xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 293d5b43)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 
63 #include <linux/kprobes.h>
64 #include <linux/kdebug.h>
65 
66 /* Transactional Memory debug */
67 #ifdef TM_DEBUG_SW
68 #define TM_DEBUG(x...) printk(KERN_INFO x)
69 #else
70 #define TM_DEBUG(x...) do { } while(0)
71 #endif
72 
73 extern unsigned long _get_SP(void);
74 
75 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
76 static void check_if_tm_restore_required(struct task_struct *tsk)
77 {
78 	/*
79 	 * If we are saving the current thread's registers, and the
80 	 * thread is in a transactional state, set the TIF_RESTORE_TM
81 	 * bit so that we know to restore the registers before
82 	 * returning to userspace.
83 	 */
84 	if (tsk == current && tsk->thread.regs &&
85 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
86 	    !test_thread_flag(TIF_RESTORE_TM)) {
87 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
88 		set_thread_flag(TIF_RESTORE_TM);
89 	}
90 }
91 #else
92 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
93 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
94 
95 bool strict_msr_control;
96 EXPORT_SYMBOL(strict_msr_control);
97 
98 static int __init enable_strict_msr_control(char *str)
99 {
100 	strict_msr_control = true;
101 	pr_info("Enabling strict facility control\n");
102 
103 	return 0;
104 }
105 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
106 
107 void msr_check_and_set(unsigned long bits)
108 {
109 	unsigned long oldmsr = mfmsr();
110 	unsigned long newmsr;
111 
112 	newmsr = oldmsr | bits;
113 
114 #ifdef CONFIG_VSX
115 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
116 		newmsr |= MSR_VSX;
117 #endif
118 
119 	if (oldmsr != newmsr)
120 		mtmsr_isync(newmsr);
121 }
122 
123 void __msr_check_and_clear(unsigned long bits)
124 {
125 	unsigned long oldmsr = mfmsr();
126 	unsigned long newmsr;
127 
128 	newmsr = oldmsr & ~bits;
129 
130 #ifdef CONFIG_VSX
131 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
132 		newmsr &= ~MSR_VSX;
133 #endif
134 
135 	if (oldmsr != newmsr)
136 		mtmsr_isync(newmsr);
137 }
138 EXPORT_SYMBOL(__msr_check_and_clear);
139 
140 #ifdef CONFIG_PPC_FPU
141 void __giveup_fpu(struct task_struct *tsk)
142 {
143 	unsigned long msr;
144 
145 	save_fpu(tsk);
146 	msr = tsk->thread.regs->msr;
147 	msr &= ~MSR_FP;
148 #ifdef CONFIG_VSX
149 	if (cpu_has_feature(CPU_FTR_VSX))
150 		msr &= ~MSR_VSX;
151 #endif
152 	tsk->thread.regs->msr = msr;
153 }
154 
155 void giveup_fpu(struct task_struct *tsk)
156 {
157 	check_if_tm_restore_required(tsk);
158 
159 	msr_check_and_set(MSR_FP);
160 	__giveup_fpu(tsk);
161 	msr_check_and_clear(MSR_FP);
162 }
163 EXPORT_SYMBOL(giveup_fpu);
164 
165 /*
166  * Make sure the floating-point register state in the
167  * the thread_struct is up to date for task tsk.
168  */
169 void flush_fp_to_thread(struct task_struct *tsk)
170 {
171 	if (tsk->thread.regs) {
172 		/*
173 		 * We need to disable preemption here because if we didn't,
174 		 * another process could get scheduled after the regs->msr
175 		 * test but before we have finished saving the FP registers
176 		 * to the thread_struct.  That process could take over the
177 		 * FPU, and then when we get scheduled again we would store
178 		 * bogus values for the remaining FP registers.
179 		 */
180 		preempt_disable();
181 		if (tsk->thread.regs->msr & MSR_FP) {
182 			/*
183 			 * This should only ever be called for current or
184 			 * for a stopped child process.  Since we save away
185 			 * the FP register state on context switch,
186 			 * there is something wrong if a stopped child appears
187 			 * to still have its FP state in the CPU registers.
188 			 */
189 			BUG_ON(tsk != current);
190 			giveup_fpu(tsk);
191 		}
192 		preempt_enable();
193 	}
194 }
195 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
196 
197 void enable_kernel_fp(void)
198 {
199 	WARN_ON(preemptible());
200 
201 	msr_check_and_set(MSR_FP);
202 
203 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
204 		check_if_tm_restore_required(current);
205 		__giveup_fpu(current);
206 	}
207 }
208 EXPORT_SYMBOL(enable_kernel_fp);
209 
210 static int restore_fp(struct task_struct *tsk) {
211 	if (tsk->thread.load_fp) {
212 		load_fp_state(&current->thread.fp_state);
213 		current->thread.load_fp++;
214 		return 1;
215 	}
216 	return 0;
217 }
218 #else
219 static int restore_fp(struct task_struct *tsk) { return 0; }
220 #endif /* CONFIG_PPC_FPU */
221 
222 #ifdef CONFIG_ALTIVEC
223 #define loadvec(thr) ((thr).load_vec)
224 
225 static void __giveup_altivec(struct task_struct *tsk)
226 {
227 	unsigned long msr;
228 
229 	save_altivec(tsk);
230 	msr = tsk->thread.regs->msr;
231 	msr &= ~MSR_VEC;
232 #ifdef CONFIG_VSX
233 	if (cpu_has_feature(CPU_FTR_VSX))
234 		msr &= ~MSR_VSX;
235 #endif
236 	tsk->thread.regs->msr = msr;
237 }
238 
239 void giveup_altivec(struct task_struct *tsk)
240 {
241 	check_if_tm_restore_required(tsk);
242 
243 	msr_check_and_set(MSR_VEC);
244 	__giveup_altivec(tsk);
245 	msr_check_and_clear(MSR_VEC);
246 }
247 EXPORT_SYMBOL(giveup_altivec);
248 
249 void enable_kernel_altivec(void)
250 {
251 	WARN_ON(preemptible());
252 
253 	msr_check_and_set(MSR_VEC);
254 
255 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
256 		check_if_tm_restore_required(current);
257 		__giveup_altivec(current);
258 	}
259 }
260 EXPORT_SYMBOL(enable_kernel_altivec);
261 
262 /*
263  * Make sure the VMX/Altivec register state in the
264  * the thread_struct is up to date for task tsk.
