xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 228662b0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43 
44 #include <asm/interrupt.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67 
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70 
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77 
78 extern unsigned long _get_SP(void);
79 
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87 
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90 	/*
91 	 * If we are saving the current thread's registers, and the
92 	 * thread is in a transactional state, set the TIF_RESTORE_TM
93 	 * bit so that we know to restore the registers before
94 	 * returning to userspace.
95 	 */
96 	if (tsk == current && tsk->thread.regs &&
97 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 	    !test_thread_flag(TIF_RESTORE_TM)) {
99 		regs_set_return_msr(&tsk->thread.ckpt_regs,
100 						tsk->thread.regs->msr);
101 		set_thread_flag(TIF_RESTORE_TM);
102 	}
103 }
104 
105 #else
106 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
107 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108 
109 bool strict_msr_control;
110 EXPORT_SYMBOL(strict_msr_control);
111 
112 static int __init enable_strict_msr_control(char *str)
113 {
114 	strict_msr_control = true;
115 	pr_info("Enabling strict facility control\n");
116 
117 	return 0;
118 }
119 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
120 
121 /* notrace because it's called by restore_math */
122 unsigned long notrace msr_check_and_set(unsigned long bits)
123 {
124 	unsigned long oldmsr = mfmsr();
125 	unsigned long newmsr;
126 
127 	newmsr = oldmsr | bits;
128 
129 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130 		newmsr |= MSR_VSX;
131 
132 	if (oldmsr != newmsr)
133 		mtmsr_isync(newmsr);
134 
135 	return newmsr;
136 }
137 EXPORT_SYMBOL_GPL(msr_check_and_set);
138 
139 /* notrace because it's called by restore_math */
140 void notrace __msr_check_and_clear(unsigned long bits)
141 {
142 	unsigned long oldmsr = mfmsr();
143 	unsigned long newmsr;
144 
145 	newmsr = oldmsr & ~bits;
146 
147 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
148 		newmsr &= ~MSR_VSX;
149 
150 	if (oldmsr != newmsr)
151 		mtmsr_isync(newmsr);
152 }
153 EXPORT_SYMBOL(__msr_check_and_clear);
154 
155 #ifdef CONFIG_PPC_FPU
156 static void __giveup_fpu(struct task_struct *tsk)
157 {
158 	unsigned long msr;
159 
160 	save_fpu(tsk);
161 	msr = tsk->thread.regs->msr;
162 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
163 	if (cpu_has_feature(CPU_FTR_VSX))
164 		msr &= ~MSR_VSX;
165 	regs_set_return_msr(tsk->thread.regs, msr);
166 }
167 
168 void giveup_fpu(struct task_struct *tsk)
169 {
170 	check_if_tm_restore_required(tsk);
171 
172 	msr_check_and_set(MSR_FP);
173 	__giveup_fpu(tsk);
174 	msr_check_and_clear(MSR_FP);
175 }
176 EXPORT_SYMBOL(giveup_fpu);
177 
178 /*
179  * Make sure the floating-point register state in the
180  * the thread_struct is up to date for task tsk.
181  */
182 void flush_fp_to_thread(struct task_struct *tsk)
183 {
184 	if (tsk->thread.regs) {
185 		/*
186 		 * We need to disable preemption here because if we didn't,
187 		 * another process could get scheduled after the regs->msr
188 		 * test but before we have finished saving the FP registers
189 		 * to the thread_struct.  That process could take over the
190 		 * FPU, and then when we get scheduled again we would store
191 		 * bogus values for the remaining FP registers.
192 		 */
193 		preempt_disable();
194 		if (tsk->thread.regs->msr & MSR_FP) {
195 			/*
196 			 * This should only ever be called for current or
197 			 * for a stopped child process.  Since we save away
198 			 * the FP register state on context switch,
199 			 * there is something wrong if a stopped child appears
200 			 * to still have its FP state in the CPU registers.
201 			 */
202 			BUG_ON(tsk != current);
203 			giveup_fpu(tsk);
204 		}
205 		preempt_enable();
206 	}
207 }
208 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
209 
210 void enable_kernel_fp(void)
211 {
212 	unsigned long cpumsr;
213 
214 	WARN_ON(preemptible());
215 
216 	cpumsr = msr_check_and_set(MSR_FP);
217 
218 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
219 		check_if_tm_restore_required(current);
220 		/*
221 		 * If a thread has already been reclaimed then the
222 		 * checkpointed registers are on the CPU but have definitely
223 		 * been saved by the reclaim code. Don't need to and *cannot*
224 		 * giveup as this would save  to the 'live' structure not the
225 		 * checkpointed structure.
