xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 4f727ece)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43 
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67 
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70 
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77 
78 extern unsigned long _get_SP(void);
79 
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87 
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90 	/*
91 	 * If we are saving the current thread's registers, and the
92 	 * thread is in a transactional state, set the TIF_RESTORE_TM
93 	 * bit so that we know to restore the registers before
94 	 * returning to userspace.
95 	 */
96 	if (tsk == current && tsk->thread.regs &&
97 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 	    !test_thread_flag(TIF_RESTORE_TM)) {
99 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100 		set_thread_flag(TIF_RESTORE_TM);
101 	}
102 }
103 
104 static bool tm_active_with_fp(struct task_struct *tsk)
105 {
106 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
107 		(tsk->thread.ckpt_regs.msr & MSR_FP);
108 }
109 
110 static bool tm_active_with_altivec(struct task_struct *tsk)
111 {
112 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
113 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
114 }
115 #else
116 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
117 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
118 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
120 
121 bool strict_msr_control;
122 EXPORT_SYMBOL(strict_msr_control);
123 
124 static int __init enable_strict_msr_control(char *str)
125 {
126 	strict_msr_control = true;
127 	pr_info("Enabling strict facility control\n");
128 
129 	return 0;
130 }
131 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
132 
133 /* notrace because it's called by restore_math */
134 unsigned long notrace msr_check_and_set(unsigned long bits)
135 {
136 	unsigned long oldmsr = mfmsr();
137 	unsigned long newmsr;
138 
139 	newmsr = oldmsr | bits;
140 
141 #ifdef CONFIG_VSX
142 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143 		newmsr |= MSR_VSX;
144 #endif
145 
146 	if (oldmsr != newmsr)
147 		mtmsr_isync(newmsr);
148 
149 	return newmsr;
150 }
151 EXPORT_SYMBOL_GPL(msr_check_and_set);
152 
153 /* notrace because it's called by restore_math */
154 void notrace __msr_check_and_clear(unsigned long bits)
155 {
156 	unsigned long oldmsr = mfmsr();
157 	unsigned long newmsr;
158 
159 	newmsr = oldmsr & ~bits;
160 
161 #ifdef CONFIG_VSX
162 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
163 		newmsr &= ~MSR_VSX;
164 #endif
165 
166 	if (oldmsr != newmsr)
167 		mtmsr_isync(newmsr);
168 }
169 EXPORT_SYMBOL(__msr_check_and_clear);
170 
171 #ifdef CONFIG_PPC_FPU
172 static void __giveup_fpu(struct task_struct *tsk)
173 {
174 	unsigned long msr;
175 
176 	save_fpu(tsk);
177 	msr = tsk->thread.regs->msr;
178 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
179 #ifdef CONFIG_VSX
180 	if (cpu_has_feature(CPU_FTR_VSX))
181 		msr &= ~MSR_VSX;
182 #endif
183 	tsk->thread.regs->msr = msr;
184 }
185 
186 void giveup_fpu(struct task_struct *tsk)
187 {
188 	check_if_tm_restore_required(tsk);
189 
190 	msr_check_and_set(MSR_FP);
191 	__giveup_fpu(tsk);
192 	msr_check_and_clear(MSR_FP);
193 }
194 EXPORT_SYMBOL(giveup_fpu);
195 
196 /*
197  * Make sure the floating-point register state in the
198  * the thread_struct is up to date for task tsk.
199  */
200 void flush_fp_to_thread(struct task_struct *tsk)
201 {
202 	if (tsk->thread.regs) {
203 		/*
204 		 * We need to disable preemption here because if we didn't,
205 		 * another process could get scheduled after the regs->msr
206 		 * test but before we have finished saving the FP registers
207 		 * to the thread_struct.  That process could take over the
208 		 * FPU, and then when we get scheduled again we would store
209 		 * bogus values for the remaining FP registers.
210 		 */
211 		preempt_disable();
212 		if (tsk->thread.regs->msr & MSR_FP) {
213 			/*
214 			 * This should only ever be called for current or
215 			 * for a stopped child process.  Since we save away
216 			 * the FP register state on context switch,
217 			 * there is something wrong if a stopped child appears
218 			 * to still have its FP state in the CPU registers.
219 			 */
220 			BUG_ON(tsk != current);
221 			giveup_fpu(tsk);
222 		}
223 		preempt_enable();
224 	}
225 }
226 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
227 
228 void enable_kernel_fp(void)
229 {
230 	unsigned long cpumsr;
231 
232 	WARN_ON(preemptible());
233 
234 	cpumsr = msr_check_and_set(MSR_FP);
235 
236 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
237 		check_if_tm_restore_required(current);
238 		/*
239 		 * If a thread has already been reclaimed then the
240 		 * checkpointed registers are on the CPU but have definitely
241 		 * been saved by the reclaim code. Don't need to and *cannot*
242 		 * giveup as this would save  to the 'live' structure not the
243 		 * checkpointed structure.
244 		 */
245 		if (!MSR_TM_ACTIVE(cpumsr) &&
246 		     MSR_TM_ACTIVE(current->thread.regs->msr))
247 			return;
248 		__giveup_fpu(current);
249 	}
250 }
251 EXPORT_SYMBOL(enable_kernel_fp);
252 
253 static int restore_fp(struct task_struct *tsk)
254 {
255 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
256 		load_fp_state(&current->thread.fp_state);
257 		current->thread.load_fp++;
258 		return 1;
259 	}
260 	return 0;
261 }
262 #else
263 static int restore_fp(struct task_struct *tsk) { return 0; }
264 #endif /* CONFIG_PPC_FPU */
265 
266 #ifdef CONFIG_ALTIVEC
267 #define loadvec(thr) ((thr).load_vec)
268 
269 static void __giveup_altivec(struct task_struct *tsk)
270 {
271 	unsigned long msr;
272 
273 	save_altivec(tsk);
274 	msr = tsk->thread.regs->msr;
275 	msr &= ~MSR_VEC;
276 #ifdef CONFIG_VSX
277 	if (cpu_has_feature(CPU_FTR_VSX))
278 		msr &= ~MSR_VSX;
279 #endif
280 	tsk->thread.regs->msr = msr;
281 }
282 
283 void giveup_altivec(struct task_struct *tsk)
284 {
285 	check_if_tm_restore_required(tsk);
286 
287 	msr_check_and_set(MSR_VEC);
288 	__giveup_altivec(tsk);
289 	msr_check_and_clear(MSR_VEC);
290 }
291 EXPORT_SYMBOL(giveup_altivec);
292 
293 void enable_kernel_altivec(void)
294 {
295 	unsigned long cpumsr;
296 
297 	WARN_ON(preemptible());
298 
299 	cpumsr = msr_check_and_set(MSR_VEC);
300 
301 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
302 		check_if_tm_restore_required(current);
303 		/*
304 		 * If a thread has already been reclaimed then the
305 		 * checkpointed registers are on the CPU but have definitely
306 		 * been saved by the reclaim code. Don't need to and *cannot*
307 		 * giveup as this would save  to the 'live' structure not the
308 		 * checkpointed structure.
309 		 */
310 		if (!MSR_TM_ACTIVE(cpumsr) &&
311 		     MSR_TM_ACTIVE(current->thread.regs->msr))
312 			return;
313 		__giveup_altivec(current);
314 	}
315 }
316 EXPORT_SYMBOL(enable_kernel_altivec);
317 
318 /*
319  * Make sure the VMX/Altivec register state in the
320  * the thread_struct is up to date for task tsk.
