1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/mqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/utsname.h> 35 #include <linux/ftrace.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/personality.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/uaccess.h> 41 #include <linux/elf-randomize.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #endif 58 #include <asm/code-patching.h> 59 #include <asm/exec.h> 60 #include <asm/livepatch.h> 61 #include <asm/cpu_has_feature.h> 62 63 #include <linux/kprobes.h> 64 #include <linux/kdebug.h> 65 66 /* Transactional Memory debug */ 67 #ifdef TM_DEBUG_SW 68 #define TM_DEBUG(x...) printk(KERN_INFO x) 69 #else 70 #define TM_DEBUG(x...) do { } while(0) 71 #endif 72 73 extern unsigned long _get_SP(void); 74 75 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 76 static void check_if_tm_restore_required(struct task_struct *tsk) 77 { 78 /* 79 * If we are saving the current thread's registers, and the 80 * thread is in a transactional state, set the TIF_RESTORE_TM 81 * bit so that we know to restore the registers before 82 * returning to userspace. 83 */ 84 if (tsk == current && tsk->thread.regs && 85 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 86 !test_thread_flag(TIF_RESTORE_TM)) { 87 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 88 set_thread_flag(TIF_RESTORE_TM); 89 } 90 } 91 #else 92 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 93 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 94 95 bool strict_msr_control; 96 EXPORT_SYMBOL(strict_msr_control); 97 98 static int __init enable_strict_msr_control(char *str) 99 { 100 strict_msr_control = true; 101 pr_info("Enabling strict facility control\n"); 102 103 return 0; 104 } 105 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 106 107 void msr_check_and_set(unsigned long bits) 108 { 109 unsigned long oldmsr = mfmsr(); 110 unsigned long newmsr; 111 112 newmsr = oldmsr | bits; 113 114 #ifdef CONFIG_VSX 115 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 116 newmsr |= MSR_VSX; 117 #endif 118 119 if (oldmsr != newmsr) 120 mtmsr_isync(newmsr); 121 } 122 123 void __msr_check_and_clear(unsigned long bits) 124 { 125 unsigned long oldmsr = mfmsr(); 126 unsigned long newmsr; 127 128 newmsr = oldmsr & ~bits; 129 130 #ifdef CONFIG_VSX 131 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 132 newmsr &= ~MSR_VSX; 133 #endif 134 135 if (oldmsr != newmsr) 136 mtmsr_isync(newmsr); 137 } 138 EXPORT_SYMBOL(__msr_check_and_clear); 139 140 #ifdef CONFIG_PPC_FPU 141 void __giveup_fpu(struct task_struct *tsk) 142 { 143 unsigned long msr; 144 145 save_fpu(tsk); 146 msr = tsk->thread.regs->msr; 147 msr &= ~MSR_FP; 148 #ifdef CONFIG_VSX 149 if (cpu_has_feature(CPU_FTR_VSX)) 150 msr &= ~MSR_VSX; 151 #endif 152 tsk->thread.regs->msr = msr; 153 } 154 155 void giveup_fpu(struct task_struct *tsk) 156 { 157 check_if_tm_restore_required(tsk); 158 159 msr_check_and_set(MSR_FP); 160 __giveup_fpu(tsk); 161 msr_check_and_clear(MSR_FP); 162 } 163 EXPORT_SYMBOL(giveup_fpu); 164 165 /* 166 * Make sure the floating-point register state in the 167 * the thread_struct is up to date for task tsk. 168 */ 169 void flush_fp_to_thread(struct task_struct *tsk) 170 { 171 if (tsk->thread.regs) { 172 /* 173 * We need to disable preemption here because if we didn't, 174 * another process could get scheduled after the regs->msr 175 * test but before we have finished saving the FP registers 176 * to the thread_struct. That process could take over the 177 * FPU, and then when we get scheduled again we would store 178 * bogus values for the remaining FP registers. 179 */ 180 preempt_disable(); 181 if (tsk->thread.regs->msr & MSR_FP) { 182 /* 183 * This should only ever be called for current or 184 * for a stopped child process. Since we save away 185 * the FP register state on context switch, 186 * there is something wrong if a stopped child appears 187 * to still have its FP state in the CPU registers. 188 */ 189 BUG_ON(tsk != current); 190 giveup_fpu(tsk); 191 } 192 preempt_enable(); 193 } 194 } 195 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 196 197 void enable_kernel_fp(void) 198 { 199 WARN_ON(preemptible()); 200 201 msr_check_and_set(MSR_FP); 202 203 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 204 check_if_tm_restore_required(current); 205 __giveup_fpu(current); 206 } 207 } 208 EXPORT_SYMBOL(enable_kernel_fp); 209 210 static int restore_fp(struct task_struct *tsk) { 211 if (tsk->thread.load_fp) { 212 load_fp_state(¤t->thread.fp_state); 213 current->thread.load_fp++; 214 return 1; 215 } 216 return 0; 217 } 218 #else 219 static int restore_fp(struct task_struct *tsk) { return 0; } 220 #endif /* CONFIG_PPC_FPU */ 221 222 #ifdef CONFIG_ALTIVEC 223 #define loadvec(thr) ((thr).load_vec) 224 225 static void __giveup_altivec(struct task_struct *tsk) 226 { 227 unsigned long msr; 228 229 save_altivec(tsk); 230 msr = tsk->thread.regs->msr; 231 msr &= ~MSR_VEC; 232 #ifdef CONFIG_VSX 233 if (cpu_has_feature(CPU_FTR_VSX)) 234 msr &= ~MSR_VSX; 235 #endif 236 tsk->thread.regs->msr = msr; 237 } 238 239 void giveup_altivec(struct task_struct *tsk) 240 { 241 check_if_tm_restore_required(tsk); 242 243 msr_check_and_set(MSR_VEC); 244 __giveup_altivec(tsk); 245 msr_check_and_clear(MSR_VEC); 246 } 247 EXPORT_SYMBOL(giveup_altivec); 248 249 void enable_kernel_altivec(void) 250 { 251 WARN_ON(preemptible()); 252 253 msr_check_and_set(MSR_VEC); 254 255 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 256 check_if_tm_restore_required(current); 257 __giveup_altivec(current); 258 } 259 } 260 EXPORT_SYMBOL(enable_kernel_altivec); 261 262 /* 263 * Make sure the VMX/Altivec register state in the 264 * the thread_struct is up to date for task tsk. 265 */ 266 void flush_altivec_to_thread(struct task_struct *tsk) 267 { 268 if (tsk->thread.regs) { 269 preempt_disable(); 270 if (tsk->thread.regs->msr & MSR_VEC) { 271 BUG_ON(tsk != current); 272 giveup_altivec(tsk); 273 } 274 preempt_enable(); 275 } 276 } 277 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 278 279 static int restore_altivec(struct task_struct *tsk) 280 { 281 if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) { 282 load_vr_state(&tsk->thread.vr_state); 283 tsk->thread.used_vr = 1; 284 tsk->thread.load_vec++; 285 286 return 1; 287 } 288 return 0; 289 } 290 #else 291 #define loadvec(thr) 0 292 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 293 #endif /* CONFIG_ALTIVEC */ 294 295 #ifdef CONFIG_VSX 296 static void __giveup_vsx(struct task_struct *tsk) 297 { 298 if (tsk->thread.regs->msr & MSR_FP) 299 __giveup_fpu(tsk); 300 if (tsk->thread.regs->msr & MSR_VEC) 301 __giveup_altivec(tsk); 302 tsk->thread.regs->msr &= ~MSR_VSX; 303 } 304 305 static void giveup_vsx(struct task_struct *tsk) 306 { 307 check_if_tm_restore_required(tsk); 308 309 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 310 __giveup_vsx(tsk); 311 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 312 } 313 314 static void save_vsx(struct task_struct *tsk) 315 { 316 if (tsk->thread.regs->msr & MSR_FP) 317 save_fpu(tsk); 318 if (tsk->thread.regs->msr & MSR_VEC) 319 save_altivec(tsk); 320 } 321 322 void enable_kernel_vsx(void) 323 { 324 WARN_ON(preemptible()); 325 326 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 327 328 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { 329 check_if_tm_restore_required(current); 330 if (current->thread.regs->msr & MSR_FP) 331 __giveup_fpu(current); 332 if (current->thread.regs->msr & MSR_VEC) 333 __giveup_altivec(current); 334 __giveup_vsx(current); 335 } 336 } 337 EXPORT_SYMBOL(enable_kernel_vsx); 338 339 void flush_vsx_to_thread(struct task_struct *tsk) 340 { 341 if (tsk->thread.regs) { 342 preempt_disable(); 343 if (tsk->thread.regs->msr & MSR_VSX) { 344 BUG_ON(tsk != current); 345 giveup_vsx(tsk); 346 } 347 preempt_enable(); 348 } 349 } 350 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 351 352 static int restore_vsx(struct task_struct *tsk) 353 { 354 if (cpu_has_feature(CPU_FTR_VSX)) { 355 tsk->thread.used_vsr = 1; 356 return 1; 357 } 358 359 return 0; 360 } 361 #else 362 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 363 static inline void save_vsx(struct task_struct *tsk) { } 364 #endif /* CONFIG_VSX */ 365 366 #ifdef CONFIG_SPE 367 void giveup_spe(struct task_struct *tsk) 368 { 369 check_if_tm_restore_required(tsk); 370 371 msr_check_and_set(MSR_SPE); 372 __giveup_spe(tsk); 373 msr_check_and_clear(MSR_SPE); 374 } 375 EXPORT_SYMBOL(giveup_spe); 376 377 void enable_kernel_spe(void) 378 { 379 WARN_ON(preemptible()); 380 381 msr_check_and_set(MSR_SPE); 382 383 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 384 check_if_tm_restore_required(current); 385 __giveup_spe(current); 386 } 387 } 388 EXPORT_SYMBOL(enable_kernel_spe); 389 390 void flush_spe_to_thread(struct task_struct *tsk) 391 { 392 if (tsk->thread.regs) { 393 preempt_disable(); 394 if (tsk->thread.regs->msr & MSR_SPE) { 395 BUG_ON(tsk != current); 396 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 397 giveup_spe(tsk); 398 } 399 preempt_enable(); 400 } 401 } 402 #endif /* CONFIG_SPE */ 403 404 static unsigned long msr_all_available; 405 406 static int __init init_msr_all_available(void) 407 { 408 #ifdef CONFIG_PPC_FPU 409 msr_all_available |= MSR_FP; 410 #endif 411 #ifdef CONFIG_ALTIVEC 412 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 413 msr_all_available |= MSR_VEC; 414 #endif 415 #ifdef CONFIG_VSX 416 if (cpu_has_feature(CPU_FTR_VSX)) 417 msr_all_available |= MSR_VSX; 418 #endif 419 #ifdef CONFIG_SPE 420 if (cpu_has_feature(CPU_FTR_SPE)) 421 msr_all_available |= MSR_SPE; 422 #endif 423 424 return 0; 425 } 426 early_initcall(init_msr_all_available); 427 428 void giveup_all(struct task_struct *tsk) 429 { 430 unsigned long usermsr; 431 432 if (!tsk->thread.regs) 433 return; 434 435 usermsr = tsk->thread.regs->msr; 436 437 if ((usermsr & msr_all_available) == 0) 438 return; 439 440 msr_check_and_set(msr_all_available); 441 442 #ifdef CONFIG_PPC_FPU 443 if (usermsr & MSR_FP) 444 __giveup_fpu(tsk); 445 #endif 446 #ifdef CONFIG_ALTIVEC 447 if (usermsr & MSR_VEC) 448 __giveup_altivec(tsk); 449 #endif 450 #ifdef CONFIG_VSX 451 if (usermsr & MSR_VSX) 452 __giveup_vsx(tsk); 453 #endif 454 #ifdef CONFIG_SPE 455 if (usermsr & MSR_SPE) 456 __giveup_spe(tsk); 457 #endif 458 459 msr_check_and_clear(msr_all_available); 460 } 461 EXPORT_SYMBOL(giveup_all); 462 463 void restore_math(struct pt_regs *regs) 464 { 465 unsigned long msr; 466 467 if (!current->thread.load_fp && !loadvec(current->thread)) 468 return; 469 470 msr = regs->msr; 471 msr_check_and_set(msr_all_available); 472 473 /* 474 * Only reload if the bit is not set in the user MSR, the bit BEING set 475 * indicates that the registers are hot 476 */ 477 if ((!(msr & MSR_FP)) && restore_fp(current)) 478 msr |= MSR_FP | current->thread.fpexc_mode; 479 480 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 481 msr |= MSR_VEC; 482 483 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 484 restore_vsx(current)) { 485 msr |= MSR_VSX; 486 } 487 488 msr_check_and_clear(msr_all_available); 489 490 regs->msr = msr; 491 } 492 493 void save_all(struct task_struct *tsk) 494 { 495 unsigned long usermsr; 496 497 if (!tsk->thread.regs) 498 return; 499 500 usermsr = tsk->thread.regs->msr; 501 502 if ((usermsr & msr_all_available) == 0) 503 return; 504 505 msr_check_and_set(msr_all_available); 506 507 /* 508 * Saving the way the register space is in hardware, save_vsx boils 509 * down to a save_fpu() and save_altivec() 510 */ 511 if (usermsr & MSR_VSX) { 512 save_vsx(tsk); 513 } else { 514 if (usermsr & MSR_FP) 515 save_fpu(tsk); 516 517 if (usermsr & MSR_VEC) 518 save_altivec(tsk); 519 } 520 521 if (usermsr & MSR_SPE) 522 __giveup_spe(tsk); 523 524 msr_check_and_clear(msr_all_available); 525 } 526 527 void flush_all_to_thread(struct task_struct *tsk) 528 { 529 if (tsk->thread.regs) { 530 preempt_disable(); 531 BUG_ON(tsk != current); 532 save_all(tsk); 533 534 #ifdef CONFIG_SPE 535 if (tsk->thread.regs->msr & MSR_SPE) 536 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 537 #endif 538 539 preempt_enable(); 540 } 541 } 542 EXPORT_SYMBOL(flush_all_to_thread); 543 544 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 545 void do_send_trap(struct pt_regs *regs, unsigned long address, 546 unsigned long error_code, int signal_code, int breakpt) 547 { 548 siginfo_t info; 549 550 current->thread.trap_nr = signal_code; 551 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 552 11, SIGSEGV) == NOTIFY_STOP) 553 return; 554 555 /* Deliver the signal to userspace */ 556 info.si_signo = SIGTRAP; 557 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 558 info.si_code = signal_code; 559 info.si_addr = (void __user *)address; 560 force_sig_info(SIGTRAP, &info, current); 561 } 562 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 563 void do_break (struct pt_regs *regs, unsigned long address, 564 unsigned long error_code) 565 { 566 siginfo_t info; 567 568 current->thread.trap_nr = TRAP_HWBKPT; 569 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 570 11, SIGSEGV) == NOTIFY_STOP) 571 return; 572 573 if (debugger_break_match(regs)) 574 return; 575 576 /* Clear the breakpoint */ 577 hw_breakpoint_disable(); 578 579 /* Deliver the signal to userspace */ 580 info.si_signo = SIGTRAP; 581 info.si_errno = 0; 582 info.si_code = TRAP_HWBKPT; 583 info.si_addr = (void __user *)address; 584 force_sig_info(SIGTRAP, &info, current); 585 } 586 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 587 588 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 589 590 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 591 /* 592 * Set the debug registers back to their default "safe" values. 