1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #include <asm/hw_irq.h> 58 #endif 59 #include <asm/code-patching.h> 60 #include <asm/exec.h> 61 #include <asm/livepatch.h> 62 #include <asm/cpu_has_feature.h> 63 #include <asm/asm-prototypes.h> 64 #include <asm/stacktrace.h> 65 #include <asm/hw_breakpoint.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 /* 81 * Are we running in "Suspend disabled" mode? If so we have to block any 82 * sigreturn that would get us into suspended state, and we also warn in some 83 * other paths that we should never reach with suspend disabled. 84 */ 85 bool tm_suspend_disabled __ro_after_init = false; 86 87 static void check_if_tm_restore_required(struct task_struct *tsk) 88 { 89 /* 90 * If we are saving the current thread's registers, and the 91 * thread is in a transactional state, set the TIF_RESTORE_TM 92 * bit so that we know to restore the registers before 93 * returning to userspace. 94 */ 95 if (tsk == current && tsk->thread.regs && 96 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 97 !test_thread_flag(TIF_RESTORE_TM)) { 98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 99 set_thread_flag(TIF_RESTORE_TM); 100 } 101 } 102 103 #else 104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 106 107 bool strict_msr_control; 108 EXPORT_SYMBOL(strict_msr_control); 109 110 static int __init enable_strict_msr_control(char *str) 111 { 112 strict_msr_control = true; 113 pr_info("Enabling strict facility control\n"); 114 115 return 0; 116 } 117 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 118 119 /* notrace because it's called by restore_math */ 120 unsigned long notrace msr_check_and_set(unsigned long bits) 121 { 122 unsigned long oldmsr = mfmsr(); 123 unsigned long newmsr; 124 125 newmsr = oldmsr | bits; 126 127 #ifdef CONFIG_VSX 128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 129 newmsr |= MSR_VSX; 130 #endif 131 132 if (oldmsr != newmsr) 133 mtmsr_isync(newmsr); 134 135 return newmsr; 136 } 137 EXPORT_SYMBOL_GPL(msr_check_and_set); 138 139 /* notrace because it's called by restore_math */ 140 void notrace __msr_check_and_clear(unsigned long bits) 141 { 142 unsigned long oldmsr = mfmsr(); 143 unsigned long newmsr; 144 145 newmsr = oldmsr & ~bits; 146 147 #ifdef CONFIG_VSX 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 149 newmsr &= ~MSR_VSX; 150 #endif 151 152 if (oldmsr != newmsr) 153 mtmsr_isync(newmsr); 154 } 155 EXPORT_SYMBOL(__msr_check_and_clear); 156 157 #ifdef CONFIG_PPC_FPU 158 static void __giveup_fpu(struct task_struct *tsk) 159 { 160 unsigned long msr; 161 162 save_fpu(tsk); 163 msr = tsk->thread.regs->msr; 164 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 165 #ifdef CONFIG_VSX 166 if (cpu_has_feature(CPU_FTR_VSX)) 167 msr &= ~MSR_VSX; 168 #endif 169 tsk->thread.regs->msr = msr; 170 } 171 172 void giveup_fpu(struct task_struct *tsk) 173 { 174 check_if_tm_restore_required(tsk); 175 176 msr_check_and_set(MSR_FP); 177 __giveup_fpu(tsk); 178 msr_check_and_clear(MSR_FP); 179 } 180 EXPORT_SYMBOL(giveup_fpu); 181 182 /* 183 * Make sure the floating-point register state in the 184 * the thread_struct is up to date for task tsk. 185 */ 186 void flush_fp_to_thread(struct task_struct *tsk) 187 { 188 if (tsk->thread.regs) { 189 /* 190 * We need to disable preemption here because if we didn't, 191 * another process could get scheduled after the regs->msr 192 * test but before we have finished saving the FP registers 193 * to the thread_struct. That process could take over the 194 * FPU, and then when we get scheduled again we would store 195 * bogus values for the remaining FP registers. 196 */ 197 preempt_disable(); 198 if (tsk->thread.regs->msr & MSR_FP) { 199 /* 200 * This should only ever be called for current or 201 * for a stopped child process. Since we save away 202 * the FP register state on context switch, 203 * there is something wrong if a stopped child appears 204 * to still have its FP state in the CPU registers. 205 */ 206 BUG_ON(tsk != current); 207 giveup_fpu(tsk); 208 } 209 preempt_enable(); 210 } 211 } 212 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 213 214 void enable_kernel_fp(void) 215 { 216 unsigned long cpumsr; 217 218 WARN_ON(preemptible()); 219 220 cpumsr = msr_check_and_set(MSR_FP); 221 222 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 223 check_if_tm_restore_required(current); 224 /* 225 * If a thread has already been reclaimed then the 226 * checkpointed registers are on the CPU but have definitely 227 * been saved by the reclaim code. Don't need to and *cannot* 228 * giveup as this would save to the 'live' structure not the 229 * checkpointed structure. 230 */ 231 if (!MSR_TM_ACTIVE(cpumsr) && 232 MSR_TM_ACTIVE(current->thread.regs->msr)) 233 return; 234 __giveup_fpu(current); 235 } 236 } 237 EXPORT_SYMBOL(enable_kernel_fp); 238 #endif /* CONFIG_PPC_FPU */ 239 240 #ifdef CONFIG_ALTIVEC 241 static void __giveup_altivec(struct task_struct *tsk) 242 { 243 unsigned long msr; 244 245 save_altivec(tsk); 246 msr = tsk->thread.regs->msr; 247 msr &= ~MSR_VEC; 248 #ifdef CONFIG_VSX 249 if (cpu_has_feature(CPU_FTR_VSX)) 250 msr &= ~MSR_VSX; 251 #endif 252 tsk->thread.regs->msr = msr; 253 } 254 255 void giveup_altivec(struct task_struct *tsk) 256 { 257 check_if_tm_restore_required(tsk); 258 259 msr_check_and_set(MSR_VEC); 260 __giveup_altivec(tsk); 261 msr_check_and_clear(MSR_VEC); 262 } 263 EXPORT_SYMBOL(giveup_altivec); 264 265 void enable_kernel_altivec(void) 266 { 267 unsigned long cpumsr; 268 269 WARN_ON(preemptible()); 270 271 cpumsr = msr_check_and_set(MSR_VEC); 272 273 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 274 check_if_tm_restore_required(current); 275 /* 276 * If a thread has already been reclaimed then the 277 * checkpointed registers are on the CPU but have definitely 278 * been saved by the reclaim code. Don't need to and *cannot* 279 * giveup as this would save to the 'live' structure not the 280 * checkpointed structure. 281 */ 282 if (!MSR_TM_ACTIVE(cpumsr) && 283 MSR_TM_ACTIVE(current->thread.regs->msr)) 284 return; 285 __giveup_altivec(current); 286 } 287 } 288 EXPORT_SYMBOL(enable_kernel_altivec); 289 290 /* 291 * Make sure the VMX/Altivec register state in the 292 * the thread_struct is up to date for task tsk. 293 */ 294 void flush_altivec_to_thread(struct task_struct *tsk) 295 { 296 if (tsk->thread.regs) { 297 preempt_disable(); 298 if (tsk->thread.regs->msr & MSR_VEC) { 299 BUG_ON(tsk != current); 300 giveup_altivec(tsk); 301 } 302 preempt_enable(); 303 } 304 } 305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 306 #endif /* CONFIG_ALTIVEC */ 307 308 #ifdef CONFIG_VSX 309 static void __giveup_vsx(struct task_struct *tsk) 310 { 311 unsigned long msr = tsk->thread.regs->msr; 312 313 /* 314 * We should never be ssetting MSR_VSX without also setting 315 * MSR_FP and MSR_VEC 316 */ 317 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 318 319 /* __giveup_fpu will clear MSR_VSX */ 320 if (msr & MSR_FP) 321 __giveup_fpu(tsk); 322 if (msr & MSR_VEC) 323 __giveup_altivec(tsk); 324 } 325 326 static void giveup_vsx(struct task_struct *tsk) 327 { 328 check_if_tm_restore_required(tsk); 329 330 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 331 __giveup_vsx(tsk); 332 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 333 } 334 335 void enable_kernel_vsx(void) 336 { 337 unsigned long cpumsr; 338 339 WARN_ON(preemptible()); 340 341 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 342 343 if (current->thread.regs && 344 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 345 check_if_tm_restore_required(current); 346 /* 347 * If a thread has already been reclaimed then the 348 * checkpointed registers are on the CPU but have definitely 349 * been saved by the reclaim code. Don't need to and *cannot* 350 * giveup as this would save to the 'live' structure not the 351 * checkpointed structure. 