1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 #include <linux/seq_buf.h> 47 48 #include <asm/pgtable.h> 49 #include <asm/io.h> 50 #include <asm/processor.h> 51 #include <asm/mmu.h> 52 #include <asm/prom.h> 53 #include <asm/machdep.h> 54 #include <asm/time.h> 55 #include <asm/runlatch.h> 56 #include <asm/syscalls.h> 57 #include <asm/switch_to.h> 58 #include <asm/tm.h> 59 #include <asm/debug.h> 60 #ifdef CONFIG_PPC64 61 #include <asm/firmware.h> 62 #include <asm/hw_irq.h> 63 #endif 64 #include <asm/code-patching.h> 65 #include <asm/exec.h> 66 #include <asm/livepatch.h> 67 #include <asm/cpu_has_feature.h> 68 #include <asm/asm-prototypes.h> 69 #include <asm/stacktrace.h> 70 #include <asm/hw_breakpoint.h> 71 72 #include <linux/kprobes.h> 73 #include <linux/kdebug.h> 74 75 /* Transactional Memory debug */ 76 #ifdef TM_DEBUG_SW 77 #define TM_DEBUG(x...) printk(KERN_INFO x) 78 #else 79 #define TM_DEBUG(x...) do { } while(0) 80 #endif 81 82 extern unsigned long _get_SP(void); 83 84 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 85 /* 86 * Are we running in "Suspend disabled" mode? If so we have to block any 87 * sigreturn that would get us into suspended state, and we also warn in some 88 * other paths that we should never reach with suspend disabled. 89 */ 90 bool tm_suspend_disabled __ro_after_init = false; 91 92 static void check_if_tm_restore_required(struct task_struct *tsk) 93 { 94 /* 95 * If we are saving the current thread's registers, and the 96 * thread is in a transactional state, set the TIF_RESTORE_TM 97 * bit so that we know to restore the registers before 98 * returning to userspace. 99 */ 100 if (tsk == current && tsk->thread.regs && 101 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 102 !test_thread_flag(TIF_RESTORE_TM)) { 103 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 104 set_thread_flag(TIF_RESTORE_TM); 105 } 106 } 107 108 static bool tm_active_with_fp(struct task_struct *tsk) 109 { 110 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 111 (tsk->thread.ckpt_regs.msr & MSR_FP); 112 } 113 114 static bool tm_active_with_altivec(struct task_struct *tsk) 115 { 116 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 117 (tsk->thread.ckpt_regs.msr & MSR_VEC); 118 } 119 #else 120 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 121 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 122 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 124 125 bool strict_msr_control; 126 EXPORT_SYMBOL(strict_msr_control); 127 128 static int __init enable_strict_msr_control(char *str) 129 { 130 strict_msr_control = true; 131 pr_info("Enabling strict facility control\n"); 132 133 return 0; 134 } 135 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 136 137 /* notrace because it's called by restore_math */ 138 unsigned long notrace msr_check_and_set(unsigned long bits) 139 { 140 unsigned long oldmsr = mfmsr(); 141 unsigned long newmsr; 142 143 newmsr = oldmsr | bits; 144 145 #ifdef CONFIG_VSX 146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 147 newmsr |= MSR_VSX; 148 #endif 149 150 if (oldmsr != newmsr) 151 mtmsr_isync(newmsr); 152 153 return newmsr; 154 } 155 EXPORT_SYMBOL_GPL(msr_check_and_set); 156 157 /* notrace because it's called by restore_math */ 158 void notrace __msr_check_and_clear(unsigned long bits) 159 { 160 unsigned long oldmsr = mfmsr(); 161 unsigned long newmsr; 162 163 newmsr = oldmsr & ~bits; 164 165 #ifdef CONFIG_VSX 166 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 167 newmsr &= ~MSR_VSX; 168 #endif 169 170 if (oldmsr != newmsr) 171 mtmsr_isync(newmsr); 172 } 173 EXPORT_SYMBOL(__msr_check_and_clear); 174 175 #ifdef CONFIG_PPC_FPU 176 static void __giveup_fpu(struct task_struct *tsk) 177 { 178 unsigned long msr; 179 180 save_fpu(tsk); 181 msr = tsk->thread.regs->msr; 182 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 183 #ifdef CONFIG_VSX 184 if (cpu_has_feature(CPU_FTR_VSX)) 185 msr &= ~MSR_VSX; 186 #endif 187 tsk->thread.regs->msr = msr; 188 } 189 190 void giveup_fpu(struct task_struct *tsk) 191 { 192 check_if_tm_restore_required(tsk); 193 194 msr_check_and_set(MSR_FP); 195 __giveup_fpu(tsk); 196 msr_check_and_clear(MSR_FP); 197 } 198 EXPORT_SYMBOL(giveup_fpu); 199 200 /* 201 * Make sure the floating-point register state in the 202 * the thread_struct is up to date for task tsk. 203 */ 204 void flush_fp_to_thread(struct task_struct *tsk) 205 { 206 if (tsk->thread.regs) { 207 /* 208 * We need to disable preemption here because if we didn't, 209 * another process could get scheduled after the regs->msr 210 * test but before we have finished saving the FP registers 211 * to the thread_struct. That process could take over the 212 * FPU, and then when we get scheduled again we would store 213 * bogus values for the remaining FP registers. 214 */ 215 preempt_disable(); 216 if (tsk->thread.regs->msr & MSR_FP) { 217 /* 218 * This should only ever be called for current or 219 * for a stopped child process. Since we save away 220 * the FP register state on context switch, 221 * there is something wrong if a stopped child appears 222 * to still have its FP state in the CPU registers. 223 */ 224 BUG_ON(tsk != current); 225 giveup_fpu(tsk); 226 } 227 preempt_enable(); 228 } 229 } 230 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 231 232 void enable_kernel_fp(void) 233 { 234 unsigned long cpumsr; 235 236 WARN_ON(preemptible()); 237 238 cpumsr = msr_check_and_set(MSR_FP); 239 240 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 241 check_if_tm_restore_required(current); 242 /* 243 * If a thread has already been reclaimed then the 244 * checkpointed registers are on the CPU but have definitely 245 * been saved by the reclaim code. Don't need to and *cannot* 246 * giveup as this would save to the 'live' structure not the 247 * checkpointed structure. 248 */ 249 if (!MSR_TM_ACTIVE(cpumsr) && 250 MSR_TM_ACTIVE(current->thread.regs->msr)) 251 return; 252 __giveup_fpu(current); 253 } 254 } 255 EXPORT_SYMBOL(enable_kernel_fp); 256 257 static int restore_fp(struct task_struct *tsk) 258 { 259 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 260 load_fp_state(¤t->thread.fp_state); 261 current->thread.load_fp++; 262 return 1; 263 } 264 return 0; 265 } 266 #else 267 static int restore_fp(struct task_struct *tsk) { return 0; } 268 #endif /* CONFIG_PPC_FPU */ 269 270 #ifdef CONFIG_ALTIVEC 271 #define loadvec(thr) ((thr).load_vec) 272 273 static void __giveup_altivec(struct task_struct *tsk) 274 { 275 unsigned long msr; 276 277 save_altivec(tsk); 278 msr = tsk->thread.regs->msr; 279 msr &= ~MSR_VEC; 280 #ifdef CONFIG_VSX 281 if (cpu_has_feature(CPU_FTR_VSX)) 282 msr &= ~MSR_VSX; 283 #endif 284 tsk->thread.regs->msr = msr; 285 } 286 287 void giveup_altivec(struct task_struct *tsk) 288 { 289 check_if_tm_restore_required(tsk); 290 291 msr_check_and_set(MSR_VEC); 292 __giveup_altivec(tsk); 293 msr_check_and_clear(MSR_VEC); 294 } 295 EXPORT_SYMBOL(giveup_altivec); 296 297 void enable_kernel_altivec(void) 298 { 299 unsigned long cpumsr; 300 301 WARN_ON(preemptible()); 302 303 cpumsr = msr_check_and_set(MSR_VEC); 304 305 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 306 check_if_tm_restore_required(current); 307 /* 308 * If a thread has already been reclaimed then the 309 * checkpointed registers are on the CPU but have definitely 310 * been saved by the reclaim code. Don't need to and *cannot* 311 * giveup as this would save to the 'live' structure not the 312 * checkpointed structure. 