1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/hw_breakpoint.h> 38 #include <linux/uaccess.h> 39 #include <linux/pkeys.h> 40 #include <linux/seq_buf.h> 41 42 #include <asm/interrupt.h> 43 #include <asm/io.h> 44 #include <asm/processor.h> 45 #include <asm/mmu.h> 46 #include <asm/machdep.h> 47 #include <asm/time.h> 48 #include <asm/runlatch.h> 49 #include <asm/syscalls.h> 50 #include <asm/switch_to.h> 51 #include <asm/tm.h> 52 #include <asm/debug.h> 53 #ifdef CONFIG_PPC64 54 #include <asm/firmware.h> 55 #include <asm/hw_irq.h> 56 #endif 57 #include <asm/code-patching.h> 58 #include <asm/exec.h> 59 #include <asm/livepatch.h> 60 #include <asm/cpu_has_feature.h> 61 #include <asm/asm-prototypes.h> 62 #include <asm/stacktrace.h> 63 #include <asm/hw_breakpoint.h> 64 65 #include <linux/kprobes.h> 66 #include <linux/kdebug.h> 67 68 /* Transactional Memory debug */ 69 #ifdef TM_DEBUG_SW 70 #define TM_DEBUG(x...) printk(KERN_INFO x) 71 #else 72 #define TM_DEBUG(x...) do { } while(0) 73 #endif 74 75 extern unsigned long _get_SP(void); 76 77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 78 /* 79 * Are we running in "Suspend disabled" mode? If so we have to block any 80 * sigreturn that would get us into suspended state, and we also warn in some 81 * other paths that we should never reach with suspend disabled. 82 */ 83 bool tm_suspend_disabled __ro_after_init = false; 84 85 static void check_if_tm_restore_required(struct task_struct *tsk) 86 { 87 /* 88 * If we are saving the current thread's registers, and the 89 * thread is in a transactional state, set the TIF_RESTORE_TM 90 * bit so that we know to restore the registers before 91 * returning to userspace. 92 */ 93 if (tsk == current && tsk->thread.regs && 94 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 95 !test_thread_flag(TIF_RESTORE_TM)) { 96 regs_set_return_msr(&tsk->thread.ckpt_regs, 97 tsk->thread.regs->msr); 98 set_thread_flag(TIF_RESTORE_TM); 99 } 100 } 101 102 #else 103 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 104 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 105 106 bool strict_msr_control; 107 EXPORT_SYMBOL(strict_msr_control); 108 109 static int __init enable_strict_msr_control(char *str) 110 { 111 strict_msr_control = true; 112 pr_info("Enabling strict facility control\n"); 113 114 return 0; 115 } 116 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 117 118 /* notrace because it's called by restore_math */ 119 unsigned long notrace msr_check_and_set(unsigned long bits) 120 { 121 unsigned long oldmsr = mfmsr(); 122 unsigned long newmsr; 123 124 newmsr = oldmsr | bits; 125 126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 127 newmsr |= MSR_VSX; 128 129 if (oldmsr != newmsr) 130 mtmsr_isync(newmsr); 131 132 return newmsr; 133 } 134 EXPORT_SYMBOL_GPL(msr_check_and_set); 135 136 /* notrace because it's called by restore_math */ 137 void notrace __msr_check_and_clear(unsigned long bits) 138 { 139 unsigned long oldmsr = mfmsr(); 140 unsigned long newmsr; 141 142 newmsr = oldmsr & ~bits; 143 144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 145 newmsr &= ~MSR_VSX; 146 147 if (oldmsr != newmsr) 148 mtmsr_isync(newmsr); 149 } 150 EXPORT_SYMBOL(__msr_check_and_clear); 151 152 #ifdef CONFIG_PPC_FPU 153 static void __giveup_fpu(struct task_struct *tsk) 154 { 155 unsigned long msr; 156 157 save_fpu(tsk); 158 msr = tsk->thread.regs->msr; 159 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 160 if (cpu_has_feature(CPU_FTR_VSX)) 161 msr &= ~MSR_VSX; 162 regs_set_return_msr(tsk->thread.regs, msr); 163 } 164 165 void giveup_fpu(struct task_struct *tsk) 166 { 167 check_if_tm_restore_required(tsk); 168 169 msr_check_and_set(MSR_FP); 170 __giveup_fpu(tsk); 171 msr_check_and_clear(MSR_FP); 172 } 173 EXPORT_SYMBOL(giveup_fpu); 174 175 /* 176 * Make sure the floating-point register state in the 177 * the thread_struct is up to date for task tsk. 178 */ 179 void flush_fp_to_thread(struct task_struct *tsk) 180 { 181 if (tsk->thread.regs) { 182 /* 183 * We need to disable preemption here because if we didn't, 184 * another process could get scheduled after the regs->msr 185 * test but before we have finished saving the FP registers 186 * to the thread_struct. That process could take over the 187 * FPU, and then when we get scheduled again we would store 188 * bogus values for the remaining FP registers. 189 */ 190 preempt_disable(); 191 if (tsk->thread.regs->msr & MSR_FP) { 192 /* 193 * This should only ever be called for current or 194 * for a stopped child process. Since we save away 195 * the FP register state on context switch, 196 * there is something wrong if a stopped child appears 197 * to still have its FP state in the CPU registers. 198 */ 199 BUG_ON(tsk != current); 200 giveup_fpu(tsk); 201 } 202 preempt_enable(); 203 } 204 } 205 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 206 207 void enable_kernel_fp(void) 208 { 209 unsigned long cpumsr; 210 211 WARN_ON(preemptible()); 212 213 cpumsr = msr_check_and_set(MSR_FP); 214 215 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 216 check_if_tm_restore_required(current); 217 /* 218 * If a thread has already been reclaimed then the 219 * checkpointed registers are on the CPU but have definitely 220 * been saved by the reclaim code. Don't need to and *cannot* 221 * giveup as this would save to the 'live' structure not the 222 * checkpointed structure. 223 */ 224 if (!MSR_TM_ACTIVE(cpumsr) && 225 MSR_TM_ACTIVE(current->thread.regs->msr)) 226 return; 227 __giveup_fpu(current); 228 } 229 } 230 EXPORT_SYMBOL(enable_kernel_fp); 231 #else 232 static inline void __giveup_fpu(struct task_struct *tsk) { } 233 #endif /* CONFIG_PPC_FPU */ 234 235 #ifdef CONFIG_ALTIVEC 236 static void __giveup_altivec(struct task_struct *tsk) 237 { 238 unsigned long msr; 239 240 save_altivec(tsk); 241 msr = tsk->thread.regs->msr; 242 msr &= ~MSR_VEC; 243 if (cpu_has_feature(CPU_FTR_VSX)) 244 msr &= ~MSR_VSX; 245 regs_set_return_msr(tsk->thread.regs, msr); 246 } 247 248 void giveup_altivec(struct task_struct *tsk) 249 { 250 check_if_tm_restore_required(tsk); 251 252 msr_check_and_set(MSR_VEC); 253 __giveup_altivec(tsk); 254 msr_check_and_clear(MSR_VEC); 255 } 256 EXPORT_SYMBOL(giveup_altivec); 257 258 void enable_kernel_altivec(void) 259 { 260 unsigned long cpumsr; 261 262 WARN_ON(preemptible()); 263 264 cpumsr = msr_check_and_set(MSR_VEC); 265 266 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 267 check_if_tm_restore_required(current); 268 /* 269 * If a thread has already been reclaimed then the 270 * checkpointed registers are on the CPU but have definitely 271 * been saved by the reclaim code. Don't need to and *cannot* 272 * giveup as this would save to the 'live' structure not the 273 * checkpointed structure. 274 */ 275 if (!MSR_TM_ACTIVE(cpumsr) && 276 MSR_TM_ACTIVE(current->thread.regs->msr)) 277 return; 278 __giveup_altivec(current); 279 } 280 } 281 EXPORT_SYMBOL(enable_kernel_altivec); 282 283 /* 284 * Make sure the VMX/Altivec register state in the 285 * the thread_struct is up to date for task tsk. 286 */ 287 void flush_altivec_to_thread(struct task_struct *tsk) 288 { 289 if (tsk->thread.regs) { 290 preempt_disable(); 291 if (tsk->thread.regs->msr & MSR_VEC) { 292 BUG_ON(tsk != current); 293 giveup_altivec(tsk); 294 } 295 preempt_enable(); 296 } 297 } 298 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 299 #endif /* CONFIG_ALTIVEC */ 300 301 #ifdef CONFIG_VSX 302 static void __giveup_vsx(struct task_struct *tsk) 303 { 304 unsigned long msr = tsk->thread.regs->msr; 305 306 /* 307 * We should never be setting MSR_VSX without also setting 308 * MSR_FP and MSR_VEC 309 */ 310 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 311 312 /* __giveup_fpu will clear MSR_VSX */ 313 if (msr & MSR_FP) 314 __giveup_fpu(tsk); 315 if (msr & MSR_VEC) 316 __giveup_altivec(tsk); 317 } 318 319 static void giveup_vsx(struct task_struct *tsk) 320 { 321 check_if_tm_restore_required(tsk); 322 323 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 324 __giveup_vsx(tsk); 325 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 326 } 327 328 void enable_kernel_vsx(void) 329 { 330 unsigned long cpumsr; 331 332 WARN_ON(preemptible()); 333 334 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 335 336 if (current->thread.regs && 337 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 338 check_if_tm_restore_required(current); 339 /* 340 * If a thread has already been reclaimed then the 341 * checkpointed registers are on the CPU but have definitely 342 * been saved by the reclaim code. Don't need to and *cannot* 343 * giveup as this would save to the 'live' structure not the 344 * checkpointed structure. 