321  */
322 void flush_altivec_to_thread(struct task_struct *tsk)
323 {
324 	if (tsk->thread.regs) {
325 		preempt_disable();
326 		if (tsk->thread.regs->msr & MSR_VEC) {
327 			BUG_ON(tsk != current);
328 			giveup_altivec(tsk);
329 		}
330 		preempt_enable();
331 	}
332 }
333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334 
335 static int restore_altivec(struct task_struct *tsk)
336 {
337 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339 		load_vr_state(&tsk->thread.vr_state);
340 		tsk->thread.used_vr = 1;
341 		tsk->thread.load_vec++;
342 
343 		return 1;
344 	}
345 	return 0;
346 }
347 #else
348 #define loadvec(thr) 0
349 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 #endif /* CONFIG_ALTIVEC */
351 
352 #ifdef CONFIG_VSX
353 static void __giveup_vsx(struct task_struct *tsk)
354 {
355 	unsigned long msr = tsk->thread.regs->msr;
356 
357 	/*
358 	 * We should never be ssetting MSR_VSX without also setting
359 	 * MSR_FP and MSR_VEC
360 	 */
361 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362 
363 	/* __giveup_fpu will clear MSR_VSX */
364 	if (msr & MSR_FP)
365 		__giveup_fpu(tsk);
366 	if (msr & MSR_VEC)
367 		__giveup_altivec(tsk);
368 }
369 
370 static void giveup_vsx(struct task_struct *tsk)
371 {
372 	check_if_tm_restore_required(tsk);
373 
374 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375 	__giveup_vsx(tsk);
376 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377 }
378 
379 void enable_kernel_vsx(void)
380 {
381 	unsigned long cpumsr;
382 
383 	WARN_ON(preemptible());
384 
385 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
386 
387 	if (current->thread.regs &&
388 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389 		check_if_tm_restore_required(current);
390 		/*
391 		 * If a thread has already been reclaimed then the
392 		 * checkpointed registers are on the CPU but have definitely
393 		 * been saved by the reclaim code. Don't need to and *cannot*
394 		 * giveup as this would save  to the 'live' structure not the
395 		 * checkpointed structure.
396 		 */
397 		if (!MSR_TM_ACTIVE(cpumsr) &&
398 		     MSR_TM_ACTIVE(current->thread.regs->msr))
399 			return;
400 		__giveup_vsx(current);
401 	}
402 }
403 EXPORT_SYMBOL(enable_kernel_vsx);
404 
405 void flush_vsx_to_thread(struct task_struct *tsk)
406 {
407 	if (tsk->thread.regs) {
408 		preempt_disable();
409 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
410 			BUG_ON(tsk != current);
411 			giveup_vsx(tsk);
412 		}
413 		preempt_enable();
414 	}
415 }
416 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
417 
418 static int restore_vsx(struct task_struct *tsk)
419 {
420 	if (cpu_has_feature(CPU_FTR_VSX)) {
421 		tsk->thread.used_vsr = 1;
422 		return 1;
423 	}
424 
425 	return 0;
426 }
427 #else
428 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
429 #endif /* CONFIG_VSX */
430 
431 #ifdef CONFIG_SPE
432 void giveup_spe(struct task_struct *tsk)
433 {
434 	check_if_tm_restore_required(tsk);
435 
436 	msr_check_and_set(MSR_SPE);
437 	__giveup_spe(tsk);
438 	msr_check_and_clear(MSR_SPE);
439 }
440 EXPORT_SYMBOL(giveup_spe);
441 
442 void enable_kernel_spe(void)
443 {
444 	WARN_ON(preemptible());
445 
446 	msr_check_and_set(MSR_SPE);
447 
448 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
449 		check_if_tm_restore_required(current);
450 		__giveup_spe(current);
451 	}
452 }
453 EXPORT_SYMBOL(enable_kernel_spe);
454 
455 void flush_spe_to_thread(struct task_struct *tsk)
456 {
457 	if (tsk->thread.regs) {
458 		preempt_disable();
459 		if (tsk->thread.regs->msr & MSR_SPE) {
460 			BUG_ON(tsk != current);
461 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
462 			giveup_spe(tsk);
463 		}
464 		preempt_enable();
465 	}
466 }
467 #endif /* CONFIG_SPE */
468 
469 static unsigned long msr_all_available;
470 
471 static int __init init_msr_all_available(void)
472 {
473 #ifdef CONFIG_PPC_FPU
474 	msr_all_available |= MSR_FP;
475 #endif
476 #ifdef CONFIG_ALTIVEC
477 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
478 		msr_all_available |= MSR_VEC;
479 #endif
480 #ifdef CONFIG_VSX
481 	if (cpu_has_feature(CPU_FTR_VSX))
482 		msr_all_available |= MSR_VSX;
483 #endif
484 #ifdef CONFIG_SPE
485 	if (cpu_has_feature(CPU_FTR_SPE))
486 		msr_all_available |= MSR_SPE;
487 #endif
488 
489 	return 0;
490 }
491 early_initcall(init_msr_all_available);
492 
493 void giveup_all(struct task_struct *tsk)
494 {
495 	unsigned long usermsr;
496 
497 	if (!tsk->thread.regs)
498 		return;
499 
500 	usermsr = tsk->thread.regs->msr;
501 
502 	if ((usermsr & msr_all_available) == 0)
503 		return;
504 
505 	msr_check_and_set(msr_all_available);
506 	check_if_tm_restore_required(tsk);
507 
508 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
509 
510 #ifdef CONFIG_PPC_FPU
511 	if (usermsr & MSR_FP)
512 		__giveup_fpu(tsk);
513 #endif
514 #ifdef CONFIG_ALTIVEC
515 	if (usermsr & MSR_VEC)
516 		__giveup_altivec(tsk);
517 #endif
518 #ifdef CONFIG_SPE
519 	if (usermsr & MSR_SPE)
520 		__giveup_spe(tsk);
521 #endif
522 
523 	msr_check_and_clear(msr_all_available);
524 }
525 EXPORT_SYMBOL(giveup_all);
526 
527 /*
528  * The exception exit path calls restore_math() with interrupts hard disabled
529  * but the soft irq state not "reconciled". ftrace code that calls
530  * local_irq_save/restore causes warnings.
531  *
532  * Rather than complicate the exit path, just don't trace restore_math. This
533  * could be done by having ftrace entry code check for this un-reconciled
534  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
535  * temporarily fix it up for the duration of the ftrace call.
536  */
537 void notrace restore_math(struct pt_regs *regs)
538 {
539 	unsigned long msr;
540 
541 	if (!MSR_TM_ACTIVE(regs->msr) &&
542 		!current->thread.load_fp && !loadvec(current->thread))
543 		return;
544 
545 	msr = regs->msr;
546 	msr_check_and_set(msr_all_available);
547 
548 	/*
549 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
550 	 * indicates that the registers are hot
551 	 */
552 	if ((!(msr & MSR_FP)) && restore_fp(current))
553 		msr |= MSR_FP | current->thread.fpexc_mode;
554 
555 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
556 		msr |= MSR_VEC;
557 
558 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
559 			restore_vsx(current)) {
560 		msr |= MSR_VSX;
561 	}
562 
563 	msr_check_and_clear(msr_all_available);
564 
565 	regs->msr = msr;
566 }
567 
568 static void save_all(struct task_struct *tsk)
569 {
570 	unsigned long usermsr;
571 
572 	if (!tsk->thread.regs)
573 		return;
574 
575 	usermsr = tsk->thread.regs->msr;
576 
577 	if ((usermsr & msr_all_available) == 0)
578 		return;
579 
580 	msr_check_and_set(msr_all_available);
581 
582 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583 
584 	if (usermsr & MSR_FP)
585 		save_fpu(tsk);
586 
587 	if (usermsr & MSR_VEC)
588 		save_altivec(tsk);
589 
590 	if (usermsr & MSR_SPE)
591 		__giveup_spe(tsk);
592 
593 	msr_check_and_clear(msr_all_available);
594 	thread_pkey_regs_save(&tsk->thread);
595 }
596 
597 void flush_all_to_thread(struct task_struct *tsk)
598 {
599 	if (tsk->thread.regs) {
600 		preempt_disable();
601 		BUG_ON(tsk != current);
602 #ifdef CONFIG_SPE
603 		if (tsk->thread.regs->msr & MSR_SPE)
604 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
605 #endif
606 		save_all(tsk);
607 
608 		preempt_enable();
609 	}
610 }
611 EXPORT_SYMBOL(flush_all_to_thread);
612 
613 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
614 void do_send_trap(struct pt_regs *regs, unsigned long address,
615 		  unsigned long error_code, int breakpt)
616 {
617 	current->thread.trap_nr = TRAP_HWBKPT;
618 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 			11, SIGSEGV) == NOTIFY_STOP)
620 		return;
621 
622 	/* Deliver the signal to userspace */
623 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
624 				    (void __user *)address);
625 }
626 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
627 void do_break (struct pt_regs *regs, unsigned long address,
628 		    unsigned long error_code)
629 {
630 	current->thread.trap_nr = TRAP_HWBKPT;
631 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
632 			11, SIGSEGV) == NOTIFY_STOP)
633 		return;
634 
635 	if (debugger_break_match(regs))
636 		return;
637 
638 	/* Clear the breakpoint */
639 	hw_breakpoint_disable();
640 
641 	/* Deliver the signal to userspace */
642 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
643 }
644 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
645 
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647 
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650  * Set the debug registers back to their default "safe" values.