265  */
266 void flush_altivec_to_thread(struct task_struct *tsk)
267 {
268 	if (tsk->thread.regs) {
269 		preempt_disable();
270 		if (tsk->thread.regs->msr & MSR_VEC) {
271 			BUG_ON(tsk != current);
272 			giveup_altivec(tsk);
273 		}
274 		preempt_enable();
275 	}
276 }
277 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
278 
279 static int restore_altivec(struct task_struct *tsk)
280 {
281 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
282 		load_vr_state(&tsk->thread.vr_state);
283 		tsk->thread.used_vr = 1;
284 		tsk->thread.load_vec++;
285 
286 		return 1;
287 	}
288 	return 0;
289 }
290 #else
291 #define loadvec(thr) 0
292 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
293 #endif /* CONFIG_ALTIVEC */
294 
295 #ifdef CONFIG_VSX
296 static void __giveup_vsx(struct task_struct *tsk)
297 {
298 	if (tsk->thread.regs->msr & MSR_FP)
299 		__giveup_fpu(tsk);
300 	if (tsk->thread.regs->msr & MSR_VEC)
301 		__giveup_altivec(tsk);
302 	tsk->thread.regs->msr &= ~MSR_VSX;
303 }
304 
305 static void giveup_vsx(struct task_struct *tsk)
306 {
307 	check_if_tm_restore_required(tsk);
308 
309 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
310 	__giveup_vsx(tsk);
311 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
312 }
313 
314 static void save_vsx(struct task_struct *tsk)
315 {
316 	if (tsk->thread.regs->msr & MSR_FP)
317 		save_fpu(tsk);
318 	if (tsk->thread.regs->msr & MSR_VEC)
319 		save_altivec(tsk);
320 }
321 
322 void enable_kernel_vsx(void)
323 {
324 	WARN_ON(preemptible());
325 
326 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
327 
328 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
329 		check_if_tm_restore_required(current);
330 		if (current->thread.regs->msr & MSR_FP)
331 			__giveup_fpu(current);
332 		if (current->thread.regs->msr & MSR_VEC)
333 			__giveup_altivec(current);
334 		__giveup_vsx(current);
335 	}
336 }
337 EXPORT_SYMBOL(enable_kernel_vsx);
338 
339 void flush_vsx_to_thread(struct task_struct *tsk)
340 {
341 	if (tsk->thread.regs) {
342 		preempt_disable();
343 		if (tsk->thread.regs->msr & MSR_VSX) {
344 			BUG_ON(tsk != current);
345 			giveup_vsx(tsk);
346 		}
347 		preempt_enable();
348 	}
349 }
350 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
351 
352 static int restore_vsx(struct task_struct *tsk)
353 {
354 	if (cpu_has_feature(CPU_FTR_VSX)) {
355 		tsk->thread.used_vsr = 1;
356 		return 1;
357 	}
358 
359 	return 0;
360 }
361 #else
362 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
363 static inline void save_vsx(struct task_struct *tsk) { }
364 #endif /* CONFIG_VSX */
365 
366 #ifdef CONFIG_SPE
367 void giveup_spe(struct task_struct *tsk)
368 {
369 	check_if_tm_restore_required(tsk);
370 
371 	msr_check_and_set(MSR_SPE);
372 	__giveup_spe(tsk);
373 	msr_check_and_clear(MSR_SPE);
374 }
375 EXPORT_SYMBOL(giveup_spe);
376 
377 void enable_kernel_spe(void)
378 {
379 	WARN_ON(preemptible());
380 
381 	msr_check_and_set(MSR_SPE);
382 
383 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
384 		check_if_tm_restore_required(current);
385 		__giveup_spe(current);
386 	}
387 }
388 EXPORT_SYMBOL(enable_kernel_spe);
389 
390 void flush_spe_to_thread(struct task_struct *tsk)
391 {
392 	if (tsk->thread.regs) {
393 		preempt_disable();
394 		if (tsk->thread.regs->msr & MSR_SPE) {
395 			BUG_ON(tsk != current);
396 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
397 			giveup_spe(tsk);
398 		}
399 		preempt_enable();
400 	}
401 }
402 #endif /* CONFIG_SPE */
403 
404 static unsigned long msr_all_available;
405 
406 static int __init init_msr_all_available(void)
407 {
408 #ifdef CONFIG_PPC_FPU
409 	msr_all_available |= MSR_FP;
410 #endif
411 #ifdef CONFIG_ALTIVEC
412 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
413 		msr_all_available |= MSR_VEC;
414 #endif
415 #ifdef CONFIG_VSX
416 	if (cpu_has_feature(CPU_FTR_VSX))
417 		msr_all_available |= MSR_VSX;
418 #endif
419 #ifdef CONFIG_SPE
420 	if (cpu_has_feature(CPU_FTR_SPE))
421 		msr_all_available |= MSR_SPE;
422 #endif
423 
424 	return 0;
425 }
426 early_initcall(init_msr_all_available);
427 
428 void giveup_all(struct task_struct *tsk)
429 {
430 	unsigned long usermsr;
431 
432 	if (!tsk->thread.regs)
433 		return;
434 
435 	usermsr = tsk->thread.regs->msr;
436 
437 	if ((usermsr & msr_all_available) == 0)
438 		return;
439 
440 	msr_check_and_set(msr_all_available);
441 
442 #ifdef CONFIG_PPC_FPU
443 	if (usermsr & MSR_FP)
444 		__giveup_fpu(tsk);
445 #endif
446 #ifdef CONFIG_ALTIVEC
447 	if (usermsr & MSR_VEC)
448 		__giveup_altivec(tsk);
449 #endif
450 #ifdef CONFIG_VSX
451 	if (usermsr & MSR_VSX)
452 		__giveup_vsx(tsk);
453 #endif
454 #ifdef CONFIG_SPE
455 	if (usermsr & MSR_SPE)
456 		__giveup_spe(tsk);
457 #endif
458 
459 	msr_check_and_clear(msr_all_available);
460 }
461 EXPORT_SYMBOL(giveup_all);
462 
463 void restore_math(struct pt_regs *regs)
464 {
465 	unsigned long msr;
466 
467 	if (!current->thread.load_fp && !loadvec(current->thread))
468 		return;
469 
470 	msr = regs->msr;
471 	msr_check_and_set(msr_all_available);
472 
473 	/*
474 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
475 	 * indicates that the registers are hot
476 	 */
477 	if ((!(msr & MSR_FP)) && restore_fp(current))
478 		msr |= MSR_FP | current->thread.fpexc_mode;
479 
480 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
481 		msr |= MSR_VEC;
482 
483 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
484 			restore_vsx(current)) {
485 		msr |= MSR_VSX;
486 	}
487 
488 	msr_check_and_clear(msr_all_available);
489 
490 	regs->msr = msr;
491 }
492 
493 void save_all(struct task_struct *tsk)
494 {
495 	unsigned long usermsr;
496 
497 	if (!tsk->thread.regs)
498 		return;
499 
500 	usermsr = tsk->thread.regs->msr;
501 
502 	if ((usermsr & msr_all_available) == 0)
503 		return;
504 
505 	msr_check_and_set(msr_all_available);
506 
507 	/*
508 	 * Saving the way the register space is in hardware, save_vsx boils
509 	 * down to a save_fpu() and save_altivec()
510 	 */
511 	if (usermsr & MSR_VSX) {
512 		save_vsx(tsk);
513 	} else {
514 		if (usermsr & MSR_FP)
515 			save_fpu(tsk);
516 
517 		if (usermsr & MSR_VEC)
518 			save_altivec(tsk);
519 	}
520 
521 	if (usermsr & MSR_SPE)
522 		__giveup_spe(tsk);
523 
524 	msr_check_and_clear(msr_all_available);
525 }
526 
527 void flush_all_to_thread(struct task_struct *tsk)
528 {
529 	if (tsk->thread.regs) {
530 		preempt_disable();
531 		BUG_ON(tsk != current);
532 		save_all(tsk);
533 
534 #ifdef CONFIG_SPE
535 		if (tsk->thread.regs->msr & MSR_SPE)
536 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
537 #endif
538 
539 		preempt_enable();
540 	}
541 }
542 EXPORT_SYMBOL(flush_all_to_thread);
543 
544 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
545 void do_send_trap(struct pt_regs *regs, unsigned long address,
546 		  unsigned long error_code, int signal_code, int breakpt)
547 {
548 	siginfo_t info;
549 
550 	current->thread.trap_nr = signal_code;
551 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
552 			11, SIGSEGV) == NOTIFY_STOP)
553 		return;
554 
555 	/* Deliver the signal to userspace */
556 	info.si_signo = SIGTRAP;
557 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
558 	info.si_code = signal_code;
559 	info.si_addr = (void __user *)address;
560 	force_sig_info(SIGTRAP, &info, current);
561 }
562 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
563 void do_break (struct pt_regs *regs, unsigned long address,
564 		    unsigned long error_code)
565 {
566 	siginfo_t info;
567 
568 	current->thread.trap_nr = TRAP_HWBKPT;
569 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
570 			11, SIGSEGV) == NOTIFY_STOP)
571 		return;
572 
573 	if (debugger_break_match(regs))
574 		return;
575 
576 	/* Clear the breakpoint */
577 	hw_breakpoint_disable();
578 
579 	/* Deliver the signal to userspace */
580 	info.si_signo = SIGTRAP;
581 	info.si_errno = 0;
582 	info.si_code = TRAP_HWBKPT;
583 	info.si_addr = (void __user *)address;
584 	force_sig_info(SIGTRAP, &info, current);
585 }
586 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
587 
588 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
589 
590 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
591 /*
592  * Set the debug registers back to their default "safe" values.