226 		 */
227 		if (!MSR_TM_ACTIVE(cpumsr) &&
228 		     MSR_TM_ACTIVE(current->thread.regs->msr))
229 			return;
230 		__giveup_fpu(current);
231 	}
232 }
233 EXPORT_SYMBOL(enable_kernel_fp);
234 #else
235 static inline void __giveup_fpu(struct task_struct *tsk) { }
236 #endif /* CONFIG_PPC_FPU */
237 
238 #ifdef CONFIG_ALTIVEC
239 static void __giveup_altivec(struct task_struct *tsk)
240 {
241 	unsigned long msr;
242 
243 	save_altivec(tsk);
244 	msr = tsk->thread.regs->msr;
245 	msr &= ~MSR_VEC;
246 	if (cpu_has_feature(CPU_FTR_VSX))
247 		msr &= ~MSR_VSX;
248 	regs_set_return_msr(tsk->thread.regs, msr);
249 }
250 
251 void giveup_altivec(struct task_struct *tsk)
252 {
253 	check_if_tm_restore_required(tsk);
254 
255 	msr_check_and_set(MSR_VEC);
256 	__giveup_altivec(tsk);
257 	msr_check_and_clear(MSR_VEC);
258 }
259 EXPORT_SYMBOL(giveup_altivec);
260 
261 void enable_kernel_altivec(void)
262 {
263 	unsigned long cpumsr;
264 
265 	WARN_ON(preemptible());
266 
267 	cpumsr = msr_check_and_set(MSR_VEC);
268 
269 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
270 		check_if_tm_restore_required(current);
271 		/*
272 		 * If a thread has already been reclaimed then the
273 		 * checkpointed registers are on the CPU but have definitely
274 		 * been saved by the reclaim code. Don't need to and *cannot*
275 		 * giveup as this would save  to the 'live' structure not the
276 		 * checkpointed structure.
277 		 */
278 		if (!MSR_TM_ACTIVE(cpumsr) &&
279 		     MSR_TM_ACTIVE(current->thread.regs->msr))
280 			return;
281 		__giveup_altivec(current);
282 	}
283 }
284 EXPORT_SYMBOL(enable_kernel_altivec);
285 
286 /*
287  * Make sure the VMX/Altivec register state in the
288  * the thread_struct is up to date for task tsk.
289  */
290 void flush_altivec_to_thread(struct task_struct *tsk)
291 {
292 	if (tsk->thread.regs) {
293 		preempt_disable();
294 		if (tsk->thread.regs->msr & MSR_VEC) {
295 			BUG_ON(tsk != current);
296 			giveup_altivec(tsk);
297 		}
298 		preempt_enable();
299 	}
300 }
301 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
302 #endif /* CONFIG_ALTIVEC */
303 
304 #ifdef CONFIG_VSX
305 static void __giveup_vsx(struct task_struct *tsk)
306 {
307 	unsigned long msr = tsk->thread.regs->msr;
308 
309 	/*
310 	 * We should never be ssetting MSR_VSX without also setting
311 	 * MSR_FP and MSR_VEC
312 	 */
313 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
314 
315 	/* __giveup_fpu will clear MSR_VSX */
316 	if (msr & MSR_FP)
317 		__giveup_fpu(tsk);
318 	if (msr & MSR_VEC)
319 		__giveup_altivec(tsk);
320 }
321 
322 static void giveup_vsx(struct task_struct *tsk)
323 {
324 	check_if_tm_restore_required(tsk);
325 
326 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
327 	__giveup_vsx(tsk);
328 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
329 }
330 
331 void enable_kernel_vsx(void)
332 {
333 	unsigned long cpumsr;
334 
335 	WARN_ON(preemptible());
336 
337 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
338 
339 	if (current->thread.regs &&
340 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
341 		check_if_tm_restore_required(current);
342 		/*
343 		 * If a thread has already been reclaimed then the
344 		 * checkpointed registers are on the CPU but have definitely
345 		 * been saved by the reclaim code. Don't need to and *cannot*
346 		 * giveup as this would save  to the 'live' structure not the
347 		 * checkpointed structure.