313 */ 314 if (!MSR_TM_ACTIVE(cpumsr) && 315 MSR_TM_ACTIVE(current->thread.regs->msr)) 316 return; 317 __giveup_altivec(current); 318 } 319 } 320 EXPORT_SYMBOL(enable_kernel_altivec); 321 322 /* 323 * Make sure the VMX/Altivec register state in the 324 * the thread_struct is up to date for task tsk. 325 */ 326 void flush_altivec_to_thread(struct task_struct *tsk) 327 { 328 if (tsk->thread.regs) { 329 preempt_disable(); 330 if (tsk->thread.regs->msr & MSR_VEC) { 331 BUG_ON(tsk != current); 332 giveup_altivec(tsk); 333 } 334 preempt_enable(); 335 } 336 } 337 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 338 339 static int restore_altivec(struct task_struct *tsk) 340 { 341 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 342 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 343 load_vr_state(&tsk->thread.vr_state); 344 tsk->thread.used_vr = 1; 345 tsk->thread.load_vec++; 346 347 return 1; 348 } 349 return 0; 350 } 351 #else 352 #define loadvec(thr) 0 353 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 354 #endif /* CONFIG_ALTIVEC */ 355 356 #ifdef CONFIG_VSX 357 static void __giveup_vsx(struct task_struct *tsk) 358 { 359 unsigned long msr = tsk->thread.regs->msr; 360 361 /* 362 * We should never be ssetting MSR_VSX without also setting 363 * MSR_FP and MSR_VEC 364 */ 365 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 366 367 /* __giveup_fpu will clear MSR_VSX */ 368 if (msr & MSR_FP) 369 __giveup_fpu(tsk); 370 if (msr & MSR_VEC) 371 __giveup_altivec(tsk); 372 } 373 374 static void giveup_vsx(struct task_struct *tsk) 375 { 376 check_if_tm_restore_required(tsk); 377 378 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 379 __giveup_vsx(tsk); 380 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 381 } 382 383 void enable_kernel_vsx(void) 384 { 385 unsigned long cpumsr; 386 387 WARN_ON(preemptible()); 388 389 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 390 391 if (current->thread.regs && 392 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 393 check_if_tm_restore_required(current); 394 /* 395 * If a thread has already been reclaimed then the 396 * checkpointed registers are on the CPU but have definitely 397 * been saved by the reclaim code. Don't need to and *cannot* 398 * giveup as this would save to the 'live' structure not the 399 * checkpointed structure. 400 */ 401 if (!MSR_TM_ACTIVE(cpumsr) && 402 MSR_TM_ACTIVE(current->thread.regs->msr)) 403 return; 404 __giveup_vsx(current); 405 } 406 } 407 EXPORT_SYMBOL(enable_kernel_vsx); 408 409 void flush_vsx_to_thread(struct task_struct *tsk) 410 { 411 if (tsk->thread.regs) { 412 preempt_disable(); 413 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 414 BUG_ON(tsk != current); 415 giveup_vsx(tsk); 416 } 417 preempt_enable(); 418 } 419 } 420 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 421 422 static int restore_vsx(struct task_struct *tsk) 423 { 424 if (cpu_has_feature(CPU_FTR_VSX)) { 425 tsk->thread.used_vsr = 1; 426 return 1; 427 } 428 429 return 0; 430 } 431 #else 432 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 433 #endif /* CONFIG_VSX */ 434 435 #ifdef CONFIG_SPE 436 void giveup_spe(struct task_struct *tsk) 437 { 438 check_if_tm_restore_required(tsk); 439 440 msr_check_and_set(MSR_SPE); 441 __giveup_spe(tsk); 442 msr_check_and_clear(MSR_SPE); 443 } 444 EXPORT_SYMBOL(giveup_spe); 445 446 void enable_kernel_spe(void) 447 { 448 WARN_ON(preemptible()); 449 450 msr_check_and_set(MSR_SPE); 451 452 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 453 check_if_tm_restore_required(current); 454 __giveup_spe(current); 455 } 456 } 457 EXPORT_SYMBOL(enable_kernel_spe); 458 459 void flush_spe_to_thread(struct task_struct *tsk) 460 { 461 if (tsk->thread.regs) { 462 preempt_disable(); 463 if (tsk->thread.regs->msr & MSR_SPE) { 464 BUG_ON(tsk != current); 465 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 466 giveup_spe(tsk); 467 } 468 preempt_enable(); 469 } 470 } 471 #endif /* CONFIG_SPE */ 472 473 static unsigned long msr_all_available; 474 475 static int __init init_msr_all_available(void) 476 { 477 #ifdef CONFIG_PPC_FPU 478 msr_all_available |= MSR_FP; 479 #endif 480 #ifdef CONFIG_ALTIVEC 481 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 482 msr_all_available |= MSR_VEC; 483 #endif 484 #ifdef CONFIG_VSX 485 if (cpu_has_feature(CPU_FTR_VSX)) 486 msr_all_available |= MSR_VSX; 487 #endif 488 #ifdef CONFIG_SPE 489 if (cpu_has_feature(CPU_FTR_SPE)) 490 msr_all_available |= MSR_SPE; 491 #endif 492 493 return 0; 494 } 495 early_initcall(init_msr_all_available); 496 497 void giveup_all(struct task_struct *tsk) 498 { 499 unsigned long usermsr; 500 501 if (!tsk->thread.regs) 502 return; 503 504 usermsr = tsk->thread.regs->msr; 505 506 if ((usermsr & msr_all_available) == 0) 507 return; 508 509 msr_check_and_set(msr_all_available); 510 check_if_tm_restore_required(tsk); 511 512 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 513 514 #ifdef CONFIG_PPC_FPU 515 if (usermsr & MSR_FP) 516 __giveup_fpu(tsk); 517 #endif 518 #ifdef CONFIG_ALTIVEC 519 if (usermsr & MSR_VEC) 520 __giveup_altivec(tsk); 521 #endif 522 #ifdef CONFIG_SPE 523 if (usermsr & MSR_SPE) 524 __giveup_spe(tsk); 525 #endif 526 527 msr_check_and_clear(msr_all_available); 528 } 529 EXPORT_SYMBOL(giveup_all); 530 531 /* 532 * The exception exit path calls restore_math() with interrupts hard disabled 533 * but the soft irq state not "reconciled". ftrace code that calls 534 * local_irq_save/restore causes warnings. 535 * 536 * Rather than complicate the exit path, just don't trace restore_math. This 537 * could be done by having ftrace entry code check for this un-reconciled 538 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 539 * temporarily fix it up for the duration of the ftrace call. 540 */ 541 void notrace restore_math(struct pt_regs *regs) 542 { 543 unsigned long msr; 544 545 if (!MSR_TM_ACTIVE(regs->msr) && 546 !current->thread.load_fp && !loadvec(current->thread)) 547 return; 548 549 msr = regs->msr; 550 msr_check_and_set(msr_all_available); 551 552 /* 553 * Only reload if the bit is not set in the user MSR, the bit BEING set 554 * indicates that the registers are hot 555 */ 556 if ((!(msr & MSR_FP)) && restore_fp(current)) 557 msr |= MSR_FP | current->thread.fpexc_mode; 558 559 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 560 msr |= MSR_VEC; 561 562 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 563 restore_vsx(current)) { 564 msr |= MSR_VSX; 565 } 566 567 msr_check_and_clear(msr_all_available); 568 569 regs->msr = msr; 570 } 571 572 static void save_all(struct task_struct *tsk) 573 { 574 unsigned long usermsr; 575 576 if (!tsk->thread.regs) 577 return; 578 579 usermsr = tsk->thread.regs->msr; 580 581 if ((usermsr & msr_all_available) == 0) 582 return; 583 584 msr_check_and_set(msr_all_available); 585 586 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 587 588 if (usermsr & MSR_FP) 589 save_fpu(tsk); 590 591 if (usermsr & MSR_VEC) 592 save_altivec(tsk); 593 594 if (usermsr & MSR_SPE) 595 __giveup_spe(tsk); 596 597 msr_check_and_clear(msr_all_available); 598 thread_pkey_regs_save(&tsk->thread); 599 } 600 601 void flush_all_to_thread(struct task_struct *tsk) 602 { 603 if (tsk->thread.regs) { 604 preempt_disable(); 605 BUG_ON(tsk != current); 606 #ifdef CONFIG_SPE 607 if (tsk->thread.regs->msr & MSR_SPE) 608 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 609 #endif 610 save_all(tsk); 611 612 preempt_enable(); 613 } 614 } 615 EXPORT_SYMBOL(flush_all_to_thread); 616 617 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 618 void do_send_trap(struct pt_regs *regs, unsigned long address, 619 unsigned long error_code, int breakpt) 620 { 621 current->thread.trap_nr = TRAP_HWBKPT; 622 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 623 11, SIGSEGV) == NOTIFY_STOP) 624 return; 625 626 /* Deliver the signal to userspace */ 627 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 628 (void __user *)address); 629 } 630 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 631 void do_break (struct pt_regs *regs, unsigned long address, 632 unsigned long error_code) 633 { 634 current->thread.trap_nr = TRAP_HWBKPT; 635 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 636 11, SIGSEGV) == NOTIFY_STOP) 637 return; 638 639 if (debugger_break_match(regs)) 640 return; 641 642 /* Clear the breakpoint */ 643 hw_breakpoint_disable(); 644 645 /* Deliver the signal to userspace */ 646 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current); 647 } 648 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 649 650 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 651 652 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 653 /* 654 * Set the debug registers back to their default "safe" values. 