593  */
594 static void set_debug_reg_defaults(struct thread_struct *thread)
595 {
596 	thread->debug.iac1 = thread->debug.iac2 = 0;
597 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
598 	thread->debug.iac3 = thread->debug.iac4 = 0;
599 #endif
600 	thread->debug.dac1 = thread->debug.dac2 = 0;
601 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
602 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
603 #endif
604 	thread->debug.dbcr0 = 0;
605 #ifdef CONFIG_BOOKE
606 	/*
607 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
608 	 */
609 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
610 			DBCR1_IAC3US | DBCR1_IAC4US;
611 	/*
612 	 * Force Data Address Compare User/Supervisor bits to be User-only
613 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
614 	 */
615 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
616 #else
617 	thread->debug.dbcr1 = 0;
618 #endif
619 }
620 
621 static void prime_debug_regs(struct debug_reg *debug)
622 {
623 	/*
624 	 * We could have inherited MSR_DE from userspace, since
625 	 * it doesn't get cleared on exception entry.  Make sure
626 	 * MSR_DE is clear before we enable any debug events.
627 	 */
628 	mtmsr(mfmsr() & ~MSR_DE);
629 
630 	mtspr(SPRN_IAC1, debug->iac1);
631 	mtspr(SPRN_IAC2, debug->iac2);
632 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
633 	mtspr(SPRN_IAC3, debug->iac3);
634 	mtspr(SPRN_IAC4, debug->iac4);
635 #endif
636 	mtspr(SPRN_DAC1, debug->dac1);
637 	mtspr(SPRN_DAC2, debug->dac2);
638 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
639 	mtspr(SPRN_DVC1, debug->dvc1);
640 	mtspr(SPRN_DVC2, debug->dvc2);
641 #endif
642 	mtspr(SPRN_DBCR0, debug->dbcr0);
643 	mtspr(SPRN_DBCR1, debug->dbcr1);
644 #ifdef CONFIG_BOOKE
645 	mtspr(SPRN_DBCR2, debug->dbcr2);
646 #endif
647 }
648 /*
649  * Unless neither the old or new thread are making use of the
650  * debug registers, set the debug registers from the values
651  * stored in the new thread.
652  */
653 void switch_booke_debug_regs(struct debug_reg *new_debug)
654 {
655 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
656 		|| (new_debug->dbcr0 & DBCR0_IDM))
657 			prime_debug_regs(new_debug);
658 }
659 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
660 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
661 #ifndef CONFIG_HAVE_HW_BREAKPOINT
662 static void set_debug_reg_defaults(struct thread_struct *thread)
663 {
664 	thread->hw_brk.address = 0;
665 	thread->hw_brk.type = 0;
666 	set_breakpoint(&thread->hw_brk);
667 }
668 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
669 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
670 
671 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
672 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
673 {
674 	mtspr(SPRN_DAC1, dabr);
675 #ifdef CONFIG_PPC_47x
676 	isync();
677 #endif
678 	return 0;
679 }
680 #elif defined(CONFIG_PPC_BOOK3S)
681 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
682 {
683 	mtspr(SPRN_DABR, dabr);
684 	if (cpu_has_feature(CPU_FTR_DABRX))
685 		mtspr(SPRN_DABRX, dabrx);
686 	return 0;
687 }
688 #else
689 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
690 {
691 	return -EINVAL;
692 }
693 #endif
694 
695 static inline int set_dabr(struct arch_hw_breakpoint *brk)
696 {
697 	unsigned long dabr, dabrx;
698 
699 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
700 	dabrx = ((brk->type >> 3) & 0x7);
701 
702 	if (ppc_md.set_dabr)
703 		return ppc_md.set_dabr(dabr, dabrx);
704 
705 	return __set_dabr(dabr, dabrx);
706 }
707 
708 static inline int set_dawr(struct arch_hw_breakpoint *brk)
709 {
710 	unsigned long dawr, dawrx, mrd;
711 
712 	dawr = brk->address;
713 
714 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
715 		                   << (63 - 58); //* read/write bits */
716 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
717 		                   << (63 - 59); //* translate */
718 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
719 		                   >> 3; //* PRIM bits */
720 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
721 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
722 	   0b111111=64DW.
723 	   brk->len is in bytes.
724 	   This aligns up to double word size, shifts and does the bias.
725 	*/
726 	mrd = ((brk->len + 7) >> 3) - 1;
727 	dawrx |= (mrd & 0x3f) << (63 - 53);
728 
729 	if (ppc_md.set_dawr)
730 		return ppc_md.set_dawr(dawr, dawrx);
731 	mtspr(SPRN_DAWR, dawr);
732 	mtspr(SPRN_DAWRX, dawrx);
733 	return 0;
734 }
735 
736 void __set_breakpoint(struct arch_hw_breakpoint *brk)
737 {
738 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
739 
740 	if (cpu_has_feature(CPU_FTR_DAWR))
741 		set_dawr(brk);
742 	else
743 		set_dabr(brk);
744 }
745 
746 void set_breakpoint(struct arch_hw_breakpoint *brk)
747 {
748 	preempt_disable();
749 	__set_breakpoint(brk);
750 	preempt_enable();
751 }
752 
753 #ifdef CONFIG_PPC64
754 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
755 #endif
756 
757 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
758 			      struct arch_hw_breakpoint *b)
759 {
760 	if (a->address != b->address)
761 		return false;
762 	if (a->type != b->type)
763 		return false;
764 	if (a->len != b->len)
765 		return false;
766 	return true;
767 }
768 
769 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
770 static void tm_reclaim_thread(struct thread_struct *thr,
771 			      struct thread_info *ti, uint8_t cause)
772 {
773 	unsigned long msr_diff = 0;
774 
775 	/*
776 	 * If FP/VSX registers have been already saved to the
777 	 * thread_struct, move them to the transact_fp array.
778 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
779 	 * the thread will no longer be transactional.
780 	 */
781 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
782 		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
783 		if (msr_diff & MSR_FP)
784 			memcpy(&thr->transact_fp, &thr->fp_state,
785 			       sizeof(struct thread_fp_state));
786 		if (msr_diff & MSR_VEC)
787 			memcpy(&thr->transact_vr, &thr->vr_state,
788 			       sizeof(struct thread_vr_state));
789 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
790 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
791 	}
792 
793 	/*
794 	 * Use the current MSR TM suspended bit to track if we have
795 	 * checkpointed state outstanding.
796 	 * On signal delivery, we'd normally reclaim the checkpointed
797 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
798 	 * This will then directly return to userspace without going
799 	 * through __switch_to(). However, if the stack frame is bad,
800 	 * we need to exit this thread which calls __switch_to() which
801 	 * will again attempt to reclaim the already saved tm state.
