1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/mqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/utsname.h> 35 #include <linux/ftrace.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/personality.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/uaccess.h> 41 #include <linux/elf-randomize.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #endif 58 #include <asm/code-patching.h> 59 #include <asm/exec.h> 60 #include <asm/livepatch.h> 61 62 #include <linux/kprobes.h> 63 #include <linux/kdebug.h> 64 65 /* Transactional Memory debug */ 66 #ifdef TM_DEBUG_SW 67 #define TM_DEBUG(x...) printk(KERN_INFO x) 68 #else 69 #define TM_DEBUG(x...) do { } while(0) 70 #endif 71 72 extern unsigned long _get_SP(void); 73 74 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 75 static void check_if_tm_restore_required(struct task_struct *tsk) 76 { 77 /* 78 * If we are saving the current thread's registers, and the 79 * thread is in a transactional state, set the TIF_RESTORE_TM 80 * bit so that we know to restore the registers before 81 * returning to userspace. 82 */ 83 if (tsk == current && tsk->thread.regs && 84 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 85 !test_thread_flag(TIF_RESTORE_TM)) { 86 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 87 set_thread_flag(TIF_RESTORE_TM); 88 } 89 } 90 #else 91 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 92 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 93 94 bool strict_msr_control; 95 EXPORT_SYMBOL(strict_msr_control); 96 97 static int __init enable_strict_msr_control(char *str) 98 { 99 strict_msr_control = true; 100 pr_info("Enabling strict facility control\n"); 101 102 return 0; 103 } 104 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 105 106 void msr_check_and_set(unsigned long bits) 107 { 108 unsigned long oldmsr = mfmsr(); 109 unsigned long newmsr; 110 111 newmsr = oldmsr | bits; 112 113 #ifdef CONFIG_VSX 114 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 115 newmsr |= MSR_VSX; 116 #endif 117 118 if (oldmsr != newmsr) 119 mtmsr_isync(newmsr); 120 } 121 122 void __msr_check_and_clear(unsigned long bits) 123 { 124 unsigned long oldmsr = mfmsr(); 125 unsigned long newmsr; 126 127 newmsr = oldmsr & ~bits; 128 129 #ifdef CONFIG_VSX 130 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 131 newmsr &= ~MSR_VSX; 132 #endif 133 134 if (oldmsr != newmsr) 135 mtmsr_isync(newmsr); 136 } 137 EXPORT_SYMBOL(__msr_check_and_clear); 138 139 #ifdef CONFIG_PPC_FPU 140 void __giveup_fpu(struct task_struct *tsk) 141 { 142 save_fpu(tsk); 143 tsk->thread.regs->msr &= ~MSR_FP; 144 #ifdef CONFIG_VSX 145 if (cpu_has_feature(CPU_FTR_VSX)) 146 tsk->thread.regs->msr &= ~MSR_VSX; 147 #endif 148 } 149 150 void giveup_fpu(struct task_struct *tsk) 151 { 152 check_if_tm_restore_required(tsk); 153 154 msr_check_and_set(MSR_FP); 155 __giveup_fpu(tsk); 156 msr_check_and_clear(MSR_FP); 157 } 158 EXPORT_SYMBOL(giveup_fpu); 159 160 /* 161 * Make sure the floating-point register state in the 162 * the thread_struct is up to date for task tsk. 163 */ 164 void flush_fp_to_thread(struct task_struct *tsk) 165 { 166 if (tsk->thread.regs) { 167 /* 168 * We need to disable preemption here because if we didn't, 169 * another process could get scheduled after the regs->msr 170 * test but before we have finished saving the FP registers 171 * to the thread_struct. That process could take over the 172 * FPU, and then when we get scheduled again we would store 173 * bogus values for the remaining FP registers. 174 */ 175 preempt_disable(); 176 if (tsk->thread.regs->msr & MSR_FP) { 177 /* 178 * This should only ever be called for current or 179 * for a stopped child process. Since we save away 180 * the FP register state on context switch, 181 * there is something wrong if a stopped child appears 182 * to still have its FP state in the CPU registers. 183 */ 184 BUG_ON(tsk != current); 185 giveup_fpu(tsk); 186 } 187 preempt_enable(); 188 } 189 } 190 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 191 192 void enable_kernel_fp(void) 193 { 194 WARN_ON(preemptible()); 195 196 msr_check_and_set(MSR_FP); 197 198 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 199 check_if_tm_restore_required(current); 200 __giveup_fpu(current); 201 } 202 } 203 EXPORT_SYMBOL(enable_kernel_fp); 204 205 static int restore_fp(struct task_struct *tsk) { 206 if (tsk->thread.load_fp) { 207 load_fp_state(¤t->thread.fp_state); 208 current->thread.load_fp++; 209 return 1; 210 } 211 return 0; 212 } 213 #else 214 static int restore_fp(struct task_struct *tsk) { return 0; } 215 #endif /* CONFIG_PPC_FPU */ 216 217 #ifdef CONFIG_ALTIVEC 218 #define loadvec(thr) ((thr).load_vec) 219 220 static void __giveup_altivec(struct task_struct *tsk) 221 { 222 save_altivec(tsk); 223 tsk->thread.regs->msr &= ~MSR_VEC; 224 #ifdef CONFIG_VSX 225 if (cpu_has_feature(CPU_FTR_VSX)) 226 tsk->thread.regs->msr &= ~MSR_VSX; 227 #endif 228 } 229 230 void giveup_altivec(struct task_struct *tsk) 231 { 232 check_if_tm_restore_required(tsk); 233 234 msr_check_and_set(MSR_VEC); 235 __giveup_altivec(tsk); 236 msr_check_and_clear(MSR_VEC); 237 } 238 EXPORT_SYMBOL(giveup_altivec); 239 240 void enable_kernel_altivec(void) 241 { 242 WARN_ON(preemptible()); 243 244 msr_check_and_set(MSR_VEC); 245 246 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 247 check_if_tm_restore_required(current); 248 __giveup_altivec(current); 249 } 250 } 251 EXPORT_SYMBOL(enable_kernel_altivec); 252 253 /* 254 * Make sure the VMX/Altivec register state in the 255 * the thread_struct is up to date for task tsk. 256 */ 257 void flush_altivec_to_thread(struct task_struct *tsk) 258 { 259 if (tsk->thread.regs) { 260 preempt_disable(); 261 if (tsk->thread.regs->msr & MSR_VEC) { 262 BUG_ON(tsk != current); 263 giveup_altivec(tsk); 264 } 265 preempt_enable(); 266 } 267 } 268 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 269 270 static int restore_altivec(struct task_struct *tsk) 271 { 272 if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) { 273 load_vr_state(&tsk->thread.vr_state); 274 tsk->thread.used_vr = 1; 275 tsk->thread.load_vec++; 276 277 return 1; 278 } 279 return 0; 280 } 281 #else 282 #define loadvec(thr) 0 283 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 284 #endif /* CONFIG_ALTIVEC */ 285 286 #ifdef CONFIG_VSX 287 static void __giveup_vsx(struct task_struct *tsk) 288 { 289 if (tsk->thread.regs->msr & MSR_FP) 290 __giveup_fpu(tsk); 291 if (tsk->thread.regs->msr & MSR_VEC) 292 __giveup_altivec(tsk); 293 tsk->thread.regs->msr &= ~MSR_VSX; 294 } 295 296 static void giveup_vsx(struct task_struct *tsk) 297 { 298 check_if_tm_restore_required(tsk); 299 300 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 301 __giveup_vsx(tsk); 302 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 