352 */ 353 if (!MSR_TM_ACTIVE(cpumsr) && 354 MSR_TM_ACTIVE(current->thread.regs->msr)) 355 return; 356 __giveup_vsx(current); 357 } 358 } 359 EXPORT_SYMBOL(enable_kernel_vsx); 360 361 void flush_vsx_to_thread(struct task_struct *tsk) 362 { 363 if (tsk->thread.regs) { 364 preempt_disable(); 365 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 366 BUG_ON(tsk != current); 367 giveup_vsx(tsk); 368 } 369 preempt_enable(); 370 } 371 } 372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 373 #endif /* CONFIG_VSX */ 374 375 #ifdef CONFIG_SPE 376 void giveup_spe(struct task_struct *tsk) 377 { 378 check_if_tm_restore_required(tsk); 379 380 msr_check_and_set(MSR_SPE); 381 __giveup_spe(tsk); 382 msr_check_and_clear(MSR_SPE); 383 } 384 EXPORT_SYMBOL(giveup_spe); 385 386 void enable_kernel_spe(void) 387 { 388 WARN_ON(preemptible()); 389 390 msr_check_and_set(MSR_SPE); 391 392 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 393 check_if_tm_restore_required(current); 394 __giveup_spe(current); 395 } 396 } 397 EXPORT_SYMBOL(enable_kernel_spe); 398 399 void flush_spe_to_thread(struct task_struct *tsk) 400 { 401 if (tsk->thread.regs) { 402 preempt_disable(); 403 if (tsk->thread.regs->msr & MSR_SPE) { 404 BUG_ON(tsk != current); 405 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 406 giveup_spe(tsk); 407 } 408 preempt_enable(); 409 } 410 } 411 #endif /* CONFIG_SPE */ 412 413 static unsigned long msr_all_available; 414 415 static int __init init_msr_all_available(void) 416 { 417 #ifdef CONFIG_PPC_FPU 418 msr_all_available |= MSR_FP; 419 #endif 420 #ifdef CONFIG_ALTIVEC 421 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 422 msr_all_available |= MSR_VEC; 423 #endif 424 #ifdef CONFIG_VSX 425 if (cpu_has_feature(CPU_FTR_VSX)) 426 msr_all_available |= MSR_VSX; 427 #endif 428 #ifdef CONFIG_SPE 429 if (cpu_has_feature(CPU_FTR_SPE)) 430 msr_all_available |= MSR_SPE; 431 #endif 432 433 return 0; 434 } 435 early_initcall(init_msr_all_available); 436 437 void giveup_all(struct task_struct *tsk) 438 { 439 unsigned long usermsr; 440 441 if (!tsk->thread.regs) 442 return; 443 444 check_if_tm_restore_required(tsk); 445 446 usermsr = tsk->thread.regs->msr; 447 448 if ((usermsr & msr_all_available) == 0) 449 return; 450 451 msr_check_and_set(msr_all_available); 452 453 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 454 455 #ifdef CONFIG_PPC_FPU 456 if (usermsr & MSR_FP) 457 __giveup_fpu(tsk); 458 #endif 459 #ifdef CONFIG_ALTIVEC 460 if (usermsr & MSR_VEC) 461 __giveup_altivec(tsk); 462 #endif 463 #ifdef CONFIG_SPE 464 if (usermsr & MSR_SPE) 465 __giveup_spe(tsk); 466 #endif 467 468 msr_check_and_clear(msr_all_available); 469 } 470 EXPORT_SYMBOL(giveup_all); 471 472 #ifdef CONFIG_PPC_BOOK3S_64 473 #ifdef CONFIG_PPC_FPU 474 static bool should_restore_fp(void) 475 { 476 if (current->thread.load_fp) { 477 current->thread.load_fp++; 478 return true; 479 } 480 return false; 481 } 482 483 static void do_restore_fp(void) 484 { 485 load_fp_state(¤t->thread.fp_state); 486 } 487 #else 488 static bool should_restore_fp(void) { return false; } 489 static void do_restore_fp(void) { } 490 #endif /* CONFIG_PPC_FPU */ 491 492 #ifdef CONFIG_ALTIVEC 493 static bool should_restore_altivec(void) 494 { 495 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { 496 current->thread.load_vec++; 497 return true; 498 } 499 return false; 500 } 501 502 static void do_restore_altivec(void) 503 { 504 load_vr_state(¤t->thread.vr_state); 505 current->thread.used_vr = 1; 506 } 507 #else 508 static bool should_restore_altivec(void) { return false; } 509 static void do_restore_altivec(void) { } 510 #endif /* CONFIG_ALTIVEC */ 511 512 #ifdef CONFIG_VSX 513 static bool should_restore_vsx(void) 514 { 515 if (cpu_has_feature(CPU_FTR_VSX)) 516 return true; 517 return false; 518 } 519 static void do_restore_vsx(void) 520 { 521 current->thread.used_vsr = 1; 522 } 523 #else 524 static bool should_restore_vsx(void) { return false; } 525 static void do_restore_vsx(void) { } 526 #endif /* CONFIG_VSX */ 527 528 /* 529 * The exception exit path calls restore_math() with interrupts hard disabled 530 * but the soft irq state not "reconciled". ftrace code that calls 531 * local_irq_save/restore causes warnings. 532 * 533 * Rather than complicate the exit path, just don't trace restore_math. This 534 * could be done by having ftrace entry code check for this un-reconciled 535 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 536 * temporarily fix it up for the duration of the ftrace call. 537 */ 538 void notrace restore_math(struct pt_regs *regs) 539 { 540 unsigned long msr; 541 unsigned long new_msr = 0; 542 543 msr = regs->msr; 544 545 /* 546 * new_msr tracks the facilities that are to be restored. Only reload 547 * if the bit is not set in the user MSR (if it is set, the registers 548 * are live for the user thread). 549 */ 550 if ((!(msr & MSR_FP)) && should_restore_fp()) 551 new_msr |= MSR_FP | current->thread.fpexc_mode; 552 553 if ((!(msr & MSR_VEC)) && should_restore_altivec()) 554 new_msr |= MSR_VEC; 555 556 if ((!(msr & MSR_VSX)) && should_restore_vsx()) { 557 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) 558 new_msr |= MSR_VSX; 559 } 560 561 if (new_msr) { 562 msr_check_and_set(new_msr); 563 564 if (new_msr & MSR_FP) 565 do_restore_fp(); 566 567 if (new_msr & MSR_VEC) 568 do_restore_altivec(); 569 570 if (new_msr & MSR_VSX) 571 do_restore_vsx(); 572 573 msr_check_and_clear(new_msr); 574 575 regs->msr |= new_msr; 576 } 577 } 578 #endif 579 580 static void save_all(struct task_struct *tsk) 581 { 582 unsigned long usermsr; 583 584 if (!tsk->thread.regs) 585 return; 586 587 usermsr = tsk->thread.regs->msr; 588 589 if ((usermsr & msr_all_available) == 0) 590 return; 591 592 msr_check_and_set(msr_all_available); 593 594 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 595 596 if (usermsr & MSR_FP) 597 save_fpu(tsk); 598 599 if (usermsr & MSR_VEC) 600 save_altivec(tsk); 601 602 if (usermsr & MSR_SPE) 603 __giveup_spe(tsk); 604 605 msr_check_and_clear(msr_all_available); 606 thread_pkey_regs_save(&tsk->thread); 607 } 608 609 void flush_all_to_thread(struct task_struct *tsk) 610 { 611 if (tsk->thread.regs) { 612 preempt_disable(); 613 BUG_ON(tsk != current); 614 #ifdef CONFIG_SPE 615 if (tsk->thread.regs->msr & MSR_SPE) 616 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 617 #endif 618 save_all(tsk); 619 620 preempt_enable(); 621 } 622 } 623 EXPORT_SYMBOL(flush_all_to_thread); 624 625 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 626 void do_send_trap(struct pt_regs *regs, unsigned long address, 627 unsigned long error_code, int breakpt) 628 { 629 current->thread.trap_nr = TRAP_HWBKPT; 630 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 631 11, SIGSEGV) == NOTIFY_STOP) 632 return; 633 634 /* Deliver the signal to userspace */ 635 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 636 (void __user *)address); 637 } 638 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 639 void do_break (struct pt_regs *regs, unsigned long address, 640 unsigned long error_code) 641 { 642 current->thread.trap_nr = TRAP_HWBKPT; 643 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 644 11, SIGSEGV) == NOTIFY_STOP) 645 return; 646 647 if (debugger_break_match(regs)) 648 return; 649 650 /* Deliver the signal to userspace */ 651 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 652 } 653 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 654 655 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 656 657 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 658 /* 659 * Set the debug registers back to their default "safe" values. 