802 	 * Hence we need to check that we've not already reclaimed
803 	 * this state.
804 	 * We do this using the current MSR, rather tracking it in
805 	 * some specific thread_struct bit, as it has the additional
806 	 * benefit of checking for a potential TM bad thing exception.
807 	 */
808 	if (!MSR_TM_SUSPENDED(mfmsr()))
809 		return;
810 
811 	tm_reclaim(thr, thr->regs->msr, cause);
812 
813 	/* Having done the reclaim, we now have the checkpointed
814 	 * FP/VSX values in the registers.  These might be valid
815 	 * even if we have previously called enable_kernel_fp() or
816 	 * flush_fp_to_thread(), so update thr->regs->msr to
817 	 * indicate their current validity.
818 	 */
819 	thr->regs->msr |= msr_diff;
820 }
821 
822 void tm_reclaim_current(uint8_t cause)
823 {
824 	tm_enable();
825 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
826 }
827 
828 static inline void tm_reclaim_task(struct task_struct *tsk)
829 {
830 	/* We have to work out if we're switching from/to a task that's in the
831 	 * middle of a transaction.
832 	 *
833 	 * In switching we need to maintain a 2nd register state as
834 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
835 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
836 	 * (current) FPRs into oldtask->thread.transact_fpr[].
837 	 *
838 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
839 	 */
840 	struct thread_struct *thr = &tsk->thread;
841 
842 	if (!thr->regs)
843 		return;
844 
845 	if (!MSR_TM_ACTIVE(thr->regs->msr))
846 		goto out_and_saveregs;
847 
848 	/* Stash the original thread MSR, as giveup_fpu et al will
849 	 * modify it.  We hold onto it to see whether the task used
850 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
851 	 * ckpt_regs.msr is already set.
852 	 */
853 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
854 		thr->ckpt_regs.msr = thr->regs->msr;
855 
856 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
857 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
858 		 tsk->pid, thr->regs->nip,
859 		 thr->regs->ccr, thr->regs->msr,
860 		 thr->regs->trap);
861 
862 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
863 
864 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
865 		 tsk->pid);
866 
867 out_and_saveregs:
868 	/* Always save the regs here, even if a transaction's not active.
869 	 * This context-switches a thread's TM info SPRs.  We do it here to
870 	 * be consistent with the restore path (in recheckpoint) which
871 	 * cannot happen later in _switch().
872 	 */
873 	tm_save_sprs(thr);
874 }
875 
876 extern void __tm_recheckpoint(struct thread_struct *thread,
877 			      unsigned long orig_msr);
878 
879 void tm_recheckpoint(struct thread_struct *thread,
880 		     unsigned long orig_msr)
881 {
882 	unsigned long flags;
883 
884 	/* We really can't be interrupted here as the TEXASR registers can't
885 	 * change and later in the trecheckpoint code, we have a userspace R1.
886 	 * So let's hard disable over this region.
887 	 */
888 	local_irq_save(flags);
889 	hard_irq_disable();
890 
891 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
892 	 * before the trecheckpoint and no explosion occurs.
893 	 */
894 	tm_restore_sprs(thread);
895 
896 	__tm_recheckpoint(thread, orig_msr);
897 
898 	local_irq_restore(flags);
899 }
900 
901 static inline void tm_recheckpoint_new_task(struct task_struct *new)
902 {
903 	unsigned long msr;
904 
905 	if (!cpu_has_feature(CPU_FTR_TM))
906 		return;
907 
908 	/* Recheckpoint the registers of the thread we're about to switch to.
909 	 *
910 	 * If the task was using FP, we non-lazily reload both the original and
911 	 * the speculative FP register states.  This is because the kernel
912 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
913 	 * unavoidable later, we are unable to determine which set of FP regs
914 	 * need to be restored.
915 	 */
916 	if (!new->thread.regs)
917 		return;
918 
919 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
920 		tm_restore_sprs(&new->thread);
921 		return;
922 	}
923 	msr = new->thread.ckpt_regs.msr;
924 	/* Recheckpoint to restore original checkpointed register state. */
925 	TM_DEBUG("*** tm_recheckpoint of pid %d "
926 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
927 		 new->pid, new->thread.regs->msr, msr);
928 
929 	/* This loads the checkpointed FP/VEC state, if used */
930 	tm_recheckpoint(&new->thread, msr);
931 
932 	/* This loads the speculative FP/VEC state, if used */
933 	if (msr & MSR_FP) {
934 		do_load_up_transact_fpu(&new->thread);
935 		new->thread.regs->msr |=
936 			(MSR_FP | new->thread.fpexc_mode);
937 	}
938 #ifdef CONFIG_ALTIVEC
939 	if (msr & MSR_VEC) {
940 		do_load_up_transact_altivec(&new->thread);
941 		new->thread.regs->msr |= MSR_VEC;
942 	}
943 #endif
944 	/* We may as well turn on VSX too since all the state is restored now */
945 	if (msr & MSR_VSX)
946 		new->thread.regs->msr |= MSR_VSX;
947 
948 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
949 		 "(kernel msr 0x%lx)\n",
950 		 new->pid, mfmsr());
951 }
952 
953 static inline void __switch_to_tm(struct task_struct *prev)
954 {
955 	if (cpu_has_feature(CPU_FTR_TM)) {
956 		tm_enable();
957 		tm_reclaim_task(prev);
958 	}
959 }
960 
961 /*
962  * This is called if we are on the way out to userspace and the
963  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
964  * FP and/or vector state and does so if necessary.
965  * If userspace is inside a transaction (whether active or
966  * suspended) and FP/VMX/VSX instructions have ever been enabled
967  * inside that transaction, then we have to keep them enabled
968  * and keep the FP/VMX/VSX state loaded while ever the transaction
969  * continues.  The reason is that if we didn't, and subsequently
970  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
971  * we don't know whether it's the same transaction, and thus we
972  * don't know which of the checkpointed state and the transactional
973  * state to use.
974  */
975 void restore_tm_state(struct pt_regs *regs)
976 {
977 	unsigned long msr_diff;
978 
979 	clear_thread_flag(TIF_RESTORE_TM);
980 	if (!MSR_TM_ACTIVE(regs->msr))
981 		return;
982 
983 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
984 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
985 
986 	restore_math(regs);
987 
988 	regs->msr |= msr_diff;
989 }
990 
991 #else
992 #define tm_recheckpoint_new_task(new)
993 #define __switch_to_tm(prev)
994 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
995 
996 static inline void save_sprs(struct thread_struct *t)
997 {
998 #ifdef CONFIG_ALTIVEC
999 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1000 		t->vrsave = mfspr(SPRN_VRSAVE);
1001 #endif
1002 #ifdef CONFIG_PPC_BOOK3S_64
1003 	if (cpu_has_feature(CPU_FTR_DSCR))
1004 		t->dscr = mfspr(SPRN_DSCR);
1005 
1006 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1007 		t->bescr = mfspr(SPRN_BESCR);
1008 		t->ebbhr = mfspr(SPRN_EBBHR);
1009 		t->ebbrr = mfspr(SPRN_EBBRR);
1010 
1011 		t->fscr = mfspr(SPRN_FSCR);
1012 
1013 		/*
1014 		 * Note that the TAR is not available for use in the kernel.
1015 		 * (To provide this, the TAR should be backed up/restored on
1016 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1017 		 * this should be in pt_regs anyway (for debug).)