593 */ 594 static void set_debug_reg_defaults(struct thread_struct *thread) 595 { 596 thread->debug.iac1 = thread->debug.iac2 = 0; 597 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 598 thread->debug.iac3 = thread->debug.iac4 = 0; 599 #endif 600 thread->debug.dac1 = thread->debug.dac2 = 0; 601 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 602 thread->debug.dvc1 = thread->debug.dvc2 = 0; 603 #endif 604 thread->debug.dbcr0 = 0; 605 #ifdef CONFIG_BOOKE 606 /* 607 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 608 */ 609 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 610 DBCR1_IAC3US | DBCR1_IAC4US; 611 /* 612 * Force Data Address Compare User/Supervisor bits to be User-only 613 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 614 */ 615 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 616 #else 617 thread->debug.dbcr1 = 0; 618 #endif 619 } 620 621 static void prime_debug_regs(struct debug_reg *debug) 622 { 623 /* 624 * We could have inherited MSR_DE from userspace, since 625 * it doesn't get cleared on exception entry. Make sure 626 * MSR_DE is clear before we enable any debug events. 627 */ 628 mtmsr(mfmsr() & ~MSR_DE); 629 630 mtspr(SPRN_IAC1, debug->iac1); 631 mtspr(SPRN_IAC2, debug->iac2); 632 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 633 mtspr(SPRN_IAC3, debug->iac3); 634 mtspr(SPRN_IAC4, debug->iac4); 635 #endif 636 mtspr(SPRN_DAC1, debug->dac1); 637 mtspr(SPRN_DAC2, debug->dac2); 638 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 639 mtspr(SPRN_DVC1, debug->dvc1); 640 mtspr(SPRN_DVC2, debug->dvc2); 641 #endif 642 mtspr(SPRN_DBCR0, debug->dbcr0); 643 mtspr(SPRN_DBCR1, debug->dbcr1); 644 #ifdef CONFIG_BOOKE 645 mtspr(SPRN_DBCR2, debug->dbcr2); 646 #endif 647 } 648 /* 649 * Unless neither the old or new thread are making use of the 650 * debug registers, set the debug registers from the values 651 * stored in the new thread. 652 */ 653 void switch_booke_debug_regs(struct debug_reg *new_debug) 654 { 655 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 656 || (new_debug->dbcr0 & DBCR0_IDM)) 657 prime_debug_regs(new_debug); 658 } 659 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 660 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 661 #ifndef CONFIG_HAVE_HW_BREAKPOINT 662 static void set_debug_reg_defaults(struct thread_struct *thread) 663 { 664 thread->hw_brk.address = 0; 665 thread->hw_brk.type = 0; 666 set_breakpoint(&thread->hw_brk); 667 } 668 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 669 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 670 671 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 672 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 673 { 674 mtspr(SPRN_DAC1, dabr); 675 #ifdef CONFIG_PPC_47x 676 isync(); 677 #endif 678 return 0; 679 } 680 #elif defined(CONFIG_PPC_BOOK3S) 681 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 682 { 683 mtspr(SPRN_DABR, dabr); 684 if (cpu_has_feature(CPU_FTR_DABRX)) 685 mtspr(SPRN_DABRX, dabrx); 686 return 0; 687 } 688 #else 689 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 690 { 691 return -EINVAL; 692 } 693 #endif 694 695 static inline int set_dabr(struct arch_hw_breakpoint *brk) 696 { 697 unsigned long dabr, dabrx; 698 699 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 700 dabrx = ((brk->type >> 3) & 0x7); 701 702 if (ppc_md.set_dabr) 703 return ppc_md.set_dabr(dabr, dabrx); 704 705 return __set_dabr(dabr, dabrx); 706 } 707 708 static inline int set_dawr(struct arch_hw_breakpoint *brk) 709 { 710 unsigned long dawr, dawrx, mrd; 711 712 dawr = brk->address; 713 714 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 715 << (63 - 58); //* read/write bits */ 716 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 717 << (63 - 59); //* translate */ 718 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 719 >> 3; //* PRIM bits */ 720 /* dawr length is stored in field MDR bits 48:53. Matches range in 721 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 722 0b111111=64DW. 723 brk->len is in bytes. 724 This aligns up to double word size, shifts and does the bias. 725 */ 726 mrd = ((brk->len + 7) >> 3) - 1; 727 dawrx |= (mrd & 0x3f) << (63 - 53); 728 729 if (ppc_md.set_dawr) 730 return ppc_md.set_dawr(dawr, dawrx); 731 mtspr(SPRN_DAWR, dawr); 732 mtspr(SPRN_DAWRX, dawrx); 733 return 0; 734 } 735 736 void __set_breakpoint(struct arch_hw_breakpoint *brk) 737 { 738 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 739 740 if (cpu_has_feature(CPU_FTR_DAWR)) 741 set_dawr(brk); 742 else 743 set_dabr(brk); 744 } 745 746 void set_breakpoint(struct arch_hw_breakpoint *brk) 747 { 748 preempt_disable(); 749 __set_breakpoint(brk); 750 preempt_enable(); 751 } 752 753 #ifdef CONFIG_PPC64 754 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 755 #endif 756 757 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 758 struct arch_hw_breakpoint *b) 759 { 760 if (a->address != b->address) 761 return false; 762 if (a->type != b->type) 763 return false; 764 if (a->len != b->len) 765 return false; 766 return true; 767 } 768 769 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 770 static void tm_reclaim_thread(struct thread_struct *thr, 771 struct thread_info *ti, uint8_t cause) 772 { 773 unsigned long msr_diff = 0; 774 775 /* 776 * If FP/VSX registers have been already saved to the 777 * thread_struct, move them to the transact_fp array. 778 * We clear the TIF_RESTORE_TM bit since after the reclaim 779 * the thread will no longer be transactional. 780 */ 781 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) { 782 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr; 783 if (msr_diff & MSR_FP) 784 memcpy(&thr->transact_fp, &thr->fp_state, 785 sizeof(struct thread_fp_state)); 786 if (msr_diff & MSR_VEC) 787 memcpy(&thr->transact_vr, &thr->vr_state, 788 sizeof(struct thread_vr_state)); 789 clear_ti_thread_flag(ti, TIF_RESTORE_TM); 790 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1; 791 } 792 793 /* 794 * Use the current MSR TM suspended bit to track if we have 795 * checkpointed state outstanding. 796 * On signal delivery, we'd normally reclaim the checkpointed 797 * state to obtain stack pointer (see:get_tm_stackpointer()). 798 * This will then directly return to userspace without going 799 * through __switch_to(). However, if the stack frame is bad, 800 * we need to exit this thread which calls __switch_to() which 801 * will again attempt to reclaim the already saved tm state. 802 * Hence we need to check that we've not already reclaimed 803 * this state. 804 * We do this using the current MSR, rather tracking it in 805 * some specific thread_struct bit, as it has the additional 806 * benefit of checking for a potential TM bad thing exception. 