345 */ 346 if (!MSR_TM_ACTIVE(cpumsr) && 347 MSR_TM_ACTIVE(current->thread.regs->msr)) 348 return; 349 __giveup_vsx(current); 350 } 351 } 352 EXPORT_SYMBOL(enable_kernel_vsx); 353 354 void flush_vsx_to_thread(struct task_struct *tsk) 355 { 356 if (tsk->thread.regs) { 357 preempt_disable(); 358 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 359 BUG_ON(tsk != current); 360 giveup_vsx(tsk); 361 } 362 preempt_enable(); 363 } 364 } 365 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 366 #endif /* CONFIG_VSX */ 367 368 #ifdef CONFIG_SPE 369 void giveup_spe(struct task_struct *tsk) 370 { 371 check_if_tm_restore_required(tsk); 372 373 msr_check_and_set(MSR_SPE); 374 __giveup_spe(tsk); 375 msr_check_and_clear(MSR_SPE); 376 } 377 EXPORT_SYMBOL(giveup_spe); 378 379 void enable_kernel_spe(void) 380 { 381 WARN_ON(preemptible()); 382 383 msr_check_and_set(MSR_SPE); 384 385 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 386 check_if_tm_restore_required(current); 387 __giveup_spe(current); 388 } 389 } 390 EXPORT_SYMBOL(enable_kernel_spe); 391 392 void flush_spe_to_thread(struct task_struct *tsk) 393 { 394 if (tsk->thread.regs) { 395 preempt_disable(); 396 if (tsk->thread.regs->msr & MSR_SPE) { 397 BUG_ON(tsk != current); 398 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 399 giveup_spe(tsk); 400 } 401 preempt_enable(); 402 } 403 } 404 #endif /* CONFIG_SPE */ 405 406 static unsigned long msr_all_available; 407 408 static int __init init_msr_all_available(void) 409 { 410 if (IS_ENABLED(CONFIG_PPC_FPU)) 411 msr_all_available |= MSR_FP; 412 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 413 msr_all_available |= MSR_VEC; 414 if (cpu_has_feature(CPU_FTR_VSX)) 415 msr_all_available |= MSR_VSX; 416 if (cpu_has_feature(CPU_FTR_SPE)) 417 msr_all_available |= MSR_SPE; 418 419 return 0; 420 } 421 early_initcall(init_msr_all_available); 422 423 void giveup_all(struct task_struct *tsk) 424 { 425 unsigned long usermsr; 426 427 if (!tsk->thread.regs) 428 return; 429 430 check_if_tm_restore_required(tsk); 431 432 usermsr = tsk->thread.regs->msr; 433 434 if ((usermsr & msr_all_available) == 0) 435 return; 436 437 msr_check_and_set(msr_all_available); 438 439 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 440 441 if (usermsr & MSR_FP) 442 __giveup_fpu(tsk); 443 if (usermsr & MSR_VEC) 444 __giveup_altivec(tsk); 445 if (usermsr & MSR_SPE) 446 __giveup_spe(tsk); 447 448 msr_check_and_clear(msr_all_available); 449 } 450 EXPORT_SYMBOL(giveup_all); 451 452 #ifdef CONFIG_PPC_BOOK3S_64 453 #ifdef CONFIG_PPC_FPU 454 static bool should_restore_fp(void) 455 { 456 if (current->thread.load_fp) { 457 current->thread.load_fp++; 458 return true; 459 } 460 return false; 461 } 462 463 static void do_restore_fp(void) 464 { 465 load_fp_state(¤t->thread.fp_state); 466 } 467 #else 468 static bool should_restore_fp(void) { return false; } 469 static void do_restore_fp(void) { } 470 #endif /* CONFIG_PPC_FPU */ 471 472 #ifdef CONFIG_ALTIVEC 473 static bool should_restore_altivec(void) 474 { 475 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { 476 current->thread.load_vec++; 477 return true; 478 } 479 return false; 480 } 481 482 static void do_restore_altivec(void) 483 { 484 load_vr_state(¤t->thread.vr_state); 485 current->thread.used_vr = 1; 486 } 487 #else 488 static bool should_restore_altivec(void) { return false; } 489 static void do_restore_altivec(void) { } 490 #endif /* CONFIG_ALTIVEC */ 491 492 static bool should_restore_vsx(void) 493 { 494 if (cpu_has_feature(CPU_FTR_VSX)) 495 return true; 496 return false; 497 } 498 #ifdef CONFIG_VSX 499 static void do_restore_vsx(void) 500 { 501 current->thread.used_vsr = 1; 502 } 503 #else 504 static void do_restore_vsx(void) { } 505 #endif /* CONFIG_VSX */ 506 507 /* 508 * The exception exit path calls restore_math() with interrupts hard disabled 509 * but the soft irq state not "reconciled". ftrace code that calls 510 * local_irq_save/restore causes warnings. 511 * 512 * Rather than complicate the exit path, just don't trace restore_math. This 513 * could be done by having ftrace entry code check for this un-reconciled 514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 515 * temporarily fix it up for the duration of the ftrace call. 516 */ 517 void notrace restore_math(struct pt_regs *regs) 518 { 519 unsigned long msr; 520 unsigned long new_msr = 0; 521 522 msr = regs->msr; 523 524 /* 525 * new_msr tracks the facilities that are to be restored. Only reload 526 * if the bit is not set in the user MSR (if it is set, the registers 527 * are live for the user thread). 528 */ 529 if ((!(msr & MSR_FP)) && should_restore_fp()) 530 new_msr |= MSR_FP; 531 532 if ((!(msr & MSR_VEC)) && should_restore_altivec()) 533 new_msr |= MSR_VEC; 534 535 if ((!(msr & MSR_VSX)) && should_restore_vsx()) { 536 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) 537 new_msr |= MSR_VSX; 538 } 539 540 if (new_msr) { 541 unsigned long fpexc_mode = 0; 542 543 msr_check_and_set(new_msr); 544 545 if (new_msr & MSR_FP) { 546 do_restore_fp(); 547 548 // This also covers VSX, because VSX implies FP 549 fpexc_mode = current->thread.fpexc_mode; 550 } 551 552 if (new_msr & MSR_VEC) 553 do_restore_altivec(); 554 555 if (new_msr & MSR_VSX) 556 do_restore_vsx(); 557 558 msr_check_and_clear(new_msr); 559 560 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode); 561 } 562 } 563 #endif /* CONFIG_PPC_BOOK3S_64 */ 564 565 static void save_all(struct task_struct *tsk) 566 { 567 unsigned long usermsr; 568 569 if (!tsk->thread.regs) 570 return; 571 572 usermsr = tsk->thread.regs->msr; 573 574 if ((usermsr & msr_all_available) == 0) 575 return; 576 577 msr_check_and_set(msr_all_available); 578 579 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 580 581 if (usermsr & MSR_FP) 582 save_fpu(tsk); 583 584 if (usermsr & MSR_VEC) 585 save_altivec(tsk); 586 587 if (usermsr & MSR_SPE) 588 __giveup_spe(tsk); 589 590 msr_check_and_clear(msr_all_available); 591 } 592 593 void flush_all_to_thread(struct task_struct *tsk) 594 { 595 if (tsk->thread.regs) { 596 preempt_disable(); 597 BUG_ON(tsk != current); 598 #ifdef CONFIG_SPE 599 if (tsk->thread.regs->msr & MSR_SPE) 600 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 601 #endif 602 save_all(tsk); 603 604 preempt_enable(); 605 } 606 } 607 EXPORT_SYMBOL(flush_all_to_thread); 608 609 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 610 void do_send_trap(struct pt_regs *regs, unsigned long address, 611 unsigned long error_code, int breakpt) 612 { 613 current->thread.trap_nr = TRAP_HWBKPT; 614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 615 11, SIGSEGV) == NOTIFY_STOP) 616 return; 617 618 /* Deliver the signal to userspace */ 619 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 620 (void __user *)address); 621 } 622 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 623 624 static void do_break_handler(struct pt_regs *regs) 625 { 626 struct arch_hw_breakpoint null_brk = {0}; 627 struct arch_hw_breakpoint *info; 628 ppc_inst_t instr = ppc_inst(0); 629 int type = 0; 630 int size = 0; 631 unsigned long ea; 632 int i; 633 634 /* 635 * If underneath hw supports only one watchpoint, we know it 636 * caused exception. 8xx also falls into this category. 