1018 		 */
1019 		t->tar = mfspr(SPRN_TAR);
1020 	}
1021 
1022 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1023 		/* Conditionally save Load Monitor registers, if enabled */
1024 		if (t->fscr & FSCR_LM) {
1025 			t->lmrr = mfspr(SPRN_LMRR);
1026 			t->lmser = mfspr(SPRN_LMSER);
1027 		}
1028 	}
1029 #endif
1030 }
1031 
1032 static inline void restore_sprs(struct thread_struct *old_thread,
1033 				struct thread_struct *new_thread)
1034 {
1035 #ifdef CONFIG_ALTIVEC
1036 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1037 	    old_thread->vrsave != new_thread->vrsave)
1038 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1039 #endif
1040 #ifdef CONFIG_PPC_BOOK3S_64
1041 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1042 		u64 dscr = get_paca()->dscr_default;
1043 		if (new_thread->dscr_inherit)
1044 			dscr = new_thread->dscr;
1045 
1046 		if (old_thread->dscr != dscr)
1047 			mtspr(SPRN_DSCR, dscr);
1048 	}
1049 
1050 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1051 		if (old_thread->bescr != new_thread->bescr)
1052 			mtspr(SPRN_BESCR, new_thread->bescr);
1053 		if (old_thread->ebbhr != new_thread->ebbhr)
1054 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1055 		if (old_thread->ebbrr != new_thread->ebbrr)
1056 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1057 
1058 		if (old_thread->fscr != new_thread->fscr)
1059 			mtspr(SPRN_FSCR, new_thread->fscr);
1060 
1061 		if (old_thread->tar != new_thread->tar)
1062 			mtspr(SPRN_TAR, new_thread->tar);
1063 	}
1064 
1065 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1066 		/* Conditionally restore Load Monitor registers, if enabled */
1067 		if (new_thread->fscr & FSCR_LM) {
1068 			if (old_thread->lmrr != new_thread->lmrr)
1069 				mtspr(SPRN_LMRR, new_thread->lmrr);
1070 			if (old_thread->lmser != new_thread->lmser)
1071 				mtspr(SPRN_LMSER, new_thread->lmser);
1072 		}
1073 	}
1074 #endif
1075 }
1076 
1077 struct task_struct *__switch_to(struct task_struct *prev,
1078 	struct task_struct *new)
1079 {
1080 	struct thread_struct *new_thread, *old_thread;
1081 	struct task_struct *last;
1082 #ifdef CONFIG_PPC_BOOK3S_64
1083 	struct ppc64_tlb_batch *batch;
1084 #endif
1085 
1086 	new_thread = &new->thread;
1087 	old_thread = &current->thread;
1088 
1089 	WARN_ON(!irqs_disabled());
1090 
1091 #ifdef CONFIG_PPC64
1092 	/*
1093 	 * Collect processor utilization data per process
1094 	 */
1095 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1096 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1097 		long unsigned start_tb, current_tb;
1098 		start_tb = old_thread->start_tb;
1099 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1100 		old_thread->accum_tb += (current_tb - start_tb);
1101 		new_thread->start_tb = current_tb;
1102 	}
1103 #endif /* CONFIG_PPC64 */
1104 
1105 #ifdef CONFIG_PPC_STD_MMU_64
1106 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1107 	if (batch->active) {
1108 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1109 		if (batch->index)
1110 			__flush_tlb_pending(batch);
1111 		batch->active = 0;
1112 	}
1113 #endif /* CONFIG_PPC_STD_MMU_64 */
1114 
1115 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1116 	switch_booke_debug_regs(&new->thread.debug);
1117 #else
1118 /*
1119  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1120  * schedule DABR
1121  */
1122 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1123 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1124 		__set_breakpoint(&new->thread.hw_brk);
1125 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1126 #endif
1127 
1128 	/*
1129 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1130 	 * change a number of them.
1131 	 */
1132 	save_sprs(&prev->thread);
1133 
1134 	__switch_to_tm(prev);
1135 
1136 	/* Save FPU, Altivec, VSX and SPE state */
1137 	giveup_all(prev);
1138 
1139 	/*
1140 	 * We can't take a PMU exception inside _switch() since there is a
1141 	 * window where the kernel stack SLB and the kernel stack are out
1142 	 * of sync. Hard disable here.
1143 	 */
1144 	hard_irq_disable();
1145 
1146 	tm_recheckpoint_new_task(new);
1147 
1148 	/*
1149 	 * Call restore_sprs() before calling _switch(). If we move it after
1150 	 * _switch() then we miss out on calling it for new tasks. The reason
1151 	 * for this is we manually create a stack frame for new tasks that
1152 	 * directly returns through ret_from_fork() or
1153 	 * ret_from_kernel_thread(). See copy_thread() for details.
1154 	 */
1155 	restore_sprs(old_thread, new_thread);
1156 
1157 	last = _switch(old_thread, new_thread);
1158 
1159 #ifdef CONFIG_PPC_STD_MMU_64
1160 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1161 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1162 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1163 		batch->active = 1;
1164 	}
1165 
1166 	if (current_thread_info()->task->thread.regs)
1167 		restore_math(current_thread_info()->task->thread.regs);
1168 #endif /* CONFIG_PPC_STD_MMU_64 */
1169 
1170 	return last;
1171 }
1172 
1173 static int instructions_to_print = 16;
1174 
1175 static void show_instructions(struct pt_regs *regs)
1176 {
1177 	int i;
1178 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1179 			sizeof(int));
1180 
1181 	printk("Instruction dump:");
1182 
1183 	for (i = 0; i < instructions_to_print; i++) {
1184 		int instr;
1185 
1186 		if (!(i % 8))
1187 			printk("\n");
1188 
1189 #if !defined(CONFIG_BOOKE)
1190 		/* If executing with the IMMU off, adjust pc rather
1191 		 * than print XXXXXXXX.
1192 		 */
1193 		if (!(regs->msr & MSR_IR))
1194 			pc = (unsigned long)phys_to_virt(pc);
1195 #endif
1196 
1197 		if (!__kernel_text_address(pc) ||
1198 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1199 			printk(KERN_CONT "XXXXXXXX ");
1200 		} else {
1201 			if (regs->nip == pc)
1202 				printk(KERN_CONT "<%08x> ", instr);
1203 			else
1204 				printk(KERN_CONT "%08x ", instr);
1205 		}
1206 
1207 		pc += sizeof(int);
1208 	}
1209 
1210 	printk("\n");
1211 }
1212 
1213 struct regbit {
1214 	unsigned long bit;
1215 	const char *name;
1216 };
1217 
1218 static struct regbit msr_bits[] = {
1219 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1220 	{MSR_SF,	"SF"},
1221 	{MSR_HV,	"HV"},
1222 #endif
1223 	{MSR_VEC,	"VEC"},
1224 	{MSR_VSX,	"VSX"},
1225 #ifdef CONFIG_BOOKE
1226 	{MSR_CE,	"CE"},
1227 #endif
1228 	{MSR_EE,	"EE"},
1229 	{MSR_PR,	"PR"},
1230 	{MSR_FP,	"FP"},
1231 	{MSR_ME,	"ME"},
1232 #ifdef CONFIG_BOOKE
1233 	{MSR_DE,	"DE"},
1234 #else
1235 	{MSR_SE,	"SE"},
1236 	{MSR_BE,	"BE"},
1237 #endif
1238 	{MSR_IR,	"IR"},
1239 	{MSR_DR,	"DR"},
1240 	{MSR_PMM,	"PMM"},
1241 #ifndef CONFIG_BOOKE
1242 	{MSR_RI,	"RI"},
1243 	{MSR_LE,	"LE"},
1244 #endif
1245 	{0,		NULL}
1246 };
1247 
1248 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1249 {
1250 	const char *s = "";
1251 
1252 	for (; bits->bit; ++bits)
1253 		if (val & bits->bit) {
1254 			printk("%s%s", s, bits->name);
1255 			s = sep;
1256 		}
1257 }
1258 
1259 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1260 static struct regbit msr_tm_bits[] = {
1261 	{MSR_TS_T,	"T"},
1262 	{MSR_TS_S,	"S"},
1263 	{MSR_TM,	"E"},
1264 	{0,		NULL}
1265 };
1266 
1267 static void print_tm_bits(unsigned long val)
1268 {
1269 /*
1270  * This only prints something if at least one of the TM bit is set.
