on a CONFIG_SPE this does not hurt us.  The bits that
746 	 * __pack_fe01 use do not overlap with bits used for
747 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
748 	 * on CONFIG_SPE implementations are reserved so writing to
749 	 * them does not change anything */
750 	if (val > PR_FP_EXC_PRECISE)
751 		return -EINVAL;
752 	tsk->thread.fpexc_mode = __pack_fe01(val);
753 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
754 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
755 			| tsk->thread.fpexc_mode;
756 	return 0;
757 }
758 
759 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
760 {
761 	unsigned int val;
762 
763 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
764 #ifdef CONFIG_SPE
765 		if (cpu_has_feature(CPU_FTR_SPE))
766 			val = tsk->thread.fpexc_mode;
767 		else
768 			return -EINVAL;
769 #else
770 		return -EINVAL;
771 #endif
772 	else
773 		val = __unpack_fe01(tsk->thread.fpexc_mode);
774 	return put_user(val, (unsigned int __user *) adr);
775 }
776 
777 int set_endian(struct task_struct *tsk, unsigned int val)
778 {
779 	struct pt_regs *regs = tsk->thread.regs;
780 
781 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
782 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
783 		return -EINVAL;
784 
785 	if (regs == NULL)
786 		return -EINVAL;
787 
788 	if (val == PR_ENDIAN_BIG)
789 		regs->msr &= ~MSR_LE;
790 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
791 		regs->msr |= MSR_LE;
792 	else
793 		return -EINVAL;
794 
795 	return 0;
796 }
797 
798 int get_endian(struct task_struct *tsk, unsigned long adr)
799 {
800 	struct pt_regs *regs = tsk->thread.regs;
801 	unsigned int val;
802 
803 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
804 	    !cpu_has_feature(CPU_FTR_REAL_LE))
805 		return -EINVAL;
806 
807 	if (regs == NULL)
808 		return -EINVAL;
809 
810 	if (regs->msr & MSR_LE) {
811 		if (cpu_has_feature(CPU_FTR_REAL_LE))
812 			val = PR_ENDIAN_LITTLE;
813 		else
814 			val = PR_ENDIAN_PPC_LITTLE;
815 	} else
816 		val = PR_ENDIAN_BIG;
817 
818 	return put_user(val, (unsigned int __user *)adr);
819 }
820 
821 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
822 {
823 	tsk->thread.align_ctl = val;
824 	return 0;
825 }
826 
827 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
828 {
829 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
830 }
831 
832 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
833 
834 int sys_clone(unsigned long clone_flags, unsigned long usp,
835 	      int __user *parent_tidp, void __user *child_threadptr,
836 	      int __user *child_tidp, int p6,
837 	      struct pt_regs *regs)
838 {
839 	CHECK_FULL_REGS(regs);
840 	if (usp == 0)
841 		usp = regs->gpr[1];	/* stack pointer for child */
842 #ifdef CONFIG_PPC64
843 	if (test_thread_flag(TIF_32BIT)) {
844 		parent_tidp = TRUNC_PTR(parent_tidp);
845 		child_tidp = TRUNC_PTR(child_tidp);
846 	}
847 #endif
848  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
849 }
850 
851 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
852 	     unsigned long p4, unsigned long p5, unsigned long p6,
853 	     struct pt_regs *regs)
854 {
855 	CHECK_FULL_REGS(regs);
856 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
857 }
858 
859 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
860 	      unsigned long p4, unsigned long p5, unsigned long p6,
861 	      struct pt_regs *regs)
862 {
863 	CHECK_FULL_REGS(regs);
864 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
865 			regs, 0, NULL, NULL);
866 }
867 
868 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
869 	       unsigned long a3, unsigned long a4, unsigned long a5,
870 	       struct pt_regs *regs)
871 {
872 	int error;
873 	char *filename;
874 
875 	filename = getname((char __user *) a0);
876 	error = PTR_ERR(filename);
877 	if (IS_ERR(filename))
878 		goto out;
879 	flush_fp_to_thread(current);
880 	flush_altivec_to_thread(current);
881 	flush_spe_to_thread(current);
882 	error = do_execve(filename, (char __user * __user *) a1,
883 			  (char __user * __user *) a2, regs);
884 	putname(filename);
885 out:
886 	return error;
887 }
888 
889 #ifdef CONFIG_IRQSTACKS
890 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
891 				  unsigned long nbytes)
892 {
893 	unsigned long stack_page;
894 	unsigned long cpu = task_cpu(p);
895 
896 	/*
897 	 * Avoid crashing if the stack has overflowed and corrupted
898 	 * task_cpu(p), which is in the thread_info struct.