651  */
652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654 	thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656 	thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658 	thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662 	thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664 	/*
665 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666 	 */
667 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 			DBCR1_IAC3US | DBCR1_IAC4US;
669 	/*
670 	 * Force Data Address Compare User/Supervisor bits to be User-only
671 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672 	 */
673 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675 	thread->debug.dbcr1 = 0;
676 #endif
677 }
678 
679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681 	/*
682 	 * We could have inherited MSR_DE from userspace, since
683 	 * it doesn't get cleared on exception entry.  Make sure
684 	 * MSR_DE is clear before we enable any debug events.
685 	 */
686 	mtmsr(mfmsr() & ~MSR_DE);
687 
688 	mtspr(SPRN_IAC1, debug->iac1);
689 	mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 	mtspr(SPRN_IAC3, debug->iac3);
692 	mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694 	mtspr(SPRN_DAC1, debug->dac1);
695 	mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 	mtspr(SPRN_DVC1, debug->dvc1);
698 	mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700 	mtspr(SPRN_DBCR0, debug->dbcr0);
701 	mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703 	mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707  * Unless neither the old or new thread are making use of the
708  * debug registers, set the debug registers from the values
709  * stored in the new thread.
710  */
711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 		|| (new_debug->dbcr0 & DBCR0_IDM))
715 			prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
720 static void set_breakpoint(struct arch_hw_breakpoint *brk)
721 {
722 	preempt_disable();
723 	__set_breakpoint(brk);
724 	preempt_enable();
725 }
726 
727 static void set_debug_reg_defaults(struct thread_struct *thread)
728 {
729 	thread->hw_brk.address = 0;
730 	thread->hw_brk.type = 0;
731 	if (ppc_breakpoint_available())
732 		set_breakpoint(&thread->hw_brk);
733 }
734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
735 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
736 
737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740 	mtspr(SPRN_DAC1, dabr);
741 #ifdef CONFIG_PPC_47x
742 	isync();
743 #endif
744 	return 0;
745 }
746 #elif defined(CONFIG_PPC_BOOK3S)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749 	mtspr(SPRN_DABR, dabr);
750 	if (cpu_has_feature(CPU_FTR_DABRX))
751 		mtspr(SPRN_DABRX, dabrx);
752 	return 0;
753 }
754 #elif defined(CONFIG_PPC_8xx)
755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
756 {
757 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
758 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
759 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
760 
761 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
762 		lctrl1 |= 0xa0000;
763 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
764 		lctrl1 |= 0xf0000;
765 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
766 		lctrl2 = 0;
767 
768 	mtspr(SPRN_LCTRL2, 0);
769 	mtspr(SPRN_CMPE, addr);
770 	mtspr(SPRN_CMPF, addr + 4);
771 	mtspr(SPRN_LCTRL1, lctrl1);
772 	mtspr(SPRN_LCTRL2, lctrl2);
773 
774 	return 0;
775 }
776 #else
777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779 	return -EINVAL;
780 }
781 #endif
782 
783 static inline int set_dabr(struct arch_hw_breakpoint *brk)
784 {
785 	unsigned long dabr, dabrx;
786 
787 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
788 	dabrx = ((brk->type >> 3) & 0x7);
789 
790 	if (ppc_md.set_dabr)
791 		return ppc_md.set_dabr(dabr, dabrx);
792 
793 	return __set_dabr(dabr, dabrx);
794 }
795 
796 int set_dawr(struct arch_hw_breakpoint *brk)
797 {
798 	unsigned long dawr, dawrx, mrd;
799 
800 	dawr = brk->address;
801 
802 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
803 		                   << (63 - 58); //* read/write bits */
804 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
805 		                   << (63 - 59); //* translate */
806 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
807 		                   >> 3; //* PRIM bits */
808 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
809 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
810 	   0b111111=64DW.
811 	   brk->len is in bytes.
812 	   This aligns up to double word size, shifts and does the bias.
813 	*/
814 	mrd = ((brk->len + 7) >> 3) - 1;
815 	dawrx |= (mrd & 0x3f) << (63 - 53);
816 
817 	if (ppc_md.set_dawr)
818 		return ppc_md.set_dawr(dawr, dawrx);
819 	mtspr(SPRN_DAWR, dawr);
820 	mtspr(SPRN_DAWRX, dawrx);
821 	return 0;
822 }
823 
824 void __set_breakpoint(struct arch_hw_breakpoint *brk)
825 {
826 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
827 
828 	if (dawr_enabled())
829 		// Power8 or later
830 		set_dawr(brk);
831 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
832 		// Power7 or earlier
833 		set_dabr(brk);
834 	else
835 		// Shouldn't happen due to higher level checks
836 		WARN_ON_ONCE(1);
837 }
838 
839 /* Check if we have DAWR or DABR hardware */
840 bool ppc_breakpoint_available(void)
841 {
842 	if (dawr_enabled())
843 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
844 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
845 		return false; /* POWER9 with DAWR disabled */
846 	/* DABR: Everything but POWER8 and POWER9 */
847 	return true;
848 }
849 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
850 
851 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
852 			      struct arch_hw_breakpoint *b)
853 {
854 	if (a->address != b->address)
855 		return false;
856 	if (a->type != b->type)
857 		return false;
858 	if (a->len != b->len)
859 		return false;
860 	return true;
861 }
862 
863 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
864 
865 static inline bool tm_enabled(struct task_struct *tsk)
866 {
867 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
868 }
869 
870 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
871 {
872 	/*
873 	 * Use the current MSR TM suspended bit to track if we have
874 	 * checkpointed state outstanding.
875 	 * On signal delivery, we'd normally reclaim the checkpointed
876 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
877 	 * This will then directly return to userspace without going
878 	 * through __switch_to(). However, if the stack frame is bad,
879 	 * we need to exit this thread which calls __switch_to() which
880 	 * will again attempt to reclaim the already saved tm state.
881 	 * Hence we need to check that we've not already reclaimed
882 	 * this state.
883 	 * We do this using the current MSR, rather tracking it in
884 	 * some specific thread_struct bit, as it has the additional
885 	 * benefit of checking for a potential TM bad thing exception.
886 	 */
887 	if (!MSR_TM_SUSPENDED(mfmsr()))
888 		return;
889 
890 	giveup_all(container_of(thr, struct task_struct, thread));
891 
892 	tm_reclaim(thr, cause);
893 
894 	/*
895 	 * If we are in a transaction and FP is off then we can't have
896 	 * used FP inside that transaction. Hence the checkpointed
897 	 * state is the same as the live state. We need to copy the
898 	 * live state to the checkpointed state so that when the
899 	 * transaction is restored, the checkpointed state is correct
900 	 * and the aborted transaction sees the correct state. We use
901 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
902 	 * determine if it's going to write the checkpointed state or
903 	 * not. So either this will write the checkpointed registers,
904 	 * or reclaim will. Similarly for VMX.
905 	 */
906 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
907 		memcpy(&thr->ckfp_state, &thr->fp_state,
908 		       sizeof(struct thread_fp_state));
909 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
910 		memcpy(&thr->ckvr_state, &thr->vr_state,
911 		       sizeof(struct thread_vr_state));
912 }
913 
914 void tm_reclaim_current(uint8_t cause)
915 {
916 	tm_enable();
917 	tm_reclaim_thread(&current->thread, cause);
918 }
919 
920 static inline void tm_reclaim_task(struct task_struct *tsk)
921 {
922 	/* We have to work out if we're switching from/to a task that's in the
923 	 * middle of a transaction.