655 */ 656 static void set_debug_reg_defaults(struct thread_struct *thread) 657 { 658 thread->debug.iac1 = thread->debug.iac2 = 0; 659 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 660 thread->debug.iac3 = thread->debug.iac4 = 0; 661 #endif 662 thread->debug.dac1 = thread->debug.dac2 = 0; 663 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 664 thread->debug.dvc1 = thread->debug.dvc2 = 0; 665 #endif 666 thread->debug.dbcr0 = 0; 667 #ifdef CONFIG_BOOKE 668 /* 669 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 670 */ 671 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 672 DBCR1_IAC3US | DBCR1_IAC4US; 673 /* 674 * Force Data Address Compare User/Supervisor bits to be User-only 675 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 676 */ 677 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 678 #else 679 thread->debug.dbcr1 = 0; 680 #endif 681 } 682 683 static void prime_debug_regs(struct debug_reg *debug) 684 { 685 /* 686 * We could have inherited MSR_DE from userspace, since 687 * it doesn't get cleared on exception entry. Make sure 688 * MSR_DE is clear before we enable any debug events. 689 */ 690 mtmsr(mfmsr() & ~MSR_DE); 691 692 mtspr(SPRN_IAC1, debug->iac1); 693 mtspr(SPRN_IAC2, debug->iac2); 694 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 695 mtspr(SPRN_IAC3, debug->iac3); 696 mtspr(SPRN_IAC4, debug->iac4); 697 #endif 698 mtspr(SPRN_DAC1, debug->dac1); 699 mtspr(SPRN_DAC2, debug->dac2); 700 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 701 mtspr(SPRN_DVC1, debug->dvc1); 702 mtspr(SPRN_DVC2, debug->dvc2); 703 #endif 704 mtspr(SPRN_DBCR0, debug->dbcr0); 705 mtspr(SPRN_DBCR1, debug->dbcr1); 706 #ifdef CONFIG_BOOKE 707 mtspr(SPRN_DBCR2, debug->dbcr2); 708 #endif 709 } 710 /* 711 * Unless neither the old or new thread are making use of the 712 * debug registers, set the debug registers from the values 713 * stored in the new thread. 714 */ 715 void switch_booke_debug_regs(struct debug_reg *new_debug) 716 { 717 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 718 || (new_debug->dbcr0 & DBCR0_IDM)) 719 prime_debug_regs(new_debug); 720 } 721 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 722 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 723 #ifndef CONFIG_HAVE_HW_BREAKPOINT 724 static void set_breakpoint(struct arch_hw_breakpoint *brk) 725 { 726 preempt_disable(); 727 __set_breakpoint(brk); 728 preempt_enable(); 729 } 730 731 static void set_debug_reg_defaults(struct thread_struct *thread) 732 { 733 thread->hw_brk.address = 0; 734 thread->hw_brk.type = 0; 735 if (ppc_breakpoint_available()) 736 set_breakpoint(&thread->hw_brk); 737 } 738 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 739 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 740 741 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 743 { 744 mtspr(SPRN_DAC1, dabr); 745 #ifdef CONFIG_PPC_47x 746 isync(); 747 #endif 748 return 0; 749 } 750 #elif defined(CONFIG_PPC_BOOK3S) 751 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 752 { 753 mtspr(SPRN_DABR, dabr); 754 if (cpu_has_feature(CPU_FTR_DABRX)) 755 mtspr(SPRN_DABRX, dabrx); 756 return 0; 757 } 758 #elif defined(CONFIG_PPC_8xx) 759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 760 { 761 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 762 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 763 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 764 765 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 766 lctrl1 |= 0xa0000; 767 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 768 lctrl1 |= 0xf0000; 769 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 770 lctrl2 = 0; 771 772 mtspr(SPRN_LCTRL2, 0); 773 mtspr(SPRN_CMPE, addr); 774 mtspr(SPRN_CMPF, addr + 4); 775 mtspr(SPRN_LCTRL1, lctrl1); 776 mtspr(SPRN_LCTRL2, lctrl2); 777 778 return 0; 779 } 780 #else 781 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 782 { 783 return -EINVAL; 784 } 785 #endif 786 787 static inline int set_dabr(struct arch_hw_breakpoint *brk) 788 { 789 unsigned long dabr, dabrx; 790 791 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 792 dabrx = ((brk->type >> 3) & 0x7); 793 794 if (ppc_md.set_dabr) 795 return ppc_md.set_dabr(dabr, dabrx); 796 797 return __set_dabr(dabr, dabrx); 798 } 799 800 int set_dawr(struct arch_hw_breakpoint *brk) 801 { 802 unsigned long dawr, dawrx, mrd; 803 804 dawr = brk->address; 805 806 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 807 << (63 - 58); //* read/write bits */ 808 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 809 << (63 - 59); //* translate */ 810 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 811 >> 3; //* PRIM bits */ 812 /* dawr length is stored in field MDR bits 48:53. Matches range in 813 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 814 0b111111=64DW. 815 brk->len is in bytes. 816 This aligns up to double word size, shifts and does the bias. 817 */ 818 mrd = ((brk->len + 7) >> 3) - 1; 819 dawrx |= (mrd & 0x3f) << (63 - 53); 820 821 if (ppc_md.set_dawr) 822 return ppc_md.set_dawr(dawr, dawrx); 823 mtspr(SPRN_DAWR, dawr); 824 mtspr(SPRN_DAWRX, dawrx); 825 return 0; 826 } 827 828 void __set_breakpoint(struct arch_hw_breakpoint *brk) 829 { 830 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 831 832 if (dawr_enabled()) 833 // Power8 or later 834 set_dawr(brk); 835 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 836 // Power7 or earlier 837 set_dabr(brk); 838 else 839 // Shouldn't happen due to higher level checks 840 WARN_ON_ONCE(1); 841 } 842 843 /* Check if we have DAWR or DABR hardware */ 844 bool ppc_breakpoint_available(void) 845 { 846 if (dawr_enabled()) 847 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 848 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 849 return false; /* POWER9 with DAWR disabled */ 850 /* DABR: Everything but POWER8 and POWER9 */ 851 return true; 852 } 853 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 854 855 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 856 struct arch_hw_breakpoint *b) 857 { 858 if (a->address != b->address) 859 return false; 860 if (a->type != b->type) 861 return false; 862 if (a->len != b->len) 863 return false; 864 return true; 865 } 866 867 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 868 869 static inline bool tm_enabled(struct task_struct *tsk) 870 { 871 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 872 } 873 874 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 875 { 876 /* 877 * Use the current MSR TM suspended bit to track if we have 878 * checkpointed state outstanding. 879 * On signal delivery, we'd normally reclaim the checkpointed 880 * state to obtain stack pointer (see:get_tm_stackpointer()). 881 * This will then directly return to userspace without going 882 * through __switch_to(). However, if the stack frame is bad, 883 * we need to exit this thread which calls __switch_to() which 884 * will again attempt to reclaim the already saved tm state. 885 * Hence we need to check that we've not already reclaimed 886 * this state. 887 * We do this using the current MSR, rather tracking it in 888 * some specific thread_struct bit, as it has the additional 889 * benefit of checking for a potential TM bad thing exception. 