637 */ 638 if (nr_wp_slots() == 1) { 639 __set_breakpoint(0, &null_brk); 640 current->thread.hw_brk[0] = null_brk; 641 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED; 642 return; 643 } 644 645 /* Otherwise find out which DAWR caused exception and disable it. */ 646 wp_get_instr_detail(regs, &instr, &type, &size, &ea); 647 648 for (i = 0; i < nr_wp_slots(); i++) { 649 info = ¤t->thread.hw_brk[i]; 650 if (!info->address) 651 continue; 652 653 if (wp_check_constraints(regs, instr, ea, type, size, info)) { 654 __set_breakpoint(i, &null_brk); 655 current->thread.hw_brk[i] = null_brk; 656 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED; 657 } 658 } 659 } 660 661 DEFINE_INTERRUPT_HANDLER(do_break) 662 { 663 current->thread.trap_nr = TRAP_HWBKPT; 664 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr, 665 11, SIGSEGV) == NOTIFY_STOP) 666 return; 667 668 if (debugger_break_match(regs)) 669 return; 670 671 /* 672 * We reach here only when watchpoint exception is generated by ptrace 673 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set, 674 * watchpoint is already handled by hw_breakpoint_handler() so we don't 675 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set, 676 * we need to manually handle the watchpoint here. 677 */ 678 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT)) 679 do_break_handler(regs); 680 681 /* Deliver the signal to userspace */ 682 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar); 683 } 684 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 685 686 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 687 688 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 689 /* 690 * Set the debug registers back to their default "safe" values. 691 */ 692 static void set_debug_reg_defaults(struct thread_struct *thread) 693 { 694 thread->debug.iac1 = thread->debug.iac2 = 0; 695 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 696 thread->debug.iac3 = thread->debug.iac4 = 0; 697 #endif 698 thread->debug.dac1 = thread->debug.dac2 = 0; 699 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 700 thread->debug.dvc1 = thread->debug.dvc2 = 0; 701 #endif 702 thread->debug.dbcr0 = 0; 703 #ifdef CONFIG_BOOKE 704 /* 705 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 706 */ 707 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 708 DBCR1_IAC3US | DBCR1_IAC4US; 709 /* 710 * Force Data Address Compare User/Supervisor bits to be User-only 711 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 712 */ 713 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 714 #else 715 thread->debug.dbcr1 = 0; 716 #endif 717 } 718 719 static void prime_debug_regs(struct debug_reg *debug) 720 { 721 /* 722 * We could have inherited MSR_DE from userspace, since 723 * it doesn't get cleared on exception entry. Make sure 724 * MSR_DE is clear before we enable any debug events. 725 */ 726 mtmsr(mfmsr() & ~MSR_DE); 727 728 mtspr(SPRN_IAC1, debug->iac1); 729 mtspr(SPRN_IAC2, debug->iac2); 730 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 731 mtspr(SPRN_IAC3, debug->iac3); 732 mtspr(SPRN_IAC4, debug->iac4); 733 #endif 734 mtspr(SPRN_DAC1, debug->dac1); 735 mtspr(SPRN_DAC2, debug->dac2); 736 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 737 mtspr(SPRN_DVC1, debug->dvc1); 738 mtspr(SPRN_DVC2, debug->dvc2); 739 #endif 740 mtspr(SPRN_DBCR0, debug->dbcr0); 741 mtspr(SPRN_DBCR1, debug->dbcr1); 742 #ifdef CONFIG_BOOKE 743 mtspr(SPRN_DBCR2, debug->dbcr2); 744 #endif 745 } 746 /* 747 * Unless neither the old or new thread are making use of the 748 * debug registers, set the debug registers from the values 749 * stored in the new thread. 750 */ 751 void switch_booke_debug_regs(struct debug_reg *new_debug) 752 { 753 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 754 || (new_debug->dbcr0 & DBCR0_IDM)) 755 prime_debug_regs(new_debug); 756 } 757 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 758 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 759 #ifndef CONFIG_HAVE_HW_BREAKPOINT 760 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 761 { 762 preempt_disable(); 763 __set_breakpoint(i, brk); 764 preempt_enable(); 765 } 766 767 static void set_debug_reg_defaults(struct thread_struct *thread) 768 { 769 int i; 770 struct arch_hw_breakpoint null_brk = {0}; 771 772 for (i = 0; i < nr_wp_slots(); i++) { 773 thread->hw_brk[i] = null_brk; 774 if (ppc_breakpoint_available()) 775 set_breakpoint(i, &thread->hw_brk[i]); 776 } 777 } 778 779 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 780 struct arch_hw_breakpoint *b) 781 { 782 if (a->address != b->address) 783 return false; 784 if (a->type != b->type) 785 return false; 786 if (a->len != b->len) 787 return false; 788 /* no need to check hw_len. it's calculated from address and len */ 789 return true; 790 } 791 792 static void switch_hw_breakpoint(struct task_struct *new) 793 { 794 int i; 795 796 for (i = 0; i < nr_wp_slots(); i++) { 797 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 798 &new->thread.hw_brk[i]))) 799 continue; 800 801 __set_breakpoint(i, &new->thread.hw_brk[i]); 802 } 803 } 804 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 805 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 806 807 static inline int set_dabr(struct arch_hw_breakpoint *brk) 808 { 809 unsigned long dabr, dabrx; 810 811 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 812 dabrx = ((brk->type >> 3) & 0x7); 813 814 if (ppc_md.set_dabr) 815 return ppc_md.set_dabr(dabr, dabrx); 816 817 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) { 818 mtspr(SPRN_DAC1, dabr); 819 if (IS_ENABLED(CONFIG_PPC_47x)) 820 isync(); 821 return 0; 822 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 823 mtspr(SPRN_DABR, dabr); 824 if (cpu_has_feature(CPU_FTR_DABRX)) 825 mtspr(SPRN_DABRX, dabrx); 826 return 0; 827 } else { 828 return -EINVAL; 829 } 830 } 831 832 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 833 { 834 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 835 LCTRL1_CRWF_RW; 836 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 837 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 838 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 839 840 if (start_addr == 0) 841 lctrl2 |= LCTRL2_LW0LA_F; 842 else if (end_addr == 0) 843 lctrl2 |= LCTRL2_LW0LA_E; 844 else 845 lctrl2 |= LCTRL2_LW0LA_EandF; 846 847 mtspr(SPRN_LCTRL2, 0); 848 849 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 850 return 0; 851 852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 853 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 854 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 855 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 856 857 mtspr(SPRN_CMPE, start_addr - 1); 858 mtspr(SPRN_CMPF, end_addr); 859 mtspr(SPRN_LCTRL1, lctrl1); 860 mtspr(SPRN_LCTRL2, lctrl2); 861 862 return 0; 863 } 864 865 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 866 { 867 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 868 869 if (dawr_enabled()) 870 // Power8 or later 871 set_dawr(nr, brk); 872 else if (IS_ENABLED(CONFIG_PPC_8xx)) 873 set_breakpoint_8xx(brk); 874 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 875 // Power7 or earlier 876 set_dabr(brk); 877 else 878 // Shouldn't happen due to higher level checks 879 WARN_ON_ONCE(1); 880 } 881 882 /* Check if we have DAWR or DABR hardware */ 883 bool ppc_breakpoint_available(void) 884 { 885 if (dawr_enabled()) 886 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 887 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 888 return false; /* POWER9 with DAWR disabled */ 889 /* DABR: Everything but POWER8 and POWER9 */ 890 return true; 891 } 892 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 893 894 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 895 896 static inline bool tm_enabled(struct task_struct *tsk) 897 { 898 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 899 } 900 901 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 902 { 903 /* 904 * Use the current MSR TM suspended bit to track if we have 905 * checkpointed state outstanding. 906 * On signal delivery, we'd normally reclaim the checkpointed 907 * state to obtain stack pointer (see:get_tm_stackpointer()). 908 * This will then directly return to userspace without going 909 * through __switch_to(). However, if the stack frame is bad, 910 * we need to exit this thread which calls __switch_to() which 911 * will again attempt to reclaim the already saved tm state. 912 * Hence we need to check that we've not already reclaimed 913 * this state. 914 * We do this using the current MSR, rather tracking it in 915 * some specific thread_struct bit, as it has the additional 916 * benefit of checking for a potential TM bad thing exception. 