807 */ 808 if (!MSR_TM_SUSPENDED(mfmsr())) 809 return; 810 811 tm_reclaim(thr, thr->regs->msr, cause); 812 813 /* Having done the reclaim, we now have the checkpointed 814 * FP/VSX values in the registers. These might be valid 815 * even if we have previously called enable_kernel_fp() or 816 * flush_fp_to_thread(), so update thr->regs->msr to 817 * indicate their current validity. 818 */ 819 thr->regs->msr |= msr_diff; 820 } 821 822 void tm_reclaim_current(uint8_t cause) 823 { 824 tm_enable(); 825 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 826 } 827 828 static inline void tm_reclaim_task(struct task_struct *tsk) 829 { 830 /* We have to work out if we're switching from/to a task that's in the 831 * middle of a transaction. 832 * 833 * In switching we need to maintain a 2nd register state as 834 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 835 * checkpointed (tbegin) state in ckpt_regs and saves the transactional 836 * (current) FPRs into oldtask->thread.transact_fpr[]. 837 * 838 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 839 */ 840 struct thread_struct *thr = &tsk->thread; 841 842 if (!thr->regs) 843 return; 844 845 if (!MSR_TM_ACTIVE(thr->regs->msr)) 846 goto out_and_saveregs; 847 848 /* Stash the original thread MSR, as giveup_fpu et al will 849 * modify it. We hold onto it to see whether the task used 850 * FP & vector regs. If the TIF_RESTORE_TM flag is set, 851 * ckpt_regs.msr is already set. 852 */ 853 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM)) 854 thr->ckpt_regs.msr = thr->regs->msr; 855 856 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 857 "ccr=%lx, msr=%lx, trap=%lx)\n", 858 tsk->pid, thr->regs->nip, 859 thr->regs->ccr, thr->regs->msr, 860 thr->regs->trap); 861 862 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 863 864 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 865 tsk->pid); 866 867 out_and_saveregs: 868 /* Always save the regs here, even if a transaction's not active. 869 * This context-switches a thread's TM info SPRs. We do it here to 870 * be consistent with the restore path (in recheckpoint) which 871 * cannot happen later in _switch(). 872 */ 873 tm_save_sprs(thr); 874 } 875 876 extern void __tm_recheckpoint(struct thread_struct *thread, 877 unsigned long orig_msr); 878 879 void tm_recheckpoint(struct thread_struct *thread, 880 unsigned long orig_msr) 881 { 882 unsigned long flags; 883 884 /* We really can't be interrupted here as the TEXASR registers can't 885 * change and later in the trecheckpoint code, we have a userspace R1. 886 * So let's hard disable over this region. 887 */ 888 local_irq_save(flags); 889 hard_irq_disable(); 890 891 /* The TM SPRs are restored here, so that TEXASR.FS can be set 892 * before the trecheckpoint and no explosion occurs. 893 */ 894 tm_restore_sprs(thread); 895 896 __tm_recheckpoint(thread, orig_msr); 897 898 local_irq_restore(flags); 899 } 900 901 static inline void tm_recheckpoint_new_task(struct task_struct *new) 902 { 903 unsigned long msr; 904 905 if (!cpu_has_feature(CPU_FTR_TM)) 906 return; 907 908 /* Recheckpoint the registers of the thread we're about to switch to. 909 * 910 * If the task was using FP, we non-lazily reload both the original and 911 * the speculative FP register states. This is because the kernel 912 * doesn't see if/when a TM rollback occurs, so if we take an FP 913 * unavoidable later, we are unable to determine which set of FP regs 914 * need to be restored. 915 */ 916 if (!new->thread.regs) 917 return; 918 919 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 920 tm_restore_sprs(&new->thread); 921 return; 922 } 923 msr = new->thread.ckpt_regs.msr; 924 /* Recheckpoint to restore original checkpointed register state. */ 925 TM_DEBUG("*** tm_recheckpoint of pid %d " 926 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 927 new->pid, new->thread.regs->msr, msr); 928 929 /* This loads the checkpointed FP/VEC state, if used */ 930 tm_recheckpoint(&new->thread, msr); 931 932 /* This loads the speculative FP/VEC state, if used */ 933 if (msr & MSR_FP) { 934 do_load_up_transact_fpu(&new->thread); 935 new->thread.regs->msr |= 936 (MSR_FP | new->thread.fpexc_mode); 937 } 938 #ifdef CONFIG_ALTIVEC 939 if (msr & MSR_VEC) { 940 do_load_up_transact_altivec(&new->thread); 941 new->thread.regs->msr |= MSR_VEC; 942 } 943 #endif 944 /* We may as well turn on VSX too since all the state is restored now */ 945 if (msr & MSR_VSX) 946 new->thread.regs->msr |= MSR_VSX; 947 948 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 949 "(kernel msr 0x%lx)\n", 950 new->pid, mfmsr()); 951 } 952 953 static inline void __switch_to_tm(struct task_struct *prev) 954 { 955 if (cpu_has_feature(CPU_FTR_TM)) { 956 tm_enable(); 957 tm_reclaim_task(prev); 958 } 959 } 960 961 /* 962 * This is called if we are on the way out to userspace and the 963 * TIF_RESTORE_TM flag is set. It checks if we need to reload 964 * FP and/or vector state and does so if necessary. 965 * If userspace is inside a transaction (whether active or 966 * suspended) and FP/VMX/VSX instructions have ever been enabled 967 * inside that transaction, then we have to keep them enabled 968 * and keep the FP/VMX/VSX state loaded while ever the transaction 969 * continues. The reason is that if we didn't, and subsequently 970 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 971 * we don't know whether it's the same transaction, and thus we 972 * don't know which of the checkpointed state and the transactional 973 * state to use. 974 */ 975 void restore_tm_state(struct pt_regs *regs) 976 { 977 unsigned long msr_diff; 978 979 clear_thread_flag(TIF_RESTORE_TM); 980 if (!MSR_TM_ACTIVE(regs->msr)) 981 return; 982 983 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 984 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 985 986 restore_math(regs); 987 988 regs->msr |= msr_diff; 989 } 990 991 #else 992 #define tm_recheckpoint_new_task(new) 993 #define __switch_to_tm(prev) 994 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 995 996 static inline void save_sprs(struct thread_struct *t) 997 { 998 #ifdef CONFIG_ALTIVEC 999 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1000 t->vrsave = mfspr(SPRN_VRSAVE); 1001 #endif 1002 #ifdef CONFIG_PPC_BOOK3S_64 1003 if (cpu_has_feature(CPU_FTR_DSCR)) 1004 t->dscr = mfspr(SPRN_DSCR); 1005 1006 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1007 t->bescr = mfspr(SPRN_BESCR); 1008 t->ebbhr = mfspr(SPRN_EBBHR); 1009 t->ebbrr = mfspr(SPRN_EBBRR); 1010 1011 t->fscr = mfspr(SPRN_FSCR); 1012 1013 /* 1014 * Note that the TAR is not available for use in the kernel. 1015 * (To provide this, the TAR should be backed up/restored on 1016 * exception entry/exit instead, and be in pt_regs. FIXME, 1017 * this should be in pt_regs anyway (for debug).) 