303 } 304 305 static void save_vsx(struct task_struct *tsk) 306 { 307 if (tsk->thread.regs->msr & MSR_FP) 308 save_fpu(tsk); 309 if (tsk->thread.regs->msr & MSR_VEC) 310 save_altivec(tsk); 311 } 312 313 void enable_kernel_vsx(void) 314 { 315 WARN_ON(preemptible()); 316 317 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 318 319 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { 320 check_if_tm_restore_required(current); 321 if (current->thread.regs->msr & MSR_FP) 322 __giveup_fpu(current); 323 if (current->thread.regs->msr & MSR_VEC) 324 __giveup_altivec(current); 325 __giveup_vsx(current); 326 } 327 } 328 EXPORT_SYMBOL(enable_kernel_vsx); 329 330 void flush_vsx_to_thread(struct task_struct *tsk) 331 { 332 if (tsk->thread.regs) { 333 preempt_disable(); 334 if (tsk->thread.regs->msr & MSR_VSX) { 335 BUG_ON(tsk != current); 336 giveup_vsx(tsk); 337 } 338 preempt_enable(); 339 } 340 } 341 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 342 343 static int restore_vsx(struct task_struct *tsk) 344 { 345 if (cpu_has_feature(CPU_FTR_VSX)) { 346 tsk->thread.used_vsr = 1; 347 return 1; 348 } 349 350 return 0; 351 } 352 #else 353 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 354 static inline void save_vsx(struct task_struct *tsk) { } 355 #endif /* CONFIG_VSX */ 356 357 #ifdef CONFIG_SPE 358 void giveup_spe(struct task_struct *tsk) 359 { 360 check_if_tm_restore_required(tsk); 361 362 msr_check_and_set(MSR_SPE); 363 __giveup_spe(tsk); 364 msr_check_and_clear(MSR_SPE); 365 } 366 EXPORT_SYMBOL(giveup_spe); 367 368 void enable_kernel_spe(void) 369 { 370 WARN_ON(preemptible()); 371 372 msr_check_and_set(MSR_SPE); 373 374 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 375 check_if_tm_restore_required(current); 376 __giveup_spe(current); 377 } 378 } 379 EXPORT_SYMBOL(enable_kernel_spe); 380 381 void flush_spe_to_thread(struct task_struct *tsk) 382 { 383 if (tsk->thread.regs) { 384 preempt_disable(); 385 if (tsk->thread.regs->msr & MSR_SPE) { 386 BUG_ON(tsk != current); 387 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 388 giveup_spe(tsk); 389 } 390 preempt_enable(); 391 } 392 } 393 #endif /* CONFIG_SPE */ 394 395 static unsigned long msr_all_available; 396 397 static int __init init_msr_all_available(void) 398 { 399 #ifdef CONFIG_PPC_FPU 400 msr_all_available |= MSR_FP; 401 #endif 402 #ifdef CONFIG_ALTIVEC 403 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 404 msr_all_available |= MSR_VEC; 405 #endif 406 #ifdef CONFIG_VSX 407 if (cpu_has_feature(CPU_FTR_VSX)) 408 msr_all_available |= MSR_VSX; 409 #endif 410 #ifdef CONFIG_SPE 411 if (cpu_has_feature(CPU_FTR_SPE)) 412 msr_all_available |= MSR_SPE; 413 #endif 414 415 return 0; 416 } 417 early_initcall(init_msr_all_available); 418 419 void giveup_all(struct task_struct *tsk) 420 { 421 unsigned long usermsr; 422 423 if (!tsk->thread.regs) 424 return; 425 426 usermsr = tsk->thread.regs->msr; 427 428 if ((usermsr & msr_all_available) == 0) 429 return; 430 431 msr_check_and_set(msr_all_available); 432 433 #ifdef CONFIG_PPC_FPU 434 if (usermsr & MSR_FP) 435 __giveup_fpu(tsk); 436 #endif 437 #ifdef CONFIG_ALTIVEC 438 if (usermsr & MSR_VEC) 439 __giveup_altivec(tsk); 440 #endif 441 #ifdef CONFIG_VSX 442 if (usermsr & MSR_VSX) 443 __giveup_vsx(tsk); 444 #endif 445 #ifdef CONFIG_SPE 446 if (usermsr & MSR_SPE) 447 __giveup_spe(tsk); 448 #endif 449 450 msr_check_and_clear(msr_all_available); 451 } 452 EXPORT_SYMBOL(giveup_all); 453 454 void restore_math(struct pt_regs *regs) 455 { 456 unsigned long msr; 457 458 if (!current->thread.load_fp && !loadvec(current->thread)) 459 return; 460 461 msr = regs->msr; 462 msr_check_and_set(msr_all_available); 463 464 /* 465 * Only reload if the bit is not set in the user MSR, the bit BEING set 466 * indicates that the registers are hot 467 */ 468 if ((!(msr & MSR_FP)) && restore_fp(current)) 469 msr |= MSR_FP | current->thread.fpexc_mode; 470 471 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 472 msr |= MSR_VEC; 473 474 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 475 restore_vsx(current)) { 476 msr |= MSR_VSX; 477 } 478 479 msr_check_and_clear(msr_all_available); 480 481 regs->msr = msr; 482 } 483 484 void save_all(struct task_struct *tsk) 485 { 486 unsigned long usermsr; 487 488 if (!tsk->thread.regs) 489 return; 490 491 usermsr = tsk->thread.regs->msr; 492 493 if ((usermsr & msr_all_available) == 0) 494 return; 495 496 msr_check_and_set(msr_all_available); 497 498 /* 499 * Saving the way the register space is in hardware, save_vsx boils 500 * down to a save_fpu() and save_altivec() 501 */ 502 if (usermsr & MSR_VSX) { 503 save_vsx(tsk); 504 } else { 505 if (usermsr & MSR_FP) 506 save_fpu(tsk); 507 508 if (usermsr & MSR_VEC) 509 save_altivec(tsk); 510 } 511 512 if (usermsr & MSR_SPE) 513 __giveup_spe(tsk); 514 515 msr_check_and_clear(msr_all_available); 516 } 517 518 void flush_all_to_thread(struct task_struct *tsk) 519 { 520 if (tsk->thread.regs) { 521 preempt_disable(); 522 BUG_ON(tsk != current); 523 save_all(tsk); 524 525 #ifdef CONFIG_SPE 526 if (tsk->thread.regs->msr & MSR_SPE) 527 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 528 #endif 529 530 preempt_enable(); 531 } 532 } 533 EXPORT_SYMBOL(flush_all_to_thread); 534 535 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 536 void do_send_trap(struct pt_regs *regs, unsigned long address, 537 unsigned long error_code, int signal_code, int breakpt) 538 { 539 siginfo_t info; 540 541 current->thread.trap_nr = signal_code; 542 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 543 11, SIGSEGV) == NOTIFY_STOP) 544 return; 545 546 /* Deliver the signal to userspace */ 547 info.si_signo = SIGTRAP; 548 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 549 info.si_code = signal_code; 550 info.si_addr = (void __user *)address; 551 force_sig_info(SIGTRAP, &info, current); 552 } 553 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 554 void do_break (struct pt_regs *regs, unsigned long address, 555 unsigned long error_code) 556 { 557 siginfo_t info; 558 559 current->thread.trap_nr = TRAP_HWBKPT; 560 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 561 11, SIGSEGV) == NOTIFY_STOP) 562 return; 563 564 if (debugger_break_match(regs)) 565 return; 566 567 /* Clear the breakpoint */ 568 hw_breakpoint_disable(); 569 570 /* Deliver the signal to userspace */ 571 info.si_signo = SIGTRAP; 572 info.si_errno = 0; 573 info.si_code = TRAP_HWBKPT; 574 info.si_addr = (void __user *)address; 575 force_sig_info(SIGTRAP, &info, current); 576 } 577 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 578 579 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 580 581 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 582 /* 583 * Set the debug registers back to their default "safe" values. 