917 */ 918 if (!MSR_TM_SUSPENDED(mfmsr())) 919 return; 920 921 giveup_all(container_of(thr, struct task_struct, thread)); 922 923 tm_reclaim(thr, cause); 924 925 /* 926 * If we are in a transaction and FP is off then we can't have 927 * used FP inside that transaction. Hence the checkpointed 928 * state is the same as the live state. We need to copy the 929 * live state to the checkpointed state so that when the 930 * transaction is restored, the checkpointed state is correct 931 * and the aborted transaction sees the correct state. We use 932 * ckpt_regs.msr here as that's what tm_reclaim will use to 933 * determine if it's going to write the checkpointed state or 934 * not. So either this will write the checkpointed registers, 935 * or reclaim will. Similarly for VMX. 936 */ 937 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 938 memcpy(&thr->ckfp_state, &thr->fp_state, 939 sizeof(struct thread_fp_state)); 940 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 941 memcpy(&thr->ckvr_state, &thr->vr_state, 942 sizeof(struct thread_vr_state)); 943 } 944 945 void tm_reclaim_current(uint8_t cause) 946 { 947 tm_enable(); 948 tm_reclaim_thread(¤t->thread, cause); 949 } 950 951 static inline void tm_reclaim_task(struct task_struct *tsk) 952 { 953 /* We have to work out if we're switching from/to a task that's in the 954 * middle of a transaction. 955 * 956 * In switching we need to maintain a 2nd register state as 957 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 958 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 959 * ckvr_state 960 * 961 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 962 */ 963 struct thread_struct *thr = &tsk->thread; 964 965 if (!thr->regs) 966 return; 967 968 if (!MSR_TM_ACTIVE(thr->regs->msr)) 969 goto out_and_saveregs; 970 971 WARN_ON(tm_suspend_disabled); 972 973 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 974 "ccr=%lx, msr=%lx, trap=%lx)\n", 975 tsk->pid, thr->regs->nip, 976 thr->regs->ccr, thr->regs->msr, 977 thr->regs->trap); 978 979 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 980 981 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 982 tsk->pid); 983 984 out_and_saveregs: 985 /* Always save the regs here, even if a transaction's not active. 986 * This context-switches a thread's TM info SPRs. We do it here to 987 * be consistent with the restore path (in recheckpoint) which 988 * cannot happen later in _switch(). 989 */ 990 tm_save_sprs(thr); 991 } 992 993 extern void __tm_recheckpoint(struct thread_struct *thread); 994 995 void tm_recheckpoint(struct thread_struct *thread) 996 { 997 unsigned long flags; 998 999 if (!(thread->regs->msr & MSR_TM)) 1000 return; 1001 1002 /* We really can't be interrupted here as the TEXASR registers can't 1003 * change and later in the trecheckpoint code, we have a userspace R1. 1004 * So let's hard disable over this region. 1005 */ 1006 local_irq_save(flags); 1007 hard_irq_disable(); 1008 1009 /* The TM SPRs are restored here, so that TEXASR.FS can be set 1010 * before the trecheckpoint and no explosion occurs. 1011 */ 1012 tm_restore_sprs(thread); 1013 1014 __tm_recheckpoint(thread); 1015 1016 local_irq_restore(flags); 1017 } 1018 1019 static inline void tm_recheckpoint_new_task(struct task_struct *new) 1020 { 1021 if (!cpu_has_feature(CPU_FTR_TM)) 1022 return; 1023 1024 /* Recheckpoint the registers of the thread we're about to switch to. 1025 * 1026 * If the task was using FP, we non-lazily reload both the original and 1027 * the speculative FP register states. This is because the kernel 1028 * doesn't see if/when a TM rollback occurs, so if we take an FP 1029 * unavailable later, we are unable to determine which set of FP regs 1030 * need to be restored. 1031 */ 1032 if (!tm_enabled(new)) 1033 return; 1034 1035 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1036 tm_restore_sprs(&new->thread); 1037 return; 1038 } 1039 /* Recheckpoint to restore original checkpointed register state. */ 1040 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1041 new->pid, new->thread.regs->msr); 1042 1043 tm_recheckpoint(&new->thread); 1044 1045 /* 1046 * The checkpointed state has been restored but the live state has 1047 * not, ensure all the math functionality is turned off to trigger 1048 * restore_math() to reload. 1049 */ 1050 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1051 1052 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1053 "(kernel msr 0x%lx)\n", 1054 new->pid, mfmsr()); 1055 } 1056 1057 static inline void __switch_to_tm(struct task_struct *prev, 1058 struct task_struct *new) 1059 { 1060 if (cpu_has_feature(CPU_FTR_TM)) { 1061 if (tm_enabled(prev) || tm_enabled(new)) 1062 tm_enable(); 1063 1064 if (tm_enabled(prev)) { 1065 prev->thread.load_tm++; 1066 tm_reclaim_task(prev); 1067 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1068 prev->thread.regs->msr &= ~MSR_TM; 1069 } 1070 1071 tm_recheckpoint_new_task(new); 1072 } 1073 } 1074 1075 /* 1076 * This is called if we are on the way out to userspace and the 1077 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1078 * FP and/or vector state and does so if necessary. 1079 * If userspace is inside a transaction (whether active or 1080 * suspended) and FP/VMX/VSX instructions have ever been enabled 1081 * inside that transaction, then we have to keep them enabled 1082 * and keep the FP/VMX/VSX state loaded while ever the transaction 1083 * continues. The reason is that if we didn't, and subsequently 1084 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1085 * we don't know whether it's the same transaction, and thus we 1086 * don't know which of the checkpointed state and the transactional 1087 * state to use. 1088 */ 1089 void restore_tm_state(struct pt_regs *regs) 1090 { 1091 unsigned long msr_diff; 1092 1093 /* 1094 * This is the only moment we should clear TIF_RESTORE_TM as 1095 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1096 * again, anything else could lead to an incorrect ckpt_msr being 1097 * saved and therefore incorrect signal contexts. 1098 */ 1099 clear_thread_flag(TIF_RESTORE_TM); 1100 if (!MSR_TM_ACTIVE(regs->msr)) 1101 return; 1102 1103 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1104 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1105 1106 /* Ensure that restore_math() will restore */ 1107 if (msr_diff & MSR_FP) 1108 current->thread.load_fp = 1; 1109 #ifdef CONFIG_ALTIVEC 1110 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1111 current->thread.load_vec = 1; 1112 #endif 1113 restore_math(regs); 1114 1115 regs_set_return_msr(regs, regs->msr | msr_diff); 1116 } 1117 1118 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */ 1119 #define tm_recheckpoint_new_task(new) 1120 #define __switch_to_tm(prev, new) 1121 void tm_reclaim_current(uint8_t cause) {} 1122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1123 1124 static inline void save_sprs(struct thread_struct *t) 1125 { 1126 #ifdef CONFIG_ALTIVEC 1127 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1128 t->vrsave = mfspr(SPRN_VRSAVE); 1129 #endif 1130 #ifdef CONFIG_SPE 1131 if (cpu_has_feature(CPU_FTR_SPE)) 1132 t->spefscr = mfspr(SPRN_SPEFSCR); 1133 #endif 1134 #ifdef CONFIG_PPC_BOOK3S_64 1135 if (cpu_has_feature(CPU_FTR_DSCR)) 1136 t->dscr = mfspr(SPRN_DSCR); 1137 1138 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1139 t->bescr = mfspr(SPRN_BESCR); 1140 t->ebbhr = mfspr(SPRN_EBBHR); 1141 t->ebbrr = mfspr(SPRN_EBBRR); 1142 1143 t->fscr = mfspr(SPRN_FSCR); 1144 1145 /* 1146 * Note that the TAR is not available for use in the kernel. 1147 * (To provide this, the TAR should be backed up/restored on 1148 * exception entry/exit instead, and be in pt_regs. FIXME, 1149 * this should be in pt_regs anyway (for debug).) 