924 	 *
925 	 * In switching we need to maintain a 2nd register state as
926 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
927 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
928 	 * ckvr_state
929 	 *
930 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
931 	 */
932 	struct thread_struct *thr = &tsk->thread;
933 
934 	if (!thr->regs)
935 		return;
936 
937 	if (!MSR_TM_ACTIVE(thr->regs->msr))
938 		goto out_and_saveregs;
939 
940 	WARN_ON(tm_suspend_disabled);
941 
942 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
943 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
944 		 tsk->pid, thr->regs->nip,
945 		 thr->regs->ccr, thr->regs->msr,
946 		 thr->regs->trap);
947 
948 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
949 
950 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
951 		 tsk->pid);
952 
953 out_and_saveregs:
954 	/* Always save the regs here, even if a transaction's not active.
955 	 * This context-switches a thread's TM info SPRs.  We do it here to
956 	 * be consistent with the restore path (in recheckpoint) which
957 	 * cannot happen later in _switch().
958 	 */
959 	tm_save_sprs(thr);
960 }
961 
962 extern void __tm_recheckpoint(struct thread_struct *thread);
963 
964 void tm_recheckpoint(struct thread_struct *thread)
965 {
966 	unsigned long flags;
967 
968 	if (!(thread->regs->msr & MSR_TM))
969 		return;
970 
971 	/* We really can't be interrupted here as the TEXASR registers can't
972 	 * change and later in the trecheckpoint code, we have a userspace R1.
973 	 * So let's hard disable over this region.
974 	 */
975 	local_irq_save(flags);
976 	hard_irq_disable();
977 
978 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
979 	 * before the trecheckpoint and no explosion occurs.
980 	 */
981 	tm_restore_sprs(thread);
982 
983 	__tm_recheckpoint(thread);
984 
985 	local_irq_restore(flags);
986 }
987 
988 static inline void tm_recheckpoint_new_task(struct task_struct *new)
989 {
990 	if (!cpu_has_feature(CPU_FTR_TM))
991 		return;
992 
993 	/* Recheckpoint the registers of the thread we're about to switch to.
994 	 *
995 	 * If the task was using FP, we non-lazily reload both the original and
996 	 * the speculative FP register states.  This is because the kernel
997 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
998 	 * unavailable later, we are unable to determine which set of FP regs
999 	 * need to be restored.
1000 	 */
1001 	if (!tm_enabled(new))
1002 		return;
1003 
1004 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1005 		tm_restore_sprs(&new->thread);
1006 		return;
1007 	}
1008 	/* Recheckpoint to restore original checkpointed register state. */
1009 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1010 		 new->pid, new->thread.regs->msr);
1011 
1012 	tm_recheckpoint(&new->thread);
1013 
1014 	/*
1015 	 * The checkpointed state has been restored but the live state has
1016 	 * not, ensure all the math functionality is turned off to trigger
1017 	 * restore_math() to reload.
1018 	 */
1019 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1020 
1021 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1022 		 "(kernel msr 0x%lx)\n",
1023 		 new->pid, mfmsr());
1024 }
1025 
1026 static inline void __switch_to_tm(struct task_struct *prev,
1027 		struct task_struct *new)
1028 {
1029 	if (cpu_has_feature(CPU_FTR_TM)) {
1030 		if (tm_enabled(prev) || tm_enabled(new))
1031 			tm_enable();
1032 
1033 		if (tm_enabled(prev)) {
1034 			prev->thread.load_tm++;
1035 			tm_reclaim_task(prev);
1036 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1037 				prev->thread.regs->msr &= ~MSR_TM;
1038 		}
1039 
1040 		tm_recheckpoint_new_task(new);
1041 	}
1042 }
1043 
1044 /*
1045  * This is called if we are on the way out to userspace and the
1046  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1047  * FP and/or vector state and does so if necessary.
1048  * If userspace is inside a transaction (whether active or
1049  * suspended) and FP/VMX/VSX instructions have ever been enabled
1050  * inside that transaction, then we have to keep them enabled
1051  * and keep the FP/VMX/VSX state loaded while ever the transaction
1052  * continues.  The reason is that if we didn't, and subsequently
1053  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1054  * we don't know whether it's the same transaction, and thus we
1055  * don't know which of the checkpointed state and the transactional
1056  * state to use.
1057  */
1058 void restore_tm_state(struct pt_regs *regs)
1059 {
1060 	unsigned long msr_diff;
1061 
1062 	/*
1063 	 * This is the only moment we should clear TIF_RESTORE_TM as
1064 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1065 	 * again, anything else could lead to an incorrect ckpt_msr being
1066 	 * saved and therefore incorrect signal contexts.
1067 	 */
1068 	clear_thread_flag(TIF_RESTORE_TM);
1069 	if (!MSR_TM_ACTIVE(regs->msr))
1070 		return;
1071 
1072 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1073 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1074 
1075 	/* Ensure that restore_math() will restore */
1076 	if (msr_diff & MSR_FP)
1077 		current->thread.load_fp = 1;
1078 #ifdef CONFIG_ALTIVEC
1079 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1080 		current->thread.load_vec = 1;
1081 #endif
1082 	restore_math(regs);
1083 
1084 	regs->msr |= msr_diff;
1085 }
1086 
1087 #else
1088 #define tm_recheckpoint_new_task(new)
1089 #define __switch_to_tm(prev, new)
1090 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1091 
1092 static inline void save_sprs(struct thread_struct *t)
1093 {
1094 #ifdef CONFIG_ALTIVEC
1095 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1096 		t->vrsave = mfspr(SPRN_VRSAVE);
1097 #endif
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099 	if (cpu_has_feature(CPU_FTR_DSCR))
1100 		t->dscr = mfspr(SPRN_DSCR);
1101 
1102 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1103 		t->bescr = mfspr(SPRN_BESCR);
1104 		t->ebbhr = mfspr(SPRN_EBBHR);
1105 		t->ebbrr = mfspr(SPRN_EBBRR);
1106 
1107 		t->fscr = mfspr(SPRN_FSCR);
1108 
1109 		/*
1110 		 * Note that the TAR is not available for use in the kernel.
1111 		 * (To provide this, the TAR should be backed up/restored on
1112 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1113 		 * this should be in pt_regs anyway (for debug).)
1114 		 */
1115 		t->tar = mfspr(SPRN_TAR);
1116 	}
1117 #endif
1118 
1119 	thread_pkey_regs_save(t);
1120 }
1121 
1122 static inline void restore_sprs(struct thread_struct *old_thread,
1123 				struct thread_struct *new_thread)
1124 {
1125 #ifdef CONFIG_ALTIVEC
1126 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1127 	    old_thread->vrsave != new_thread->vrsave)
1128 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1129 #endif
1130 #ifdef CONFIG_PPC_BOOK3S_64
1131 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1132 		u64 dscr = get_paca()->dscr_default;
1133 		if (new_thread->dscr_inherit)
1134 			dscr = new_thread->dscr;
1135 
1136 		if (old_thread->dscr != dscr)
1137 			mtspr(SPRN_DSCR, dscr);
1138 	}
1139 
1140 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1141 		if (old_thread->bescr != new_thread->bescr)
1142 			mtspr(SPRN_BESCR, new_thread->bescr);
1143 		if (old_thread->ebbhr != new_thread->ebbhr)
1144 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1145 		if (old_thread->ebbrr != new_thread->ebbrr)
1146 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1147 
1148 		if (old_thread->fscr != new_thread->fscr)
1149 			mtspr(SPRN_FSCR, new_thread->fscr);
1150 
1151 		if (old_thread->tar != new_thread->tar)
1152 			mtspr(SPRN_TAR, new_thread->tar);
1153 	}
1154 
1155 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1156 	    old_thread->tidr != new_thread->tidr)
1157 		mtspr(SPRN_TIDR, new_thread->tidr);
1158 #endif
1159 
1160 	thread_pkey_regs_restore(new_thread, old_thread);
1161 }
1162 
1163 struct task_struct *__switch_to(struct task_struct *prev,
1164 	struct task_struct *new)
1165 {
1166 	struct thread_struct *new_thread, *old_thread;
1167 	struct task_struct *last;
1168 #ifdef CONFIG_PPC_BOOK3S_64
1169 	struct ppc64_tlb_batch *batch;
1170 #endif
1171 
1172 	new_thread = &new->thread;
1173 	old_thread = &current->thread;
1174 
1175 	WARN_ON(!irqs_disabled());
1176 
1177 #ifdef CONFIG_PPC_BOOK3S_64
1178 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1179 	if (batch->active) {
1180 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1181 		if (batch->index)
1182 			__flush_tlb_pending(batch);
1183 		batch->active = 0;
1184 	}
1185 #endif /* CONFIG_PPC_BOOK3S_64 */
1186 
1187 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1188 	switch_booke_debug_regs(&new->thread.debug);
1189 #else
1190 /*
1191  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1192  * schedule DABR
1193  */
1194 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1195 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1196 		__set_breakpoint(&new->thread.hw_brk);
1197 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1198 #endif
1199 
1200 	/*
1201 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1202 	 * change a number of them.