348 		 */
349 		if (!MSR_TM_ACTIVE(cpumsr) &&
350 		     MSR_TM_ACTIVE(current->thread.regs->msr))
351 			return;
352 		__giveup_vsx(current);
353 	}
354 }
355 EXPORT_SYMBOL(enable_kernel_vsx);
356 
357 void flush_vsx_to_thread(struct task_struct *tsk)
358 {
359 	if (tsk->thread.regs) {
360 		preempt_disable();
361 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
362 			BUG_ON(tsk != current);
363 			giveup_vsx(tsk);
364 		}
365 		preempt_enable();
366 	}
367 }
368 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
369 #endif /* CONFIG_VSX */
370 
371 #ifdef CONFIG_SPE
372 void giveup_spe(struct task_struct *tsk)
373 {
374 	check_if_tm_restore_required(tsk);
375 
376 	msr_check_and_set(MSR_SPE);
377 	__giveup_spe(tsk);
378 	msr_check_and_clear(MSR_SPE);
379 }
380 EXPORT_SYMBOL(giveup_spe);
381 
382 void enable_kernel_spe(void)
383 {
384 	WARN_ON(preemptible());
385 
386 	msr_check_and_set(MSR_SPE);
387 
388 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
389 		check_if_tm_restore_required(current);
390 		__giveup_spe(current);
391 	}
392 }
393 EXPORT_SYMBOL(enable_kernel_spe);
394 
395 void flush_spe_to_thread(struct task_struct *tsk)
396 {
397 	if (tsk->thread.regs) {
398 		preempt_disable();
399 		if (tsk->thread.regs->msr & MSR_SPE) {
400 			BUG_ON(tsk != current);
401 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
402 			giveup_spe(tsk);
403 		}
404 		preempt_enable();
405 	}
406 }
407 #endif /* CONFIG_SPE */
408 
409 static unsigned long msr_all_available;
410 
411 static int __init init_msr_all_available(void)
412 {
413 	if (IS_ENABLED(CONFIG_PPC_FPU))
414 		msr_all_available |= MSR_FP;
415 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
416 		msr_all_available |= MSR_VEC;
417 	if (cpu_has_feature(CPU_FTR_VSX))
418 		msr_all_available |= MSR_VSX;
419 	if (cpu_has_feature(CPU_FTR_SPE))
420 		msr_all_available |= MSR_SPE;
421 
422 	return 0;
423 }
424 early_initcall(init_msr_all_available);
425 
426 void giveup_all(struct task_struct *tsk)
427 {
428 	unsigned long usermsr;
429 
430 	if (!tsk->thread.regs)
431 		return;
432 
433 	check_if_tm_restore_required(tsk);
434 
435 	usermsr = tsk->thread.regs->msr;
436 
437 	if ((usermsr & msr_all_available) == 0)
438 		return;
439 
440 	msr_check_and_set(msr_all_available);
441 
442 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
443 
444 	if (usermsr & MSR_FP)
445 		__giveup_fpu(tsk);
446 	if (usermsr & MSR_VEC)
447 		__giveup_altivec(tsk);
448 	if (usermsr & MSR_SPE)
449 		__giveup_spe(tsk);
450 
451 	msr_check_and_clear(msr_all_available);
452 }
453 EXPORT_SYMBOL(giveup_all);
454 
455 #ifdef CONFIG_PPC_BOOK3S_64
456 #ifdef CONFIG_PPC_FPU
457 static bool should_restore_fp(void)
458 {
459 	if (current->thread.load_fp) {
460 		current->thread.load_fp++;
461 		return true;
462 	}
463 	return false;
464 }
465 
466 static void do_restore_fp(void)
467 {
468 	load_fp_state(&current->thread.fp_state);
469 }
470 #else
471 static bool should_restore_fp(void) { return false; }
472 static void do_restore_fp(void) { }
473 #endif /* CONFIG_PPC_FPU */
474 
475 #ifdef CONFIG_ALTIVEC
476 static bool should_restore_altivec(void)
477 {
478 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
479 		current->thread.load_vec++;
480 		return true;
481 	}
482 	return false;
483 }
484 
485 static void do_restore_altivec(void)
486 {
487 	load_vr_state(&current->thread.vr_state);
488 	current->thread.used_vr = 1;
489 }
490 #else
491 static bool should_restore_altivec(void) { return false; }
492 static void do_restore_altivec(void) { }
493 #endif /* CONFIG_ALTIVEC */
494 
495 static bool should_restore_vsx(void)
496 {
497 	if (cpu_has_feature(CPU_FTR_VSX))
498 		return true;
499 	return false;
500 }
501 #ifdef CONFIG_VSX
502 static void do_restore_vsx(void)
503 {
504 	current->thread.used_vsr = 1;
505 }
506 #else
507 static void do_restore_vsx(void) { }
508 #endif /* CONFIG_VSX */
509 
510 /*
511  * The exception exit path calls restore_math() with interrupts hard disabled
512  * but the soft irq state not "reconciled". ftrace code that calls
513  * local_irq_save/restore causes warnings.