1271  * Inside the TM[], the output means:
1272  *   E: Enabled		(bit 32)
1273  *   S: Suspended	(bit 33)
1274  *   T: Transactional	(bit 34)
1275  */
1276 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1277 		printk(",TM[");
1278 		print_bits(val, msr_tm_bits, "");
1279 		printk("]");
1280 	}
1281 }
1282 #else
1283 static void print_tm_bits(unsigned long val) {}
1284 #endif
1285 
1286 static void print_msr_bits(unsigned long val)
1287 {
1288 	printk("<");
1289 	print_bits(val, msr_bits, ",");
1290 	print_tm_bits(val);
1291 	printk(">");
1292 }
1293 
1294 #ifdef CONFIG_PPC64
1295 #define REG		"%016lx"
1296 #define REGS_PER_LINE	4
1297 #define LAST_VOLATILE	13
1298 #else
1299 #define REG		"%08lx"
1300 #define REGS_PER_LINE	8
1301 #define LAST_VOLATILE	12
1302 #endif
1303 
1304 void show_regs(struct pt_regs * regs)
1305 {
1306 	int i, trap;
1307 
1308 	show_regs_print_info(KERN_DEFAULT);
1309 
1310 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1311 	       regs->nip, regs->link, regs->ctr);
1312 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1313 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1314 	printk("MSR: "REG" ", regs->msr);
1315 	print_msr_bits(regs->msr);
1316 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1317 	trap = TRAP(regs);
1318 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1319 		printk("CFAR: "REG" ", regs->orig_gpr3);
1320 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1321 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1322 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1323 #else
1324 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1325 #endif
1326 #ifdef CONFIG_PPC64
1327 	printk("SOFTE: %ld ", regs->softe);
1328 #endif
1329 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1330 	if (MSR_TM_ACTIVE(regs->msr))
1331 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1332 #endif
1333 
1334 	for (i = 0;  i < 32;  i++) {
1335 		if ((i % REGS_PER_LINE) == 0)
1336 			printk("\nGPR%02d: ", i);
1337 		printk(REG " ", regs->gpr[i]);
1338 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1339 			break;
1340 	}
1341 	printk("\n");
1342 #ifdef CONFIG_KALLSYMS
1343 	/*
1344 	 * Lookup NIP late so we have the best change of getting the
1345 	 * above info out without failing
1346 	 */
1347 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1348 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1349 #endif
1350 	show_stack(current, (unsigned long *) regs->gpr[1]);
1351 	if (!user_mode(regs))
1352 		show_instructions(regs);
1353 }
1354 
1355 void flush_thread(void)
1356 {
1357 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1358 	flush_ptrace_hw_breakpoint(current);
1359 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1360 	set_debug_reg_defaults(&current->thread);
1361 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1362 }
1363 
1364 void
1365 release_thread(struct task_struct *t)
1366 {
1367 }
1368 
1369 /*
1370  * this gets called so that we can store coprocessor state into memory and
1371  * copy the current task into the new thread.
1372  */
1373 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1374 {
1375 	flush_all_to_thread(src);
1376 	/*
1377 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1378 	 * flush but it removes the checkpointed state from the current CPU and
1379 	 * transitions the CPU out of TM mode.  Hence we need to call
1380 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1381 	 * checkpointed state back and the TM mode.
1382 	 */
1383 	__switch_to_tm(src);
1384 	tm_recheckpoint_new_task(src);
1385 
1386 	*dst = *src;
1387 
1388 	clear_task_ebb(dst);
1389 
1390 	return 0;
1391 }
1392 
1393 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1394 {
1395 #ifdef CONFIG_PPC_STD_MMU_64
1396 	unsigned long sp_vsid;
1397 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1398 
1399 	if (radix_enabled())
1400 		return;
1401 
1402 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1403 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1404 			<< SLB_VSID_SHIFT_1T;
1405 	else
1406 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1407 			<< SLB_VSID_SHIFT;
1408 	sp_vsid |= SLB_VSID_KERNEL | llp;
1409 	p->thread.ksp_vsid = sp_vsid;
1410 #endif
1411 }
1412 
1413 /*
1414  * Copy a thread..
1415  */
1416 
1417 /*
1418  * Copy architecture-specific thread state
1419  */
1420 int copy_thread(unsigned long clone_flags, unsigned long usp,
1421 		unsigned long kthread_arg, struct task_struct *p)
1422 {
1423 	struct pt_regs *childregs, *kregs;
1424 	extern void ret_from_fork(void);
1425 	extern void ret_from_kernel_thread(void);
1426 	void (*f)(void);
1427 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1428 	struct thread_info *ti = task_thread_info(p);
1429 
1430 	klp_init_thread_info(ti);
1431 
1432 	/* Copy registers */
1433 	sp -= sizeof(struct pt_regs);
1434 	childregs = (struct pt_regs *) sp;
1435 	if (unlikely(p->flags & PF_KTHREAD)) {
1436 		/* kernel thread */
1437 		memset(childregs, 0, sizeof(struct pt_regs));
1438 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1439 		/* function */
1440 		if (usp)
1441 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1442 #ifdef CONFIG_PPC64
1443 		clear_tsk_thread_flag(p, TIF_32BIT);
1444 		childregs->softe = 1;
1445 #endif
1446 		childregs->gpr[15] = kthread_arg;
1447 		p->thread.regs = NULL;	/* no user register state */
1448 		ti->flags |= _TIF_RESTOREALL;
1449 		f = ret_from_kernel_thread;
1450 	} else {
1451 		/* user thread */
1452 		struct pt_regs *regs = current_pt_regs();
1453 		CHECK_FULL_REGS(regs);
1454 		*childregs = *regs;
1455 		if (usp)
1456 			childregs->gpr[1] = usp;
1457 		p->thread.regs = childregs;
1458 		childregs->gpr[3] = 0;  /* Result from fork() */
1459 		if (clone_flags & CLONE_SETTLS) {
1460 #ifdef CONFIG_PPC64
1461 			if (!is_32bit_task())
1462 				childregs->gpr[13] = childregs->gpr[6];
1463 			else
1464 #endif
1465 				childregs->gpr[2] = childregs->gpr[6];
1466 		}
1467 
1468 		f = ret_from_fork;
1469 	}
1470 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1471 	sp -= STACK_FRAME_OVERHEAD;
1472 
1473 	/*
1474 	 * The way this works is that at some point in the future
1475 	 * some task will call _switch to switch to the new task.
1476 	 * That will pop off the stack frame created below and start
1477 	 * the new task running at ret_from_fork.  The new task will
1478 	 * do some house keeping and then return from the fork or clone
1479 	 * system call, using the stack frame created above.