584 */ 585 static void set_debug_reg_defaults(struct thread_struct *thread) 586 { 587 thread->debug.iac1 = thread->debug.iac2 = 0; 588 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 589 thread->debug.iac3 = thread->debug.iac4 = 0; 590 #endif 591 thread->debug.dac1 = thread->debug.dac2 = 0; 592 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 593 thread->debug.dvc1 = thread->debug.dvc2 = 0; 594 #endif 595 thread->debug.dbcr0 = 0; 596 #ifdef CONFIG_BOOKE 597 /* 598 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 599 */ 600 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 601 DBCR1_IAC3US | DBCR1_IAC4US; 602 /* 603 * Force Data Address Compare User/Supervisor bits to be User-only 604 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 605 */ 606 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 607 #else 608 thread->debug.dbcr1 = 0; 609 #endif 610 } 611 612 static void prime_debug_regs(struct debug_reg *debug) 613 { 614 /* 615 * We could have inherited MSR_DE from userspace, since 616 * it doesn't get cleared on exception entry. Make sure 617 * MSR_DE is clear before we enable any debug events. 618 */ 619 mtmsr(mfmsr() & ~MSR_DE); 620 621 mtspr(SPRN_IAC1, debug->iac1); 622 mtspr(SPRN_IAC2, debug->iac2); 623 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 624 mtspr(SPRN_IAC3, debug->iac3); 625 mtspr(SPRN_IAC4, debug->iac4); 626 #endif 627 mtspr(SPRN_DAC1, debug->dac1); 628 mtspr(SPRN_DAC2, debug->dac2); 629 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 630 mtspr(SPRN_DVC1, debug->dvc1); 631 mtspr(SPRN_DVC2, debug->dvc2); 632 #endif 633 mtspr(SPRN_DBCR0, debug->dbcr0); 634 mtspr(SPRN_DBCR1, debug->dbcr1); 635 #ifdef CONFIG_BOOKE 636 mtspr(SPRN_DBCR2, debug->dbcr2); 637 #endif 638 } 639 /* 640 * Unless neither the old or new thread are making use of the 641 * debug registers, set the debug registers from the values 642 * stored in the new thread. 643 */ 644 void switch_booke_debug_regs(struct debug_reg *new_debug) 645 { 646 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 647 || (new_debug->dbcr0 & DBCR0_IDM)) 648 prime_debug_regs(new_debug); 649 } 650 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 651 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 652 #ifndef CONFIG_HAVE_HW_BREAKPOINT 653 static void set_debug_reg_defaults(struct thread_struct *thread) 654 { 655 thread->hw_brk.address = 0; 656 thread->hw_brk.type = 0; 657 set_breakpoint(&thread->hw_brk); 658 } 659 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 660 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 661 662 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 663 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 664 { 665 mtspr(SPRN_DAC1, dabr); 666 #ifdef CONFIG_PPC_47x 667 isync(); 668 #endif 669 return 0; 670 } 671 #elif defined(CONFIG_PPC_BOOK3S) 672 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 673 { 674 mtspr(SPRN_DABR, dabr); 675 if (cpu_has_feature(CPU_FTR_DABRX)) 676 mtspr(SPRN_DABRX, dabrx); 677 return 0; 678 } 679 #else 680 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 681 { 682 return -EINVAL; 683 } 684 #endif 685 686 static inline int set_dabr(struct arch_hw_breakpoint *brk) 687 { 688 unsigned long dabr, dabrx; 689 690 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 691 dabrx = ((brk->type >> 3) & 0x7); 692 693 if (ppc_md.set_dabr) 694 return ppc_md.set_dabr(dabr, dabrx); 695 696 return __set_dabr(dabr, dabrx); 697 } 698 699 static inline int set_dawr(struct arch_hw_breakpoint *brk) 700 { 701 unsigned long dawr, dawrx, mrd; 702 703 dawr = brk->address; 704 705 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 706 << (63 - 58); //* read/write bits */ 707 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 708 << (63 - 59); //* translate */ 709 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 710 >> 3; //* PRIM bits */ 711 /* dawr length is stored in field MDR bits 48:53. Matches range in 712 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 713 0b111111=64DW. 714 brk->len is in bytes. 715 This aligns up to double word size, shifts and does the bias. 716 */ 717 mrd = ((brk->len + 7) >> 3) - 1; 718 dawrx |= (mrd & 0x3f) << (63 - 53); 719 720 if (ppc_md.set_dawr) 721 return ppc_md.set_dawr(dawr, dawrx); 722 mtspr(SPRN_DAWR, dawr); 723 mtspr(SPRN_DAWRX, dawrx); 724 return 0; 725 } 726 727 void __set_breakpoint(struct arch_hw_breakpoint *brk) 728 { 729 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 730 731 if (cpu_has_feature(CPU_FTR_DAWR)) 732 set_dawr(brk); 733 else 734 set_dabr(brk); 735 } 736 737 void set_breakpoint(struct arch_hw_breakpoint *brk) 738 { 739 preempt_disable(); 740 __set_breakpoint(brk); 741 preempt_enable(); 742 } 743 744 #ifdef CONFIG_PPC64 745 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 746 #endif 747 748 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 749 struct arch_hw_breakpoint *b) 750 { 751 if (a->address != b->address) 752 return false; 753 if (a->type != b->type) 754 return false; 755 if (a->len != b->len) 756 return false; 757 return true; 758 } 759 760 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 761 static void tm_reclaim_thread(struct thread_struct *thr, 762 struct thread_info *ti, uint8_t cause) 763 { 764 unsigned long msr_diff = 0; 765 766 /* 767 * If FP/VSX registers have been already saved to the 768 * thread_struct, move them to the transact_fp array. 769 * We clear the TIF_RESTORE_TM bit since after the reclaim 770 * the thread will no longer be transactional. 771 */ 772 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) { 773 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr; 774 if (msr_diff & MSR_FP) 775 memcpy(&thr->transact_fp, &thr->fp_state, 776 sizeof(struct thread_fp_state)); 777 if (msr_diff & MSR_VEC) 778 memcpy(&thr->transact_vr, &thr->vr_state, 779 sizeof(struct thread_vr_state)); 780 clear_ti_thread_flag(ti, TIF_RESTORE_TM); 781 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1; 782 } 783 784 /* 785 * Use the current MSR TM suspended bit to track if we have 786 * checkpointed state outstanding. 787 * On signal delivery, we'd normally reclaim the checkpointed 788 * state to obtain stack pointer (see:get_tm_stackpointer()). 789 * This will then directly return to userspace without going 790 * through __switch_to(). However, if the stack frame is bad, 791 * we need to exit this thread which calls __switch_to() which 792 * will again attempt to reclaim the already saved tm state. 793 * Hence we need to check that we've not already reclaimed 794 * this state. 795 * We do this using the current MSR, rather tracking it in 796 * some specific thread_struct bit, as it has the additional 797 * benifit of checking for a potential TM bad thing exception. 