1018 */ 1019 t->tar = mfspr(SPRN_TAR); 1020 } 1021 1022 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1023 /* Conditionally save Load Monitor registers, if enabled */ 1024 if (t->fscr & FSCR_LM) { 1025 t->lmrr = mfspr(SPRN_LMRR); 1026 t->lmser = mfspr(SPRN_LMSER); 1027 } 1028 } 1029 #endif 1030 } 1031 1032 static inline void restore_sprs(struct thread_struct *old_thread, 1033 struct thread_struct *new_thread) 1034 { 1035 #ifdef CONFIG_ALTIVEC 1036 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1037 old_thread->vrsave != new_thread->vrsave) 1038 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1039 #endif 1040 #ifdef CONFIG_PPC_BOOK3S_64 1041 if (cpu_has_feature(CPU_FTR_DSCR)) { 1042 u64 dscr = get_paca()->dscr_default; 1043 if (new_thread->dscr_inherit) 1044 dscr = new_thread->dscr; 1045 1046 if (old_thread->dscr != dscr) 1047 mtspr(SPRN_DSCR, dscr); 1048 } 1049 1050 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1051 if (old_thread->bescr != new_thread->bescr) 1052 mtspr(SPRN_BESCR, new_thread->bescr); 1053 if (old_thread->ebbhr != new_thread->ebbhr) 1054 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1055 if (old_thread->ebbrr != new_thread->ebbrr) 1056 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1057 1058 if (old_thread->fscr != new_thread->fscr) 1059 mtspr(SPRN_FSCR, new_thread->fscr); 1060 1061 if (old_thread->tar != new_thread->tar) 1062 mtspr(SPRN_TAR, new_thread->tar); 1063 } 1064 1065 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1066 /* Conditionally restore Load Monitor registers, if enabled */ 1067 if (new_thread->fscr & FSCR_LM) { 1068 if (old_thread->lmrr != new_thread->lmrr) 1069 mtspr(SPRN_LMRR, new_thread->lmrr); 1070 if (old_thread->lmser != new_thread->lmser) 1071 mtspr(SPRN_LMSER, new_thread->lmser); 1072 } 1073 } 1074 #endif 1075 } 1076 1077 struct task_struct *__switch_to(struct task_struct *prev, 1078 struct task_struct *new) 1079 { 1080 struct thread_struct *new_thread, *old_thread; 1081 struct task_struct *last; 1082 #ifdef CONFIG_PPC_BOOK3S_64 1083 struct ppc64_tlb_batch *batch; 1084 #endif 1085 1086 new_thread = &new->thread; 1087 old_thread = ¤t->thread; 1088 1089 WARN_ON(!irqs_disabled()); 1090 1091 #ifdef CONFIG_PPC64 1092 /* 1093 * Collect processor utilization data per process 1094 */ 1095 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1096 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1097 long unsigned start_tb, current_tb; 1098 start_tb = old_thread->start_tb; 1099 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1100 old_thread->accum_tb += (current_tb - start_tb); 1101 new_thread->start_tb = current_tb; 1102 } 1103 #endif /* CONFIG_PPC64 */ 1104 1105 #ifdef CONFIG_PPC_STD_MMU_64 1106 batch = this_cpu_ptr(&ppc64_tlb_batch); 1107 if (batch->active) { 1108 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1109 if (batch->index) 1110 __flush_tlb_pending(batch); 1111 batch->active = 0; 1112 } 1113 #endif /* CONFIG_PPC_STD_MMU_64 */ 1114 1115 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1116 switch_booke_debug_regs(&new->thread.debug); 1117 #else 1118 /* 1119 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1120 * schedule DABR 1121 */ 1122 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1123 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1124 __set_breakpoint(&new->thread.hw_brk); 1125 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1126 #endif 1127 1128 /* 1129 * We need to save SPRs before treclaim/trecheckpoint as these will 1130 * change a number of them. 1131 */ 1132 save_sprs(&prev->thread); 1133 1134 __switch_to_tm(prev); 1135 1136 /* Save FPU, Altivec, VSX and SPE state */ 1137 giveup_all(prev); 1138 1139 /* 1140 * We can't take a PMU exception inside _switch() since there is a 1141 * window where the kernel stack SLB and the kernel stack are out 1142 * of sync. Hard disable here. 1143 */ 1144 hard_irq_disable(); 1145 1146 tm_recheckpoint_new_task(new); 1147 1148 /* 1149 * Call restore_sprs() before calling _switch(). If we move it after 1150 * _switch() then we miss out on calling it for new tasks. The reason 1151 * for this is we manually create a stack frame for new tasks that 1152 * directly returns through ret_from_fork() or 1153 * ret_from_kernel_thread(). See copy_thread() for details. 1154 */ 1155 restore_sprs(old_thread, new_thread); 1156 1157 last = _switch(old_thread, new_thread); 1158 1159 #ifdef CONFIG_PPC_STD_MMU_64 1160 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1161 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1162 batch = this_cpu_ptr(&ppc64_tlb_batch); 1163 batch->active = 1; 1164 } 1165 1166 if (current_thread_info()->task->thread.regs) 1167 restore_math(current_thread_info()->task->thread.regs); 1168 #endif /* CONFIG_PPC_STD_MMU_64 */ 1169 1170 return last; 1171 } 1172 1173 static int instructions_to_print = 16; 1174 1175 static void show_instructions(struct pt_regs *regs) 1176 { 1177 int i; 1178 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1179 sizeof(int)); 1180 1181 printk("Instruction dump:"); 1182 1183 for (i = 0; i < instructions_to_print; i++) { 1184 int instr; 1185 1186 if (!(i % 8)) 1187 printk("\n"); 1188 1189 #if !defined(CONFIG_BOOKE) 1190 /* If executing with the IMMU off, adjust pc rather 1191 * than print XXXXXXXX. 1192 */ 1193 if (!(regs->msr & MSR_IR)) 1194 pc = (unsigned long)phys_to_virt(pc); 1195 #endif 1196 1197 if (!__kernel_text_address(pc) || 1198 probe_kernel_address((unsigned int __user *)pc, instr)) { 1199 printk(KERN_CONT "XXXXXXXX "); 1200 } else { 1201 if (regs->nip == pc) 1202 printk(KERN_CONT "<%08x> ", instr); 1203 else 1204 printk(KERN_CONT "%08x ", instr); 1205 } 1206 1207 pc += sizeof(int); 1208 } 1209 1210 printk("\n"); 1211 } 1212 1213 struct regbit { 1214 unsigned long bit; 1215 const char *name; 1216 }; 1217 1218 static struct regbit msr_bits[] = { 1219 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1220 {MSR_SF, "SF"}, 1221 {MSR_HV, "HV"}, 1222 #endif 1223 {MSR_VEC, "VEC"}, 1224 {MSR_VSX, "VSX"}, 1225 #ifdef CONFIG_BOOKE 1226 {MSR_CE, "CE"}, 1227 #endif 1228 {MSR_EE, "EE"}, 1229 {MSR_PR, "PR"}, 1230 {MSR_FP, "FP"}, 1231 {MSR_ME, "ME"}, 1232 #ifdef CONFIG_BOOKE 1233 {MSR_DE, "DE"}, 1234 #else 1235 {MSR_SE, "SE"}, 1236 {MSR_BE, "BE"}, 1237 #endif 1238 {MSR_IR, "IR"}, 1239 {MSR_DR, "DR"}, 1240 {MSR_PMM, "PMM"}, 1241 #ifndef CONFIG_BOOKE 1242 {MSR_RI, "RI"}, 1243 {MSR_LE, "LE"}, 1244 #endif 1245 {0, NULL} 1246 }; 1247 1248 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1249 { 1250 const char *s = ""; 1251 1252 for (; bits->bit; ++bits) 1253 if (val & bits->bit) { 1254 printk("%s%s", s, bits->name); 1255 s = sep; 1256 } 1257 } 1258 1259 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1260 static struct regbit msr_tm_bits[] = { 1261 {MSR_TS_T, "T"}, 1262 {MSR_TS_S, "S"}, 1263 {MSR_TM, "E"}, 1264 {0, NULL} 1265 }; 1266 1267 static void print_tm_bits(unsigned long val) 1268 { 1269 /* 1270 * This only prints something if at least one of the TM bit is set. 1271 * Inside the TM[], the output means: 1272 * E: Enabled (bit 32) 1273 * S: Suspended (bit 33) 1274 * T: Transactional (bit 34) 1275 */ 