1480 	 */
1481 	((unsigned long *)sp)[0] = 0;
1482 	sp -= sizeof(struct pt_regs);
1483 	kregs = (struct pt_regs *) sp;
1484 	sp -= STACK_FRAME_OVERHEAD;
1485 	p->thread.ksp = sp;
1486 #ifdef CONFIG_PPC32
1487 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1488 				_ALIGN_UP(sizeof(struct thread_info), 16);
1489 #endif
1490 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1491 	p->thread.ptrace_bps[0] = NULL;
1492 #endif
1493 
1494 	p->thread.fp_save_area = NULL;
1495 #ifdef CONFIG_ALTIVEC
1496 	p->thread.vr_save_area = NULL;
1497 #endif
1498 
1499 	setup_ksp_vsid(p, sp);
1500 
1501 #ifdef CONFIG_PPC64
1502 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1503 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1504 		p->thread.dscr = mfspr(SPRN_DSCR);
1505 	}
1506 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1507 		p->thread.ppr = INIT_PPR;
1508 #endif
1509 	kregs->nip = ppc_function_entry(f);
1510 	return 0;
1511 }
1512 
1513 /*
1514  * Set up a thread for executing a new program
1515  */
1516 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1517 {
1518 #ifdef CONFIG_PPC64
1519 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1520 #endif
1521 
1522 	/*
1523 	 * If we exec out of a kernel thread then thread.regs will not be
1524 	 * set.  Do it now.
1525 	 */
1526 	if (!current->thread.regs) {
1527 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1528 		current->thread.regs = regs - 1;
1529 	}
1530 
1531 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1532 	/*
1533 	 * Clear any transactional state, we're exec()ing. The cause is
1534 	 * not important as there will never be a recheckpoint so it's not
1535 	 * user visible.
1536 	 */
1537 	if (MSR_TM_SUSPENDED(mfmsr()))
1538 		tm_reclaim_current(0);
1539 #endif
1540 
1541 	memset(regs->gpr, 0, sizeof(regs->gpr));
1542 	regs->ctr = 0;
1543 	regs->link = 0;
1544 	regs->xer = 0;
1545 	regs->ccr = 0;
1546 	regs->gpr[1] = sp;
1547 
1548 	/*
1549 	 * We have just cleared all the nonvolatile GPRs, so make
1550 	 * FULL_REGS(regs) return true.  This is necessary to allow
1551 	 * ptrace to examine the thread immediately after exec.
1552 	 */
1553 	regs->trap &= ~1UL;
1554 
1555 #ifdef CONFIG_PPC32
1556 	regs->mq = 0;
1557 	regs->nip = start;
1558 	regs->msr = MSR_USER;
1559 #else
1560 	if (!is_32bit_task()) {
1561 		unsigned long entry;
1562 
1563 		if (is_elf2_task()) {
1564 			/* Look ma, no function descriptors! */
1565 			entry = start;
1566 
1567 			/*
1568 			 * Ulrich says:
1569 			 *   The latest iteration of the ABI requires that when
1570 			 *   calling a function (at its global entry point),
1571 			 *   the caller must ensure r12 holds the entry point
1572 			 *   address (so that the function can quickly
1573 			 *   establish addressability).
1574 			 */
1575 			regs->gpr[12] = start;
1576 			/* Make sure that's restored on entry to userspace. */
1577 			set_thread_flag(TIF_RESTOREALL);
1578 		} else {
1579 			unsigned long toc;
1580 
1581 			/* start is a relocated pointer to the function
1582 			 * descriptor for the elf _start routine.  The first
1583 			 * entry in the function descriptor is the entry
1584 			 * address of _start and the second entry is the TOC
1585 			 * value we need to use.
1586 			 */
1587 			__get_user(entry, (unsigned long __user *)start);
1588 			__get_user(toc, (unsigned long __user *)start+1);
1589 
1590 			/* Check whether the e_entry function descriptor entries
1591 			 * need to be relocated before we can use them.
1592 			 */
1593 			if (load_addr != 0) {
1594 				entry += load_addr;
1595 				toc   += load_addr;
1596 			}
1597 			regs->gpr[2] = toc;
1598 		}
1599 		regs->nip = entry;
1600 		regs->msr = MSR_USER64;
1601 	} else {
1602 		regs->nip = start;
1603 		regs->gpr[2] = 0;
1604 		regs->msr = MSR_USER32;
1605 	}
1606 #endif
1607 #ifdef CONFIG_VSX
1608 	current->thread.used_vsr = 0;
1609 #endif
1610 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1611 	current->thread.fp_save_area = NULL;
1612 #ifdef CONFIG_ALTIVEC
1613 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1614 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1615 	current->thread.vr_save_area = NULL;
1616 	current->thread.vrsave = 0;
1617 	current->thread.used_vr = 0;
1618 #endif /* CONFIG_ALTIVEC */
1619 #ifdef CONFIG_SPE
1620 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1621 	current->thread.acc = 0;
1622 	current->thread.spefscr = 0;
1623 	current->thread.used_spe = 0;
1624 #endif /* CONFIG_SPE */
1625 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1626 	if (cpu_has_feature(CPU_FTR_TM))
1627 		regs->msr |= MSR_TM;
1628 	current->thread.tm_tfhar = 0;
1629 	current->thread.tm_texasr = 0;
1630 	current->thread.tm_tfiar = 0;
1631 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1632 }
1633 EXPORT_SYMBOL(start_thread);
1634 
1635 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1636 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1637 
1638 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1639 {
1640 	struct pt_regs *regs = tsk->thread.regs;
1641 
1642 	/* This is a bit hairy.  If we are an SPE enabled  processor
1643 	 * (have embedded fp) we store the IEEE exception enable flags in
1644 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1645 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1646 	if (val & PR_FP_EXC_SW_ENABLE) {
1647 #ifdef CONFIG_SPE
1648 		if (cpu_has_feature(CPU_FTR_SPE)) {
1649 			/*
1650 			 * When the sticky exception bits are set
1651 			 * directly by userspace, it must call prctl
1652 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1653 			 * in the existing prctl settings) or
1654 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1655 			 * the bits being set).  <fenv.h> functions
1656 			 * saving and restoring the whole
1657 			 * floating-point environment need to do so
1658 			 * anyway to restore the prctl settings from
1659 			 * the saved environment.
1660 			 */
1661 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1662 			tsk->thread.fpexc_mode = val &
1663 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1664 			return 0;
1665 		} else {
1666 			return -EINVAL;
1667 		}
1668 #else
1669 		return -EINVAL;
1670 #endif
1671 	}
1672 
1673 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1674 	 * __pack_fe01 use do not overlap with bits used for
1675 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1676 	 * on CONFIG_SPE implementations are reserved so writing to
1677 	 * them does not change anything */
1678 	if (val > PR_FP_EXC_PRECISE)
1679 		return -EINVAL;
1680 	tsk->thread.fpexc_mode = __pack_fe01(val);
1681 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1682 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1683 			| tsk->thread.fpexc_mode;
1684 	return 0;
1685 }
1686 
1687 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1688 {
1689 	unsigned int val;
1690 
1691 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1692 #ifdef CONFIG_SPE
1693 		if (cpu_has_feature(CPU_FTR_SPE)) {
1694 			/*
1695 			 * When the sticky exception bits are set
1696 			 * directly by userspace, it must call prctl
1697 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1698 			 * in the existing prctl settings) or
1699 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1700 			 * the bits being set).  <fenv.h> functions
1701 			 * saving and restoring the whole
1702 			 * floating-point environment need to do so
1703 			 * anyway to restore the prctl settings from
1704 			 * the saved environment.