890 */ 891 if (!MSR_TM_SUSPENDED(mfmsr())) 892 return; 893 894 giveup_all(container_of(thr, struct task_struct, thread)); 895 896 tm_reclaim(thr, cause); 897 898 /* 899 * If we are in a transaction and FP is off then we can't have 900 * used FP inside that transaction. Hence the checkpointed 901 * state is the same as the live state. We need to copy the 902 * live state to the checkpointed state so that when the 903 * transaction is restored, the checkpointed state is correct 904 * and the aborted transaction sees the correct state. We use 905 * ckpt_regs.msr here as that's what tm_reclaim will use to 906 * determine if it's going to write the checkpointed state or 907 * not. So either this will write the checkpointed registers, 908 * or reclaim will. Similarly for VMX. 909 */ 910 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 911 memcpy(&thr->ckfp_state, &thr->fp_state, 912 sizeof(struct thread_fp_state)); 913 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 914 memcpy(&thr->ckvr_state, &thr->vr_state, 915 sizeof(struct thread_vr_state)); 916 } 917 918 void tm_reclaim_current(uint8_t cause) 919 { 920 tm_enable(); 921 tm_reclaim_thread(¤t->thread, cause); 922 } 923 924 static inline void tm_reclaim_task(struct task_struct *tsk) 925 { 926 /* We have to work out if we're switching from/to a task that's in the 927 * middle of a transaction. 928 * 929 * In switching we need to maintain a 2nd register state as 930 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 931 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 932 * ckvr_state 933 * 934 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 935 */ 936 struct thread_struct *thr = &tsk->thread; 937 938 if (!thr->regs) 939 return; 940 941 if (!MSR_TM_ACTIVE(thr->regs->msr)) 942 goto out_and_saveregs; 943 944 WARN_ON(tm_suspend_disabled); 945 946 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 947 "ccr=%lx, msr=%lx, trap=%lx)\n", 948 tsk->pid, thr->regs->nip, 949 thr->regs->ccr, thr->regs->msr, 950 thr->regs->trap); 951 952 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 953 954 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 955 tsk->pid); 956 957 out_and_saveregs: 958 /* Always save the regs here, even if a transaction's not active. 959 * This context-switches a thread's TM info SPRs. We do it here to 960 * be consistent with the restore path (in recheckpoint) which 961 * cannot happen later in _switch(). 962 */ 963 tm_save_sprs(thr); 964 } 965 966 extern void __tm_recheckpoint(struct thread_struct *thread); 967 968 void tm_recheckpoint(struct thread_struct *thread) 969 { 970 unsigned long flags; 971 972 if (!(thread->regs->msr & MSR_TM)) 973 return; 974 975 /* We really can't be interrupted here as the TEXASR registers can't 976 * change and later in the trecheckpoint code, we have a userspace R1. 977 * So let's hard disable over this region. 978 */ 979 local_irq_save(flags); 980 hard_irq_disable(); 981 982 /* The TM SPRs are restored here, so that TEXASR.FS can be set 983 * before the trecheckpoint and no explosion occurs. 984 */ 985 tm_restore_sprs(thread); 986 987 __tm_recheckpoint(thread); 988 989 local_irq_restore(flags); 990 } 991 992 static inline void tm_recheckpoint_new_task(struct task_struct *new) 993 { 994 if (!cpu_has_feature(CPU_FTR_TM)) 995 return; 996 997 /* Recheckpoint the registers of the thread we're about to switch to. 998 * 999 * If the task was using FP, we non-lazily reload both the original and 1000 * the speculative FP register states. This is because the kernel 1001 * doesn't see if/when a TM rollback occurs, so if we take an FP 1002 * unavailable later, we are unable to determine which set of FP regs 1003 * need to be restored. 1004 */ 1005 if (!tm_enabled(new)) 1006 return; 1007 1008 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1009 tm_restore_sprs(&new->thread); 1010 return; 1011 } 1012 /* Recheckpoint to restore original checkpointed register state. */ 1013 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1014 new->pid, new->thread.regs->msr); 1015 1016 tm_recheckpoint(&new->thread); 1017 1018 /* 1019 * The checkpointed state has been restored but the live state has 1020 * not, ensure all the math functionality is turned off to trigger 1021 * restore_math() to reload. 1022 */ 1023 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1024 1025 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1026 "(kernel msr 0x%lx)\n", 1027 new->pid, mfmsr()); 1028 } 1029 1030 static inline void __switch_to_tm(struct task_struct *prev, 1031 struct task_struct *new) 1032 { 1033 if (cpu_has_feature(CPU_FTR_TM)) { 1034 if (tm_enabled(prev) || tm_enabled(new)) 1035 tm_enable(); 1036 1037 if (tm_enabled(prev)) { 1038 prev->thread.load_tm++; 1039 tm_reclaim_task(prev); 1040 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1041 prev->thread.regs->msr &= ~MSR_TM; 1042 } 1043 1044 tm_recheckpoint_new_task(new); 1045 } 1046 } 1047 1048 /* 1049 * This is called if we are on the way out to userspace and the 1050 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1051 * FP and/or vector state and does so if necessary. 1052 * If userspace is inside a transaction (whether active or 1053 * suspended) and FP/VMX/VSX instructions have ever been enabled 1054 * inside that transaction, then we have to keep them enabled 1055 * and keep the FP/VMX/VSX state loaded while ever the transaction 1056 * continues. The reason is that if we didn't, and subsequently 1057 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1058 * we don't know whether it's the same transaction, and thus we 1059 * don't know which of the checkpointed state and the transactional 1060 * state to use. 1061 */ 1062 void restore_tm_state(struct pt_regs *regs) 1063 { 1064 unsigned long msr_diff; 1065 1066 /* 1067 * This is the only moment we should clear TIF_RESTORE_TM as 1068 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1069 * again, anything else could lead to an incorrect ckpt_msr being 1070 * saved and therefore incorrect signal contexts. 1071 */ 1072 clear_thread_flag(TIF_RESTORE_TM); 1073 if (!MSR_TM_ACTIVE(regs->msr)) 1074 return; 1075 1076 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1077 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1078 1079 /* Ensure that restore_math() will restore */ 1080 if (msr_diff & MSR_FP) 1081 current->thread.load_fp = 1; 1082 #ifdef CONFIG_ALTIVEC 1083 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1084 current->thread.load_vec = 1; 1085 #endif 1086 restore_math(regs); 1087 1088 regs->msr |= msr_diff; 1089 } 1090 1091 #else 1092 #define tm_recheckpoint_new_task(new) 1093 #define __switch_to_tm(prev, new) 1094 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1095 1096 static inline void save_sprs(struct thread_struct *t) 1097 { 1098 #ifdef CONFIG_ALTIVEC 1099 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1100 t->vrsave = mfspr(SPRN_VRSAVE); 1101 #endif 1102 #ifdef CONFIG_PPC_BOOK3S_64 1103 if (cpu_has_feature(CPU_FTR_DSCR)) 1104 t->dscr = mfspr(SPRN_DSCR); 1105 1106 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1107 t->bescr = mfspr(SPRN_BESCR); 1108 t->ebbhr = mfspr(SPRN_EBBHR); 1109 t->ebbrr = mfspr(SPRN_EBBRR); 1110 1111 t->fscr = mfspr(SPRN_FSCR); 1112 1113 /* 1114 * Note that the TAR is not available for use in the kernel. 1115 * (To provide this, the TAR should be backed up/restored on 1116 * exception entry/exit instead, and be in pt_regs. FIXME, 1117 * this should be in pt_regs anyway (for debug).) 