660 */ 661 static void set_debug_reg_defaults(struct thread_struct *thread) 662 { 663 thread->debug.iac1 = thread->debug.iac2 = 0; 664 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 665 thread->debug.iac3 = thread->debug.iac4 = 0; 666 #endif 667 thread->debug.dac1 = thread->debug.dac2 = 0; 668 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 669 thread->debug.dvc1 = thread->debug.dvc2 = 0; 670 #endif 671 thread->debug.dbcr0 = 0; 672 #ifdef CONFIG_BOOKE 673 /* 674 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 675 */ 676 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 677 DBCR1_IAC3US | DBCR1_IAC4US; 678 /* 679 * Force Data Address Compare User/Supervisor bits to be User-only 680 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 681 */ 682 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 683 #else 684 thread->debug.dbcr1 = 0; 685 #endif 686 } 687 688 static void prime_debug_regs(struct debug_reg *debug) 689 { 690 /* 691 * We could have inherited MSR_DE from userspace, since 692 * it doesn't get cleared on exception entry. Make sure 693 * MSR_DE is clear before we enable any debug events. 694 */ 695 mtmsr(mfmsr() & ~MSR_DE); 696 697 mtspr(SPRN_IAC1, debug->iac1); 698 mtspr(SPRN_IAC2, debug->iac2); 699 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 700 mtspr(SPRN_IAC3, debug->iac3); 701 mtspr(SPRN_IAC4, debug->iac4); 702 #endif 703 mtspr(SPRN_DAC1, debug->dac1); 704 mtspr(SPRN_DAC2, debug->dac2); 705 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 706 mtspr(SPRN_DVC1, debug->dvc1); 707 mtspr(SPRN_DVC2, debug->dvc2); 708 #endif 709 mtspr(SPRN_DBCR0, debug->dbcr0); 710 mtspr(SPRN_DBCR1, debug->dbcr1); 711 #ifdef CONFIG_BOOKE 712 mtspr(SPRN_DBCR2, debug->dbcr2); 713 #endif 714 } 715 /* 716 * Unless neither the old or new thread are making use of the 717 * debug registers, set the debug registers from the values 718 * stored in the new thread. 719 */ 720 void switch_booke_debug_regs(struct debug_reg *new_debug) 721 { 722 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 723 || (new_debug->dbcr0 & DBCR0_IDM)) 724 prime_debug_regs(new_debug); 725 } 726 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 727 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 728 #ifndef CONFIG_HAVE_HW_BREAKPOINT 729 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 730 { 731 preempt_disable(); 732 __set_breakpoint(i, brk); 733 preempt_enable(); 734 } 735 736 static void set_debug_reg_defaults(struct thread_struct *thread) 737 { 738 int i; 739 struct arch_hw_breakpoint null_brk = {0}; 740 741 for (i = 0; i < nr_wp_slots(); i++) { 742 thread->hw_brk[i] = null_brk; 743 if (ppc_breakpoint_available()) 744 set_breakpoint(i, &thread->hw_brk[i]); 745 } 746 } 747 748 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 749 struct arch_hw_breakpoint *b) 750 { 751 if (a->address != b->address) 752 return false; 753 if (a->type != b->type) 754 return false; 755 if (a->len != b->len) 756 return false; 757 /* no need to check hw_len. it's calculated from address and len */ 758 return true; 759 } 760 761 static void switch_hw_breakpoint(struct task_struct *new) 762 { 763 int i; 764 765 for (i = 0; i < nr_wp_slots(); i++) { 766 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 767 &new->thread.hw_brk[i]))) 768 continue; 769 770 __set_breakpoint(i, &new->thread.hw_brk[i]); 771 } 772 } 773 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 774 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 775 776 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 778 { 779 mtspr(SPRN_DAC1, dabr); 780 #ifdef CONFIG_PPC_47x 781 isync(); 782 #endif 783 return 0; 784 } 785 #elif defined(CONFIG_PPC_BOOK3S) 786 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 787 { 788 mtspr(SPRN_DABR, dabr); 789 if (cpu_has_feature(CPU_FTR_DABRX)) 790 mtspr(SPRN_DABRX, dabrx); 791 return 0; 792 } 793 #else 794 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 795 { 796 return -EINVAL; 797 } 798 #endif 799 800 static inline int set_dabr(struct arch_hw_breakpoint *brk) 801 { 802 unsigned long dabr, dabrx; 803 804 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 805 dabrx = ((brk->type >> 3) & 0x7); 806 807 if (ppc_md.set_dabr) 808 return ppc_md.set_dabr(dabr, dabrx); 809 810 return __set_dabr(dabr, dabrx); 811 } 812 813 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 814 { 815 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 816 LCTRL1_CRWF_RW; 817 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 818 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 819 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 820 821 if (start_addr == 0) 822 lctrl2 |= LCTRL2_LW0LA_F; 823 else if (end_addr == 0) 824 lctrl2 |= LCTRL2_LW0LA_E; 825 else 826 lctrl2 |= LCTRL2_LW0LA_EandF; 827 828 mtspr(SPRN_LCTRL2, 0); 829 830 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 831 return 0; 832 833 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 834 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 835 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 836 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 837 838 mtspr(SPRN_CMPE, start_addr - 1); 839 mtspr(SPRN_CMPF, end_addr); 840 mtspr(SPRN_LCTRL1, lctrl1); 841 mtspr(SPRN_LCTRL2, lctrl2); 842 843 return 0; 844 } 845 846 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 847 { 848 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 849 850 if (dawr_enabled()) 851 // Power8 or later 852 set_dawr(nr, brk); 853 else if (IS_ENABLED(CONFIG_PPC_8xx)) 854 set_breakpoint_8xx(brk); 855 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 856 // Power7 or earlier 857 set_dabr(brk); 858 else 859 // Shouldn't happen due to higher level checks 860 WARN_ON_ONCE(1); 861 } 862 863 /* Check if we have DAWR or DABR hardware */ 864 bool ppc_breakpoint_available(void) 865 { 866 if (dawr_enabled()) 867 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 868 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 869 return false; /* POWER9 with DAWR disabled */ 870 /* DABR: Everything but POWER8 and POWER9 */ 871 return true; 872 } 873 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 874 875 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 876 877 static inline bool tm_enabled(struct task_struct *tsk) 878 { 879 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 880 } 881 882 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 883 { 884 /* 885 * Use the current MSR TM suspended bit to track if we have 886 * checkpointed state outstanding. 887 * On signal delivery, we'd normally reclaim the checkpointed 888 * state to obtain stack pointer (see:get_tm_stackpointer()). 889 * This will then directly return to userspace without going 890 * through __switch_to(). However, if the stack frame is bad, 891 * we need to exit this thread which calls __switch_to() which 892 * will again attempt to reclaim the already saved tm state. 893 * Hence we need to check that we've not already reclaimed 894 * this state. 895 * We do this using the current MSR, rather tracking it in 896 * some specific thread_struct bit, as it has the additional 897 * benefit of checking for a potential TM bad thing exception. 898 */ 899 if (!MSR_TM_SUSPENDED(mfmsr())) 900 return; 901 902 giveup_all(container_of(thr, struct task_struct, thread)); 903 904 tm_reclaim(thr, cause); 905 906 /* 907 * If we are in a transaction and FP is off then we can't have 908 * used FP inside that transaction. Hence the checkpointed 909 * state is the same as the live state. We need to copy the 910 * live state to the checkpointed state so that when the 911 * transaction is restored, the checkpointed state is correct 912 * and the aborted transaction sees the correct state. We use 913 * ckpt_regs.msr here as that's what tm_reclaim will use to 914 * determine if it's going to write the checkpointed state or 915 * not. So either this will write the checkpointed registers, 916 * or reclaim will. Similarly for VMX. 917 */ 918 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 919 memcpy(&thr->ckfp_state, &thr->fp_state, 920 sizeof(struct thread_fp_state)); 921 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 922 memcpy(&thr->ckvr_state, &thr->vr_state, 923 sizeof(struct thread_vr_state)); 924 } 925 926 void tm_reclaim_current(uint8_t cause) 927 { 928 tm_enable(); 929 tm_reclaim_thread(¤t->thread, cause); 930 } 931 932 static inline void tm_reclaim_task(struct task_struct *tsk) 933 { 934 /* We have to work out if we're switching from/to a task that's in the 935 * middle of a transaction. 