1150 */ 1151 t->tar = mfspr(SPRN_TAR); 1152 } 1153 #endif 1154 } 1155 1156 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1157 void kvmppc_save_user_regs(void) 1158 { 1159 unsigned long usermsr; 1160 1161 if (!current->thread.regs) 1162 return; 1163 1164 usermsr = current->thread.regs->msr; 1165 1166 if (usermsr & MSR_FP) 1167 save_fpu(current); 1168 1169 if (usermsr & MSR_VEC) 1170 save_altivec(current); 1171 1172 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1173 if (usermsr & MSR_TM) { 1174 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 1175 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 1176 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 1177 current->thread.regs->msr &= ~MSR_TM; 1178 } 1179 #endif 1180 } 1181 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs); 1182 1183 void kvmppc_save_current_sprs(void) 1184 { 1185 save_sprs(¤t->thread); 1186 } 1187 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs); 1188 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1189 1190 static inline void restore_sprs(struct thread_struct *old_thread, 1191 struct thread_struct *new_thread) 1192 { 1193 #ifdef CONFIG_ALTIVEC 1194 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1195 old_thread->vrsave != new_thread->vrsave) 1196 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1197 #endif 1198 #ifdef CONFIG_SPE 1199 if (cpu_has_feature(CPU_FTR_SPE) && 1200 old_thread->spefscr != new_thread->spefscr) 1201 mtspr(SPRN_SPEFSCR, new_thread->spefscr); 1202 #endif 1203 #ifdef CONFIG_PPC_BOOK3S_64 1204 if (cpu_has_feature(CPU_FTR_DSCR)) { 1205 u64 dscr = get_paca()->dscr_default; 1206 if (new_thread->dscr_inherit) 1207 dscr = new_thread->dscr; 1208 1209 if (old_thread->dscr != dscr) 1210 mtspr(SPRN_DSCR, dscr); 1211 } 1212 1213 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1214 if (old_thread->bescr != new_thread->bescr) 1215 mtspr(SPRN_BESCR, new_thread->bescr); 1216 if (old_thread->ebbhr != new_thread->ebbhr) 1217 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1218 if (old_thread->ebbrr != new_thread->ebbrr) 1219 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1220 1221 if (old_thread->fscr != new_thread->fscr) 1222 mtspr(SPRN_FSCR, new_thread->fscr); 1223 1224 if (old_thread->tar != new_thread->tar) 1225 mtspr(SPRN_TAR, new_thread->tar); 1226 } 1227 1228 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1229 old_thread->tidr != new_thread->tidr) 1230 mtspr(SPRN_TIDR, new_thread->tidr); 1231 #endif 1232 1233 } 1234 1235 struct task_struct *__switch_to(struct task_struct *prev, 1236 struct task_struct *new) 1237 { 1238 struct thread_struct *new_thread, *old_thread; 1239 struct task_struct *last; 1240 #ifdef CONFIG_PPC_64S_HASH_MMU 1241 struct ppc64_tlb_batch *batch; 1242 #endif 1243 1244 new_thread = &new->thread; 1245 old_thread = ¤t->thread; 1246 1247 WARN_ON(!irqs_disabled()); 1248 1249 #ifdef CONFIG_PPC_64S_HASH_MMU 1250 batch = this_cpu_ptr(&ppc64_tlb_batch); 1251 if (batch->active) { 1252 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1253 if (batch->index) 1254 __flush_tlb_pending(batch); 1255 batch->active = 0; 1256 } 1257 1258 /* 1259 * On POWER9 the copy-paste buffer can only paste into 1260 * foreign real addresses, so unprivileged processes can not 1261 * see the data or use it in any way unless they have 1262 * foreign real mappings. If the new process has the foreign 1263 * real address mappings, we must issue a cp_abort to clear 1264 * any state and prevent snooping, corruption or a covert 1265 * channel. ISA v3.1 supports paste into local memory. 1266 */ 1267 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) || 1268 atomic_read(&new->mm->context.vas_windows))) 1269 asm volatile(PPC_CP_ABORT); 1270 #endif /* CONFIG_PPC_BOOK3S_64 */ 1271 1272 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1273 switch_booke_debug_regs(&new->thread.debug); 1274 #else 1275 /* 1276 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1277 * schedule DABR 1278 */ 1279 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1280 switch_hw_breakpoint(new); 1281 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1282 #endif 1283 1284 /* 1285 * We need to save SPRs before treclaim/trecheckpoint as these will 1286 * change a number of them. 1287 */ 1288 save_sprs(&prev->thread); 1289 1290 /* Save FPU, Altivec, VSX and SPE state */ 1291 giveup_all(prev); 1292 1293 __switch_to_tm(prev, new); 1294 1295 if (!radix_enabled()) { 1296 /* 1297 * We can't take a PMU exception inside _switch() since there 1298 * is a window where the kernel stack SLB and the kernel stack 1299 * are out of sync. Hard disable here. 1300 */ 1301 hard_irq_disable(); 1302 } 1303 1304 /* 1305 * Call restore_sprs() and set_return_regs_changed() before calling 1306 * _switch(). If we move it after _switch() then we miss out on calling 1307 * it for new tasks. The reason for this is we manually create a stack 1308 * frame for new tasks that directly returns through ret_from_fork() or 1309 * ret_from_kernel_thread(). See copy_thread() for details. 1310 */ 1311 restore_sprs(old_thread, new_thread); 1312 1313 set_return_regs_changed(); /* _switch changes stack (and regs) */ 1314 1315 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1316 kuap_assert_locked(); 1317 1318 last = _switch(old_thread, new_thread); 1319 1320 /* 1321 * Nothing after _switch will be run for newly created tasks, 1322 * because they switch directly to ret_from_fork/ret_from_kernel_thread 1323 * etc. Code added here should have a comment explaining why that is 1324 * okay. 1325 */ 1326 1327 #ifdef CONFIG_PPC_BOOK3S_64 1328 #ifdef CONFIG_PPC_64S_HASH_MMU 1329 /* 1330 * This applies to a process that was context switched while inside 1331 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was 1332 * deactivated above, before _switch(). This will never be the case 1333 * for new tasks. 1334 */ 1335 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1336 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1337 batch = this_cpu_ptr(&ppc64_tlb_batch); 1338 batch->active = 1; 1339 } 1340 #endif 1341 1342 /* 1343 * Math facilities are masked out of the child MSR in copy_thread. 1344 * A new task does not need to restore_math because it will 1345 * demand fault them. 1346 */ 1347 if (current->thread.regs) 1348 restore_math(current->thread.regs); 1349 #endif /* CONFIG_PPC_BOOK3S_64 */ 1350 1351 return last; 1352 } 1353 1354 #define NR_INSN_TO_PRINT 16 1355 1356 static void show_instructions(struct pt_regs *regs) 1357 { 1358 int i; 1359 unsigned long nip = regs->nip; 1360 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1361 1362 printk("Instruction dump:"); 1363 1364 /* 1365 * If we were executing with the MMU off for instructions, adjust pc 1366 * rather than printing XXXXXXXX. 1367 */ 1368 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { 1369 pc = (unsigned long)phys_to_virt(pc); 1370 nip = (unsigned long)phys_to_virt(regs->nip); 1371 } 1372 1373 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1374 int instr; 1375 1376 if (!(i % 8)) 1377 pr_cont("\n"); 1378 1379 if (!__kernel_text_address(pc) || 1380 get_kernel_nofault(instr, (const void *)pc)) { 1381 pr_cont("XXXXXXXX "); 1382 } else { 1383 if (nip == pc) 1384 pr_cont("<%08x> ", instr); 1385 else 1386 pr_cont("%08x ", instr); 1387 } 1388 1389 pc += sizeof(int); 1390 } 1391 1392 pr_cont("\n"); 1393 } 1394 1395 void show_user_instructions(struct pt_regs *regs) 1396 { 1397 unsigned long pc; 1398 int n = NR_INSN_TO_PRINT; 1399 struct seq_buf s; 1400 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1401 1402 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1403 1404 seq_buf_init(&s, buf, sizeof(buf)); 1405 1406 while (n) { 1407 int i; 1408 1409 seq_buf_clear(&s); 1410 1411 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1412 int instr; 1413 1414 if (copy_from_user_nofault(&instr, (void __user *)pc, 1415 sizeof(instr))) { 1416 seq_buf_printf(&s, "XXXXXXXX "); 1417 continue; 1418 } 1419 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1420 } 1421 1422 if (!seq_buf_has_overflowed(&s)) 1423 pr_info("%s[%d]: code: %s\n", current->comm, 1424 current->pid, s.buffer); 1425 } 1426 } 1427 1428 struct regbit { 1429 unsigned long bit; 1430 const char *name; 1431 }; 1432 1433 static struct regbit msr_bits[] = { 1434 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1435 {MSR_SF, "SF"}, 1436 {MSR_HV, "HV"}, 1437 #endif 1438 {MSR_VEC, "VEC"}, 1439 {MSR_VSX, "VSX"}, 1440 #ifdef CONFIG_BOOKE 1441 {MSR_CE, "CE"}, 1442 #endif 1443 {MSR_EE, "EE"}, 1444 {MSR_PR, "PR"}, 1445 {MSR_FP, "FP"}, 1446 {MSR_ME, "ME"}, 1447 #ifdef CONFIG_BOOKE 1448 {MSR_DE, "DE"}, 1449 #else 1450 {MSR_SE, "SE"}, 1451 {MSR_BE, "BE"}, 1452 #endif 1453 {MSR_IR, "IR"}, 1454 {MSR_DR, "DR"}, 1455 {MSR_PMM, "PMM"}, 1456 #ifndef CONFIG_BOOKE 1457 {MSR_RI, "RI"}, 1458 {MSR_LE, "LE"}, 1459 #endif 1460 {0, NULL} 1461 }; 1462 1463 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1464 { 1465 const char *s = ""; 1466 1467 for (; bits->bit; ++bits) 