1118 */ 1119 t->tar = mfspr(SPRN_TAR); 1120 } 1121 #endif 1122 1123 thread_pkey_regs_save(t); 1124 } 1125 1126 static inline void restore_sprs(struct thread_struct *old_thread, 1127 struct thread_struct *new_thread) 1128 { 1129 #ifdef CONFIG_ALTIVEC 1130 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1131 old_thread->vrsave != new_thread->vrsave) 1132 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1133 #endif 1134 #ifdef CONFIG_PPC_BOOK3S_64 1135 if (cpu_has_feature(CPU_FTR_DSCR)) { 1136 u64 dscr = get_paca()->dscr_default; 1137 if (new_thread->dscr_inherit) 1138 dscr = new_thread->dscr; 1139 1140 if (old_thread->dscr != dscr) 1141 mtspr(SPRN_DSCR, dscr); 1142 } 1143 1144 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1145 if (old_thread->bescr != new_thread->bescr) 1146 mtspr(SPRN_BESCR, new_thread->bescr); 1147 if (old_thread->ebbhr != new_thread->ebbhr) 1148 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1149 if (old_thread->ebbrr != new_thread->ebbrr) 1150 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1151 1152 if (old_thread->fscr != new_thread->fscr) 1153 mtspr(SPRN_FSCR, new_thread->fscr); 1154 1155 if (old_thread->tar != new_thread->tar) 1156 mtspr(SPRN_TAR, new_thread->tar); 1157 } 1158 1159 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1160 old_thread->tidr != new_thread->tidr) 1161 mtspr(SPRN_TIDR, new_thread->tidr); 1162 #endif 1163 1164 thread_pkey_regs_restore(new_thread, old_thread); 1165 } 1166 1167 struct task_struct *__switch_to(struct task_struct *prev, 1168 struct task_struct *new) 1169 { 1170 struct thread_struct *new_thread, *old_thread; 1171 struct task_struct *last; 1172 #ifdef CONFIG_PPC_BOOK3S_64 1173 struct ppc64_tlb_batch *batch; 1174 #endif 1175 1176 new_thread = &new->thread; 1177 old_thread = ¤t->thread; 1178 1179 WARN_ON(!irqs_disabled()); 1180 1181 #ifdef CONFIG_PPC_BOOK3S_64 1182 batch = this_cpu_ptr(&ppc64_tlb_batch); 1183 if (batch->active) { 1184 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1185 if (batch->index) 1186 __flush_tlb_pending(batch); 1187 batch->active = 0; 1188 } 1189 #endif /* CONFIG_PPC_BOOK3S_64 */ 1190 1191 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1192 switch_booke_debug_regs(&new->thread.debug); 1193 #else 1194 /* 1195 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1196 * schedule DABR 1197 */ 1198 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1199 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1200 __set_breakpoint(&new->thread.hw_brk); 1201 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1202 #endif 1203 1204 /* 1205 * We need to save SPRs before treclaim/trecheckpoint as these will 1206 * change a number of them. 1207 */ 1208 save_sprs(&prev->thread); 1209 1210 /* Save FPU, Altivec, VSX and SPE state */ 1211 giveup_all(prev); 1212 1213 __switch_to_tm(prev, new); 1214 1215 if (!radix_enabled()) { 1216 /* 1217 * We can't take a PMU exception inside _switch() since there 1218 * is a window where the kernel stack SLB and the kernel stack 1219 * are out of sync. Hard disable here. 1220 */ 1221 hard_irq_disable(); 1222 } 1223 1224 /* 1225 * Call restore_sprs() before calling _switch(). If we move it after 1226 * _switch() then we miss out on calling it for new tasks. The reason 1227 * for this is we manually create a stack frame for new tasks that 1228 * directly returns through ret_from_fork() or 1229 * ret_from_kernel_thread(). See copy_thread() for details. 1230 */ 1231 restore_sprs(old_thread, new_thread); 1232 1233 last = _switch(old_thread, new_thread); 1234 1235 #ifdef CONFIG_PPC_BOOK3S_64 1236 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1237 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1238 batch = this_cpu_ptr(&ppc64_tlb_batch); 1239 batch->active = 1; 1240 } 1241 1242 if (current->thread.regs) { 1243 restore_math(current->thread.regs); 1244 1245 /* 1246 * The copy-paste buffer can only store into foreign real 1247 * addresses, so unprivileged processes can not see the 1248 * data or use it in any way unless they have foreign real 1249 * mappings. If the new process has the foreign real address 1250 * mappings, we must issue a cp_abort to clear any state and 1251 * prevent snooping, corruption or a covert channel. 1252 */ 1253 if (current->thread.used_vas) 1254 asm volatile(PPC_CP_ABORT); 1255 } 1256 #endif /* CONFIG_PPC_BOOK3S_64 */ 1257 1258 return last; 1259 } 1260 1261 #define NR_INSN_TO_PRINT 16 1262 1263 static void show_instructions(struct pt_regs *regs) 1264 { 1265 int i; 1266 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1267 1268 printk("Instruction dump:"); 1269 1270 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1271 int instr; 1272 1273 if (!(i % 8)) 1274 pr_cont("\n"); 1275 1276 #if !defined(CONFIG_BOOKE) 1277 /* If executing with the IMMU off, adjust pc rather 1278 * than print XXXXXXXX. 1279 */ 1280 if (!(regs->msr & MSR_IR)) 1281 pc = (unsigned long)phys_to_virt(pc); 1282 #endif 1283 1284 if (!__kernel_text_address(pc) || 1285 probe_kernel_address((const void *)pc, instr)) { 1286 pr_cont("XXXXXXXX "); 1287 } else { 1288 if (regs->nip == pc) 1289 pr_cont("<%08x> ", instr); 1290 else 1291 pr_cont("%08x ", instr); 1292 } 1293 1294 pc += sizeof(int); 1295 } 1296 1297 pr_cont("\n"); 1298 } 1299 1300 void show_user_instructions(struct pt_regs *regs) 1301 { 1302 unsigned long pc; 1303 int n = NR_INSN_TO_PRINT; 1304 struct seq_buf s; 1305 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1306 1307 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1308 1309 /* 1310 * Make sure the NIP points at userspace, not kernel text/data or 1311 * elsewhere. 1312 */ 1313 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1314 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1315 current->comm, current->pid); 1316 return; 1317 } 1318 1319 seq_buf_init(&s, buf, sizeof(buf)); 1320 1321 while (n) { 1322 int i; 1323 1324 seq_buf_clear(&s); 1325 1326 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1327 int instr; 1328 1329 if (probe_kernel_address((const void *)pc, instr)) { 1330 seq_buf_printf(&s, "XXXXXXXX "); 1331 continue; 1332 } 1333 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1334 } 1335 1336 if (!seq_buf_has_overflowed(&s)) 1337 pr_info("%s[%d]: code: %s\n", current->comm, 1338 current->pid, s.buffer); 1339 } 1340 } 1341 1342 struct regbit { 1343 unsigned long bit; 1344 const char *name; 1345 }; 1346 1347 static struct regbit msr_bits[] = { 1348 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1349 {MSR_SF, "SF"}, 1350 {MSR_HV, "HV"}, 1351 #endif 1352 {MSR_VEC, "VEC"}, 1353 {MSR_VSX, "VSX"}, 1354 #ifdef CONFIG_BOOKE 1355 {MSR_CE, "CE"}, 1356 #endif 1357 {MSR_EE, "EE"}, 1358 {MSR_PR, "PR"}, 1359 {MSR_FP, "FP"}, 1360 {MSR_ME, "ME"}, 1361 #ifdef CONFIG_BOOKE 1362 {MSR_DE, "DE"}, 1363 #else 1364 {MSR_SE, "SE"}, 1365 {MSR_BE, "BE"}, 1366 #endif 1367 {MSR_IR, "IR"}, 1368 {MSR_DR, "DR"}, 1369 {MSR_PMM, "PMM"}, 1370 #ifndef CONFIG_BOOKE 1371 {MSR_RI, "RI"}, 1372 {MSR_LE, "LE"}, 1373 #endif 1374 {0, NULL} 1375 }; 1376 1377 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1378 { 1379 const char *s = ""; 1380 1381 for (; bits->bit; ++bits) 1382 if (val & bits->bit) { 1383 pr_cont("%s%s", s, bits->name); 1384 s = sep; 1385 } 1386 } 1387 1388 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1389 static struct regbit msr_tm_bits[] = { 1390 {MSR_TS_T, "T"}, 1391 {MSR_TS_S, "S"}, 1392 {MSR_TM, "E"}, 1393 {0, NULL} 1394 }; 1395 1396 static void print_tm_bits(unsigned long val) 1397 { 1398 /* 1399 * This only prints something if at least one of the TM bit is set. 1400 * Inside the TM[], the output means: 1401 * E: Enabled (bit 32) 1402 * S: Suspended (bit 33) 1403 * T: Transactional (bit 34) 1404 */ 1405 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1406 pr_cont(",TM["); 1407 print_bits(val, msr_tm_bits, ""); 1408 pr_cont("]"); 1409 } 1410 } 1411 #else 1412 static void print_tm_bits(unsigned long val) {} 1413 #endif 1414 1415 static void print_msr_bits(unsigned long val) 1416 { 1417 pr_cont("<"); 1418 print_bits(val, msr_bits, ","); 1419 print_tm_bits(val); 1420 pr_cont(">"); 1421 } 1422 1423 #ifdef CONFIG_PPC64 1424 #define REG "%016lx" 1425 #define REGS_PER_LINE 4 1426 #define LAST_VOLATILE 13 1427 #else 1428 #define REG "%08lx" 1429 #define REGS_PER_LINE 8 1430 #define LAST_VOLATILE 12 1431 #endif 1432 1433 void show_regs(struct pt_regs * regs) 1434 { 1435 int i, trap; 1436 1437 show_regs_print_info(KERN_DEFAULT); 1438 1439 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1440 regs->nip, regs->link, regs->ctr); 1441 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1442 