798 */ 799 if (!MSR_TM_SUSPENDED(mfmsr())) 800 return; 801 802 tm_reclaim(thr, thr->regs->msr, cause); 803 804 /* Having done the reclaim, we now have the checkpointed 805 * FP/VSX values in the registers. These might be valid 806 * even if we have previously called enable_kernel_fp() or 807 * flush_fp_to_thread(), so update thr->regs->msr to 808 * indicate their current validity. 809 */ 810 thr->regs->msr |= msr_diff; 811 } 812 813 void tm_reclaim_current(uint8_t cause) 814 { 815 tm_enable(); 816 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 817 } 818 819 static inline void tm_reclaim_task(struct task_struct *tsk) 820 { 821 /* We have to work out if we're switching from/to a task that's in the 822 * middle of a transaction. 823 * 824 * In switching we need to maintain a 2nd register state as 825 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 826 * checkpointed (tbegin) state in ckpt_regs and saves the transactional 827 * (current) FPRs into oldtask->thread.transact_fpr[]. 828 * 829 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 830 */ 831 struct thread_struct *thr = &tsk->thread; 832 833 if (!thr->regs) 834 return; 835 836 if (!MSR_TM_ACTIVE(thr->regs->msr)) 837 goto out_and_saveregs; 838 839 /* Stash the original thread MSR, as giveup_fpu et al will 840 * modify it. We hold onto it to see whether the task used 841 * FP & vector regs. If the TIF_RESTORE_TM flag is set, 842 * ckpt_regs.msr is already set. 843 */ 844 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM)) 845 thr->ckpt_regs.msr = thr->regs->msr; 846 847 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 848 "ccr=%lx, msr=%lx, trap=%lx)\n", 849 tsk->pid, thr->regs->nip, 850 thr->regs->ccr, thr->regs->msr, 851 thr->regs->trap); 852 853 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 854 855 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 856 tsk->pid); 857 858 out_and_saveregs: 859 /* Always save the regs here, even if a transaction's not active. 860 * This context-switches a thread's TM info SPRs. We do it here to 861 * be consistent with the restore path (in recheckpoint) which 862 * cannot happen later in _switch(). 863 */ 864 tm_save_sprs(thr); 865 } 866 867 extern void __tm_recheckpoint(struct thread_struct *thread, 868 unsigned long orig_msr); 869 870 void tm_recheckpoint(struct thread_struct *thread, 871 unsigned long orig_msr) 872 { 873 unsigned long flags; 874 875 /* We really can't be interrupted here as the TEXASR registers can't 876 * change and later in the trecheckpoint code, we have a userspace R1. 877 * So let's hard disable over this region. 878 */ 879 local_irq_save(flags); 880 hard_irq_disable(); 881 882 /* The TM SPRs are restored here, so that TEXASR.FS can be set 883 * before the trecheckpoint and no explosion occurs. 884 */ 885 tm_restore_sprs(thread); 886 887 __tm_recheckpoint(thread, orig_msr); 888 889 local_irq_restore(flags); 890 } 891 892 static inline void tm_recheckpoint_new_task(struct task_struct *new) 893 { 894 unsigned long msr; 895 896 if (!cpu_has_feature(CPU_FTR_TM)) 897 return; 898 899 /* Recheckpoint the registers of the thread we're about to switch to. 900 * 901 * If the task was using FP, we non-lazily reload both the original and 902 * the speculative FP register states. This is because the kernel 903 * doesn't see if/when a TM rollback occurs, so if we take an FP 904 * unavoidable later, we are unable to determine which set of FP regs 905 * need to be restored. 906 */ 907 if (!new->thread.regs) 908 return; 909 910 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 911 tm_restore_sprs(&new->thread); 912 return; 913 } 914 msr = new->thread.ckpt_regs.msr; 915 /* Recheckpoint to restore original checkpointed register state. */ 916 TM_DEBUG("*** tm_recheckpoint of pid %d " 917 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 918 new->pid, new->thread.regs->msr, msr); 919 920 /* This loads the checkpointed FP/VEC state, if used */ 921 tm_recheckpoint(&new->thread, msr); 922 923 /* This loads the speculative FP/VEC state, if used */ 924 if (msr & MSR_FP) { 925 do_load_up_transact_fpu(&new->thread); 926 new->thread.regs->msr |= 927 (MSR_FP | new->thread.fpexc_mode); 928 } 929 #ifdef CONFIG_ALTIVEC 930 if (msr & MSR_VEC) { 931 do_load_up_transact_altivec(&new->thread); 932 new->thread.regs->msr |= MSR_VEC; 933 } 934 #endif 935 /* We may as well turn on VSX too since all the state is restored now */ 936 if (msr & MSR_VSX) 937 new->thread.regs->msr |= MSR_VSX; 938 939 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 940 "(kernel msr 0x%lx)\n", 941 new->pid, mfmsr()); 942 } 943 944 static inline void __switch_to_tm(struct task_struct *prev) 945 { 946 if (cpu_has_feature(CPU_FTR_TM)) { 947 tm_enable(); 948 tm_reclaim_task(prev); 949 } 950 } 951 952 /* 953 * This is called if we are on the way out to userspace and the 954 * TIF_RESTORE_TM flag is set. It checks if we need to reload 955 * FP and/or vector state and does so if necessary. 956 * If userspace is inside a transaction (whether active or 957 * suspended) and FP/VMX/VSX instructions have ever been enabled 958 * inside that transaction, then we have to keep them enabled 959 * and keep the FP/VMX/VSX state loaded while ever the transaction 960 * continues. The reason is that if we didn't, and subsequently 961 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 962 * we don't know whether it's the same transaction, and thus we 963 * don't know which of the checkpointed state and the transactional 964 * state to use. 965 */ 966 void restore_tm_state(struct pt_regs *regs) 967 { 968 unsigned long msr_diff; 969 970 clear_thread_flag(TIF_RESTORE_TM); 971 if (!MSR_TM_ACTIVE(regs->msr)) 972 return; 973 974 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 975 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 976 977 restore_math(regs); 978 979 regs->msr |= msr_diff; 980 } 981 982 #else 983 #define tm_recheckpoint_new_task(new) 984 #define __switch_to_tm(prev) 985 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 986 987 static inline void save_sprs(struct thread_struct *t) 988 { 989 #ifdef CONFIG_ALTIVEC 990 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 991 t->vrsave = mfspr(SPRN_VRSAVE); 992 #endif 993 #ifdef CONFIG_PPC_BOOK3S_64 994 if (cpu_has_feature(CPU_FTR_DSCR)) 995 t->dscr = mfspr(SPRN_DSCR); 996 997 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 998 t->bescr = mfspr(SPRN_BESCR); 999 t->ebbhr = mfspr(SPRN_EBBHR); 1000 t->ebbrr = mfspr(SPRN_EBBRR); 1001 1002 t->fscr = mfspr(SPRN_FSCR); 1003 1004 /* 1005 * Note that the TAR is not available for use in the kernel. 1006 * (To provide this, the TAR should be backed up/restored on 1007 * exception entry/exit instead, and be in pt_regs. FIXME, 1008 * this should be in pt_regs anyway (for debug).) 