1203 	 */
1204 	save_sprs(&prev->thread);
1205 
1206 	/* Save FPU, Altivec, VSX and SPE state */
1207 	giveup_all(prev);
1208 
1209 	__switch_to_tm(prev, new);
1210 
1211 	if (!radix_enabled()) {
1212 		/*
1213 		 * We can't take a PMU exception inside _switch() since there
1214 		 * is a window where the kernel stack SLB and the kernel stack
1215 		 * are out of sync. Hard disable here.
1216 		 */
1217 		hard_irq_disable();
1218 	}
1219 
1220 	/*
1221 	 * Call restore_sprs() before calling _switch(). If we move it after
1222 	 * _switch() then we miss out on calling it for new tasks. The reason
1223 	 * for this is we manually create a stack frame for new tasks that
1224 	 * directly returns through ret_from_fork() or
1225 	 * ret_from_kernel_thread(). See copy_thread() for details.
1226 	 */
1227 	restore_sprs(old_thread, new_thread);
1228 
1229 	last = _switch(old_thread, new_thread);
1230 
1231 #ifdef CONFIG_PPC_BOOK3S_64
1232 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1233 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1234 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1235 		batch->active = 1;
1236 	}
1237 
1238 	if (current->thread.regs) {
1239 		restore_math(current->thread.regs);
1240 
1241 		/*
1242 		 * The copy-paste buffer can only store into foreign real
1243 		 * addresses, so unprivileged processes can not see the
1244 		 * data or use it in any way unless they have foreign real
1245 		 * mappings. If the new process has the foreign real address
1246 		 * mappings, we must issue a cp_abort to clear any state and
1247 		 * prevent snooping, corruption or a covert channel.
1248 		 */
1249 		if (current->thread.used_vas)
1250 			asm volatile(PPC_CP_ABORT);
1251 	}
1252 #endif /* CONFIG_PPC_BOOK3S_64 */
1253 
1254 	return last;
1255 }
1256 
1257 #define NR_INSN_TO_PRINT	16
1258 
1259 static void show_instructions(struct pt_regs *regs)
1260 {
1261 	int i;
1262 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1263 
1264 	printk("Instruction dump:");
1265 
1266 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1267 		int instr;
1268 
1269 		if (!(i % 8))
1270 			pr_cont("\n");
1271 
1272 #if !defined(CONFIG_BOOKE)
1273 		/* If executing with the IMMU off, adjust pc rather
1274 		 * than print XXXXXXXX.
1275 		 */
1276 		if (!(regs->msr & MSR_IR))
1277 			pc = (unsigned long)phys_to_virt(pc);
1278 #endif
1279 
1280 		if (!__kernel_text_address(pc) ||
1281 		    probe_kernel_address((const void *)pc, instr)) {
1282 			pr_cont("XXXXXXXX ");
1283 		} else {
1284 			if (regs->nip == pc)
1285 				pr_cont("<%08x> ", instr);
1286 			else
1287 				pr_cont("%08x ", instr);
1288 		}
1289 
1290 		pc += sizeof(int);
1291 	}
1292 
1293 	pr_cont("\n");
1294 }
1295 
1296 void show_user_instructions(struct pt_regs *regs)
1297 {
1298 	unsigned long pc;
1299 	int n = NR_INSN_TO_PRINT;
1300 	struct seq_buf s;
1301 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1302 
1303 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1304 
1305 	/*
1306 	 * Make sure the NIP points at userspace, not kernel text/data or
1307 	 * elsewhere.
1308 	 */
1309 	if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1310 		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1311 			current->comm, current->pid);
1312 		return;
1313 	}
1314 
1315 	seq_buf_init(&s, buf, sizeof(buf));
1316 
1317 	while (n) {
1318 		int i;
1319 
1320 		seq_buf_clear(&s);
1321 
1322 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1323 			int instr;
1324 
1325 			if (probe_kernel_address((const void *)pc, instr)) {
1326 				seq_buf_printf(&s, "XXXXXXXX ");
1327 				continue;
1328 			}
1329 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1330 		}
1331 
1332 		if (!seq_buf_has_overflowed(&s))
1333 			pr_info("%s[%d]: code: %s\n", current->comm,
1334 				current->pid, s.buffer);
1335 	}
1336 }
1337 
1338 struct regbit {
1339 	unsigned long bit;
1340 	const char *name;
1341 };
1342 
1343 static struct regbit msr_bits[] = {
1344 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1345 	{MSR_SF,	"SF"},
1346 	{MSR_HV,	"HV"},
1347 #endif
1348 	{MSR_VEC,	"VEC"},
1349 	{MSR_VSX,	"VSX"},
1350 #ifdef CONFIG_BOOKE
1351 	{MSR_CE,	"CE"},
1352 #endif
1353 	{MSR_EE,	"EE"},
1354 	{MSR_PR,	"PR"},
1355 	{MSR_FP,	"FP"},
1356 	{MSR_ME,	"ME"},
1357 #ifdef CONFIG_BOOKE
1358 	{MSR_DE,	"DE"},
1359 #else
1360 	{MSR_SE,	"SE"},
1361 	{MSR_BE,	"BE"},
1362 #endif
1363 	{MSR_IR,	"IR"},
1364 	{MSR_DR,	"DR"},
1365 	{MSR_PMM,	"PMM"},
1366 #ifndef CONFIG_BOOKE
1367 	{MSR_RI,	"RI"},
1368 	{MSR_LE,	"LE"},
1369 #endif
1370 	{0,		NULL}
1371 };
1372 
1373 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1374 {
1375 	const char *s = "";
1376 
1377 	for (; bits->bit; ++bits)
1378 		if (val & bits->bit) {
1379 			pr_cont("%s%s", s, bits->name);
1380 			s = sep;
1381 		}
1382 }
1383 
1384 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1385 static struct regbit msr_tm_bits[] = {
1386 	{MSR_TS_T,	"T"},
1387 	{MSR_TS_S,	"S"},
1388 	{MSR_TM,	"E"},
1389 	{0,		NULL}
1390 };
1391 
1392 static void print_tm_bits(unsigned long val)
1393 {
1394 /*
1395  * This only prints something if at least one of the TM bit is set.
1396  * Inside the TM[], the output means:
1397  *   E: Enabled		(bit 32)
1398  *   S: Suspended	(bit 33)
1399  *   T: Transactional	(bit 34)
1400  */
1401 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1402 		pr_cont(",TM[");
1403 		print_bits(val, msr_tm_bits, "");
1404 		pr_cont("]");
1405 	}
1406 }
1407 #else
1408 static void print_tm_bits(unsigned long val) {}
1409 #endif
1410 
1411 static void print_msr_bits(unsigned long val)
1412 {
1413 	pr_cont("<");
1414 	print_bits(val, msr_bits, ",");
1415 	print_tm_bits(val);
1416 	pr_cont(">");
1417 }
1418 
1419 #ifdef CONFIG_PPC64
1420 #define REG		"%016lx"
1421 #define REGS_PER_LINE	4
1422 #define LAST_VOLATILE	13
1423 #else
1424 #define REG		"%08lx"
1425 #define REGS_PER_LINE	8
1426 #define LAST_VOLATILE	12
1427 #endif
1428 
1429 void show_regs(struct pt_regs * regs)
1430 {
1431 	int i, trap;
1432 
1433 	show_regs_print_info(KERN_DEFAULT);
1434 
1435 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1436 	       regs->nip, regs->link, regs->ctr);
1437 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1438 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1439 	printk("MSR:  "REG" ", regs->msr);
1440 	print_msr_bits(regs->msr);
1441 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1442 	trap = TRAP(regs);
1443 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1444 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1445 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1446 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1447 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1448 #else
1449 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1450 #endif
1451 #ifdef CONFIG_PPC64
1452 	pr_cont("IRQMASK: %lx ", regs->softe);
1453 #endif
1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1455 	if (MSR_TM_ACTIVE(regs->msr))
1456 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1457 #endif
1458 
1459 	for (i = 0;  i < 32;  i++) {
1460 		if ((i % REGS_PER_LINE) == 0)
1461 			pr_cont("\nGPR%02d: ", i);
1462 		pr_cont(REG " ", regs->gpr[i]);
1463 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1464 			break;
1465 	}
1466 	pr_cont("\n");
1467 #ifdef CONFIG_KALLSYMS
1468 	/*
1469 	 * Lookup NIP late so we have the best change of getting the
1470 	 * above info out without failing
1471 	 */
1472 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1473 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1474 #endif
1475 	show_stack(current, (unsigned long *) regs->gpr[1]);
1476 	if (!user_mode(regs))
1477 		show_instructions(regs);
1478 }
1479 
1480 void flush_thread(void)
1481 {
1482 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1483 	flush_ptrace_hw_breakpoint(current);
1484 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1485 	set_debug_reg_defaults(&current->thread);
1486 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1487 }
1488 
1489 #ifdef CONFIG_PPC_BOOK3S_64
1490 void arch_setup_new_exec(void)
1491 {
1492 	if (radix_enabled())
1493 		return;
1494 	hash__setup_new_exec();
1495 }
1496 #endif
1497 
1498 int set_thread_uses_vas(void)
1499 {
1500 #ifdef CONFIG_PPC_BOOK3S_64
1501 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1502 		return -EINVAL;
1503 
1504 	current->thread.used_vas = 1;
1505 
1506 	/*
1507 	 * Even a process that has no foreign real address mapping can use
1508 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1509 	 * to clear any pending COPY and prevent a covert channel.