1468 if (val & bits->bit) { 1469 pr_cont("%s%s", s, bits->name); 1470 s = sep; 1471 } 1472 } 1473 1474 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1475 static struct regbit msr_tm_bits[] = { 1476 {MSR_TS_T, "T"}, 1477 {MSR_TS_S, "S"}, 1478 {MSR_TM, "E"}, 1479 {0, NULL} 1480 }; 1481 1482 static void print_tm_bits(unsigned long val) 1483 { 1484 /* 1485 * This only prints something if at least one of the TM bit is set. 1486 * Inside the TM[], the output means: 1487 * E: Enabled (bit 32) 1488 * S: Suspended (bit 33) 1489 * T: Transactional (bit 34) 1490 */ 1491 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1492 pr_cont(",TM["); 1493 print_bits(val, msr_tm_bits, ""); 1494 pr_cont("]"); 1495 } 1496 } 1497 #else 1498 static void print_tm_bits(unsigned long val) {} 1499 #endif 1500 1501 static void print_msr_bits(unsigned long val) 1502 { 1503 pr_cont("<"); 1504 print_bits(val, msr_bits, ","); 1505 print_tm_bits(val); 1506 pr_cont(">"); 1507 } 1508 1509 #ifdef CONFIG_PPC64 1510 #define REG "%016lx" 1511 #define REGS_PER_LINE 4 1512 #else 1513 #define REG "%08lx" 1514 #define REGS_PER_LINE 8 1515 #endif 1516 1517 static void __show_regs(struct pt_regs *regs) 1518 { 1519 int i, trap; 1520 1521 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1522 regs->nip, regs->link, regs->ctr); 1523 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1524 regs, regs->trap, print_tainted(), init_utsname()->release); 1525 printk("MSR: "REG" ", regs->msr); 1526 print_msr_bits(regs->msr); 1527 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1528 trap = TRAP(regs); 1529 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1530 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1531 if (trap == INTERRUPT_MACHINE_CHECK || 1532 trap == INTERRUPT_DATA_STORAGE || 1533 trap == INTERRUPT_ALIGNMENT) { 1534 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE)) 1535 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr); 1536 else 1537 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1538 } 1539 1540 #ifdef CONFIG_PPC64 1541 pr_cont("IRQMASK: %lx ", regs->softe); 1542 #endif 1543 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1544 if (MSR_TM_ACTIVE(regs->msr)) 1545 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1546 #endif 1547 1548 for (i = 0; i < 32; i++) { 1549 if ((i % REGS_PER_LINE) == 0) 1550 pr_cont("\nGPR%02d: ", i); 1551 pr_cont(REG " ", regs->gpr[i]); 1552 } 1553 pr_cont("\n"); 1554 /* 1555 * Lookup NIP late so we have the best change of getting the 1556 * above info out without failing 1557 */ 1558 if (IS_ENABLED(CONFIG_KALLSYMS)) { 1559 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1560 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1561 } 1562 } 1563 1564 void show_regs(struct pt_regs *regs) 1565 { 1566 show_regs_print_info(KERN_DEFAULT); 1567 __show_regs(regs); 1568 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1569 if (!user_mode(regs)) 1570 show_instructions(regs); 1571 } 1572 1573 void flush_thread(void) 1574 { 1575 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1576 flush_ptrace_hw_breakpoint(current); 1577 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1578 set_debug_reg_defaults(¤t->thread); 1579 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1580 } 1581 1582 void arch_setup_new_exec(void) 1583 { 1584 1585 #ifdef CONFIG_PPC_BOOK3S_64 1586 if (!radix_enabled()) 1587 hash__setup_new_exec(); 1588 #endif 1589 /* 1590 * If we exec out of a kernel thread then thread.regs will not be 1591 * set. Do it now. 1592 */ 1593 if (!current->thread.regs) { 1594 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1595 current->thread.regs = regs - 1; 1596 } 1597 1598 #ifdef CONFIG_PPC_MEM_KEYS 1599 current->thread.regs->amr = default_amr; 1600 current->thread.regs->iamr = default_iamr; 1601 #endif 1602 } 1603 1604 #ifdef CONFIG_PPC64 1605 /** 1606 * Assign a TIDR (thread ID) for task @t and set it in the thread 1607 * structure. For now, we only support setting TIDR for 'current' task. 1608 * 1609 * Since the TID value is a truncated form of it PID, it is possible 1610 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1611 * that 2 threads share the same TID and are waiting, one of the following 1612 * cases will happen: 1613 * 1614 * 1. The correct thread is running, the wrong thread is not 1615 * In this situation, the correct thread is woken and proceeds to pass it's 1616 * condition check. 1617 * 1618 * 2. Neither threads are running 1619 * In this situation, neither thread will be woken. When scheduled, the waiting 1620 * threads will execute either a wait, which will return immediately, followed 1621 * by a condition check, which will pass for the correct thread and fail 1622 * for the wrong thread, or they will execute the condition check immediately. 1623 * 1624 * 3. The wrong thread is running, the correct thread is not 1625 * The wrong thread will be woken, but will fail it's condition check and 1626 * re-execute wait. The correct thread, when scheduled, will execute either 1627 * it's condition check (which will pass), or wait, which returns immediately 1628 * when called the first time after the thread is scheduled, followed by it's 1629 * condition check (which will pass). 1630 * 1631 * 4. Both threads are running 1632 * Both threads will be woken. The wrong thread will fail it's condition check 1633 * and execute another wait, while the correct thread will pass it's condition 1634 * check. 1635 * 1636 * @t: the task to set the thread ID for 1637 */ 1638 int set_thread_tidr(struct task_struct *t) 1639 { 1640 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1641 return -EINVAL; 1642 1643 if (t != current) 1644 return -EINVAL; 1645 1646 if (t->thread.tidr) 1647 return 0; 1648 1649 t->thread.tidr = (u16)task_pid_nr(t); 1650 mtspr(SPRN_TIDR, t->thread.tidr); 1651 1652 return 0; 1653 } 1654 EXPORT_SYMBOL_GPL(set_thread_tidr); 1655 1656 #endif /* CONFIG_PPC64 */ 1657 1658 void 1659 release_thread(struct task_struct *t) 1660 { 1661 } 1662 1663 /* 1664 * this gets called so that we can store coprocessor state into memory and 1665 * copy the current task into the new thread. 1666 */ 1667 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1668 { 1669 flush_all_to_thread(src); 1670 /* 1671 * Flush TM state out so we can copy it. __switch_to_tm() does this 1672 * flush but it removes the checkpointed state from the current CPU and 1673 * transitions the CPU out of TM mode. Hence we need to call 1674 * tm_recheckpoint_new_task() (on the same task) to restore the 1675 * checkpointed state back and the TM mode. 1676 * 1677 * Can't pass dst because it isn't ready. Doesn't matter, passing 1678 * dst is only important for __switch_to() 1679 */ 1680 __switch_to_tm(src, src); 1681 1682 *dst = *src; 1683 1684 clear_task_ebb(dst); 1685 1686 return 0; 1687 } 1688 1689 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1690 { 1691 #ifdef CONFIG_PPC_64S_HASH_MMU 1692 unsigned long sp_vsid; 1693 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1694 1695 if (radix_enabled()) 1696 return; 1697 1698 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1699 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1700 << SLB_VSID_SHIFT_1T; 1701 else 1702 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1703 << SLB_VSID_SHIFT; 1704 sp_vsid |= SLB_VSID_KERNEL | llp; 1705 p->thread.ksp_vsid = sp_vsid; 1706 #endif 1707 } 1708 1709 /* 1710 * Copy a thread.. 