1009 */ 1010 t->tar = mfspr(SPRN_TAR); 1011 } 1012 #endif 1013 } 1014 1015 static inline void restore_sprs(struct thread_struct *old_thread, 1016 struct thread_struct *new_thread) 1017 { 1018 #ifdef CONFIG_ALTIVEC 1019 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1020 old_thread->vrsave != new_thread->vrsave) 1021 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1022 #endif 1023 #ifdef CONFIG_PPC_BOOK3S_64 1024 if (cpu_has_feature(CPU_FTR_DSCR)) { 1025 u64 dscr = get_paca()->dscr_default; 1026 u64 fscr = old_thread->fscr & ~FSCR_DSCR; 1027 1028 if (new_thread->dscr_inherit) { 1029 dscr = new_thread->dscr; 1030 fscr |= FSCR_DSCR; 1031 } 1032 1033 if (old_thread->dscr != dscr) 1034 mtspr(SPRN_DSCR, dscr); 1035 1036 if (old_thread->fscr != fscr) 1037 mtspr(SPRN_FSCR, fscr); 1038 } 1039 1040 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1041 if (old_thread->bescr != new_thread->bescr) 1042 mtspr(SPRN_BESCR, new_thread->bescr); 1043 if (old_thread->ebbhr != new_thread->ebbhr) 1044 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1045 if (old_thread->ebbrr != new_thread->ebbrr) 1046 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1047 1048 if (old_thread->tar != new_thread->tar) 1049 mtspr(SPRN_TAR, new_thread->tar); 1050 } 1051 #endif 1052 } 1053 1054 struct task_struct *__switch_to(struct task_struct *prev, 1055 struct task_struct *new) 1056 { 1057 struct thread_struct *new_thread, *old_thread; 1058 struct task_struct *last; 1059 #ifdef CONFIG_PPC_BOOK3S_64 1060 struct ppc64_tlb_batch *batch; 1061 #endif 1062 1063 new_thread = &new->thread; 1064 old_thread = ¤t->thread; 1065 1066 WARN_ON(!irqs_disabled()); 1067 1068 #ifdef CONFIG_PPC64 1069 /* 1070 * Collect processor utilization data per process 1071 */ 1072 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1073 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1074 long unsigned start_tb, current_tb; 1075 start_tb = old_thread->start_tb; 1076 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1077 old_thread->accum_tb += (current_tb - start_tb); 1078 new_thread->start_tb = current_tb; 1079 } 1080 #endif /* CONFIG_PPC64 */ 1081 1082 #ifdef CONFIG_PPC_STD_MMU_64 1083 batch = this_cpu_ptr(&ppc64_tlb_batch); 1084 if (batch->active) { 1085 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1086 if (batch->index) 1087 __flush_tlb_pending(batch); 1088 batch->active = 0; 1089 } 1090 #endif /* CONFIG_PPC_STD_MMU_64 */ 1091 1092 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1093 switch_booke_debug_regs(&new->thread.debug); 1094 #else 1095 /* 1096 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1097 * schedule DABR 1098 */ 1099 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1100 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1101 __set_breakpoint(&new->thread.hw_brk); 1102 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1103 #endif 1104 1105 /* 1106 * We need to save SPRs before treclaim/trecheckpoint as these will 1107 * change a number of them. 1108 */ 1109 save_sprs(&prev->thread); 1110 1111 __switch_to_tm(prev); 1112 1113 /* Save FPU, Altivec, VSX and SPE state */ 1114 giveup_all(prev); 1115 1116 /* 1117 * We can't take a PMU exception inside _switch() since there is a 1118 * window where the kernel stack SLB and the kernel stack are out 1119 * of sync. Hard disable here. 1120 */ 1121 hard_irq_disable(); 1122 1123 tm_recheckpoint_new_task(new); 1124 1125 /* 1126 * Call restore_sprs() before calling _switch(). If we move it after 1127 * _switch() then we miss out on calling it for new tasks. The reason 1128 * for this is we manually create a stack frame for new tasks that 1129 * directly returns through ret_from_fork() or 1130 * ret_from_kernel_thread(). See copy_thread() for details. 1131 */ 1132 restore_sprs(old_thread, new_thread); 1133 1134 last = _switch(old_thread, new_thread); 1135 1136 #ifdef CONFIG_PPC_STD_MMU_64 1137 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1138 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1139 batch = this_cpu_ptr(&ppc64_tlb_batch); 1140 batch->active = 1; 1141 } 1142 1143 if (current_thread_info()->task->thread.regs) 1144 restore_math(current_thread_info()->task->thread.regs); 1145 #endif /* CONFIG_PPC_STD_MMU_64 */ 1146 1147 return last; 1148 } 1149 1150 static int instructions_to_print = 16; 1151 1152 static void show_instructions(struct pt_regs *regs) 1153 { 1154 int i; 1155 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1156 sizeof(int)); 1157 1158 printk("Instruction dump:"); 1159 1160 for (i = 0; i < instructions_to_print; i++) { 1161 int instr; 1162 1163 if (!(i % 8)) 1164 printk("\n"); 1165 1166 #if !defined(CONFIG_BOOKE) 1167 /* If executing with the IMMU off, adjust pc rather 1168 * than print XXXXXXXX. 1169 */ 1170 if (!(regs->msr & MSR_IR)) 1171 pc = (unsigned long)phys_to_virt(pc); 1172 #endif 1173 1174 if (!__kernel_text_address(pc) || 1175 probe_kernel_address((unsigned int __user *)pc, instr)) { 1176 printk(KERN_CONT "XXXXXXXX "); 1177 } else { 1178 if (regs->nip == pc) 1179 printk(KERN_CONT "<%08x> ", instr); 1180 else 1181 printk(KERN_CONT "%08x ", instr); 1182 } 1183 1184 pc += sizeof(int); 1185 } 1186 1187 printk("\n"); 1188 } 1189 1190 struct regbit { 1191 unsigned long bit; 1192 const char *name; 1193 }; 1194 1195 static struct regbit msr_bits[] = { 1196 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1197 {MSR_SF, "SF"}, 1198 {MSR_HV, "HV"}, 1199 #endif 1200 {MSR_VEC, "VEC"}, 1201 {MSR_VSX, "VSX"}, 1202 #ifdef CONFIG_BOOKE 1203 {MSR_CE, "CE"}, 1204 #endif 1205 {MSR_EE, "EE"}, 1206 {MSR_PR, "PR"}, 1207 {MSR_FP, "FP"}, 1208 {MSR_ME, "ME"}, 1209 #ifdef CONFIG_BOOKE 1210 {MSR_DE, "DE"}, 1211 #else 1212 {MSR_SE, "SE"}, 1213 {MSR_BE, "BE"}, 1214 #endif 1215 {MSR_IR, "IR"}, 1216 {MSR_DR, "DR"}, 1217 {MSR_PMM, "PMM"}, 1218 #ifndef CONFIG_BOOKE 1219 {MSR_RI, "RI"}, 1220 {MSR_LE, "LE"}, 1221 #endif 1222 {0, NULL} 1223 }; 1224 1225 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1226 { 1227 const char *s = ""; 1228 1229 for (; bits->bit; ++bits) 1230 if (val & bits->bit) { 1231 printk("%s%s", s, bits->name); 1232 s = sep; 1233 } 1234 } 1235 1236 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1237 static struct regbit msr_tm_bits[] = { 1238 {MSR_TS_T, "T"}, 1239 {MSR_TS_S, "S"}, 1240 {MSR_TM, "E"}, 1241 {0, NULL} 1242 }; 1243 1244 static void print_tm_bits(unsigned long val) 1245 { 1246 /* 1247 * This only prints something if at least one of the TM bit is set. 1248 * Inside the TM[], the output means: 1249 * E: Enabled (bit 32) 1250 * S: Suspended (bit 33) 1251 * T: Transactional (bit 34) 1252 */ 1253 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1254 printk(",TM["); 1255 print_bits(val, msr_tm_bits, ""); 1256 printk("]"); 1257 } 1258 } 1259 #else 1260 static void print_tm_bits(unsigned long val) {} 1261 #endif 1262 1263 static void