1510 	 *
1511 	 * __switch_to() will issue CP_ABORT on future context switches.
1512 	 */
1513 	asm volatile(PPC_CP_ABORT);
1514 
1515 #endif /* CONFIG_PPC_BOOK3S_64 */
1516 	return 0;
1517 }
1518 
1519 #ifdef CONFIG_PPC64
1520 /**
1521  * Assign a TIDR (thread ID) for task @t and set it in the thread
1522  * structure. For now, we only support setting TIDR for 'current' task.
1523  *
1524  * Since the TID value is a truncated form of it PID, it is possible
1525  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1526  * that 2 threads share the same TID and are waiting, one of the following
1527  * cases will happen:
1528  *
1529  * 1. The correct thread is running, the wrong thread is not
1530  * In this situation, the correct thread is woken and proceeds to pass it's
1531  * condition check.
1532  *
1533  * 2. Neither threads are running
1534  * In this situation, neither thread will be woken. When scheduled, the waiting
1535  * threads will execute either a wait, which will return immediately, followed
1536  * by a condition check, which will pass for the correct thread and fail
1537  * for the wrong thread, or they will execute the condition check immediately.
1538  *
1539  * 3. The wrong thread is running, the correct thread is not
1540  * The wrong thread will be woken, but will fail it's condition check and
1541  * re-execute wait. The correct thread, when scheduled, will execute either
1542  * it's condition check (which will pass), or wait, which returns immediately
1543  * when called the first time after the thread is scheduled, followed by it's
1544  * condition check (which will pass).
1545  *
1546  * 4. Both threads are running
1547  * Both threads will be woken. The wrong thread will fail it's condition check
1548  * and execute another wait, while the correct thread will pass it's condition
1549  * check.
1550  *
1551  * @t: the task to set the thread ID for
1552  */
1553 int set_thread_tidr(struct task_struct *t)
1554 {
1555 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1556 		return -EINVAL;
1557 
1558 	if (t != current)
1559 		return -EINVAL;
1560 
1561 	if (t->thread.tidr)
1562 		return 0;
1563 
1564 	t->thread.tidr = (u16)task_pid_nr(t);
1565 	mtspr(SPRN_TIDR, t->thread.tidr);
1566 
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(set_thread_tidr);
1570 
1571 #endif /* CONFIG_PPC64 */
1572 
1573 void
1574 release_thread(struct task_struct *t)
1575 {
1576 }
1577 
1578 /*
1579  * this gets called so that we can store coprocessor state into memory and
1580  * copy the current task into the new thread.
1581  */
1582 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1583 {
1584 	flush_all_to_thread(src);
1585 	/*
1586 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1587 	 * flush but it removes the checkpointed state from the current CPU and
1588 	 * transitions the CPU out of TM mode.  Hence we need to call
1589 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1590 	 * checkpointed state back and the TM mode.
1591 	 *
1592 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1593 	 * dst is only important for __switch_to()
1594 	 */
1595 	__switch_to_tm(src, src);
1596 
1597 	*dst = *src;
1598 
1599 	clear_task_ebb(dst);
1600 
1601 	return 0;
1602 }
1603 
1604 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1605 {
1606 #ifdef CONFIG_PPC_BOOK3S_64
1607 	unsigned long sp_vsid;
1608 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1609 
1610 	if (radix_enabled())
1611 		return;
1612 
1613 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1614 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1615 			<< SLB_VSID_SHIFT_1T;
1616 	else
1617 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1618 			<< SLB_VSID_SHIFT;
1619 	sp_vsid |= SLB_VSID_KERNEL | llp;
1620 	p->thread.ksp_vsid = sp_vsid;
1621 #endif
1622 }
1623 
1624 /*
1625  * Copy a thread..
1626  */
1627 
1628 /*
1629  * Copy architecture-specific thread state
1630  */
1631 int copy_thread(unsigned long clone_flags, unsigned long usp,
1632 		unsigned long kthread_arg, struct task_struct *p)
1633 {
1634 	struct pt_regs *childregs, *kregs;
1635 	extern void ret_from_fork(void);
1636 	extern void ret_from_kernel_thread(void);
1637 	void (*f)(void);
1638 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1639 	struct thread_info *ti = task_thread_info(p);
1640 
1641 	klp_init_thread_info(p);
1642 
1643 	/* Copy registers */
1644 	sp -= sizeof(struct pt_regs);
1645 	childregs = (struct pt_regs *) sp;
1646 	if (unlikely(p->flags & PF_KTHREAD)) {
1647 		/* kernel thread */
1648 		memset(childregs, 0, sizeof(struct pt_regs));
1649 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1650 		/* function */
1651 		if (usp)
1652 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1653 #ifdef CONFIG_PPC64
1654 		clear_tsk_thread_flag(p, TIF_32BIT);
1655 		childregs->softe = IRQS_ENABLED;
1656 #endif
1657 		childregs->gpr[15] = kthread_arg;
1658 		p->thread.regs = NULL;	/* no user register state */
1659 		ti->flags |= _TIF_RESTOREALL;
1660 		f = ret_from_kernel_thread;
1661 	} else {
1662 		/* user thread */
1663 		struct pt_regs *regs = current_pt_regs();
1664 		CHECK_FULL_REGS(regs);
1665 		*childregs = *regs;
1666 		if (usp)
1667 			childregs->gpr[1] = usp;
1668 		p->thread.regs = childregs;
1669 		childregs->gpr[3] = 0;  /* Result from fork() */
1670 		if (clone_flags & CLONE_SETTLS) {
1671 #ifdef CONFIG_PPC64
1672 			if (!is_32bit_task())
1673 				childregs->gpr[13] = childregs->gpr[6];
1674 			else
1675 #endif
1676 				childregs->gpr[2] = childregs->gpr[6];
1677 		}
1678 
1679 		f = ret_from_fork;
1680 	}
1681 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1682 	sp -= STACK_FRAME_OVERHEAD;
1683 
1684 	/*
1685 	 * The way this works is that at some point in the future
1686 	 * some task will call _switch to switch to the new task.
1687 	 * That will pop off the stack frame created below and start
1688 	 * the new task running at ret_from_fork.  The new task will
1689 	 * do some house keeping and then return from the fork or clone
1690 	 * system call, using the stack frame created above.