936 * 937 * In switching we need to maintain a 2nd register state as 938 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 939 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 940 * ckvr_state 941 * 942 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 943 */ 944 struct thread_struct *thr = &tsk->thread; 945 946 if (!thr->regs) 947 return; 948 949 if (!MSR_TM_ACTIVE(thr->regs->msr)) 950 goto out_and_saveregs; 951 952 WARN_ON(tm_suspend_disabled); 953 954 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 955 "ccr=%lx, msr=%lx, trap=%lx)\n", 956 tsk->pid, thr->regs->nip, 957 thr->regs->ccr, thr->regs->msr, 958 thr->regs->trap); 959 960 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 961 962 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 963 tsk->pid); 964 965 out_and_saveregs: 966 /* Always save the regs here, even if a transaction's not active. 967 * This context-switches a thread's TM info SPRs. We do it here to 968 * be consistent with the restore path (in recheckpoint) which 969 * cannot happen later in _switch(). 970 */ 971 tm_save_sprs(thr); 972 } 973 974 extern void __tm_recheckpoint(struct thread_struct *thread); 975 976 void tm_recheckpoint(struct thread_struct *thread) 977 { 978 unsigned long flags; 979 980 if (!(thread->regs->msr & MSR_TM)) 981 return; 982 983 /* We really can't be interrupted here as the TEXASR registers can't 984 * change and later in the trecheckpoint code, we have a userspace R1. 985 * So let's hard disable over this region. 986 */ 987 local_irq_save(flags); 988 hard_irq_disable(); 989 990 /* The TM SPRs are restored here, so that TEXASR.FS can be set 991 * before the trecheckpoint and no explosion occurs. 992 */ 993 tm_restore_sprs(thread); 994 995 __tm_recheckpoint(thread); 996 997 local_irq_restore(flags); 998 } 999 1000 static inline void tm_recheckpoint_new_task(struct task_struct *new) 1001 { 1002 if (!cpu_has_feature(CPU_FTR_TM)) 1003 return; 1004 1005 /* Recheckpoint the registers of the thread we're about to switch to. 1006 * 1007 * If the task was using FP, we non-lazily reload both the original and 1008 * the speculative FP register states. This is because the kernel 1009 * doesn't see if/when a TM rollback occurs, so if we take an FP 1010 * unavailable later, we are unable to determine which set of FP regs 1011 * need to be restored. 1012 */ 1013 if (!tm_enabled(new)) 1014 return; 1015 1016 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1017 tm_restore_sprs(&new->thread); 1018 return; 1019 } 1020 /* Recheckpoint to restore original checkpointed register state. */ 1021 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1022 new->pid, new->thread.regs->msr); 1023 1024 tm_recheckpoint(&new->thread); 1025 1026 /* 1027 * The checkpointed state has been restored but the live state has 1028 * not, ensure all the math functionality is turned off to trigger 1029 * restore_math() to reload. 1030 */ 1031 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1032 1033 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1034 "(kernel msr 0x%lx)\n", 1035 new->pid, mfmsr()); 1036 } 1037 1038 static inline void __switch_to_tm(struct task_struct *prev, 1039 struct task_struct *new) 1040 { 1041 if (cpu_has_feature(CPU_FTR_TM)) { 1042 if (tm_enabled(prev) || tm_enabled(new)) 1043 tm_enable(); 1044 1045 if (tm_enabled(prev)) { 1046 prev->thread.load_tm++; 1047 tm_reclaim_task(prev); 1048 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1049 prev->thread.regs->msr &= ~MSR_TM; 1050 } 1051 1052 tm_recheckpoint_new_task(new); 1053 } 1054 } 1055 1056 /* 1057 * This is called if we are on the way out to userspace and the 1058 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1059 * FP and/or vector state and does so if necessary. 1060 * If userspace is inside a transaction (whether active or 1061 * suspended) and FP/VMX/VSX instructions have ever been enabled 1062 * inside that transaction, then we have to keep them enabled 1063 * and keep the FP/VMX/VSX state loaded while ever the transaction 1064 * continues. The reason is that if we didn't, and subsequently 1065 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1066 * we don't know whether it's the same transaction, and thus we 1067 * don't know which of the checkpointed state and the transactional 1068 * state to use. 1069 */ 1070 void restore_tm_state(struct pt_regs *regs) 1071 { 1072 unsigned long msr_diff; 1073 1074 /* 1075 * This is the only moment we should clear TIF_RESTORE_TM as 1076 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1077 * again, anything else could lead to an incorrect ckpt_msr being 1078 * saved and therefore incorrect signal contexts. 1079 */ 1080 clear_thread_flag(TIF_RESTORE_TM); 1081 if (!MSR_TM_ACTIVE(regs->msr)) 1082 return; 1083 1084 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1085 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1086 1087 /* Ensure that restore_math() will restore */ 1088 if (msr_diff & MSR_FP) 1089 current->thread.load_fp = 1; 1090 #ifdef CONFIG_ALTIVEC 1091 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1092 current->thread.load_vec = 1; 1093 #endif 1094 restore_math(regs); 1095 1096 regs->msr |= msr_diff; 1097 } 1098 1099 #else 1100 #define tm_recheckpoint_new_task(new) 1101 #define __switch_to_tm(prev, new) 1102 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1103 1104 static inline void save_sprs(struct thread_struct *t) 1105 { 1106 #ifdef CONFIG_ALTIVEC 1107 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1108 t->vrsave = mfspr(SPRN_VRSAVE); 1109 #endif 1110 #ifdef CONFIG_PPC_BOOK3S_64 1111 if (cpu_has_feature(CPU_FTR_DSCR)) 1112 t->dscr = mfspr(SPRN_DSCR); 1113 1114 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1115 t->bescr = mfspr(SPRN_BESCR); 1116 t->ebbhr = mfspr(SPRN_EBBHR); 1117 t->ebbrr = mfspr(SPRN_EBBRR); 1118 1119 t->fscr = mfspr(SPRN_FSCR); 1120 1121 /* 1122 * Note that the TAR is not available for use in the kernel. 1123 * (To provide this, the TAR should be backed up/restored on 1124 * exception entry/exit instead, and be in pt_regs. FIXME, 1125 * this should be in pt_regs anyway (for debug).) 