print_msr_bits(unsigned long val) 1264 { 1265 printk("<"); 1266 print_bits(val, msr_bits, ","); 1267 print_tm_bits(val); 1268 printk(">"); 1269 } 1270 1271 #ifdef CONFIG_PPC64 1272 #define REG "%016lx" 1273 #define REGS_PER_LINE 4 1274 #define LAST_VOLATILE 13 1275 #else 1276 #define REG "%08lx" 1277 #define REGS_PER_LINE 8 1278 #define LAST_VOLATILE 12 1279 #endif 1280 1281 void show_regs(struct pt_regs * regs) 1282 { 1283 int i, trap; 1284 1285 show_regs_print_info(KERN_DEFAULT); 1286 1287 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1288 regs->nip, regs->link, regs->ctr); 1289 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1290 regs, regs->trap, print_tainted(), init_utsname()->release); 1291 printk("MSR: "REG" ", regs->msr); 1292 print_msr_bits(regs->msr); 1293 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1294 trap = TRAP(regs); 1295 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1296 printk("CFAR: "REG" ", regs->orig_gpr3); 1297 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1298 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1299 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1300 #else 1301 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1302 #endif 1303 #ifdef CONFIG_PPC64 1304 printk("SOFTE: %ld ", regs->softe); 1305 #endif 1306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1307 if (MSR_TM_ACTIVE(regs->msr)) 1308 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1309 #endif 1310 1311 for (i = 0; i < 32; i++) { 1312 if ((i % REGS_PER_LINE) == 0) 1313 printk("\nGPR%02d: ", i); 1314 printk(REG " ", regs->gpr[i]); 1315 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1316 break; 1317 } 1318 printk("\n"); 1319 #ifdef CONFIG_KALLSYMS 1320 /* 1321 * Lookup NIP late so we have the best change of getting the 1322 * above info out without failing 1323 */ 1324 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1325 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1326 #endif 1327 show_stack(current, (unsigned long *) regs->gpr[1]); 1328 if (!user_mode(regs)) 1329 show_instructions(regs); 1330 } 1331 1332 void flush_thread(void) 1333 { 1334 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1335 flush_ptrace_hw_breakpoint(current); 1336 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1337 set_debug_reg_defaults(¤t->thread); 1338 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1339 } 1340 1341 void 1342 release_thread(struct task_struct *t) 1343 { 1344 } 1345 1346 /* 1347 * this gets called so that we can store coprocessor state into memory and 1348 * copy the current task into the new thread. 1349 */ 1350 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1351 { 1352 flush_all_to_thread(src); 1353 /* 1354 * Flush TM state out so we can copy it. __switch_to_tm() does this 1355 * flush but it removes the checkpointed state from the current CPU and 1356 * transitions the CPU out of TM mode. Hence we need to call 1357 * tm_recheckpoint_new_task() (on the same task) to restore the 1358 * checkpointed state back and the TM mode. 1359 */ 1360 __switch_to_tm(src); 1361 tm_recheckpoint_new_task(src); 1362 1363 *dst = *src; 1364 1365 clear_task_ebb(dst); 1366 1367 return 0; 1368 } 1369 1370 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1371 { 1372 #ifdef CONFIG_PPC_STD_MMU_64 1373 unsigned long sp_vsid; 1374 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1375 1376 if (radix_enabled()) 1377 return; 1378 1379 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1380 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1381 << SLB_VSID_SHIFT_1T; 1382 else 1383 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1384 << SLB_VSID_SHIFT; 1385 sp_vsid |= SLB_VSID_KERNEL | llp; 1386 p->thread.ksp_vsid = sp_vsid; 1387 #endif 1388 } 1389 1390 /* 1391 * Copy a thread.. 1392 */ 1393 1394 /* 1395 * Copy architecture-specific thread state 1396 */ 1397 int copy_thread(unsigned long clone_flags, unsigned long usp, 1398 unsigned long kthread_arg, struct task_struct *p) 1399 { 1400 struct pt_regs *childregs, *kregs; 1401 extern void ret_from_fork(void); 1402 extern void ret_from_kernel_thread(void); 1403 void (*f)(void); 1404 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1405 struct thread_info *ti = task_thread_info(p); 1406 1407 klp_init_thread_info(ti); 1408 1409 /* Copy registers */ 1410 sp -= sizeof(struct pt_regs); 1411 childregs = (struct pt_regs *) sp; 1412 if (unlikely(p->flags & PF_KTHREAD)) { 1413 /* kernel thread */ 1414 memset(childregs, 0, sizeof(struct pt_regs)); 1415 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1416 /* function */ 1417 if (usp) 1418 childregs->gpr[14] = ppc_function_entry((void *)usp); 1419 #ifdef CONFIG_PPC64 1420 clear_tsk_thread_flag(p, TIF_32BIT); 1421 childregs->softe = 1; 1422 #endif 1423 childregs->gpr[15] = kthread_arg; 1424 p->thread.regs = NULL; /* no user register state */ 1425 ti->flags |= _TIF_RESTOREALL; 1426 f = ret_from_kernel_thread; 1427 } else { 1428 /* user thread */ 1429 struct pt_regs *regs = current_pt_regs(); 1430 CHECK_FULL_REGS(regs); 1431 *childregs = *regs; 1432 if (usp) 1433 childregs->gpr[1] = usp; 1434 p->thread.regs = childregs; 1435 childregs->gpr[3] = 0; /* Result from fork() */ 1436 if (clone_flags & CLONE_SETTLS) { 1437 #ifdef CONFIG_PPC64 1438 if (!is_32bit_task()) 1439 childregs->gpr[13] = childregs->gpr[6]; 1440 else 1441 #endif 1442 childregs->gpr[2] = childregs->gpr[6]; 1443 } 1444 1445 f = ret_from_fork; 1446 } 1447 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1448 sp -= STACK_FRAME_OVERHEAD; 1449 1450 /* 1451 * The way this works is that at some point in the future 1452 * some task will call _switch to switch to the new task. 1453 * That will pop off the stack frame created below and start 1454 * the new task running at ret_from_fork. The new task will 1455 * do some house keeping and then return from the fork or clone 1456 * system call, using the stack frame created above. 1457 */ 1458 ((unsigned long *)sp)[0] = 0; 1459 sp -= sizeof(struct pt_regs); 1460 kregs = (struct pt_regs *) sp; 1461 sp -= STACK_FRAME_OVERHEAD; 1462 p->thread.ksp = sp; 1463 #ifdef CONFIG_PPC32 1464 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1465 _ALIGN_UP(sizeof(struct thread_info), 16); 1466 #endif 1467 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1468 p->thread.ptrace_bps[0] = NULL; 1469 #endif 1470 1471 p->thread.fp_save_area = NULL; 1472 #ifdef CONFIG_ALTIVEC 1473 p->thread.vr_save_area = NULL; 1474 #endif 1475 1476 setup_ksp_vsid(p, sp); 1477 1478 #ifdef CONFIG_PPC64 1479 if (cpu_has_feature(CPU_FTR_DSCR)) { 1480 p->thread.dscr_inherit = current->thread.dscr_inherit; 1481 p->thread.dscr = mfspr(SPRN_DSCR); 1482 } 1483 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1484 p->thread.ppr = INIT_PPR; 1485 #endif 1486 kregs->nip = ppc_function_entry(f); 1487 return 0; 1488 } 1489 1490 /* 1491 * Set up a thread for executing a new program 1492 */ 1493 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1494 { 1495 #ifdef CONFIG_PPC64 1496 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1497 #endif 1498 1499 /* 1500 * If we exec out of a kernel thread then thread.regs will not be 1501 * set. Do it now. 1502 */ 1503 if (!current->thread.regs) { 1504 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1505 current->thread.regs = regs - 1; 1506 } 1507 1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1509 /* 1510 * Clear any transactional state, we're exec()ing. The cause is 1511 * not important as there will never be a recheckpoint so it's not 1512 * user visible. 