regs, regs->trap, print_tainted(), init_utsname()->release); 1443 printk("MSR: "REG" ", regs->msr); 1444 print_msr_bits(regs->msr); 1445 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1446 trap = TRAP(regs); 1447 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1448 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1449 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1450 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1451 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1452 #else 1453 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1454 #endif 1455 #ifdef CONFIG_PPC64 1456 pr_cont("IRQMASK: %lx ", regs->softe); 1457 #endif 1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1459 if (MSR_TM_ACTIVE(regs->msr)) 1460 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1461 #endif 1462 1463 for (i = 0; i < 32; i++) { 1464 if ((i % REGS_PER_LINE) == 0) 1465 pr_cont("\nGPR%02d: ", i); 1466 pr_cont(REG " ", regs->gpr[i]); 1467 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1468 break; 1469 } 1470 pr_cont("\n"); 1471 #ifdef CONFIG_KALLSYMS 1472 /* 1473 * Lookup NIP late so we have the best change of getting the 1474 * above info out without failing 1475 */ 1476 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1477 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1478 #endif 1479 show_stack(current, (unsigned long *) regs->gpr[1]); 1480 if (!user_mode(regs)) 1481 show_instructions(regs); 1482 } 1483 1484 void flush_thread(void) 1485 { 1486 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1487 flush_ptrace_hw_breakpoint(current); 1488 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1489 set_debug_reg_defaults(¤t->thread); 1490 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1491 } 1492 1493 #ifdef CONFIG_PPC_BOOK3S_64 1494 void arch_setup_new_exec(void) 1495 { 1496 if (radix_enabled()) 1497 return; 1498 hash__setup_new_exec(); 1499 } 1500 #endif 1501 1502 int set_thread_uses_vas(void) 1503 { 1504 #ifdef CONFIG_PPC_BOOK3S_64 1505 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1506 return -EINVAL; 1507 1508 current->thread.used_vas = 1; 1509 1510 /* 1511 * Even a process that has no foreign real address mapping can use 1512 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1513 * to clear any pending COPY and prevent a covert channel. 1514 * 1515 * __switch_to() will issue CP_ABORT on future context switches. 1516 */ 1517 asm volatile(PPC_CP_ABORT); 1518 1519 #endif /* CONFIG_PPC_BOOK3S_64 */ 1520 return 0; 1521 } 1522 1523 #ifdef CONFIG_PPC64 1524 /** 1525 * Assign a TIDR (thread ID) for task @t and set it in the thread 1526 * structure. For now, we only support setting TIDR for 'current' task. 1527 * 1528 * Since the TID value is a truncated form of it PID, it is possible 1529 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1530 * that 2 threads share the same TID and are waiting, one of the following 1531 * cases will happen: 1532 * 1533 * 1. The correct thread is running, the wrong thread is not 1534 * In this situation, the correct thread is woken and proceeds to pass it's 1535 * condition check. 1536 * 1537 * 2. Neither threads are running 1538 * In this situation, neither thread will be woken. When scheduled, the waiting 1539 * threads will execute either a wait, which will return immediately, followed 1540 * by a condition check, which will pass for the correct thread and fail 1541 * for the wrong thread, or they will execute the condition check immediately. 1542 * 1543 * 3. The wrong thread is running, the correct thread is not 1544 * The wrong thread will be woken, but will fail it's condition check and 1545 * re-execute wait. The correct thread, when scheduled, will execute either 1546 * it's condition check (which will pass), or wait, which returns immediately 1547 * when called the first time after the thread is scheduled, followed by it's 1548 * condition check (which will pass). 1549 * 1550 * 4. Both threads are running 1551 * Both threads will be woken. The wrong thread will fail it's condition check 1552 * and execute another wait, while the correct thread will pass it's condition 1553 * check. 1554 * 1555 * @t: the task to set the thread ID for 1556 */ 1557 int set_thread_tidr(struct task_struct *t) 1558 { 1559 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1560 return -EINVAL; 1561 1562 if (t != current) 1563 return -EINVAL; 1564 1565 if (t->thread.tidr) 1566 return 0; 1567 1568 t->thread.tidr = (u16)task_pid_nr(t); 1569 mtspr(SPRN_TIDR, t->thread.tidr); 1570 1571 return 0; 1572 } 1573 EXPORT_SYMBOL_GPL(set_thread_tidr); 1574 1575 #endif /* CONFIG_PPC64 */ 1576 1577 void 1578 release_thread(struct task_struct *t) 1579 { 1580 } 1581 1582 /* 1583 * this gets called so that we can store coprocessor state into memory and 1584 * copy the current task into the new thread. 1585 */ 1586 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1587 { 1588 flush_all_to_thread(src); 1589 /* 1590 * Flush TM state out so we can copy it. __switch_to_tm() does this 1591 * flush but it removes the checkpointed state from the current CPU and 1592 * transitions the CPU out of TM mode. Hence we need to call 1593 * tm_recheckpoint_new_task() (on the same task) to restore the 1594 * checkpointed state back and the TM mode. 1595 * 1596 * Can't pass dst because it isn't ready. Doesn't matter, passing 1597 * dst is only important for __switch_to() 1598 */ 1599 __switch_to_tm(src, src); 1600 1601 *dst = *src; 1602 1603 clear_task_ebb(dst); 1604 1605 return 0; 1606 } 1607 1608 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1609 { 1610 #ifdef CONFIG_PPC_BOOK3S_64 1611 unsigned long sp_vsid; 1612 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1613 1614 if (radix_enabled()) 1615 return; 1616 1617 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1618 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1619 << SLB_VSID_SHIFT_1T; 1620 else 1621 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1622 << SLB_VSID_SHIFT; 1623 sp_vsid |= SLB_VSID_KERNEL | llp; 1624 p->thread.ksp_vsid = sp_vsid; 1625 #endif 1626 } 1627 1628 /* 1629 * Copy a thread.. 1630 */ 1631 1632 /* 1633 * Copy architecture-specific thread state 1634 */ 1635 int copy_thread(unsigned long clone_flags, unsigned long usp, 1636 unsigned long kthread_arg, struct task_struct *p) 1637 { 1638 struct pt_regs *childregs, *kregs; 1639 extern void ret_from_fork(void); 1640 extern void ret_from_kernel_thread(void); 1641 void (*f)(void); 1642 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1643 struct thread_info *ti = task_thread_info(p); 1644 1645 klp_init_thread_info(p); 1646 1647 /* Copy registers */ 1648 sp -= sizeof(struct pt_regs); 1649 childregs = (struct pt_regs *) sp; 1650 if (unlikely(p->flags & PF_KTHREAD)) { 1651 /* kernel thread */ 1652 memset(childregs, 0, sizeof(struct pt_regs)); 1653 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1654 /* function */ 1655 if (usp) 1656 childregs->gpr[14] = ppc_function_entry((void *)usp); 1657 #ifdef CONFIG_PPC64 1658 clear_tsk_thread_flag(p, TIF_32BIT); 1659 childregs->softe = IRQS_ENABLED; 1660 #endif 1661 childregs->gpr[15] = kthread_arg; 1662 p->thread.regs = NULL; /* no user register state */ 1663 ti->flags |= _TIF_RESTOREALL; 1664 f = ret_from_kernel_thread; 1665 } else { 1666 /* user thread */ 1667 struct pt_regs *regs = current_pt_regs(); 1668 CHECK_FULL_REGS(regs); 1669 *childregs = *regs; 1670 if (usp) 1671 childregs->gpr[1] = usp; 1672 p->thread.regs = childregs; 1673 childregs->gpr[3] = 0; /* Result from fork() */ 1674 if (clone_flags & CLONE_SETTLS) { 1675 #ifdef CONFIG_PPC64 1676 if (!is_32bit_task()) 1677 childregs->gpr[13] = childregs->gpr[6]; 1678 else 1679 #endif 1680 childregs->gpr[2] = childregs->gpr[6]; 1681 } 1682 1683 f = ret_from_fork; 1684 } 1685 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1686 sp -= STACK_FRAME_OVERHEAD; 1687 1688 /* 1689 * The way this works is that at some point in the future 1690 * some task will call _switch to switch to the new task. 1691 * That will pop off the stack frame created below and start 1692 * the new task running at ret_from_fork. The new task will 1693 * do some house keeping and then return from the fork or clone 1694 * system call, using the stack frame created above. 