899 	 */
900 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
901 		stack_page = (unsigned long) hardirq_ctx[cpu];
902 		if (sp >= stack_page + sizeof(struct thread_struct)
903 		    && sp <= stack_page + THREAD_SIZE - nbytes)
904 			return 1;
905 
906 		stack_page = (unsigned long) softirq_ctx[cpu];
907 		if (sp >= stack_page + sizeof(struct thread_struct)
908 		    && sp <= stack_page + THREAD_SIZE - nbytes)
909 			return 1;
910 	}
911 	return 0;
912 }
913 
914 #else
915 #define valid_irq_stack(sp, p, nb)	0
916 #endif /* CONFIG_IRQSTACKS */
917 
918 int validate_sp(unsigned long sp, struct task_struct *p,
919 		       unsigned long nbytes)
920 {
921 	unsigned long stack_page = (unsigned long)task_stack_page(p);
922 
923 	if (sp >= stack_page + sizeof(struct thread_struct)
924 	    && sp <= stack_page + THREAD_SIZE - nbytes)
925 		return 1;
926 
927 	return valid_irq_stack(sp, p, nbytes);
928 }
929 
930 EXPORT_SYMBOL(validate_sp);
931 
932 unsigned long get_wchan(struct task_struct *p)
933 {
934 	unsigned long ip, sp;
935 	int count = 0;
936 
937 	if (!p || p == current || p->state == TASK_RUNNING)
938 		return 0;
939 
940 	sp = p->thread.ksp;
941 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
942 		return 0;
943 
944 	do {
945 		sp = *(unsigned long *)sp;
946 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
947 			return 0;
948 		if (count > 0) {
949 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
950 			if (!in_sched_functions(ip))
951 				return ip;
952 		}
953 	} while (count++ < 16);
954 	return 0;
955 }
956 
957 static int kstack_depth_to_print = 64;
958 
959 void show_stack(struct task_struct *tsk, unsigned long *stack)
960 {
961 	unsigned long sp, ip, lr, newsp;
962 	int count = 0;
963 	int firstframe = 1;
964 
965 	sp = (unsigned long) stack;
966 	if (tsk == NULL)
967 		tsk = current;
968 	if (sp == 0) {
969 		if (tsk == current)
970 			asm("mr %0,1" : "=r" (sp));
971 		else
972 			sp = tsk->thread.ksp;
973 	}
974 
975 	lr = 0;
976 	printk("Call Trace:\n");
977 	do {
978 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
979 			return;
980 
981 		stack = (unsigned long *) sp;
982 		newsp = stack[0];
983 		ip = stack[STACK_FRAME_LR_SAVE];
984 		if (!firstframe || ip != lr) {
985 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
986 			if (firstframe)
987 				printk(" (unreliable)");
988 			printk("\n");
989 		}
990 		firstframe = 0;
991 
992 		/*
993 		 * See if this is an exception frame.
994 		 * We look for the "regshere" marker in the current frame.
995 		 */
996 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
997 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
998 			struct pt_regs *regs = (struct pt_regs *)
999 				(sp + STACK_FRAME_OVERHEAD);
1000 			lr = regs->link;
1001 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1002 			       regs->trap, (void *)regs->nip, (void *)lr);
1003 			firstframe = 1;
1004 		}
1005 
1006 		sp = newsp;
1007 	} while (count++ < kstack_depth_to_print);
1008 }
1009 
1010 void dump_stack(void)
1011 {
1012 	show_stack(current, NULL);
1013 }
1014 EXPORT_SYMBOL(dump_stack);
1015 
1016 #ifdef CONFIG_PPC64
1017 void ppc64_runlatch_on(void)
1018 {
1019 	unsigned long ctrl;
1020 
1021 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1022 		HMT_medium();
1023 
1024 		ctrl = mfspr(SPRN_CTRLF);
1025 		ctrl |= CTRL_RUNLATCH;
1026 		mtspr(SPRN_CTRLT, ctrl);
1027 
1028 		set_thread_flag(TIF_RUNLATCH);
1029 	}
1030 }
1031 
1032 void ppc64_runlatch_off(void)
1033 {
1034 	unsigned long ctrl;
1035 
1036 	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1037 		HMT_medium();
1038 
1039 		clear_thread_flag(TIF_RUNLATCH);
1040 
1041 		ctrl = mfspr(SPRN_CTRLF);
1042 		ctrl &= ~CTRL_RUNLATCH;
1043 		mtspr(SPRN_CTRLT, ctrl);
1044 	}
1045 }
1046 #endif
1047 
1048 #if THREAD_SHIFT < PAGE_SHIFT
1049 
1050 static struct kmem_cache *thread_info_cache;
1051 
1052 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1053 {
1054 	struct thread_info *ti;
1055 
1056 	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1057 	if (unlikely(ti == NULL))
1058 		return NULL;
1059 #ifdef CONFIG_DEBUG_STACK_USAGE
1060 	memset(ti, 0, THREAD_SIZE);
1061 #endif
1062 	return ti;
1063 }
1064 
1065 void free_thread_info(struct thread_info *ti)
1066 {
1067 	kmem_cache_free(thread_info_cache, ti);
1068 }
1069 
1070 void thread_info_cache_init(void)
1071 {
1072 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1073 					      THREAD_SIZE, 0, NULL);
1074 	BUG_ON(thread_info_cache == NULL);
1075 }
1076 
1077 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1078