1513 */ 1514 if (MSR_TM_SUSPENDED(mfmsr())) 1515 tm_reclaim_current(0); 1516 #endif 1517 1518 memset(regs->gpr, 0, sizeof(regs->gpr)); 1519 regs->ctr = 0; 1520 regs->link = 0; 1521 regs->xer = 0; 1522 regs->ccr = 0; 1523 regs->gpr[1] = sp; 1524 1525 /* 1526 * We have just cleared all the nonvolatile GPRs, so make 1527 * FULL_REGS(regs) return true. This is necessary to allow 1528 * ptrace to examine the thread immediately after exec. 1529 */ 1530 regs->trap &= ~1UL; 1531 1532 #ifdef CONFIG_PPC32 1533 regs->mq = 0; 1534 regs->nip = start; 1535 regs->msr = MSR_USER; 1536 #else 1537 if (!is_32bit_task()) { 1538 unsigned long entry; 1539 1540 if (is_elf2_task()) { 1541 /* Look ma, no function descriptors! */ 1542 entry = start; 1543 1544 /* 1545 * Ulrich says: 1546 * The latest iteration of the ABI requires that when 1547 * calling a function (at its global entry point), 1548 * the caller must ensure r12 holds the entry point 1549 * address (so that the function can quickly 1550 * establish addressability). 1551 */ 1552 regs->gpr[12] = start; 1553 /* Make sure that's restored on entry to userspace. */ 1554 set_thread_flag(TIF_RESTOREALL); 1555 } else { 1556 unsigned long toc; 1557 1558 /* start is a relocated pointer to the function 1559 * descriptor for the elf _start routine. The first 1560 * entry in the function descriptor is the entry 1561 * address of _start and the second entry is the TOC 1562 * value we need to use. 1563 */ 1564 __get_user(entry, (unsigned long __user *)start); 1565 __get_user(toc, (unsigned long __user *)start+1); 1566 1567 /* Check whether the e_entry function descriptor entries 1568 * need to be relocated before we can use them. 1569 */ 1570 if (load_addr != 0) { 1571 entry += load_addr; 1572 toc += load_addr; 1573 } 1574 regs->gpr[2] = toc; 1575 } 1576 regs->nip = entry; 1577 regs->msr = MSR_USER64; 1578 } else { 1579 regs->nip = start; 1580 regs->gpr[2] = 0; 1581 regs->msr = MSR_USER32; 1582 } 1583 #endif 1584 #ifdef CONFIG_VSX 1585 current->thread.used_vsr = 0; 1586 #endif 1587 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1588 current->thread.fp_save_area = NULL; 1589 #ifdef CONFIG_ALTIVEC 1590 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1591 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1592 current->thread.vr_save_area = NULL; 1593 current->thread.vrsave = 0; 1594 current->thread.used_vr = 0; 1595 #endif /* CONFIG_ALTIVEC */ 1596 #ifdef CONFIG_SPE 1597 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1598 current->thread.acc = 0; 1599 current->thread.spefscr = 0; 1600 current->thread.used_spe = 0; 1601 #endif /* CONFIG_SPE */ 1602 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1603 if (cpu_has_feature(CPU_FTR_TM)) 1604 regs->msr |= MSR_TM; 1605 current->thread.tm_tfhar = 0; 1606 current->thread.tm_texasr = 0; 1607 current->thread.tm_tfiar = 0; 1608 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1609 } 1610 EXPORT_SYMBOL(start_thread); 1611 1612 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1613 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1614 1615 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1616 { 1617 struct pt_regs *regs = tsk->thread.regs; 1618 1619 /* This is a bit hairy. If we are an SPE enabled processor 1620 * (have embedded fp) we store the IEEE exception enable flags in 1621 * fpexc_mode. fpexc_mode is also used for setting FP exception 1622 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1623 if (val & PR_FP_EXC_SW_ENABLE) { 1624 #ifdef CONFIG_SPE 1625 if (cpu_has_feature(CPU_FTR_SPE)) { 1626 /* 1627 * When the sticky exception bits are set 1628 * directly by userspace, it must call prctl 1629 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1630 * in the existing prctl settings) or 1631 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1632 * the bits being set). <fenv.h> functions 1633 * saving and restoring the whole 1634 * floating-point environment need to do so 1635 * anyway to restore the prctl settings from 1636 * the saved environment. 1637 */ 1638 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1639 tsk->thread.fpexc_mode = val & 1640 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1641 return 0; 1642 } else { 1643 return -EINVAL; 1644 } 1645 #else 1646 return -EINVAL; 1647 #endif 1648 } 1649 1650 /* on a CONFIG_SPE this does not hurt us. The bits that 1651 * __pack_fe01 use do not overlap with bits used for 1652 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1653 * on CONFIG_SPE implementations are reserved so writing to 1654 * them does not change anything */ 1655 if (val > PR_FP_EXC_PRECISE) 1656 return -EINVAL; 1657 tsk->thread.fpexc_mode = __pack_fe01(val); 1658 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1659 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1660 | tsk->thread.fpexc_mode; 1661 return 0; 1662 } 1663 1664 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1665 { 1666 unsigned int val; 1667 1668 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1669 #ifdef CONFIG_SPE 1670 if (cpu_has_feature(CPU_FTR_SPE)) { 1671 /* 1672 * When the sticky exception bits are set 1673 * directly by userspace, it must call prctl 1674 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1675 * in the existing prctl settings) or 1676 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1677 * the bits being set). <fenv.h> functions 1678 * saving and restoring the whole 1679 * floating-point environment need to do so 1680 * anyway to restore the prctl settings from 1681 * the saved environment. 