1711 */ 1712 1713 /* 1714 * Copy architecture-specific thread state 1715 */ 1716 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 1717 { 1718 unsigned long clone_flags = args->flags; 1719 unsigned long usp = args->stack; 1720 unsigned long tls = args->tls; 1721 struct pt_regs *childregs, *kregs; 1722 extern void ret_from_fork(void); 1723 extern void ret_from_fork_scv(void); 1724 extern void ret_from_kernel_thread(void); 1725 void (*f)(void); 1726 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1727 struct thread_info *ti = task_thread_info(p); 1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1729 int i; 1730 #endif 1731 1732 klp_init_thread_info(p); 1733 1734 /* Copy registers */ 1735 sp -= sizeof(struct pt_regs); 1736 childregs = (struct pt_regs *) sp; 1737 if (unlikely(args->fn)) { 1738 /* kernel thread */ 1739 memset(childregs, 0, sizeof(struct pt_regs)); 1740 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1741 /* function */ 1742 if (args->fn) 1743 childregs->gpr[14] = ppc_function_entry((void *)args->fn); 1744 #ifdef CONFIG_PPC64 1745 clear_tsk_thread_flag(p, TIF_32BIT); 1746 childregs->softe = IRQS_ENABLED; 1747 #endif 1748 childregs->gpr[15] = (unsigned long)args->fn_arg; 1749 p->thread.regs = NULL; /* no user register state */ 1750 ti->flags |= _TIF_RESTOREALL; 1751 f = ret_from_kernel_thread; 1752 } else { 1753 /* user thread */ 1754 struct pt_regs *regs = current_pt_regs(); 1755 *childregs = *regs; 1756 if (usp) 1757 childregs->gpr[1] = usp; 1758 p->thread.regs = childregs; 1759 /* 64s sets this in ret_from_fork */ 1760 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1761 childregs->gpr[3] = 0; /* Result from fork() */ 1762 if (clone_flags & CLONE_SETTLS) { 1763 if (!is_32bit_task()) 1764 childregs->gpr[13] = tls; 1765 else 1766 childregs->gpr[2] = tls; 1767 } 1768 1769 if (trap_is_scv(regs)) 1770 f = ret_from_fork_scv; 1771 else 1772 f = ret_from_fork; 1773 } 1774 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1775 sp -= STACK_FRAME_OVERHEAD; 1776 1777 /* 1778 * The way this works is that at some point in the future 1779 * some task will call _switch to switch to the new task. 1780 * That will pop off the stack frame created below and start 1781 * the new task running at ret_from_fork. The new task will 1782 * do some house keeping and then return from the fork or clone 1783 * system call, using the stack frame created above. 1784 */ 1785 ((unsigned long *)sp)[0] = 0; 1786 sp -= sizeof(struct pt_regs); 1787 kregs = (struct pt_regs *) sp; 1788 sp -= STACK_FRAME_OVERHEAD; 1789 p->thread.ksp = sp; 1790 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1791 for (i = 0; i < nr_wp_slots(); i++) 1792 p->thread.ptrace_bps[i] = NULL; 1793 #endif 1794 1795 #ifdef CONFIG_PPC_FPU_REGS 1796 p->thread.fp_save_area = NULL; 1797 #endif 1798 #ifdef CONFIG_ALTIVEC 1799 p->thread.vr_save_area = NULL; 1800 #endif 1801 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP) 1802 p->thread.kuap = KUAP_NONE; 1803 #endif 1804 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP) 1805 p->thread.pid = MMU_NO_CONTEXT; 1806 #endif 1807 1808 setup_ksp_vsid(p, sp); 1809 1810 #ifdef CONFIG_PPC64 1811 if (cpu_has_feature(CPU_FTR_DSCR)) { 1812 p->thread.dscr_inherit = current->thread.dscr_inherit; 1813 p->thread.dscr = mfspr(SPRN_DSCR); 1814 } 1815 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1816 childregs->ppr = DEFAULT_PPR; 1817 1818 p->thread.tidr = 0; 1819 #endif 1820 /* 1821 * Run with the current AMR value of the kernel 1822 */ 1823 #ifdef CONFIG_PPC_PKEY 1824 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP)) 1825 kregs->amr = AMR_KUAP_BLOCKED; 1826 1827 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP)) 1828 kregs->iamr = AMR_KUEP_BLOCKED; 1829 #endif 1830 kregs->nip = ppc_function_entry(f); 1831 return 0; 1832 } 1833 1834 void preload_new_slb_context(unsigned long start, unsigned long sp); 1835 1836 /* 1837 * Set up a thread for executing a new program 1838 */ 1839 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1840 { 1841 #ifdef CONFIG_PPC64 1842 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1843 1844 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled()) 1845 preload_new_slb_context(start, sp); 1846 #endif 1847 1848 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1849 /* 1850 * Clear any transactional state, we're exec()ing. The cause is 1851 * not important as there will never be a recheckpoint so it's not 1852 * user visible. 1853 */ 1854 if (MSR_TM_SUSPENDED(mfmsr())) 1855 tm_reclaim_current(0); 1856 #endif 1857 1858 memset(regs->gpr, 0, sizeof(regs->gpr)); 1859 regs->ctr = 0; 1860 regs->link = 0; 1861 regs->xer = 0; 1862 regs->ccr = 0; 1863 regs->gpr[1] = sp; 1864 1865 #ifdef CONFIG_PPC32 1866 regs->mq = 0; 1867 regs->nip = start; 1868 regs->msr = MSR_USER; 1869 #else 1870 if (!is_32bit_task()) { 1871 unsigned long entry; 1872 1873 if (is_elf2_task()) { 1874 /* Look ma, no function descriptors! */ 1875 entry = start; 1876 1877 /* 1878 * Ulrich says: 1879 * The latest iteration of the ABI requires that when 1880 * calling a function (at its global entry point), 1881 * the caller must ensure r12 holds the entry point 1882 * address (so that the function can quickly 1883 * establish addressability). 1884 */ 1885 regs->gpr[12] = start; 1886 /* Make sure that's restored on entry to userspace. */ 1887 set_thread_flag(TIF_RESTOREALL); 1888 } else { 1889 unsigned long toc; 1890 1891 /* start is a relocated pointer to the function 1892 * descriptor for the elf _start routine. The first 1893 * entry in the function descriptor is the entry 1894 * address of _start and the second entry is the TOC 1895 * value we need to use. 1896 */ 1897 __get_user(entry, (unsigned long __user *)start); 1898 __get_user(toc, (unsigned long __user *)start+1); 1899 1900 /* Check whether the e_entry function descriptor entries 1901 * need to be relocated before we can use them. 1902 */ 1903 if (load_addr != 0) { 1904 entry += load_addr; 1905 toc += load_addr; 1906 } 1907 regs->gpr[2] = toc; 1908 } 1909 regs_set_return_ip(regs, entry); 1910 regs_set_return_msr(regs, MSR_USER64); 1911 } else { 1912 regs->gpr[2] = 0; 1913 regs_set_return_ip(regs, start); 1914 regs_set_return_msr(regs, MSR_USER32); 1915 } 1916 1917 #endif 1918 #ifdef CONFIG_VSX 1919 current->thread.used_vsr = 0; 1920 #endif 1921 current->thread.load_slb = 0; 1922 current->thread.load_fp = 0; 1923 #ifdef CONFIG_PPC_FPU_REGS 1924 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1925 current->thread.fp_save_area = NULL; 1926 #endif 1927 #ifdef CONFIG_ALTIVEC 1928 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1929 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1930 current->thread.vr_save_area = NULL; 1931 current->thread.vrsave = 0; 1932 current->thread.used_vr = 0; 1933 current->thread.load_vec = 0; 1934 #endif /* CONFIG_ALTIVEC */ 1935 #ifdef CONFIG_SPE 1936 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1937 current->thread.acc = 0; 1938 current->thread.spefscr = 0; 1939 current->thread.used_spe = 0; 1940 #endif /* CONFIG_SPE */ 1941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1942 current->thread.tm_tfhar = 0; 1943 current->thread.tm_texasr = 0; 1944 current->thread.tm_tfiar = 0; 1945 current->thread.load_tm = 0; 1946 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1947 } 1948 EXPORT_SYMBOL(start_thread); 1949 1950 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1951 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1952 1953 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1954 { 1955 struct pt_regs *regs = tsk->thread.regs; 1956 1957 /* This is a bit hairy. If we are an SPE enabled processor 1958 * (have embedded fp) we store the IEEE exception enable flags in 1959 * fpexc_mode. fpexc_mode is also used for setting FP exception 1960 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1961 if (val & PR_FP_EXC_SW_ENABLE) { 1962 if (cpu_has_feature(CPU_FTR_SPE)) { 1963 /* 1964 * When the sticky exception bits are set 1965 * directly by userspace, it must call prctl 1966 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1967 * in the existing prctl settings) or 1968 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1969 * the bits being set). <fenv.h> functions 1970 * saving and restoring the whole 1971 * floating-point environment need to do so 1972 * anyway to restore the prctl settings from 1973 * the saved environment. 