1705 			 */
1706 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1707 			val = tsk->thread.fpexc_mode;
1708 		} else
1709 			return -EINVAL;
1710 #else
1711 		return -EINVAL;
1712 #endif
1713 	else
1714 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1715 	return put_user(val, (unsigned int __user *) adr);
1716 }
1717 
1718 int set_endian(struct task_struct *tsk, unsigned int val)
1719 {
1720 	struct pt_regs *regs = tsk->thread.regs;
1721 
1722 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1723 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1724 		return -EINVAL;
1725 
1726 	if (regs == NULL)
1727 		return -EINVAL;
1728 
1729 	if (val == PR_ENDIAN_BIG)
1730 		regs->msr &= ~MSR_LE;
1731 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1732 		regs->msr |= MSR_LE;
1733 	else
1734 		return -EINVAL;
1735 
1736 	return 0;
1737 }
1738 
1739 int get_endian(struct task_struct *tsk, unsigned long adr)
1740 {
1741 	struct pt_regs *regs = tsk->thread.regs;
1742 	unsigned int val;
1743 
1744 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1745 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1746 		return -EINVAL;
1747 
1748 	if (regs == NULL)
1749 		return -EINVAL;
1750 
1751 	if (regs->msr & MSR_LE) {
1752 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1753 			val = PR_ENDIAN_LITTLE;
1754 		else
1755 			val = PR_ENDIAN_PPC_LITTLE;
1756 	} else
1757 		val = PR_ENDIAN_BIG;
1758 
1759 	return put_user(val, (unsigned int __user *)adr);
1760 }
1761 
1762 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1763 {
1764 	tsk->thread.align_ctl = val;
1765 	return 0;
1766 }
1767 
1768 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1769 {
1770 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1771 }
1772 
1773 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1774 				  unsigned long nbytes)
1775 {
1776 	unsigned long stack_page;
1777 	unsigned long cpu = task_cpu(p);
1778 
1779 	/*
1780 	 * Avoid crashing if the stack has overflowed and corrupted
1781 	 * task_cpu(p), which is in the thread_info struct.
1782 	 */
1783 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1784 		stack_page = (unsigned long) hardirq_ctx[cpu];
1785 		if (sp >= stack_page + sizeof(struct thread_struct)
1786 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1787 			return 1;
1788 
1789 		stack_page = (unsigned long) softirq_ctx[cpu];
1790 		if (sp >= stack_page + sizeof(struct thread_struct)
1791 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1792 			return 1;
1793 	}
1794 	return 0;
1795 }
1796 
1797 int validate_sp(unsigned long sp, struct task_struct *p,
1798 		       unsigned long nbytes)
1799 {
1800 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1801 
1802 	if (sp >= stack_page + sizeof(struct thread_struct)
1803 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1804 		return 1;
1805 
1806 	return valid_irq_stack(sp, p, nbytes);
1807 }
1808 
1809 EXPORT_SYMBOL(validate_sp);
1810 
1811 unsigned long get_wchan(struct task_struct *p)
1812 {
1813 	unsigned long ip, sp;
1814 	int count = 0;
1815 
1816 	if (!p || p == current || p->state == TASK_RUNNING)
1817 		return 0;
1818 
1819 	sp = p->thread.ksp;
1820 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1821 		return 0;
1822 
1823 	do {
1824 		sp = *(unsigned long *)sp;
1825 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1826 			return 0;
1827 		if (count > 0) {
1828 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1829 			if (!in_sched_functions(ip))
1830 				return ip;
1831 		}
1832 	} while (count++ < 16);
1833 	return 0;
1834 }
1835 
1836 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1837 
1838 void show_stack(struct task_struct *tsk, unsigned long *stack)
1839 {
1840 	unsigned long sp, ip, lr, newsp;
1841 	int count = 0;
1842 	int firstframe = 1;
1843 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1844 	int curr_frame = current->curr_ret_stack;
1845 	extern void return_to_handler(void);
1846 	unsigned long rth = (unsigned long)return_to_handler;
1847 #endif
1848 
1849 	sp = (unsigned long) stack;
1850 	if (tsk == NULL)
1851 		tsk = current;
1852 	if (sp == 0) {
1853 		if (tsk == current)
1854 			sp = current_stack_pointer();
1855 		else
1856 			sp = tsk->thread.ksp;
1857 	}
1858 
1859 	lr = 0;
1860 	printk("Call Trace:\n");
1861 	do {
1862 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1863 			return;
1864 
1865 		stack = (unsigned long *) sp;
1866 		newsp = stack[0];
1867 		ip = stack[STACK_FRAME_LR_SAVE];
1868 		if (!firstframe || ip != lr) {
1869 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1870 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1871 			if ((ip == rth) && curr_frame >= 0) {
1872 				printk(" (%pS)",
1873 				       (void *)current->ret_stack[curr_frame].ret);
1874 				curr_frame--;
1875 			}
1876 #endif
1877 			if (firstframe)
1878 				printk(" (unreliable)");
1879 			printk("\n");
1880 		}
1881 		firstframe = 0;
1882 
1883 		/*
1884 		 * See if this is an exception frame.
1885 		 * We look for the "regshere" marker in the current frame.
1886 		 */
1887 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1888 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1889 			struct pt_regs *regs = (struct pt_regs *)
1890 				(sp + STACK_FRAME_OVERHEAD);
1891 			lr = regs->link;
1892 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1893 			       regs->trap, (void *)regs->nip, (void *)lr);
1894 			firstframe = 1;
1895 		}
1896 
1897 		sp = newsp;
1898 	} while (count++ < kstack_depth_to_print);
1899 }
1900 
1901 #ifdef CONFIG_PPC64
1902 /* Called with hard IRQs off */
1903 void notrace __ppc64_runlatch_on(void)
1904 {
1905 	struct thread_info *ti = current_thread_info();
1906 	unsigned long ctrl;
1907 
1908 	ctrl = mfspr(SPRN_CTRLF);
1909 	ctrl |= CTRL_RUNLATCH;
1910 	mtspr(SPRN_CTRLT, ctrl);
1911 
1912 	ti->local_flags |= _TLF_RUNLATCH;
1913 }
1914 
1915 /* Called with hard IRQs off */
1916 void notrace __ppc64_runlatch_off(void)
1917 {
1918 	struct thread_info *ti = current_thread_info();
1919 	unsigned long ctrl;
1920 
1921 	ti->local_flags &= ~_TLF_RUNLATCH;
1922 
1923 	ctrl = mfspr(SPRN_CTRLF);
1924 	ctrl &= ~CTRL_RUNLATCH;
1925 	mtspr(SPRN_CTRLT, ctrl);
1926 }
1927 #endif /* CONFIG_PPC64 */
1928 
1929 unsigned long arch_align_stack(unsigned long sp)
1930 {
1931 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1932 		sp -= get_random_int() & ~PAGE_MASK;
1933 	return sp & ~0xf;
1934 }
1935 
1936 static inline unsigned long brk_rnd(void)
1937 {
1938         unsigned long rnd = 0;
1939 
1940 	/* 8MB for 32bit, 1GB for 64bit */
1941 	if (is_32bit_task())
1942 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1943 	else
1944 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1945 
1946 	return rnd << PAGE_SHIFT;
1947 }
1948 
1949 unsigned long arch_randomize_brk(struct mm_struct *mm)
1950 {
1951 	unsigned long base = mm->brk;
1952 	unsigned long ret;
1953 
1954 #ifdef CONFIG_PPC_STD_MMU_64
1955 	/*
1956 	 * If we are using 1TB segments and we are allowed to randomise
1957 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1958 	 * segment. Otherwise the heap will be in the bottom 1TB
1959 	 * which always uses 256MB segments and this may result in a
1960 	 * performance penalty. We don't need to worry about radix. For
1961 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1962 	 */
1963 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1964 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1965 #endif
1966 
1967 	ret = PAGE_ALIGN(base + brk_rnd());
1968 
1969 	if (ret < mm->brk)
1970 		return mm->brk;
1971 
1972 	return ret;
1973 }
1974 
1975