1682 */ 1683 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1684 val = tsk->thread.fpexc_mode; 1685 } else 1686 return -EINVAL; 1687 #else 1688 return -EINVAL; 1689 #endif 1690 else 1691 val = __unpack_fe01(tsk->thread.fpexc_mode); 1692 return put_user(val, (unsigned int __user *) adr); 1693 } 1694 1695 int set_endian(struct task_struct *tsk, unsigned int val) 1696 { 1697 struct pt_regs *regs = tsk->thread.regs; 1698 1699 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1700 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1701 return -EINVAL; 1702 1703 if (regs == NULL) 1704 return -EINVAL; 1705 1706 if (val == PR_ENDIAN_BIG) 1707 regs->msr &= ~MSR_LE; 1708 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1709 regs->msr |= MSR_LE; 1710 else 1711 return -EINVAL; 1712 1713 return 0; 1714 } 1715 1716 int get_endian(struct task_struct *tsk, unsigned long adr) 1717 { 1718 struct pt_regs *regs = tsk->thread.regs; 1719 unsigned int val; 1720 1721 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1722 !cpu_has_feature(CPU_FTR_REAL_LE)) 1723 return -EINVAL; 1724 1725 if (regs == NULL) 1726 return -EINVAL; 1727 1728 if (regs->msr & MSR_LE) { 1729 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1730 val = PR_ENDIAN_LITTLE; 1731 else 1732 val = PR_ENDIAN_PPC_LITTLE; 1733 } else 1734 val = PR_ENDIAN_BIG; 1735 1736 return put_user(val, (unsigned int __user *)adr); 1737 } 1738 1739 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1740 { 1741 tsk->thread.align_ctl = val; 1742 return 0; 1743 } 1744 1745 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1746 { 1747 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1748 } 1749 1750 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1751 unsigned long nbytes) 1752 { 1753 unsigned long stack_page; 1754 unsigned long cpu = task_cpu(p); 1755 1756 /* 1757 * Avoid crashing if the stack has overflowed and corrupted 1758 * task_cpu(p), which is in the thread_info struct. 1759 */ 1760 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1761 stack_page = (unsigned long) hardirq_ctx[cpu]; 1762 if (sp >= stack_page + sizeof(struct thread_struct) 1763 && sp <= stack_page + THREAD_SIZE - nbytes) 1764 return 1; 1765 1766 stack_page = (unsigned long) softirq_ctx[cpu]; 1767 if (sp >= stack_page + sizeof(struct thread_struct) 1768 && sp <= stack_page + THREAD_SIZE - nbytes) 1769 return 1; 1770 } 1771 return 0; 1772 } 1773 1774 int validate_sp(unsigned long sp, struct task_struct *p, 1775 unsigned long nbytes) 1776 { 1777 unsigned long stack_page = (unsigned long)task_stack_page(p); 1778 1779 if (sp >= stack_page + sizeof(struct thread_struct) 1780 && sp <= stack_page + THREAD_SIZE - nbytes) 1781 return 1; 1782 1783 return valid_irq_stack(sp, p, nbytes); 1784 } 1785 1786 EXPORT_SYMBOL(validate_sp); 1787 1788 unsigned long get_wchan(struct task_struct *p) 1789 { 1790 unsigned long ip, sp; 1791 int count = 0; 1792 1793 if (!p || p == current || p->state == TASK_RUNNING) 1794 return 0; 1795 1796 sp = p->thread.ksp; 1797 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1798 return 0; 1799 1800 do { 1801 sp = *(unsigned long *)sp; 1802 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1803 return 0; 1804 if (count > 0) { 1805 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1806 if (!in_sched_functions(ip)) 1807 return ip; 1808 } 1809 } while (count++ < 16); 1810 return 0; 1811 } 1812 1813 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1814 1815 void show_stack(struct task_struct *tsk, unsigned long *stack) 1816 { 1817 unsigned long sp, ip, lr, newsp; 1818 int count = 0; 1819 int firstframe = 1; 1820 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1821 int curr_frame = current->curr_ret_stack; 1822 extern void return_to_handler(void); 1823 unsigned long rth = (unsigned long)return_to_handler; 1824 #endif 1825 1826 sp = (unsigned long) stack; 1827 if (tsk == NULL) 1828 tsk = current; 1829 if (sp == 0) { 1830 if (tsk == current) 1831 sp = current_stack_pointer(); 1832 else 1833 sp = tsk->thread.ksp; 1834 } 1835 1836 lr = 0; 1837 printk("Call Trace:\n"); 1838 do { 1839 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1840 return; 1841 1842 stack = (unsigned long *) sp; 1843 newsp = stack[0]; 1844 ip = stack[STACK_FRAME_LR_SAVE]; 1845 if (!firstframe || ip != lr) { 1846 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1847 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1848 if ((ip == rth) && curr_frame >= 0) { 1849 printk(" (%pS)", 1850 (void *)current->ret_stack[curr_frame].ret); 1851 curr_frame--; 1852 } 1853 #endif 1854 if (firstframe) 1855 printk(" (unreliable)"); 1856 printk("\n"); 1857 } 1858 firstframe = 0; 1859 1860 /* 1861 * See if this is an exception frame. 1862 * We look for the "regshere" marker in the current frame. 1863 */ 1864 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1865 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1866 struct pt_regs *regs = (struct pt_regs *) 1867 (sp + STACK_FRAME_OVERHEAD); 1868 lr = regs->link; 1869 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1870 regs->trap, (void *)regs->nip, (void *)lr); 1871 firstframe = 1; 1872 } 1873 1874 sp = newsp; 1875 } while (count++ < kstack_depth_to_print); 1876 } 1877 1878 #ifdef CONFIG_PPC64 1879 /* Called with hard IRQs off */ 1880 void notrace __ppc64_runlatch_on(void) 1881 { 1882 struct thread_info *ti = current_thread_info(); 1883 unsigned long ctrl; 1884 1885 ctrl = mfspr(SPRN_CTRLF); 1886 ctrl |= CTRL_RUNLATCH; 1887 mtspr(SPRN_CTRLT, ctrl); 1888 1889 ti->local_flags |= _TLF_RUNLATCH; 1890 } 1891 1892 /* Called with hard IRQs off */ 1893 void notrace __ppc64_runlatch_off(void) 1894 { 1895 struct thread_info *ti = current_thread_info(); 1896 unsigned long ctrl; 1897 1898 ti->local_flags &= ~_TLF_RUNLATCH; 1899 1900 ctrl = mfspr(SPRN_CTRLF); 1901 ctrl &= ~CTRL_RUNLATCH; 1902 mtspr(SPRN_CTRLT, ctrl); 1903 } 1904 #endif /* CONFIG_PPC64 */ 1905 1906 unsigned long arch_align_stack(unsigned long sp) 1907 { 1908 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1909 sp -= get_random_int() & ~PAGE_MASK; 1910 return sp & ~0xf; 1911 } 1912 1913 static inline unsigned long brk_rnd(void) 1914 { 1915 unsigned long rnd = 0; 1916 1917 /* 8MB for 32bit, 1GB for 64bit */ 1918 if (is_32bit_task()) 1919 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 1920 else 1921 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 1922 1923 return rnd << PAGE_SHIFT; 1924 } 1925 1926 unsigned long arch_randomize_brk(struct mm_struct *mm) 1927 { 1928 unsigned long base = mm->brk; 1929 unsigned long ret; 1930 1931 #ifdef CONFIG_PPC_STD_MMU_64 1932 /* 1933 * If we are using 1TB segments and we are allowed to randomise 1934 * the heap, we can put it above 1TB so it is backed by a 1TB 1935 * segment. Otherwise the heap will be in the bottom 1TB 1936 * which always uses 256MB segments and this may result in a 1937 * performance penalty. We don't need to worry about radix. For 1938 * radix, mmu_highuser_ssize remains unchanged from 256MB. 1939 */ 1940 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1941 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1942 #endif 1943 1944 ret = PAGE_ALIGN(base + brk_rnd()); 1945 1946 if (ret < mm->brk) 1947 return mm->brk; 1948 1949 return ret; 1950 } 1951 1952