1695 */ 1696 ((unsigned long *)sp)[0] = 0; 1697 sp -= sizeof(struct pt_regs); 1698 kregs = (struct pt_regs *) sp; 1699 sp -= STACK_FRAME_OVERHEAD; 1700 p->thread.ksp = sp; 1701 #ifdef CONFIG_PPC32 1702 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1703 #endif 1704 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1705 p->thread.ptrace_bps[0] = NULL; 1706 #endif 1707 1708 p->thread.fp_save_area = NULL; 1709 #ifdef CONFIG_ALTIVEC 1710 p->thread.vr_save_area = NULL; 1711 #endif 1712 1713 setup_ksp_vsid(p, sp); 1714 1715 #ifdef CONFIG_PPC64 1716 if (cpu_has_feature(CPU_FTR_DSCR)) { 1717 p->thread.dscr_inherit = current->thread.dscr_inherit; 1718 p->thread.dscr = mfspr(SPRN_DSCR); 1719 } 1720 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1721 childregs->ppr = DEFAULT_PPR; 1722 1723 p->thread.tidr = 0; 1724 #endif 1725 kregs->nip = ppc_function_entry(f); 1726 return 0; 1727 } 1728 1729 void preload_new_slb_context(unsigned long start, unsigned long sp); 1730 1731 /* 1732 * Set up a thread for executing a new program 1733 */ 1734 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1735 { 1736 #ifdef CONFIG_PPC64 1737 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1738 1739 #ifdef CONFIG_PPC_BOOK3S_64 1740 if (!radix_enabled()) 1741 preload_new_slb_context(start, sp); 1742 #endif 1743 #endif 1744 1745 /* 1746 * If we exec out of a kernel thread then thread.regs will not be 1747 * set. Do it now. 1748 */ 1749 if (!current->thread.regs) { 1750 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1751 current->thread.regs = regs - 1; 1752 } 1753 1754 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1755 /* 1756 * Clear any transactional state, we're exec()ing. The cause is 1757 * not important as there will never be a recheckpoint so it's not 1758 * user visible. 1759 */ 1760 if (MSR_TM_SUSPENDED(mfmsr())) 1761 tm_reclaim_current(0); 1762 #endif 1763 1764 memset(regs->gpr, 0, sizeof(regs->gpr)); 1765 regs->ctr = 0; 1766 regs->link = 0; 1767 regs->xer = 0; 1768 regs->ccr = 0; 1769 regs->gpr[1] = sp; 1770 1771 /* 1772 * We have just cleared all the nonvolatile GPRs, so make 1773 * FULL_REGS(regs) return true. This is necessary to allow 1774 * ptrace to examine the thread immediately after exec. 1775 */ 1776 regs->trap &= ~1UL; 1777 1778 #ifdef CONFIG_PPC32 1779 regs->mq = 0; 1780 regs->nip = start; 1781 regs->msr = MSR_USER; 1782 #else 1783 if (!is_32bit_task()) { 1784 unsigned long entry; 1785 1786 if (is_elf2_task()) { 1787 /* Look ma, no function descriptors! */ 1788 entry = start; 1789 1790 /* 1791 * Ulrich says: 1792 * The latest iteration of the ABI requires that when 1793 * calling a function (at its global entry point), 1794 * the caller must ensure r12 holds the entry point 1795 * address (so that the function can quickly 1796 * establish addressability). 1797 */ 1798 regs->gpr[12] = start; 1799 /* Make sure that's restored on entry to userspace. */ 1800 set_thread_flag(TIF_RESTOREALL); 1801 } else { 1802 unsigned long toc; 1803 1804 /* start is a relocated pointer to the function 1805 * descriptor for the elf _start routine. The first 1806 * entry in the function descriptor is the entry 1807 * address of _start and the second entry is the TOC 1808 * value we need to use. 1809 */ 1810 __get_user(entry, (unsigned long __user *)start); 1811 __get_user(toc, (unsigned long __user *)start+1); 1812 1813 /* Check whether the e_entry function descriptor entries 1814 * need to be relocated before we can use them. 1815 */ 1816 if (load_addr != 0) { 1817 entry += load_addr; 1818 toc += load_addr; 1819 } 1820 regs->gpr[2] = toc; 1821 } 1822 regs->nip = entry; 1823 regs->msr = MSR_USER64; 1824 } else { 1825 regs->nip = start; 1826 regs->gpr[2] = 0; 1827 regs->msr = MSR_USER32; 1828 } 1829 #endif 1830 #ifdef CONFIG_VSX 1831 current->thread.used_vsr = 0; 1832 #endif 1833 current->thread.load_slb = 0; 1834 current->thread.load_fp = 0; 1835 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1836 current->thread.fp_save_area = NULL; 1837 #ifdef CONFIG_ALTIVEC 1838 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1839 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1840 current->thread.vr_save_area = NULL; 1841 current->thread.vrsave = 0; 1842 current->thread.used_vr = 0; 1843 current->thread.load_vec = 0; 1844 #endif /* CONFIG_ALTIVEC */ 1845 #ifdef CONFIG_SPE 1846 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1847 current->thread.acc = 0; 1848 current->thread.spefscr = 0; 1849 current->thread.used_spe = 0; 1850 #endif /* CONFIG_SPE */ 1851 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1852 current->thread.tm_tfhar = 0; 1853 current->thread.tm_texasr = 0; 1854 current->thread.tm_tfiar = 0; 1855 current->thread.load_tm = 0; 1856 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1857 1858 thread_pkey_regs_init(¤t->thread); 1859 } 1860 EXPORT_SYMBOL(start_thread); 1861 1862 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1863 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1864 1865 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1866 { 1867 struct pt_regs *regs = tsk->thread.regs; 1868 1869 /* This is a bit hairy. If we are an SPE enabled processor 1870 * (have embedded fp) we store the IEEE exception enable flags in 1871 * fpexc_mode. fpexc_mode is also used for setting FP exception 1872 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1873 if (val & PR_FP_EXC_SW_ENABLE) { 1874 #ifdef CONFIG_SPE 1875 if (cpu_has_feature(CPU_FTR_SPE)) { 1876 /* 1877 * When the sticky exception bits are set 1878 * directly by userspace, it must call prctl 1879 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1880 * in the existing prctl settings) or 1881 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1882 * the bits being set). <fenv.h> functions 1883 * saving and restoring the whole 1884 * floating-point environment need to do so 1885 * anyway to restore the prctl settings from 1886 * the saved environment. 1887 */ 1888 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1889 tsk->thread.fpexc_mode = val & 1890 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1891 return 0; 1892 } else { 1893 return -EINVAL; 1894 } 1895 #else 1896 return -EINVAL; 1897 #endif 1898 } 1899 1900 /* on a CONFIG_SPE this does not hurt us. The bits that 1901 * __pack_fe01 use do not overlap with bits used for 1902 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1903 * on CONFIG_SPE implementations are reserved so writing to 1904 * them does not change anything */ 1905 if (val > PR_FP_EXC_PRECISE) 1906 return -EINVAL; 1907 tsk->thread.fpexc_mode = __pack_fe01(val); 1908 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1909 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1910 | tsk->thread.fpexc_mode; 1911 return 0; 1912 } 1913 1914 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1915 { 1916 unsigned int val; 1917 1918 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1919 #ifdef CONFIG_SPE 1920 if (cpu_has_feature(CPU_FTR_SPE)) { 1921 /* 1922 * When the sticky exception bits are set 1923 * directly by userspace, it must call prctl 1924 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1925 * in the existing prctl settings) or 1926 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1927 * the bits being set). <fenv.h> functions 1928 * saving and restoring the whole 1929 * floating-point environment need to do so 1930 * anyway to restore the prctl settings from 1931 * the saved environment. 