1974 */ 1975 #ifdef CONFIG_SPE 1976 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1977 tsk->thread.fpexc_mode = val & 1978 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1979 #endif 1980 return 0; 1981 } else { 1982 return -EINVAL; 1983 } 1984 } 1985 1986 /* on a CONFIG_SPE this does not hurt us. The bits that 1987 * __pack_fe01 use do not overlap with bits used for 1988 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1989 * on CONFIG_SPE implementations are reserved so writing to 1990 * them does not change anything */ 1991 if (val > PR_FP_EXC_PRECISE) 1992 return -EINVAL; 1993 tsk->thread.fpexc_mode = __pack_fe01(val); 1994 if (regs != NULL && (regs->msr & MSR_FP) != 0) { 1995 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1)) 1996 | tsk->thread.fpexc_mode); 1997 } 1998 return 0; 1999 } 2000 2001 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 2002 { 2003 unsigned int val = 0; 2004 2005 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) { 2006 if (cpu_has_feature(CPU_FTR_SPE)) { 2007 /* 2008 * When the sticky exception bits are set 2009 * directly by userspace, it must call prctl 2010 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 2011 * in the existing prctl settings) or 2012 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 2013 * the bits being set). <fenv.h> functions 2014 * saving and restoring the whole 2015 * floating-point environment need to do so 2016 * anyway to restore the prctl settings from 2017 * the saved environment. 2018 */ 2019 #ifdef CONFIG_SPE 2020 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 2021 val = tsk->thread.fpexc_mode; 2022 #endif 2023 } else 2024 return -EINVAL; 2025 } else { 2026 val = __unpack_fe01(tsk->thread.fpexc_mode); 2027 } 2028 return put_user(val, (unsigned int __user *) adr); 2029 } 2030 2031 int set_endian(struct task_struct *tsk, unsigned int val) 2032 { 2033 struct pt_regs *regs = tsk->thread.regs; 2034 2035 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 2036 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 2037 return -EINVAL; 2038 2039 if (regs == NULL) 2040 return -EINVAL; 2041 2042 if (val == PR_ENDIAN_BIG) 2043 regs_set_return_msr(regs, regs->msr & ~MSR_LE); 2044 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 2045 regs_set_return_msr(regs, regs->msr | MSR_LE); 2046 else 2047 return -EINVAL; 2048 2049 return 0; 2050 } 2051 2052 int get_endian(struct task_struct *tsk, unsigned long adr) 2053 { 2054 struct pt_regs *regs = tsk->thread.regs; 2055 unsigned int val; 2056 2057 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 2058 !cpu_has_feature(CPU_FTR_REAL_LE)) 2059 return -EINVAL; 2060 2061 if (regs == NULL) 2062 return -EINVAL; 2063 2064 if (regs->msr & MSR_LE) { 2065 if (cpu_has_feature(CPU_FTR_REAL_LE)) 2066 val = PR_ENDIAN_LITTLE; 2067 else 2068 val = PR_ENDIAN_PPC_LITTLE; 2069 } else 2070 val = PR_ENDIAN_BIG; 2071 2072 return put_user(val, (unsigned int __user *)adr); 2073 } 2074 2075 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 2076 { 2077 tsk->thread.align_ctl = val; 2078 return 0; 2079 } 2080 2081 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2082 { 2083 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2084 } 2085 2086 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2087 unsigned long nbytes) 2088 { 2089 unsigned long stack_page; 2090 unsigned long cpu = task_cpu(p); 2091 2092 stack_page = (unsigned long)hardirq_ctx[cpu]; 2093 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2094 return 1; 2095 2096 stack_page = (unsigned long)softirq_ctx[cpu]; 2097 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2098 return 1; 2099 2100 return 0; 2101 } 2102 2103 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 2104 unsigned long nbytes) 2105 { 2106 #ifdef CONFIG_PPC64 2107 unsigned long stack_page; 2108 unsigned long cpu = task_cpu(p); 2109 2110 if (!paca_ptrs) 2111 return 0; 2112 2113 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 2114 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2115 return 1; 2116 2117 # ifdef CONFIG_PPC_BOOK3S_64 2118 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 2119 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2120 return 1; 2121 2122 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2123 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2124 return 1; 2125 # endif 2126 #endif 2127 2128 return 0; 2129 } 2130 2131 2132 int validate_sp(unsigned long sp, struct task_struct *p, 2133 unsigned long nbytes) 2134 { 2135 unsigned long stack_page = (unsigned long)task_stack_page(p); 2136 2137 if (sp < THREAD_SIZE) 2138 return 0; 2139 2140 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2141 return 1; 2142 2143 if (valid_irq_stack(sp, p, nbytes)) 2144 return 1; 2145 2146 return valid_emergency_stack(sp, p, nbytes); 2147 } 2148 2149 EXPORT_SYMBOL(validate_sp); 2150 2151 static unsigned long ___get_wchan(struct task_struct *p) 2152 { 2153 unsigned long ip, sp; 2154 int count = 0; 2155 2156 sp = p->thread.ksp; 2157 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2158 return 0; 2159 2160 do { 2161 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp); 2162 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2163 task_is_running(p)) 2164 return 0; 2165 if (count > 0) { 2166 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]); 2167 if (!in_sched_functions(ip)) 2168 return ip; 2169 } 2170 } while (count++ < 16); 2171 return 0; 2172 } 2173 2174 unsigned long __get_wchan(struct task_struct *p) 2175 { 2176 unsigned long ret; 2177 2178 if (!try_get_task_stack(p)) 2179 return 0; 2180 2181 ret = ___get_wchan(p); 2182 2183 put_task_stack(p); 2184 2185 return ret; 2186 } 2187 2188 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2189 2190 void __no_sanitize_address show_stack(struct task_struct *tsk, 2191 unsigned long *stack, 2192 const char *loglvl) 2193 { 2194 unsigned long sp, ip, lr, newsp; 2195 int count = 0; 2196 int firstframe = 1; 2197 unsigned long ret_addr; 2198 int ftrace_idx = 0; 2199 2200 if (tsk == NULL) 2201 tsk = current; 2202 2203 if (!try_get_task_stack(tsk)) 2204 return; 2205 2206 sp = (unsigned long) stack; 2207 if (sp == 0) { 2208 if (tsk == current) 2209 sp = current_stack_frame(); 2210 else 2211 sp = tsk->thread.ksp; 2212 } 2213 2214 lr = 0; 2215 printk("%sCall Trace:\n", loglvl); 2216 do { 2217 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2218 break; 2219 2220 stack = (unsigned long *) sp; 2221 newsp = stack[0]; 2222 ip = stack[STACK_FRAME_LR_SAVE]; 2223 if (!firstframe || ip != lr) { 2224 printk("%s["REG"] ["REG"] %pS", 2225 loglvl, sp, ip, (void *)ip); 2226 ret_addr = ftrace_graph_ret_addr(current, 2227 &ftrace_idx, ip, stack); 2228 if (ret_addr != ip) 2229 pr_cont(" (%pS)", (void *)ret_addr); 2230 if (firstframe) 2231 pr_cont(" (unreliable)"); 2232 pr_cont("\n"); 2233 } 2234 firstframe = 0; 2235 2236 /* 2237 * See if this is an exception frame. 2238 * We look for the "regshere" marker in the current frame. 2239 */ 2240 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS) 2241 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2242 struct pt_regs *regs = (struct pt_regs *) 2243 (sp + STACK_FRAME_OVERHEAD); 2244 2245 lr = regs->link; 2246 printk("%s--- interrupt: %lx at %pS\n", 2247 loglvl, regs->trap, (void *)regs->nip); 2248 __show_regs(regs); 2249 printk("%s--- interrupt: %lx\n", 2250 loglvl, regs->trap); 2251 2252 firstframe = 1; 2253 } 2254 2255 sp = newsp; 2256 } while (count++ < kstack_depth_to_print); 2257 2258 put_task_stack(tsk); 2259 } 2260 2261 #ifdef CONFIG_PPC64 2262 /* Called with hard IRQs off */ 2263 void notrace __ppc64_runlatch_on(void) 2264 { 2265 struct thread_info *ti = current_thread_info(); 2266 2267 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2268 /* 2269 * Least significant bit (RUN) is the only writable bit of 2270 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2271 * earliest ISA where this is the case, but it's convenient. 2272 */ 2273 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2274 } else { 2275 unsigned long ctrl; 2276 2277 /* 2278 * Some architectures (e.g., Cell) have writable fields other 2279 * than RUN, so do the read-modify-write. 2280 */ 2281 ctrl = mfspr(SPRN_CTRLF); 2282 ctrl |= CTRL_RUNLATCH; 2283 mtspr(SPRN_CTRLT, ctrl); 2284 } 2285 2286 ti->local_flags |= _TLF_RUNLATCH; 2287 } 2288 2289 /* Called with hard IRQs off */ 2290 void notrace __ppc64_runlatch_off(void) 2291 { 2292 struct thread_info *ti = current_thread_info(); 2293 2294 ti->local_flags &= ~_TLF_RUNLATCH; 2295 2296 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2297 mtspr(SPRN_CTRLT, 0); 2298 } else { 2299 unsigned long ctrl; 2300 2301 ctrl = mfspr(SPRN_CTRLF); 2302 ctrl &= ~CTRL_RUNLATCH; 2303 mtspr(SPRN_CTRLT, ctrl); 2304 } 2305 } 2306 #endif /* CONFIG_PPC64 */ 2307 2308 unsigned long arch_align_stack(unsigned long sp) 2309 { 2310 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2311 sp -= get_random_int() & ~PAGE_MASK; 2312 return sp & ~0xf; 2313 } 2314