1126 */ 1127 t->tar = mfspr(SPRN_TAR); 1128 } 1129 #endif 1130 1131 thread_pkey_regs_save(t); 1132 } 1133 1134 static inline void restore_sprs(struct thread_struct *old_thread, 1135 struct thread_struct *new_thread) 1136 { 1137 #ifdef CONFIG_ALTIVEC 1138 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1139 old_thread->vrsave != new_thread->vrsave) 1140 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1141 #endif 1142 #ifdef CONFIG_PPC_BOOK3S_64 1143 if (cpu_has_feature(CPU_FTR_DSCR)) { 1144 u64 dscr = get_paca()->dscr_default; 1145 if (new_thread->dscr_inherit) 1146 dscr = new_thread->dscr; 1147 1148 if (old_thread->dscr != dscr) 1149 mtspr(SPRN_DSCR, dscr); 1150 } 1151 1152 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1153 if (old_thread->bescr != new_thread->bescr) 1154 mtspr(SPRN_BESCR, new_thread->bescr); 1155 if (old_thread->ebbhr != new_thread->ebbhr) 1156 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1157 if (old_thread->ebbrr != new_thread->ebbrr) 1158 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1159 1160 if (old_thread->fscr != new_thread->fscr) 1161 mtspr(SPRN_FSCR, new_thread->fscr); 1162 1163 if (old_thread->tar != new_thread->tar) 1164 mtspr(SPRN_TAR, new_thread->tar); 1165 } 1166 1167 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1168 old_thread->tidr != new_thread->tidr) 1169 mtspr(SPRN_TIDR, new_thread->tidr); 1170 #endif 1171 1172 thread_pkey_regs_restore(new_thread, old_thread); 1173 } 1174 1175 struct task_struct *__switch_to(struct task_struct *prev, 1176 struct task_struct *new) 1177 { 1178 struct thread_struct *new_thread, *old_thread; 1179 struct task_struct *last; 1180 #ifdef CONFIG_PPC_BOOK3S_64 1181 struct ppc64_tlb_batch *batch; 1182 #endif 1183 1184 new_thread = &new->thread; 1185 old_thread = ¤t->thread; 1186 1187 WARN_ON(!irqs_disabled()); 1188 1189 #ifdef CONFIG_PPC_BOOK3S_64 1190 batch = this_cpu_ptr(&ppc64_tlb_batch); 1191 if (batch->active) { 1192 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1193 if (batch->index) 1194 __flush_tlb_pending(batch); 1195 batch->active = 0; 1196 } 1197 #endif /* CONFIG_PPC_BOOK3S_64 */ 1198 1199 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1200 switch_booke_debug_regs(&new->thread.debug); 1201 #else 1202 /* 1203 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1204 * schedule DABR 1205 */ 1206 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1207 switch_hw_breakpoint(new); 1208 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1209 #endif 1210 1211 /* 1212 * We need to save SPRs before treclaim/trecheckpoint as these will 1213 * change a number of them. 1214 */ 1215 save_sprs(&prev->thread); 1216 1217 /* Save FPU, Altivec, VSX and SPE state */ 1218 giveup_all(prev); 1219 1220 __switch_to_tm(prev, new); 1221 1222 if (!radix_enabled()) { 1223 /* 1224 * We can't take a PMU exception inside _switch() since there 1225 * is a window where the kernel stack SLB and the kernel stack 1226 * are out of sync. Hard disable here. 1227 */ 1228 hard_irq_disable(); 1229 } 1230 1231 /* 1232 * Call restore_sprs() before calling _switch(). If we move it after 1233 * _switch() then we miss out on calling it for new tasks. The reason 1234 * for this is we manually create a stack frame for new tasks that 1235 * directly returns through ret_from_fork() or 1236 * ret_from_kernel_thread(). See copy_thread() for details. 1237 */ 1238 restore_sprs(old_thread, new_thread); 1239 1240 last = _switch(old_thread, new_thread); 1241 1242 #ifdef CONFIG_PPC_BOOK3S_64 1243 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1244 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1245 batch = this_cpu_ptr(&ppc64_tlb_batch); 1246 batch->active = 1; 1247 } 1248 1249 if (current->thread.regs) { 1250 restore_math(current->thread.regs); 1251 1252 /* 1253 * The copy-paste buffer can only store into foreign real 1254 * addresses, so unprivileged processes can not see the 1255 * data or use it in any way unless they have foreign real 1256 * mappings. If the new process has the foreign real address 1257 * mappings, we must issue a cp_abort to clear any state and 1258 * prevent snooping, corruption or a covert channel. 1259 */ 1260 if (current->mm && 1261 atomic_read(¤t->mm->context.vas_windows)) 1262 asm volatile(PPC_CP_ABORT); 1263 } 1264 #endif /* CONFIG_PPC_BOOK3S_64 */ 1265 1266 return last; 1267 } 1268 1269 #define NR_INSN_TO_PRINT 16 1270 1271 static void show_instructions(struct pt_regs *regs) 1272 { 1273 int i; 1274 unsigned long nip = regs->nip; 1275 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1276 1277 printk("Instruction dump:"); 1278 1279 /* 1280 * If we were executing with the MMU off for instructions, adjust pc 1281 * rather than printing XXXXXXXX. 1282 */ 1283 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { 1284 pc = (unsigned long)phys_to_virt(pc); 1285 nip = (unsigned long)phys_to_virt(regs->nip); 1286 } 1287 1288 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1289 int instr; 1290 1291 if (!(i % 8)) 1292 pr_cont("\n"); 1293 1294 if (!__kernel_text_address(pc) || 1295 get_kernel_nofault(instr, (const void *)pc)) { 1296 pr_cont("XXXXXXXX "); 1297 } else { 1298 if (nip == pc) 1299 pr_cont("<%08x> ", instr); 1300 else 1301 pr_cont("%08x ", instr); 1302 } 1303 1304 pc += sizeof(int); 1305 } 1306 1307 pr_cont("\n"); 1308 } 1309 1310 void show_user_instructions(struct pt_regs *regs) 1311 { 1312 unsigned long pc; 1313 int n = NR_INSN_TO_PRINT; 1314 struct seq_buf s; 1315 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1316 1317 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1318 1319 seq_buf_init(&s, buf, sizeof(buf)); 1320 1321 while (n) { 1322 int i; 1323 1324 seq_buf_clear(&s); 1325 1326 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1327 int instr; 1328 1329 if (copy_from_user_nofault(&instr, (void __user *)pc, 1330 sizeof(instr))) { 1331 seq_buf_printf(&s, "XXXXXXXX "); 1332 continue; 1333 } 1334 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1335 } 1336 1337 if (!seq_buf_has_overflowed(&s)) 1338 pr_info("%s[%d]: code: %s\n", current->comm, 1339 current->pid, s.buffer); 1340 } 1341 } 1342 1343 struct regbit { 1344 unsigned long bit; 1345 const char *name; 1346 }; 1347 1348 static struct regbit msr_bits[] = { 1349 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1350 {MSR_SF, "SF"}, 1351 {MSR_HV, "HV"}, 1352 #endif 1353 {MSR_VEC, "VEC"}, 1354 {MSR_VSX, "VSX"}, 1355 #ifdef CONFIG_BOOKE 1356 {MSR_CE, "CE"}, 1357 #endif 1358 {MSR_EE, "EE"}, 1359 {MSR_PR, "PR"}, 1360 {MSR_FP, "FP"}, 1361 {MSR_ME, "ME"}, 1362 #ifdef CONFIG_BOOKE 1363 {MSR_DE, "DE"}, 1364 #else 1365 {MSR_SE, "SE"}, 1366 {MSR_BE, "BE"}, 1367 #endif 1368 {MSR_IR, "IR"}, 1369 {MSR_DR, "DR"}, 1370 {MSR_PMM, "PMM"}, 1371 #ifndef CONFIG_BOOKE 1372 {MSR_RI, "RI"}, 1373 {MSR_LE, "LE"}, 1374 #endif 1375 {0, NULL} 1376 }; 1377 1378 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1379 { 1380 const char *s = ""; 1381 1382 for (; bits->bit; ++bits) 1383 if (val & bits->bit) { 1384 pr_cont("%s%s", s, bits->name); 1385 s = sep; 1386 } 1387 } 1388 1389 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1390 static struct regbit msr_tm_bits[] = { 1391 {MSR_TS_T, "T"}, 1392 {MSR_TS_S, "S"}, 1393 {MSR_TM, "E"}, 1394 {0, NULL} 1395 }; 1396 1397 static void print_tm_bits(unsigned long val) 1398 { 1399 /* 1400 * This only prints something if at least one of the TM bit is set. 1401 * Inside the TM[], the output means: 1402 * E: Enabled (bit 32) 1403 * S: Suspended (bit 33) 1404 * T: Transactional (bit 34) 1405 */ 1406 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1407 pr_cont(",TM["); 1408 print_bits(val, msr_tm_bits, ""); 1409 pr_cont("]"); 1410 } 1411 } 1412 #else 1413 static void print_tm_bits(unsigned long val) {} 1414 #endif 1415 1416 static void print_msr_bits(unsigned long val) 1417 { 1418 pr_cont("<"); 1419 print_bits(val, msr_bits, ","); 1420 print_tm_bits(val); 1421 pr_cont(">"); 1422 } 1423 1424 #ifdef CONFIG_PPC64 1425 #define REG "%016lx" 1426 #define REGS_PER_LINE 4 1427 #define LAST_VOLATILE 13 1428 #else 1429 #define REG "%08lx" 1430 #define REGS_PER_LINE 8 1431 #define LAST_VOLATILE 12 1432 #endif 1433 1434 void show_regs(struct pt_regs * regs) 1435 { 1436 int i, trap; 1437 1438 show_regs_print_info(KERN_DEFAULT); 1439 1440 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1441 regs->nip, regs->link, regs->ctr); 1442 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1443 regs, regs->trap, print_tainted(), init_utsname()->release); 1444 printk("MSR: "REG" ", regs->msr); 1445 print_msr_bits(regs->msr); 1446 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1447 trap = TRAP(regs); 1448 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1449 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1450 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1451 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1452 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1453 #else 1454 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1455 #endif 1456 #ifdef CONFIG_PPC64 1457 pr_cont("IRQMASK: %lx ", regs->softe); 1458 #endif 1459 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1460 if (MSR_TM_ACTIVE(regs->msr)) 1461 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1462 #endif 1463 1464 for (i = 0; i < 32; i++) { 1465 if ((i % REGS_PER_LINE) == 0) 1466 pr_cont("\nGPR%02d: ", i); 1467 pr_cont(REG " ", regs->gpr[i]); 1468 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1469 break; 1470 } 1471 pr_cont("\n"); 1472 #ifdef CONFIG_KALLSYMS 1473 /* 1474 * Lookup NIP late so we have the best change of getting the 1475 * above info out without failing 1476 */ 1477 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1478 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1479 #endif 1480 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1481 if (!user_mode(regs)) 1482 show_instructions(regs); 1483 } 1484 1485 void flush_thread(void) 1486 { 1487 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1488 flush_ptrace_hw_breakpoint(current); 1489 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1490 set_debug_reg_defaults(¤t->thread); 1491 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1492 } 1493 1494 #ifdef CONFIG_PPC_BOOK3S_64 1495 void arch_setup_new_exec(void) 1496 { 1497 if (radix_enabled()) 1498 return; 1499 hash__setup_new_exec(); 1500 } 1501 #endif 1502 1503 #ifdef CONFIG_PPC64 1504 /** 1505 * Assign a TIDR (thread ID) for task @t and set it in the thread 1506 * structure. For now, we only support setting TIDR for 'current' task. 1507 * 1508 * Since the TID value is a truncated form of it PID, it is possible 1509 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1510 * that 2 threads share the same TID and are waiting, one of the following 1511 * cases will happen: 1512 * 1513 * 1. The correct thread is running, the wrong thread is not 1514 * In this situation, the correct thread is woken and proceeds to pass it's 1515 * condition check. 1516 * 1517 * 2. Neither threads are running 1518 * In this situation, neither thread will be woken. When scheduled, the waiting 1519 * threads will execute either a wait, which will return immediately, followed 1520 * by a condition check, which will pass for the correct thread and fail 1521 * for the wrong thread, or they will execute the condition check immediately. 1522 * 1523 * 3. The wrong thread is running, the correct thread is not 1524 * The wrong thread will be woken, but will fail it's condition check and 1525 * re-execute wait. The correct thread, when scheduled, will execute either 1526 * it's condition check (which will pass), or wait, which returns immediately 1527 * when called the first time after the thread is scheduled, followed by it's 1528 * condition check (which will pass). 1529 * 1530 * 4. Both threads are running 1531 * Both threads will be woken. The wrong thread will fail it's condition check 1532 * and execute another wait, while the correct thread will pass it's condition 1533 * check. 1534 * 1535 * @t: the task to set the thread ID for 1536 */ 1537 int set_thread_tidr(struct task_struct *t) 1538 { 1539 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1540 return -EINVAL; 1541 1542 if (t != current) 1543 return -EINVAL; 1544 1545 if (t->thread.tidr) 1546 return 0; 1547 1548 t->thread.tidr = (u16)task_pid_nr(t); 1549 mtspr(SPRN_TIDR, t->thread.tidr); 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_GPL(set_thread_tidr); 1554 1555 #endif /* CONFIG_PPC64 */ 1556 1557 void 1558 release_thread(struct task_struct *t) 1559 { 1560 } 1561 1562 /* 1563 * this gets called so that we can store coprocessor state into memory and 1564 * copy the current task into the new thread. 1565 */ 1566 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1567 { 1568 flush_all_to_thread(src); 1569 /* 1570 * Flush TM state out so we can copy it. __switch_to_tm() does this 1571 * flush but it removes the checkpointed state from the current CPU and 1572 * transitions the CPU out of TM mode. Hence we need to call 1573 * tm_recheckpoint_new_task() (on the same task) to restore the 1574 * checkpointed state back and the TM mode. 1575 * 1576 * Can't pass dst because it isn't ready. Doesn't matter, passing 1577 * dst is only important for __switch_to() 1578 */ 1579 __switch_to_tm(src, src); 1580 1581 *dst = *src; 1582 1583 clear_task_ebb(dst); 1584 1585 return 0; 1586 } 1587 1588 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1589 { 1590 #ifdef CONFIG_PPC_BOOK3S_64 1591 unsigned long sp_vsid; 1592 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1593 1594 if (radix_enabled()) 1595 return; 1596 1597 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1598 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1599 << SLB_VSID_SHIFT_1T; 1600 else 1601 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1602 << SLB_VSID_SHIFT; 1603 sp_vsid |= SLB_VSID_KERNEL | llp; 1604 p->thread.ksp_vsid = sp_vsid; 1605 #endif 1606 } 1607 1608 /* 1609 * Copy a thread.. 1610 */ 1611 1612 /* 1613 * Copy architecture-specific thread state 1614 */ 1615 int copy_thread(unsigned long clone_flags, unsigned long usp, 1616 unsigned long kthread_arg, struct task_struct *p, 1617 unsigned long tls) 1618 { 1619 struct pt_regs *childregs, *kregs; 1620 extern void ret_from_fork(void); 1621 extern void ret_from_fork_scv(void); 1622 extern void ret_from_kernel_thread(void); 1623 void (*f)(void); 1624 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1625 struct thread_info *ti = task_thread_info(p); 1626 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1627 int i; 1628 #endif 1629 1630 klp_init_thread_info(p); 1631 1632 /* Copy registers */ 1633 sp -= sizeof(struct pt_regs); 1634 childregs = (struct pt_regs *) sp; 1635 if (unlikely(p->flags & PF_KTHREAD)) { 1636 /* kernel thread */ 1637 memset(childregs, 0, sizeof(struct pt_regs)); 1638 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1639 /* function */ 1640 if (usp) 1641 childregs->gpr[14] = ppc_function_entry((void *)usp); 1642 #ifdef CONFIG_PPC64 1643 clear_tsk_thread_flag(p, TIF_32BIT); 1644 childregs->softe = IRQS_ENABLED; 1645 #endif 1646 childregs->gpr[15] = kthread_arg; 1647 p->thread.regs = NULL; /* no user register state */ 1648 ti->flags |= _TIF_RESTOREALL; 1649 f = ret_from_kernel_thread; 1650 } else { 1651 /* user thread */ 1652 struct pt_regs *regs = current_pt_regs(); 1653 CHECK_FULL_REGS(regs); 1654 *childregs = *regs; 1655 if (usp) 1656 childregs->gpr[1] = usp; 1657 p->thread.regs = childregs; 1658 /* 64s sets this in ret_from_fork */ 1659 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1660 childregs->gpr[3] = 0; /* Result from fork() */ 1661 if (clone_flags & CLONE_SETTLS) { 1662 if (!is_32bit_task()) 1663 childregs->gpr[13] = tls; 1664 else 1665 childregs->gpr[2] = tls; 1666 } 1667 1668 if (trap_is_scv(regs)) 1669 f = ret_from_fork_scv; 1670 else 1671 f = ret_from_fork; 1672 } 1673 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1674 sp -= STACK_FRAME_OVERHEAD; 1675 1676 /* 1677 * The way this works is that at some point in the future 1678 * some task will call _switch to switch to the new task. 1679 * That will pop off the stack frame created below and start 1680 * the new task running at ret_from_fork. The new task will 1681 * do some house keeping and then return from the fork or clone 1682 * system call, using the stack frame created above. 