1691 	 */
1692 	((unsigned long *)sp)[0] = 0;
1693 	sp -= sizeof(struct pt_regs);
1694 	kregs = (struct pt_regs *) sp;
1695 	sp -= STACK_FRAME_OVERHEAD;
1696 	p->thread.ksp = sp;
1697 #ifdef CONFIG_PPC32
1698 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1699 #endif
1700 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1701 	p->thread.ptrace_bps[0] = NULL;
1702 #endif
1703 
1704 	p->thread.fp_save_area = NULL;
1705 #ifdef CONFIG_ALTIVEC
1706 	p->thread.vr_save_area = NULL;
1707 #endif
1708 
1709 	setup_ksp_vsid(p, sp);
1710 
1711 #ifdef CONFIG_PPC64
1712 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1713 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1714 		p->thread.dscr = mfspr(SPRN_DSCR);
1715 	}
1716 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1717 		childregs->ppr = DEFAULT_PPR;
1718 
1719 	p->thread.tidr = 0;
1720 #endif
1721 	kregs->nip = ppc_function_entry(f);
1722 	return 0;
1723 }
1724 
1725 void preload_new_slb_context(unsigned long start, unsigned long sp);
1726 
1727 /*
1728  * Set up a thread for executing a new program
1729  */
1730 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1731 {
1732 #ifdef CONFIG_PPC64
1733 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1734 
1735 #ifdef CONFIG_PPC_BOOK3S_64
1736 	if (!radix_enabled())
1737 		preload_new_slb_context(start, sp);
1738 #endif
1739 #endif
1740 
1741 	/*
1742 	 * If we exec out of a kernel thread then thread.regs will not be
1743 	 * set.  Do it now.
1744 	 */
1745 	if (!current->thread.regs) {
1746 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1747 		current->thread.regs = regs - 1;
1748 	}
1749 
1750 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1751 	/*
1752 	 * Clear any transactional state, we're exec()ing. The cause is
1753 	 * not important as there will never be a recheckpoint so it's not
1754 	 * user visible.
1755 	 */
1756 	if (MSR_TM_SUSPENDED(mfmsr()))
1757 		tm_reclaim_current(0);
1758 #endif
1759 
1760 	memset(regs->gpr, 0, sizeof(regs->gpr));
1761 	regs->ctr = 0;
1762 	regs->link = 0;
1763 	regs->xer = 0;
1764 	regs->ccr = 0;
1765 	regs->gpr[1] = sp;
1766 
1767 	/*
1768 	 * We have just cleared all the nonvolatile GPRs, so make
1769 	 * FULL_REGS(regs) return true.  This is necessary to allow
1770 	 * ptrace to examine the thread immediately after exec.
1771 	 */
1772 	regs->trap &= ~1UL;
1773 
1774 #ifdef CONFIG_PPC32
1775 	regs->mq = 0;
1776 	regs->nip = start;
1777 	regs->msr = MSR_USER;
1778 #else
1779 	if (!is_32bit_task()) {
1780 		unsigned long entry;
1781 
1782 		if (is_elf2_task()) {
1783 			/* Look ma, no function descriptors! */
1784 			entry = start;
1785 
1786 			/*
1787 			 * Ulrich says:
1788 			 *   The latest iteration of the ABI requires that when
1789 			 *   calling a function (at its global entry point),
1790 			 *   the caller must ensure r12 holds the entry point
1791 			 *   address (so that the function can quickly
1792 			 *   establish addressability).
1793 			 */
1794 			regs->gpr[12] = start;
1795 			/* Make sure that's restored on entry to userspace. */
1796 			set_thread_flag(TIF_RESTOREALL);
1797 		} else {
1798 			unsigned long toc;
1799 
1800 			/* start is a relocated pointer to the function
1801 			 * descriptor for the elf _start routine.  The first
1802 			 * entry in the function descriptor is the entry
1803 			 * address of _start and the second entry is the TOC
1804 			 * value we need to use.
1805 			 */
1806 			__get_user(entry, (unsigned long __user *)start);
1807 			__get_user(toc, (unsigned long __user *)start+1);
1808 
1809 			/* Check whether the e_entry function descriptor entries
1810 			 * need to be relocated before we can use them.
1811 			 */
1812 			if (load_addr != 0) {
1813 				entry += load_addr;
1814 				toc   += load_addr;
1815 			}
1816 			regs->gpr[2] = toc;
1817 		}
1818 		regs->nip = entry;
1819 		regs->msr = MSR_USER64;
1820 	} else {
1821 		regs->nip = start;
1822 		regs->gpr[2] = 0;
1823 		regs->msr = MSR_USER32;
1824 	}
1825 #endif
1826 #ifdef CONFIG_VSX
1827 	current->thread.used_vsr = 0;
1828 #endif
1829 	current->thread.load_slb = 0;
1830 	current->thread.load_fp = 0;
1831 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1832 	current->thread.fp_save_area = NULL;
1833 #ifdef CONFIG_ALTIVEC
1834 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1835 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1836 	current->thread.vr_save_area = NULL;
1837 	current->thread.vrsave = 0;
1838 	current->thread.used_vr = 0;
1839 	current->thread.load_vec = 0;
1840 #endif /* CONFIG_ALTIVEC */
1841 #ifdef CONFIG_SPE
1842 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1843 	current->thread.acc = 0;
1844 	current->thread.spefscr = 0;
1845 	current->thread.used_spe = 0;
1846 #endif /* CONFIG_SPE */
1847 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1848 	current->thread.tm_tfhar = 0;
1849 	current->thread.tm_texasr = 0;
1850 	current->thread.tm_tfiar = 0;
1851 	current->thread.load_tm = 0;
1852 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1853 
1854 	thread_pkey_regs_init(&current->thread);
1855 }
1856 EXPORT_SYMBOL(start_thread);
1857 
1858 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1859 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1860 
1861 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1862 {
1863 	struct pt_regs *regs = tsk->thread.regs;
1864 
1865 	/* This is a bit hairy.  If we are an SPE enabled  processor
1866 	 * (have embedded fp) we store the IEEE exception enable flags in
1867 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1868 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1869 	if (val & PR_FP_EXC_SW_ENABLE) {
1870 #ifdef CONFIG_SPE
1871 		if (cpu_has_feature(CPU_FTR_SPE)) {
1872 			/*
1873 			 * When the sticky exception bits are set
1874 			 * directly by userspace, it must call prctl
1875 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1876 			 * in the existing prctl settings) or
1877 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1878 			 * the bits being set).  <fenv.h> functions
1879 			 * saving and restoring the whole
1880 			 * floating-point environment need to do so
1881 			 * anyway to restore the prctl settings from
1882 			 * the saved environment.
1883 			 */
1884 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1885 			tsk->thread.fpexc_mode = val &
1886 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1887 			return 0;
1888 		} else {
1889 			return -EINVAL;
1890 		}
1891 #else
1892 		return -EINVAL;
1893 #endif
1894 	}
1895 
1896 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1897 	 * __pack_fe01 use do not overlap with bits used for
1898 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1899 	 * on CONFIG_SPE implementations are reserved so writing to
1900 	 * them does not change anything */
1901 	if (val > PR_FP_EXC_PRECISE)
1902 		return -EINVAL;
1903 	tsk->thread.fpexc_mode = __pack_fe01(val);
1904 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1905 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1906 			| tsk->thread.fpexc_mode;
1907 	return 0;
1908 }
1909 
1910 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1911 {
1912 	unsigned int val;
1913 
1914 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1915 #ifdef CONFIG_SPE
1916 		if (cpu_has_feature(CPU_FTR_SPE)) {
1917 			/*
1918 			 * When the sticky exception bits are set
1919 			 * directly by userspace, it must call prctl
1920 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1921 			 * in the existing prctl settings) or
1922 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1923 			 * the bits being set).  <fenv.h> functions
1924 			 * saving and restoring the whole
1925 			 * floating-point environment need to do so
1926 			 * anyway to restore the prctl settings from
1927 			 * the saved environment.