1276 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1277 printk(",TM["); 1278 print_bits(val, msr_tm_bits, ""); 1279 printk("]"); 1280 } 1281 } 1282 #else 1283 static void print_tm_bits(unsigned long val) {} 1284 #endif 1285 1286 static void print_msr_bits(unsigned long val) 1287 { 1288 printk("<"); 1289 print_bits(val, msr_bits, ","); 1290 print_tm_bits(val); 1291 printk(">"); 1292 } 1293 1294 #ifdef CONFIG_PPC64 1295 #define REG "%016lx" 1296 #define REGS_PER_LINE 4 1297 #define LAST_VOLATILE 13 1298 #else 1299 #define REG "%08lx" 1300 #define REGS_PER_LINE 8 1301 #define LAST_VOLATILE 12 1302 #endif 1303 1304 void show_regs(struct pt_regs * regs) 1305 { 1306 int i, trap; 1307 1308 show_regs_print_info(KERN_DEFAULT); 1309 1310 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1311 regs->nip, regs->link, regs->ctr); 1312 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1313 regs, regs->trap, print_tainted(), init_utsname()->release); 1314 printk("MSR: "REG" ", regs->msr); 1315 print_msr_bits(regs->msr); 1316 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1317 trap = TRAP(regs); 1318 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1319 printk("CFAR: "REG" ", regs->orig_gpr3); 1320 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1321 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1322 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1323 #else 1324 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1325 #endif 1326 #ifdef CONFIG_PPC64 1327 printk("SOFTE: %ld ", regs->softe); 1328 #endif 1329 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1330 if (MSR_TM_ACTIVE(regs->msr)) 1331 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1332 #endif 1333 1334 for (i = 0; i < 32; i++) { 1335 if ((i % REGS_PER_LINE) == 0) 1336 printk("\nGPR%02d: ", i); 1337 printk(REG " ", regs->gpr[i]); 1338 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1339 break; 1340 } 1341 printk("\n"); 1342 #ifdef CONFIG_KALLSYMS 1343 /* 1344 * Lookup NIP late so we have the best change of getting the 1345 * above info out without failing 1346 */ 1347 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1348 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1349 #endif 1350 show_stack(current, (unsigned long *) regs->gpr[1]); 1351 if (!user_mode(regs)) 1352 show_instructions(regs); 1353 } 1354 1355 void flush_thread(void) 1356 { 1357 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1358 flush_ptrace_hw_breakpoint(current); 1359 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1360 set_debug_reg_defaults(¤t->thread); 1361 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1362 } 1363 1364 void 1365 release_thread(struct task_struct *t) 1366 { 1367 } 1368 1369 /* 1370 * this gets called so that we can store coprocessor state into memory and 1371 * copy the current task into the new thread. 1372 */ 1373 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1374 { 1375 flush_all_to_thread(src); 1376 /* 1377 * Flush TM state out so we can copy it. __switch_to_tm() does this 1378 * flush but it removes the checkpointed state from the current CPU and 1379 * transitions the CPU out of TM mode. Hence we need to call 1380 * tm_recheckpoint_new_task() (on the same task) to restore the 1381 * checkpointed state back and the TM mode. 1382 */ 1383 __switch_to_tm(src); 1384 tm_recheckpoint_new_task(src); 1385 1386 *dst = *src; 1387 1388 clear_task_ebb(dst); 1389 1390 return 0; 1391 } 1392 1393 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1394 { 1395 #ifdef CONFIG_PPC_STD_MMU_64 1396 unsigned long sp_vsid; 1397 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1398 1399 if (radix_enabled()) 1400 return; 1401 1402 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1403 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1404 << SLB_VSID_SHIFT_1T; 1405 else 1406 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1407 << SLB_VSID_SHIFT; 1408 sp_vsid |= SLB_VSID_KERNEL | llp; 1409 p->thread.ksp_vsid = sp_vsid; 1410 #endif 1411 } 1412 1413 /* 1414 * Copy a thread.. 1415 */ 1416 1417 /* 1418 * Copy architecture-specific thread state 1419 */ 1420 int copy_thread(unsigned long clone_flags, unsigned long usp, 1421 unsigned long kthread_arg, struct task_struct *p) 1422 { 1423 struct pt_regs *childregs, *kregs; 1424 extern void ret_from_fork(void); 1425 extern void ret_from_kernel_thread(void); 1426 void (*f)(void); 1427 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1428 struct thread_info *ti = task_thread_info(p); 1429 1430 klp_init_thread_info(ti); 1431 1432 /* Copy registers */ 1433 sp -= sizeof(struct pt_regs); 1434 childregs = (struct pt_regs *) sp; 1435 if (unlikely(p->flags & PF_KTHREAD)) { 1436 /* kernel thread */ 1437 memset(childregs, 0, sizeof(struct pt_regs)); 1438 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1439 /* function */ 1440 if (usp) 1441 childregs->gpr[14] = ppc_function_entry((void *)usp); 1442 #ifdef CONFIG_PPC64 1443 clear_tsk_thread_flag(p, TIF_32BIT); 1444 childregs->softe = 1; 1445 #endif 1446 childregs->gpr[15] = kthread_arg; 1447 p->thread.regs = NULL; /* no user register state */ 1448 ti->flags |= _TIF_RESTOREALL; 1449 f = ret_from_kernel_thread; 1450 } else { 1451 /* user thread */ 1452 struct pt_regs *regs = current_pt_regs(); 1453 CHECK_FULL_REGS(regs); 1454 *childregs = *regs; 1455 if (usp) 1456 childregs->gpr[1] = usp; 1457 p->thread.regs = childregs; 1458 childregs->gpr[3] = 0; /* Result from fork() */ 1459 if (clone_flags & CLONE_SETTLS) { 1460 #ifdef CONFIG_PPC64 1461 if (!is_32bit_task()) 1462 childregs->gpr[13] = childregs->gpr[6]; 1463 else 1464 #endif 1465 childregs->gpr[2] = childregs->gpr[6]; 1466 } 1467 1468 f = ret_from_fork; 1469 } 1470 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1471 sp -= STACK_FRAME_OVERHEAD; 1472 1473 /* 1474 * The way this works is that at some point in the future 1475 * some task will call _switch to switch to the new task. 1476 * That will pop off the stack frame created below and start 1477 * the new task running at ret_from_fork. The new task will 1478 * do some house keeping and then return from the fork or clone 1479 * system call, using the stack frame created above. 