1683 */ 1684 ((unsigned long *)sp)[0] = 0; 1685 sp -= sizeof(struct pt_regs); 1686 kregs = (struct pt_regs *) sp; 1687 sp -= STACK_FRAME_OVERHEAD; 1688 p->thread.ksp = sp; 1689 #ifdef CONFIG_PPC32 1690 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1691 #endif 1692 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1693 for (i = 0; i < nr_wp_slots(); i++) 1694 p->thread.ptrace_bps[i] = NULL; 1695 #endif 1696 1697 p->thread.fp_save_area = NULL; 1698 #ifdef CONFIG_ALTIVEC 1699 p->thread.vr_save_area = NULL; 1700 #endif 1701 1702 setup_ksp_vsid(p, sp); 1703 1704 #ifdef CONFIG_PPC64 1705 if (cpu_has_feature(CPU_FTR_DSCR)) { 1706 p->thread.dscr_inherit = current->thread.dscr_inherit; 1707 p->thread.dscr = mfspr(SPRN_DSCR); 1708 } 1709 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1710 childregs->ppr = DEFAULT_PPR; 1711 1712 p->thread.tidr = 0; 1713 #endif 1714 kregs->nip = ppc_function_entry(f); 1715 return 0; 1716 } 1717 1718 void preload_new_slb_context(unsigned long start, unsigned long sp); 1719 1720 /* 1721 * Set up a thread for executing a new program 1722 */ 1723 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1724 { 1725 #ifdef CONFIG_PPC64 1726 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1727 1728 #ifdef CONFIG_PPC_BOOK3S_64 1729 if (!radix_enabled()) 1730 preload_new_slb_context(start, sp); 1731 #endif 1732 #endif 1733 1734 /* 1735 * If we exec out of a kernel thread then thread.regs will not be 1736 * set. Do it now. 1737 */ 1738 if (!current->thread.regs) { 1739 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1740 current->thread.regs = regs - 1; 1741 } 1742 1743 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1744 /* 1745 * Clear any transactional state, we're exec()ing. The cause is 1746 * not important as there will never be a recheckpoint so it's not 1747 * user visible. 1748 */ 1749 if (MSR_TM_SUSPENDED(mfmsr())) 1750 tm_reclaim_current(0); 1751 #endif 1752 1753 memset(regs->gpr, 0, sizeof(regs->gpr)); 1754 regs->ctr = 0; 1755 regs->link = 0; 1756 regs->xer = 0; 1757 regs->ccr = 0; 1758 regs->gpr[1] = sp; 1759 1760 /* 1761 * We have just cleared all the nonvolatile GPRs, so make 1762 * FULL_REGS(regs) return true. This is necessary to allow 1763 * ptrace to examine the thread immediately after exec. 1764 */ 1765 SET_FULL_REGS(regs); 1766 1767 #ifdef CONFIG_PPC32 1768 regs->mq = 0; 1769 regs->nip = start; 1770 regs->msr = MSR_USER; 1771 #else 1772 if (!is_32bit_task()) { 1773 unsigned long entry; 1774 1775 if (is_elf2_task()) { 1776 /* Look ma, no function descriptors! */ 1777 entry = start; 1778 1779 /* 1780 * Ulrich says: 1781 * The latest iteration of the ABI requires that when 1782 * calling a function (at its global entry point), 1783 * the caller must ensure r12 holds the entry point 1784 * address (so that the function can quickly 1785 * establish addressability). 1786 */ 1787 regs->gpr[12] = start; 1788 /* Make sure that's restored on entry to userspace. */ 1789 set_thread_flag(TIF_RESTOREALL); 1790 } else { 1791 unsigned long toc; 1792 1793 /* start is a relocated pointer to the function 1794 * descriptor for the elf _start routine. The first 1795 * entry in the function descriptor is the entry 1796 * address of _start and the second entry is the TOC 1797 * value we need to use. 1798 */ 1799 __get_user(entry, (unsigned long __user *)start); 1800 __get_user(toc, (unsigned long __user *)start+1); 1801 1802 /* Check whether the e_entry function descriptor entries 1803 * need to be relocated before we can use them. 1804 */ 1805 if (load_addr != 0) { 1806 entry += load_addr; 1807 toc += load_addr; 1808 } 1809 regs->gpr[2] = toc; 1810 } 1811 regs->nip = entry; 1812 regs->msr = MSR_USER64; 1813 } else { 1814 regs->nip = start; 1815 regs->gpr[2] = 0; 1816 regs->msr = MSR_USER32; 1817 } 1818 #endif 1819 #ifdef CONFIG_VSX 1820 current->thread.used_vsr = 0; 1821 #endif 1822 current->thread.load_slb = 0; 1823 current->thread.load_fp = 0; 1824 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1825 current->thread.fp_save_area = NULL; 1826 #ifdef CONFIG_ALTIVEC 1827 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1828 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1829 current->thread.vr_save_area = NULL; 1830 current->thread.vrsave = 0; 1831 current->thread.used_vr = 0; 1832 current->thread.load_vec = 0; 1833 #endif /* CONFIG_ALTIVEC */ 1834 #ifdef CONFIG_SPE 1835 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1836 current->thread.acc = 0; 1837 current->thread.spefscr = 0; 1838 current->thread.used_spe = 0; 1839 #endif /* CONFIG_SPE */ 1840 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1841 current->thread.tm_tfhar = 0; 1842 current->thread.tm_texasr = 0; 1843 current->thread.tm_tfiar = 0; 1844 current->thread.load_tm = 0; 1845 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1846 1847 thread_pkey_regs_init(¤t->thread); 1848 } 1849 EXPORT_SYMBOL(start_thread); 1850 1851 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1852 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1853 1854 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1855 { 1856 struct pt_regs *regs = tsk->thread.regs; 1857 1858 /* This is a bit hairy. If we are an SPE enabled processor 1859 * (have embedded fp) we store the IEEE exception enable flags in 1860 * fpexc_mode. fpexc_mode is also used for setting FP exception 1861 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1862 if (val & PR_FP_EXC_SW_ENABLE) { 1863 #ifdef CONFIG_SPE 1864 if (cpu_has_feature(CPU_FTR_SPE)) { 1865 /* 1866 * When the sticky exception bits are set 1867 * directly by userspace, it must call prctl 1868 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1869 * in the existing prctl settings) or 1870 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1871 * the bits being set). <fenv.h> functions 1872 * saving and restoring the whole 1873 * floating-point environment need to do so 1874 * anyway to restore the prctl settings from 1875 * the saved environment. 1876 */ 1877 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1878 tsk->thread.fpexc_mode = val & 1879 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1880 return 0; 1881 } else { 1882 return -EINVAL; 1883 } 1884 #else 1885 return -EINVAL; 1886 #endif 1887 } 1888 1889 /* on a CONFIG_SPE this does not hurt us. The bits that 1890 * __pack_fe01 use do not overlap with bits used for 1891 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1892 * on CONFIG_SPE implementations are reserved so writing to 1893 * them does not change anything */ 1894 if (val > PR_FP_EXC_PRECISE) 1895 return -EINVAL; 1896 tsk->thread.fpexc_mode = __pack_fe01(val); 1897 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1898 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1899 | tsk->thread.fpexc_mode; 1900 return 0; 1901 } 1902 1903 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1904 { 1905 unsigned int val; 1906 1907 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1908 #ifdef CONFIG_SPE 1909 if (cpu_has_feature(CPU_FTR_SPE)) { 1910 /* 1911 * When the sticky exception bits are set 1912 * directly by userspace, it must call prctl 1913 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1914 * in the existing prctl settings) or 1915 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1916 * the bits being set). <fenv.h> functions 1917 * saving and restoring the whole 1918 * floating-point environment need to do so 1919 * anyway to restore the prctl settings from 1920 * the saved environment. 