1928 			 */
1929 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1930 			val = tsk->thread.fpexc_mode;
1931 		} else
1932 			return -EINVAL;
1933 #else
1934 		return -EINVAL;
1935 #endif
1936 	else
1937 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1938 	return put_user(val, (unsigned int __user *) adr);
1939 }
1940 
1941 int set_endian(struct task_struct *tsk, unsigned int val)
1942 {
1943 	struct pt_regs *regs = tsk->thread.regs;
1944 
1945 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1946 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1947 		return -EINVAL;
1948 
1949 	if (regs == NULL)
1950 		return -EINVAL;
1951 
1952 	if (val == PR_ENDIAN_BIG)
1953 		regs->msr &= ~MSR_LE;
1954 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1955 		regs->msr |= MSR_LE;
1956 	else
1957 		return -EINVAL;
1958 
1959 	return 0;
1960 }
1961 
1962 int get_endian(struct task_struct *tsk, unsigned long adr)
1963 {
1964 	struct pt_regs *regs = tsk->thread.regs;
1965 	unsigned int val;
1966 
1967 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1968 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1969 		return -EINVAL;
1970 
1971 	if (regs == NULL)
1972 		return -EINVAL;
1973 
1974 	if (regs->msr & MSR_LE) {
1975 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1976 			val = PR_ENDIAN_LITTLE;
1977 		else
1978 			val = PR_ENDIAN_PPC_LITTLE;
1979 	} else
1980 		val = PR_ENDIAN_BIG;
1981 
1982 	return put_user(val, (unsigned int __user *)adr);
1983 }
1984 
1985 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1986 {
1987 	tsk->thread.align_ctl = val;
1988 	return 0;
1989 }
1990 
1991 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1992 {
1993 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1994 }
1995 
1996 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1997 				  unsigned long nbytes)
1998 {
1999 	unsigned long stack_page;
2000 	unsigned long cpu = task_cpu(p);
2001 
2002 	stack_page = (unsigned long)hardirq_ctx[cpu];
2003 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2004 		return 1;
2005 
2006 	stack_page = (unsigned long)softirq_ctx[cpu];
2007 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2008 		return 1;
2009 
2010 	return 0;
2011 }
2012 
2013 int validate_sp(unsigned long sp, struct task_struct *p,
2014 		       unsigned long nbytes)
2015 {
2016 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2017 
2018 	if (sp < THREAD_SIZE)
2019 		return 0;
2020 
2021 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2022 		return 1;
2023 
2024 	return valid_irq_stack(sp, p, nbytes);
2025 }
2026 
2027 EXPORT_SYMBOL(validate_sp);
2028 
2029 static unsigned long __get_wchan(struct task_struct *p)
2030 {
2031 	unsigned long ip, sp;
2032 	int count = 0;
2033 
2034 	if (!p || p == current || p->state == TASK_RUNNING)
2035 		return 0;
2036 
2037 	sp = p->thread.ksp;
2038 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2039 		return 0;
2040 
2041 	do {
2042 		sp = *(unsigned long *)sp;
2043 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2044 		    p->state == TASK_RUNNING)
2045 			return 0;
2046 		if (count > 0) {
2047 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2048 			if (!in_sched_functions(ip))
2049 				return ip;
2050 		}
2051 	} while (count++ < 16);
2052 	return 0;
2053 }
2054 
2055 unsigned long get_wchan(struct task_struct *p)
2056 {
2057 	unsigned long ret;
2058 
2059 	if (!try_get_task_stack(p))
2060 		return 0;
2061 
2062 	ret = __get_wchan(p);
2063 
2064 	put_task_stack(p);
2065 
2066 	return ret;
2067 }
2068 
2069 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2070 
2071 void show_stack(struct task_struct *tsk, unsigned long *stack)
2072 {
2073 	unsigned long sp, ip, lr, newsp;
2074 	int count = 0;
2075 	int firstframe = 1;
2076 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2077 	struct ftrace_ret_stack *ret_stack;
2078 	extern void return_to_handler(void);
2079 	unsigned long rth = (unsigned long)return_to_handler;
2080 	int curr_frame = 0;
2081 #endif
2082 
2083 	if (tsk == NULL)
2084 		tsk = current;
2085 
2086 	if (!try_get_task_stack(tsk))
2087 		return;
2088 
2089 	sp = (unsigned long) stack;
2090 	if (sp == 0) {
2091 		if (tsk == current)
2092 			sp = current_stack_pointer();
2093 		else
2094 			sp = tsk->thread.ksp;
2095 	}
2096 
2097 	lr = 0;
2098 	printk("Call Trace:\n");
2099 	do {
2100 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2101 			break;
2102 
2103 		stack = (unsigned long *) sp;
2104 		newsp = stack[0];
2105 		ip = stack[STACK_FRAME_LR_SAVE];
2106 		if (!firstframe || ip != lr) {
2107 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2108 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2109 			if ((ip == rth) && curr_frame >= 0) {
2110 				ret_stack = ftrace_graph_get_ret_stack(current,
2111 								  curr_frame++);
2112 				if (ret_stack)
2113 					pr_cont(" (%pS)",
2114 						(void *)ret_stack->ret);
2115 				else
2116 					curr_frame = -1;
2117 			}
2118 #endif
2119 			if (firstframe)
2120 				pr_cont(" (unreliable)");
2121 			pr_cont("\n");
2122 		}
2123 		firstframe = 0;
2124 
2125 		/*
2126 		 * See if this is an exception frame.
2127 		 * We look for the "regshere" marker in the current frame.
2128 		 */
2129 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2130 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2131 			struct pt_regs *regs = (struct pt_regs *)
2132 				(sp + STACK_FRAME_OVERHEAD);
2133 			lr = regs->link;
2134 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2135 			       regs->trap, (void *)regs->nip, (void *)lr);
2136 			firstframe = 1;
2137 		}
2138 
2139 		sp = newsp;
2140 	} while (count++ < kstack_depth_to_print);
2141 
2142 	put_task_stack(tsk);
2143 }
2144 
2145 #ifdef CONFIG_PPC64
2146 /* Called with hard IRQs off */
2147 void notrace __ppc64_runlatch_on(void)
2148 {
2149 	struct thread_info *ti = current_thread_info();
2150 
2151 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2152 		/*
2153 		 * Least significant bit (RUN) is the only writable bit of
2154 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2155 		 * earliest ISA where this is the case, but it's convenient.
2156 		 */
2157 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2158 	} else {
2159 		unsigned long ctrl;
2160 
2161 		/*
2162 		 * Some architectures (e.g., Cell) have writable fields other
2163 		 * than RUN, so do the read-modify-write.
2164 		 */
2165 		ctrl = mfspr(SPRN_CTRLF);
2166 		ctrl |= CTRL_RUNLATCH;
2167 		mtspr(SPRN_CTRLT, ctrl);
2168 	}
2169 
2170 	ti->local_flags |= _TLF_RUNLATCH;
2171 }
2172 
2173 /* Called with hard IRQs off */
2174 void notrace __ppc64_runlatch_off(void)
2175 {
2176 	struct thread_info *ti = current_thread_info();
2177 
2178 	ti->local_flags &= ~_TLF_RUNLATCH;
2179 
2180 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2181 		mtspr(SPRN_CTRLT, 0);
2182 	} else {
2183 		unsigned long ctrl;
2184 
2185 		ctrl = mfspr(SPRN_CTRLF);
2186 		ctrl &= ~CTRL_RUNLATCH;
2187 		mtspr(SPRN_CTRLT, ctrl);
2188 	}
2189 }
2190 #endif /* CONFIG_PPC64 */
2191 
2192 unsigned long arch_align_stack(unsigned long sp)
2193 {
2194 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2195 		sp -= get_random_int() & ~PAGE_MASK;
2196 	return sp & ~0xf;
2197 }
2198 
2199 static inline unsigned long brk_rnd(void)
2200 {
2201         unsigned long rnd = 0;
2202 
2203 	/* 8MB for 32bit, 1GB for 64bit */
2204 	if (is_32bit_task())
2205 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2206 	else
2207 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2208 
2209 	return rnd << PAGE_SHIFT;
2210 }
2211 
2212 unsigned long arch_randomize_brk(struct mm_struct *mm)
2213 {
2214 	unsigned long base = mm->brk;
2215 	unsigned long ret;
2216 
2217 #ifdef CONFIG_PPC_BOOK3S_64
2218 	/*
2219 	 * If we are using 1TB segments and we are allowed to randomise
2220 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2221 	 * segment. Otherwise the heap will be in the bottom 1TB
2222 	 * which always uses 256MB segments and this may result in a
2223 	 * performance penalty. We don't need to worry about radix. For
2224 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2225 	 */
2226 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2227 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2228 #endif
2229 
2230 	ret = PAGE_ALIGN(base + brk_rnd());
2231 
2232 	if (ret < mm->brk)
2233 		return mm->brk;
2234 
2235 	return ret;
2236 }
2237 
2238