1480 */ 1481 ((unsigned long *)sp)[0] = 0; 1482 sp -= sizeof(struct pt_regs); 1483 kregs = (struct pt_regs *) sp; 1484 sp -= STACK_FRAME_OVERHEAD; 1485 p->thread.ksp = sp; 1486 #ifdef CONFIG_PPC32 1487 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1488 _ALIGN_UP(sizeof(struct thread_info), 16); 1489 #endif 1490 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1491 p->thread.ptrace_bps[0] = NULL; 1492 #endif 1493 1494 p->thread.fp_save_area = NULL; 1495 #ifdef CONFIG_ALTIVEC 1496 p->thread.vr_save_area = NULL; 1497 #endif 1498 1499 setup_ksp_vsid(p, sp); 1500 1501 #ifdef CONFIG_PPC64 1502 if (cpu_has_feature(CPU_FTR_DSCR)) { 1503 p->thread.dscr_inherit = current->thread.dscr_inherit; 1504 p->thread.dscr = mfspr(SPRN_DSCR); 1505 } 1506 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1507 p->thread.ppr = INIT_PPR; 1508 #endif 1509 kregs->nip = ppc_function_entry(f); 1510 return 0; 1511 } 1512 1513 /* 1514 * Set up a thread for executing a new program 1515 */ 1516 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1517 { 1518 #ifdef CONFIG_PPC64 1519 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1520 #endif 1521 1522 /* 1523 * If we exec out of a kernel thread then thread.regs will not be 1524 * set. Do it now. 1525 */ 1526 if (!current->thread.regs) { 1527 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1528 current->thread.regs = regs - 1; 1529 } 1530 1531 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1532 /* 1533 * Clear any transactional state, we're exec()ing. The cause is 1534 * not important as there will never be a recheckpoint so it's not 1535 * user visible. 1536 */ 1537 if (MSR_TM_SUSPENDED(mfmsr())) 1538 tm_reclaim_current(0); 1539 #endif 1540 1541 memset(regs->gpr, 0, sizeof(regs->gpr)); 1542 regs->ctr = 0; 1543 regs->link = 0; 1544 regs->xer = 0; 1545 regs->ccr = 0; 1546 regs->gpr[1] = sp; 1547 1548 /* 1549 * We have just cleared all the nonvolatile GPRs, so make 1550 * FULL_REGS(regs) return true. This is necessary to allow 1551 * ptrace to examine the thread immediately after exec. 1552 */ 1553 regs->trap &= ~1UL; 1554 1555 #ifdef CONFIG_PPC32 1556 regs->mq = 0; 1557 regs->nip = start; 1558 regs->msr = MSR_USER; 1559 #else 1560 if (!is_32bit_task()) { 1561 unsigned long entry; 1562 1563 if (is_elf2_task()) { 1564 /* Look ma, no function descriptors! */ 1565 entry = start; 1566 1567 /* 1568 * Ulrich says: 1569 * The latest iteration of the ABI requires that when 1570 * calling a function (at its global entry point), 1571 * the caller must ensure r12 holds the entry point 1572 * address (so that the function can quickly 1573 * establish addressability). 1574 */ 1575 regs->gpr[12] = start; 1576 /* Make sure that's restored on entry to userspace. */ 1577 set_thread_flag(TIF_RESTOREALL); 1578 } else { 1579 unsigned long toc; 1580 1581 /* start is a relocated pointer to the function 1582 * descriptor for the elf _start routine. The first 1583 * entry in the function descriptor is the entry 1584 * address of _start and the second entry is the TOC 1585 * value we need to use. 1586 */ 1587 __get_user(entry, (unsigned long __user *)start); 1588 __get_user(toc, (unsigned long __user *)start+1); 1589 1590 /* Check whether the e_entry function descriptor entries 1591 * need to be relocated before we can use them. 1592 */ 1593 if (load_addr != 0) { 1594 entry += load_addr; 1595 toc += load_addr; 1596 } 1597 regs->gpr[2] = toc; 1598 } 1599 regs->nip = entry; 1600 regs->msr = MSR_USER64; 1601 } else { 1602 regs->nip = start; 1603 regs->gpr[2] = 0; 1604 regs->msr = MSR_USER32; 1605 } 1606 #endif 1607 #ifdef CONFIG_VSX 1608 current->thread.used_vsr = 0; 1609 #endif 1610 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1611 current->thread.fp_save_area = NULL; 1612 #ifdef CONFIG_ALTIVEC 1613 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1614 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1615 current->thread.vr_save_area = NULL; 1616 current->thread.vrsave = 0; 1617 current->thread.used_vr = 0; 1618 #endif /* CONFIG_ALTIVEC */ 1619 #ifdef CONFIG_SPE 1620 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1621 current->thread.acc = 0; 1622 current->thread.spefscr = 0; 1623 current->thread.used_spe = 0; 1624 #endif /* CONFIG_SPE */ 1625 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1626 if (cpu_has_feature(CPU_FTR_TM)) 1627 regs->msr |= MSR_TM; 1628 current->thread.tm_tfhar = 0; 1629 current->thread.tm_texasr = 0; 1630 current->thread.tm_tfiar = 0; 1631 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1632 } 1633 EXPORT_SYMBOL(start_thread); 1634 1635 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1636 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1637 1638 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1639 { 1640 struct pt_regs *regs = tsk->thread.regs; 1641 1642 /* This is a bit hairy. If we are an SPE enabled processor 1643 * (have embedded fp) we store the IEEE exception enable flags in 1644 * fpexc_mode. fpexc_mode is also used for setting FP exception 1645 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1646 if (val & PR_FP_EXC_SW_ENABLE) { 1647 #ifdef CONFIG_SPE 1648 if (cpu_has_feature(CPU_FTR_SPE)) { 1649 /* 1650 * When the sticky exception bits are set 1651 * directly by userspace, it must call prctl 1652 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1653 * in the existing prctl settings) or 1654 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1655 * the bits being set). <fenv.h> functions 1656 * saving and restoring the whole 1657 * floating-point environment need to do so 1658 * anyway to restore the prctl settings from 1659 * the saved environment. 1660 */ 1661 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1662 tsk->thread.fpexc_mode = val & 1663 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1664 return 0; 1665 } else { 1666 return -EINVAL; 1667 } 1668 #else 1669 return -EINVAL; 1670 #endif 1671 } 1672 1673 /* on a CONFIG_SPE this does not hurt us. The bits that 1674 * __pack_fe01 use do not overlap with bits used for 1675 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1676 * on CONFIG_SPE implementations are reserved so writing to 1677 * them does not change anything */ 1678 if (val > PR_FP_EXC_PRECISE) 1679 return -EINVAL; 1680 tsk->thread.fpexc_mode = __pack_fe01(val); 1681 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1682 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1683 | tsk->thread.fpexc_mode; 1684 return 0; 1685 } 1686 1687 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1688 { 1689 unsigned int val; 1690 1691 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1692 #ifdef CONFIG_SPE 1693 if (cpu_has_feature(CPU_FTR_SPE)) { 1694 /* 1695 * When the sticky exception bits are set 1696 * directly by userspace, it must call prctl 1697 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1698 * in the existing prctl settings) or 1699 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1700 * the bits being set). <fenv.h> functions 1701 * saving and restoring the whole 1702 * floating-point environment need to do so 1703 * anyway to restore the prctl settings from 1704 * the saved environment. 