1921 */ 1922 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1923 val = tsk->thread.fpexc_mode; 1924 } else 1925 return -EINVAL; 1926 #else 1927 return -EINVAL; 1928 #endif 1929 else 1930 val = __unpack_fe01(tsk->thread.fpexc_mode); 1931 return put_user(val, (unsigned int __user *) adr); 1932 } 1933 1934 int set_endian(struct task_struct *tsk, unsigned int val) 1935 { 1936 struct pt_regs *regs = tsk->thread.regs; 1937 1938 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1939 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1940 return -EINVAL; 1941 1942 if (regs == NULL) 1943 return -EINVAL; 1944 1945 if (val == PR_ENDIAN_BIG) 1946 regs->msr &= ~MSR_LE; 1947 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1948 regs->msr |= MSR_LE; 1949 else 1950 return -EINVAL; 1951 1952 return 0; 1953 } 1954 1955 int get_endian(struct task_struct *tsk, unsigned long adr) 1956 { 1957 struct pt_regs *regs = tsk->thread.regs; 1958 unsigned int val; 1959 1960 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1961 !cpu_has_feature(CPU_FTR_REAL_LE)) 1962 return -EINVAL; 1963 1964 if (regs == NULL) 1965 return -EINVAL; 1966 1967 if (regs->msr & MSR_LE) { 1968 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1969 val = PR_ENDIAN_LITTLE; 1970 else 1971 val = PR_ENDIAN_PPC_LITTLE; 1972 } else 1973 val = PR_ENDIAN_BIG; 1974 1975 return put_user(val, (unsigned int __user *)adr); 1976 } 1977 1978 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1979 { 1980 tsk->thread.align_ctl = val; 1981 return 0; 1982 } 1983 1984 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1985 { 1986 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1987 } 1988 1989 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1990 unsigned long nbytes) 1991 { 1992 unsigned long stack_page; 1993 unsigned long cpu = task_cpu(p); 1994 1995 stack_page = (unsigned long)hardirq_ctx[cpu]; 1996 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1997 return 1; 1998 1999 stack_page = (unsigned long)softirq_ctx[cpu]; 2000 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2001 return 1; 2002 2003 return 0; 2004 } 2005 2006 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 2007 unsigned long nbytes) 2008 { 2009 #ifdef CONFIG_PPC64 2010 unsigned long stack_page; 2011 unsigned long cpu = task_cpu(p); 2012 2013 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 2014 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2015 return 1; 2016 2017 # ifdef CONFIG_PPC_BOOK3S_64 2018 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 2019 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2020 return 1; 2021 2022 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2023 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2024 return 1; 2025 # endif 2026 #endif 2027 2028 return 0; 2029 } 2030 2031 2032 int validate_sp(unsigned long sp, struct task_struct *p, 2033 unsigned long nbytes) 2034 { 2035 unsigned long stack_page = (unsigned long)task_stack_page(p); 2036 2037 if (sp < THREAD_SIZE) 2038 return 0; 2039 2040 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2041 return 1; 2042 2043 if (valid_irq_stack(sp, p, nbytes)) 2044 return 1; 2045 2046 return valid_emergency_stack(sp, p, nbytes); 2047 } 2048 2049 EXPORT_SYMBOL(validate_sp); 2050 2051 static unsigned long __get_wchan(struct task_struct *p) 2052 { 2053 unsigned long ip, sp; 2054 int count = 0; 2055 2056 if (!p || p == current || p->state == TASK_RUNNING) 2057 return 0; 2058 2059 sp = p->thread.ksp; 2060 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2061 return 0; 2062 2063 do { 2064 sp = *(unsigned long *)sp; 2065 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2066 p->state == TASK_RUNNING) 2067 return 0; 2068 if (count > 0) { 2069 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2070 if (!in_sched_functions(ip)) 2071 return ip; 2072 } 2073 } while (count++ < 16); 2074 return 0; 2075 } 2076 2077 unsigned long get_wchan(struct task_struct *p) 2078 { 2079 unsigned long ret; 2080 2081 if (!try_get_task_stack(p)) 2082 return 0; 2083 2084 ret = __get_wchan(p); 2085 2086 put_task_stack(p); 2087 2088 return ret; 2089 } 2090 2091 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2092 2093 void show_stack(struct task_struct *tsk, unsigned long *stack, 2094 const char *loglvl) 2095 { 2096 unsigned long sp, ip, lr, newsp; 2097 int count = 0; 2098 int firstframe = 1; 2099 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2100 unsigned long ret_addr; 2101 int ftrace_idx = 0; 2102 #endif 2103 2104 if (tsk == NULL) 2105 tsk = current; 2106 2107 if (!try_get_task_stack(tsk)) 2108 return; 2109 2110 sp = (unsigned long) stack; 2111 if (sp == 0) { 2112 if (tsk == current) 2113 sp = current_stack_frame(); 2114 else 2115 sp = tsk->thread.ksp; 2116 } 2117 2118 lr = 0; 2119 printk("%sCall Trace:\n", loglvl); 2120 do { 2121 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2122 break; 2123 2124 stack = (unsigned long *) sp; 2125 newsp = stack[0]; 2126 ip = stack[STACK_FRAME_LR_SAVE]; 2127 if (!firstframe || ip != lr) { 2128 printk("%s["REG"] ["REG"] %pS", 2129 loglvl, sp, ip, (void *)ip); 2130 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2131 ret_addr = ftrace_graph_ret_addr(current, 2132 &ftrace_idx, ip, stack); 2133 if (ret_addr != ip) 2134 pr_cont(" (%pS)", (void *)ret_addr); 2135 #endif 2136 if (firstframe) 2137 pr_cont(" (unreliable)"); 2138 pr_cont("\n"); 2139 } 2140 firstframe = 0; 2141 2142 /* 2143 * See if this is an exception frame. 2144 * We look for the "regshere" marker in the current frame. 2145 */ 2146 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2147 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2148 struct pt_regs *regs = (struct pt_regs *) 2149 (sp + STACK_FRAME_OVERHEAD); 2150 lr = regs->link; 2151 printk("%s--- interrupt: %lx at %pS\n LR = %pS\n", 2152 loglvl, regs->trap, 2153 (void *)regs->nip, (void *)lr); 2154 firstframe = 1; 2155 } 2156 2157 sp = newsp; 2158 } while (count++ < kstack_depth_to_print); 2159 2160 put_task_stack(tsk); 2161 } 2162 2163 #ifdef CONFIG_PPC64 2164 /* Called with hard IRQs off */ 2165 void notrace __ppc64_runlatch_on(void) 2166 { 2167 struct thread_info *ti = current_thread_info(); 2168 2169 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2170 /* 2171 * Least significant bit (RUN) is the only writable bit of 2172 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2173 * earliest ISA where this is the case, but it's convenient. 2174 */ 2175 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2176 } else { 2177 unsigned long ctrl; 2178 2179 /* 2180 * Some architectures (e.g., Cell) have writable fields other 2181 * than RUN, so do the read-modify-write. 2182 */ 2183 ctrl = mfspr(SPRN_CTRLF); 2184 ctrl |= CTRL_RUNLATCH; 2185 mtspr(SPRN_CTRLT, ctrl); 2186 } 2187 2188 ti->local_flags |= _TLF_RUNLATCH; 2189 } 2190 2191 /* Called with hard IRQs off */ 2192 void notrace __ppc64_runlatch_off(void) 2193 { 2194 struct thread_info *ti = current_thread_info(); 2195 2196 ti->local_flags &= ~_TLF_RUNLATCH; 2197 2198 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2199 mtspr(SPRN_CTRLT, 0); 2200 } else { 2201 unsigned long ctrl; 2202 2203 ctrl = mfspr(SPRN_CTRLF); 2204 ctrl &= ~CTRL_RUNLATCH; 2205 mtspr(SPRN_CTRLT, ctrl); 2206 } 2207 } 2208 #endif /* CONFIG_PPC64 */ 2209 2210 unsigned long arch_align_stack(unsigned long sp) 2211 { 2212 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2213 sp -= get_random_int() & ~PAGE_MASK; 2214 return sp & ~0xf; 2215 } 2216 2217 static inline unsigned long brk_rnd(void) 2218 { 2219 unsigned long rnd = 0; 2220 2221 /* 8MB for 32bit, 1GB for 64bit */ 2222 if (is_32bit_task()) 2223 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2224 else 2225 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2226 2227 return rnd << PAGE_SHIFT; 2228 } 2229 2230 unsigned long arch_randomize_brk(struct mm_struct *mm) 2231 { 2232 unsigned long base = mm->brk; 2233 unsigned long ret; 2234 2235 #ifdef CONFIG_PPC_BOOK3S_64 2236 /* 2237 * If we are using 1TB segments and we are allowed to randomise 2238 * the heap, we can put it above 1TB so it is backed by a 1TB 2239 * segment. Otherwise the heap will be in the bottom 1TB 2240 * which always uses 256MB segments and this may result in a 2241 * performance penalty. We don't need to worry about radix. For 2242 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2243 */ 2244 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2245 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2246 #endif 2247 2248 ret = PAGE_ALIGN(base + brk_rnd()); 2249 2250 if (ret < mm->brk) 2251 return mm->brk; 2252 2253 return ret; 2254 } 2255 2256