1932 */ 1933 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1934 val = tsk->thread.fpexc_mode; 1935 } else 1936 return -EINVAL; 1937 #else 1938 return -EINVAL; 1939 #endif 1940 else 1941 val = __unpack_fe01(tsk->thread.fpexc_mode); 1942 return put_user(val, (unsigned int __user *) adr); 1943 } 1944 1945 int set_endian(struct task_struct *tsk, unsigned int val) 1946 { 1947 struct pt_regs *regs = tsk->thread.regs; 1948 1949 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1950 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1951 return -EINVAL; 1952 1953 if (regs == NULL) 1954 return -EINVAL; 1955 1956 if (val == PR_ENDIAN_BIG) 1957 regs->msr &= ~MSR_LE; 1958 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1959 regs->msr |= MSR_LE; 1960 else 1961 return -EINVAL; 1962 1963 return 0; 1964 } 1965 1966 int get_endian(struct task_struct *tsk, unsigned long adr) 1967 { 1968 struct pt_regs *regs = tsk->thread.regs; 1969 unsigned int val; 1970 1971 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1972 !cpu_has_feature(CPU_FTR_REAL_LE)) 1973 return -EINVAL; 1974 1975 if (regs == NULL) 1976 return -EINVAL; 1977 1978 if (regs->msr & MSR_LE) { 1979 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1980 val = PR_ENDIAN_LITTLE; 1981 else 1982 val = PR_ENDIAN_PPC_LITTLE; 1983 } else 1984 val = PR_ENDIAN_BIG; 1985 1986 return put_user(val, (unsigned int __user *)adr); 1987 } 1988 1989 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1990 { 1991 tsk->thread.align_ctl = val; 1992 return 0; 1993 } 1994 1995 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1996 { 1997 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1998 } 1999 2000 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2001 unsigned long nbytes) 2002 { 2003 unsigned long stack_page; 2004 unsigned long cpu = task_cpu(p); 2005 2006 stack_page = (unsigned long)hardirq_ctx[cpu]; 2007 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2008 return 1; 2009 2010 stack_page = (unsigned long)softirq_ctx[cpu]; 2011 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2012 return 1; 2013 2014 return 0; 2015 } 2016 2017 int validate_sp(unsigned long sp, struct task_struct *p, 2018 unsigned long nbytes) 2019 { 2020 unsigned long stack_page = (unsigned long)task_stack_page(p); 2021 2022 if (sp < THREAD_SIZE) 2023 return 0; 2024 2025 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2026 return 1; 2027 2028 return valid_irq_stack(sp, p, nbytes); 2029 } 2030 2031 EXPORT_SYMBOL(validate_sp); 2032 2033 static unsigned long __get_wchan(struct task_struct *p) 2034 { 2035 unsigned long ip, sp; 2036 int count = 0; 2037 2038 if (!p || p == current || p->state == TASK_RUNNING) 2039 return 0; 2040 2041 sp = p->thread.ksp; 2042 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2043 return 0; 2044 2045 do { 2046 sp = *(unsigned long *)sp; 2047 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2048 p->state == TASK_RUNNING) 2049 return 0; 2050 if (count > 0) { 2051 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2052 if (!in_sched_functions(ip)) 2053 return ip; 2054 } 2055 } while (count++ < 16); 2056 return 0; 2057 } 2058 2059 unsigned long get_wchan(struct task_struct *p) 2060 { 2061 unsigned long ret; 2062 2063 if (!try_get_task_stack(p)) 2064 return 0; 2065 2066 ret = __get_wchan(p); 2067 2068 put_task_stack(p); 2069 2070 return ret; 2071 } 2072 2073 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2074 2075 void show_stack(struct task_struct *tsk, unsigned long *stack) 2076 { 2077 unsigned long sp, ip, lr, newsp; 2078 int count = 0; 2079 int firstframe = 1; 2080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2081 struct ftrace_ret_stack *ret_stack; 2082 extern void return_to_handler(void); 2083 unsigned long rth = (unsigned long)return_to_handler; 2084 int curr_frame = 0; 2085 #endif 2086 2087 if (tsk == NULL) 2088 tsk = current; 2089 2090 if (!try_get_task_stack(tsk)) 2091 return; 2092 2093 sp = (unsigned long) stack; 2094 if (sp == 0) { 2095 if (tsk == current) 2096 sp = current_stack_pointer(); 2097 else 2098 sp = tsk->thread.ksp; 2099 } 2100 2101 lr = 0; 2102 printk("Call Trace:\n"); 2103 do { 2104 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2105 break; 2106 2107 stack = (unsigned long *) sp; 2108 newsp = stack[0]; 2109 ip = stack[STACK_FRAME_LR_SAVE]; 2110 if (!firstframe || ip != lr) { 2111 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2112 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2113 if ((ip == rth) && curr_frame >= 0) { 2114 ret_stack = ftrace_graph_get_ret_stack(current, 2115 curr_frame++); 2116 if (ret_stack) 2117 pr_cont(" (%pS)", 2118 (void *)ret_stack->ret); 2119 else 2120 curr_frame = -1; 2121 } 2122 #endif 2123 if (firstframe) 2124 pr_cont(" (unreliable)"); 2125 pr_cont("\n"); 2126 } 2127 firstframe = 0; 2128 2129 /* 2130 * See if this is an exception frame. 2131 * We look for the "regshere" marker in the current frame. 2132 */ 2133 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2134 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2135 struct pt_regs *regs = (struct pt_regs *) 2136 (sp + STACK_FRAME_OVERHEAD); 2137 lr = regs->link; 2138 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2139 regs->trap, (void *)regs->nip, (void *)lr); 2140 firstframe = 1; 2141 } 2142 2143 sp = newsp; 2144 } while (count++ < kstack_depth_to_print); 2145 2146 put_task_stack(tsk); 2147 } 2148 2149 #ifdef CONFIG_PPC64 2150 /* Called with hard IRQs off */ 2151 void notrace __ppc64_runlatch_on(void) 2152 { 2153 struct thread_info *ti = current_thread_info(); 2154 2155 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2156 /* 2157 * Least significant bit (RUN) is the only writable bit of 2158 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2159 * earliest ISA where this is the case, but it's convenient. 2160 */ 2161 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2162 } else { 2163 unsigned long ctrl; 2164 2165 /* 2166 * Some architectures (e.g., Cell) have writable fields other 2167 * than RUN, so do the read-modify-write. 2168 */ 2169 ctrl = mfspr(SPRN_CTRLF); 2170 ctrl |= CTRL_RUNLATCH; 2171 mtspr(SPRN_CTRLT, ctrl); 2172 } 2173 2174 ti->local_flags |= _TLF_RUNLATCH; 2175 } 2176 2177 /* Called with hard IRQs off */ 2178 void notrace __ppc64_runlatch_off(void) 2179 { 2180 struct thread_info *ti = current_thread_info(); 2181 2182 ti->local_flags &= ~_TLF_RUNLATCH; 2183 2184 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2185 mtspr(SPRN_CTRLT, 0); 2186 } else { 2187 unsigned long ctrl; 2188 2189 ctrl = mfspr(SPRN_CTRLF); 2190 ctrl &= ~CTRL_RUNLATCH; 2191 mtspr(SPRN_CTRLT, ctrl); 2192 } 2193 } 2194 #endif /* CONFIG_PPC64 */ 2195 2196 unsigned long arch_align_stack(unsigned long sp) 2197 { 2198 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2199 sp -= get_random_int() & ~PAGE_MASK; 2200 return sp & ~0xf; 2201 } 2202 2203 static inline unsigned long brk_rnd(void) 2204 { 2205 unsigned long rnd = 0; 2206 2207 /* 8MB for 32bit, 1GB for 64bit */ 2208 if (is_32bit_task()) 2209 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2210 else 2211 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2212 2213 return rnd << PAGE_SHIFT; 2214 } 2215 2216 unsigned long arch_randomize_brk(struct mm_struct *mm) 2217 { 2218 unsigned long base = mm->brk; 2219 unsigned long ret; 2220 2221 #ifdef CONFIG_PPC_BOOK3S_64 2222 /* 2223 * If we are using 1TB segments and we are allowed to randomise 2224 * the heap, we can put it above 1TB so it is backed by a 1TB 2225 * segment. Otherwise the heap will be in the bottom 1TB 2226 * which always uses 256MB segments and this may result in a 2227 * performance penalty. We don't need to worry about radix. For 2228 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2229 */ 2230 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2231 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2232 #endif 2233 2234 ret = PAGE_ALIGN(base + brk_rnd()); 2235 2236 if (ret < mm->brk) 2237 return mm->brk; 2238 2239 return ret; 2240 } 2241 2242