1705 */ 1706 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1707 val = tsk->thread.fpexc_mode; 1708 } else 1709 return -EINVAL; 1710 #else 1711 return -EINVAL; 1712 #endif 1713 else 1714 val = __unpack_fe01(tsk->thread.fpexc_mode); 1715 return put_user(val, (unsigned int __user *) adr); 1716 } 1717 1718 int set_endian(struct task_struct *tsk, unsigned int val) 1719 { 1720 struct pt_regs *regs = tsk->thread.regs; 1721 1722 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1723 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1724 return -EINVAL; 1725 1726 if (regs == NULL) 1727 return -EINVAL; 1728 1729 if (val == PR_ENDIAN_BIG) 1730 regs->msr &= ~MSR_LE; 1731 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1732 regs->msr |= MSR_LE; 1733 else 1734 return -EINVAL; 1735 1736 return 0; 1737 } 1738 1739 int get_endian(struct task_struct *tsk, unsigned long adr) 1740 { 1741 struct pt_regs *regs = tsk->thread.regs; 1742 unsigned int val; 1743 1744 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1745 !cpu_has_feature(CPU_FTR_REAL_LE)) 1746 return -EINVAL; 1747 1748 if (regs == NULL) 1749 return -EINVAL; 1750 1751 if (regs->msr & MSR_LE) { 1752 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1753 val = PR_ENDIAN_LITTLE; 1754 else 1755 val = PR_ENDIAN_PPC_LITTLE; 1756 } else 1757 val = PR_ENDIAN_BIG; 1758 1759 return put_user(val, (unsigned int __user *)adr); 1760 } 1761 1762 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1763 { 1764 tsk->thread.align_ctl = val; 1765 return 0; 1766 } 1767 1768 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1769 { 1770 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1771 } 1772 1773 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1774 unsigned long nbytes) 1775 { 1776 unsigned long stack_page; 1777 unsigned long cpu = task_cpu(p); 1778 1779 /* 1780 * Avoid crashing if the stack has overflowed and corrupted 1781 * task_cpu(p), which is in the thread_info struct. 1782 */ 1783 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1784 stack_page = (unsigned long) hardirq_ctx[cpu]; 1785 if (sp >= stack_page + sizeof(struct thread_struct) 1786 && sp <= stack_page + THREAD_SIZE - nbytes) 1787 return 1; 1788 1789 stack_page = (unsigned long) softirq_ctx[cpu]; 1790 if (sp >= stack_page + sizeof(struct thread_struct) 1791 && sp <= stack_page + THREAD_SIZE - nbytes) 1792 return 1; 1793 } 1794 return 0; 1795 } 1796 1797 int validate_sp(unsigned long sp, struct task_struct *p, 1798 unsigned long nbytes) 1799 { 1800 unsigned long stack_page = (unsigned long)task_stack_page(p); 1801 1802 if (sp >= stack_page + sizeof(struct thread_struct) 1803 && sp <= stack_page + THREAD_SIZE - nbytes) 1804 return 1; 1805 1806 return valid_irq_stack(sp, p, nbytes); 1807 } 1808 1809 EXPORT_SYMBOL(validate_sp); 1810 1811 unsigned long get_wchan(struct task_struct *p) 1812 { 1813 unsigned long ip, sp; 1814 int count = 0; 1815 1816 if (!p || p == current || p->state == TASK_RUNNING) 1817 return 0; 1818 1819 sp = p->thread.ksp; 1820 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1821 return 0; 1822 1823 do { 1824 sp = *(unsigned long *)sp; 1825 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1826 return 0; 1827 if (count > 0) { 1828 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1829 if (!in_sched_functions(ip)) 1830 return ip; 1831 } 1832 } while (count++ < 16); 1833 return 0; 1834 } 1835 1836 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1837 1838 void show_stack(struct task_struct *tsk, unsigned long *stack) 1839 { 1840 unsigned long sp, ip, lr, newsp; 1841 int count = 0; 1842 int firstframe = 1; 1843 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1844 int curr_frame = current->curr_ret_stack; 1845 extern void return_to_handler(void); 1846 unsigned long rth = (unsigned long)return_to_handler; 1847 #endif 1848 1849 sp = (unsigned long) stack; 1850 if (tsk == NULL) 1851 tsk = current; 1852 if (sp == 0) { 1853 if (tsk == current) 1854 sp = current_stack_pointer(); 1855 else 1856 sp = tsk->thread.ksp; 1857 } 1858 1859 lr = 0; 1860 printk("Call Trace:\n"); 1861 do { 1862 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1863 return; 1864 1865 stack = (unsigned long *) sp; 1866 newsp = stack[0]; 1867 ip = stack[STACK_FRAME_LR_SAVE]; 1868 if (!firstframe || ip != lr) { 1869 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1870 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1871 if ((ip == rth) && curr_frame >= 0) { 1872 printk(" (%pS)", 1873 (void *)current->ret_stack[curr_frame].ret); 1874 curr_frame--; 1875 } 1876 #endif 1877 if (firstframe) 1878 printk(" (unreliable)"); 1879 printk("\n"); 1880 } 1881 firstframe = 0; 1882 1883 /* 1884 * See if this is an exception frame. 1885 * We look for the "regshere" marker in the current frame. 1886 */ 1887 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1888 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1889 struct pt_regs *regs = (struct pt_regs *) 1890 (sp + STACK_FRAME_OVERHEAD); 1891 lr = regs->link; 1892 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1893 regs->trap, (void *)regs->nip, (void *)lr); 1894 firstframe = 1; 1895 } 1896 1897 sp = newsp; 1898 } while (count++ < kstack_depth_to_print); 1899 } 1900 1901 #ifdef CONFIG_PPC64 1902 /* Called with hard IRQs off */ 1903 void notrace __ppc64_runlatch_on(void) 1904 { 1905 struct thread_info *ti = current_thread_info(); 1906 unsigned long ctrl; 1907 1908 ctrl = mfspr(SPRN_CTRLF); 1909 ctrl |= CTRL_RUNLATCH; 1910 mtspr(SPRN_CTRLT, ctrl); 1911 1912 ti->local_flags |= _TLF_RUNLATCH; 1913 } 1914 1915 /* Called with hard IRQs off */ 1916 void notrace __ppc64_runlatch_off(void) 1917 { 1918 struct thread_info *ti = current_thread_info(); 1919 unsigned long ctrl; 1920 1921 ti->local_flags &= ~_TLF_RUNLATCH; 1922 1923 ctrl = mfspr(SPRN_CTRLF); 1924 ctrl &= ~CTRL_RUNLATCH; 1925 mtspr(SPRN_CTRLT, ctrl); 1926 } 1927 #endif /* CONFIG_PPC64 */ 1928 1929 unsigned long arch_align_stack(unsigned long sp) 1930 { 1931 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1932 sp -= get_random_int() & ~PAGE_MASK; 1933 return sp & ~0xf; 1934 } 1935 1936 static inline unsigned long brk_rnd(void) 1937 { 1938 unsigned long rnd = 0; 1939 1940 /* 8MB for 32bit, 1GB for 64bit */ 1941 if (is_32bit_task()) 1942 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 1943 else 1944 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 1945 1946 return rnd << PAGE_SHIFT; 1947 } 1948 1949 unsigned long arch_randomize_brk(struct mm_struct *mm) 1950 { 1951 unsigned long base = mm->brk; 1952 unsigned long ret; 1953 1954 #ifdef CONFIG_PPC_STD_MMU_64 1955 /* 1956 * If we are using 1TB segments and we are allowed to randomise 1957 * the heap, we can put it above 1TB so it is backed by a 1TB 1958 * segment. Otherwise the heap will be in the bottom 1TB 1959 * which always uses 256MB segments and this may result in a 1960 * performance penalty. We don't need to worry about radix. For 1961 * radix, mmu_highuser_ssize remains unchanged from 256MB. 1962 */ 1963 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1964 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1965 #endif 1966 1967 ret = PAGE_ALIGN(base + brk_rnd()); 1968 1969 if (ret < mm->brk) 1970 return mm->brk; 1971 1972 return ret; 1973 } 1974 1975