514  *
515  * Rather than complicate the exit path, just don't trace restore_math. This
516  * could be done by having ftrace entry code check for this un-reconciled
517  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
518  * temporarily fix it up for the duration of the ftrace call.
519  */
520 void notrace restore_math(struct pt_regs *regs)
521 {
522 	unsigned long msr;
523 	unsigned long new_msr = 0;
524 
525 	msr = regs->msr;
526 
527 	/*
528 	 * new_msr tracks the facilities that are to be restored. Only reload
529 	 * if the bit is not set in the user MSR (if it is set, the registers
530 	 * are live for the user thread).
531 	 */
532 	if ((!(msr & MSR_FP)) && should_restore_fp())
533 		new_msr |= MSR_FP;
534 
535 	if ((!(msr & MSR_VEC)) && should_restore_altivec())
536 		new_msr |= MSR_VEC;
537 
538 	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
539 		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
540 			new_msr |= MSR_VSX;
541 	}
542 
543 	if (new_msr) {
544 		unsigned long fpexc_mode = 0;
545 
546 		msr_check_and_set(new_msr);
547 
548 		if (new_msr & MSR_FP) {
549 			do_restore_fp();
550 
551 			// This also covers VSX, because VSX implies FP
552 			fpexc_mode = current->thread.fpexc_mode;
553 		}
554 
555 		if (new_msr & MSR_VEC)
556 			do_restore_altivec();
557 
558 		if (new_msr & MSR_VSX)
559 			do_restore_vsx();
560 
561 		msr_check_and_clear(new_msr);
562 
563 		regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
564 	}
565 }
566 #endif /* CONFIG_PPC_BOOK3S_64 */
567 
568 static void save_all(struct task_struct *tsk)
569 {
570 	unsigned long usermsr;
571 
572 	if (!tsk->thread.regs)
573 		return;
574 
575 	usermsr = tsk->thread.regs->msr;
576 
577 	if ((usermsr & msr_all_available) == 0)
578 		return;
579 
580 	msr_check_and_set(msr_all_available);
581 
582 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583 
584 	if (usermsr & MSR_FP)
585 		save_fpu(tsk);
586 
587 	if (usermsr & MSR_VEC)
588 		save_altivec(tsk);
589 
590 	if (usermsr & MSR_SPE)
591 		__giveup_spe(tsk);
592 
593 	msr_check_and_clear(msr_all_available);
594 }
595 
596 void flush_all_to_thread(struct task_struct *tsk)
597 {
598 	if (tsk->thread.regs) {
599 		preempt_disable();
600 		BUG_ON(tsk != current);
601 #ifdef CONFIG_SPE
602 		if (tsk->thread.regs->msr & MSR_SPE)
603 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
604 #endif
605 		save_all(tsk);
606 
607 		preempt_enable();
608 	}
609 }
610 EXPORT_SYMBOL(flush_all_to_thread);
611 
612 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
613 void do_send_trap(struct pt_regs *regs, unsigned long address,
614 		  unsigned long error_code, int breakpt)
615 {
616 	current->thread.trap_nr = TRAP_HWBKPT;
617 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618 			11, SIGSEGV) == NOTIFY_STOP)
619 		return;
620 
621 	/* Deliver the signal to userspace */
622 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
623 				    (void __user *)address);
624 }
625 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
626 
627 static void do_break_handler(struct pt_regs *regs)
628 {
629 	struct arch_hw_breakpoint null_brk = {0};
630 	struct arch_hw_breakpoint *info;
631 	ppc_inst_t instr = ppc_inst(0);
632 	int type = 0;
633 	int size = 0;
634 	unsigned long ea;
635 	int i;
636 
637 	/*
638 	 * If underneath hw supports only one watchpoint, we know it
639 	 * caused exception. 8xx also falls into this category.
640 	 */
641 	if (nr_wp_slots() == 1) {
642 		__set_breakpoint(0, &null_brk);
643 		current->thread.hw_brk[0] = null_brk;
644 		current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
645 		return;
646 	}
647 
648 	/* Otherwise findout which DAWR caused exception and disable it. */
649 	wp_get_instr_detail(regs, &instr, &type, &size, &ea);
650 
651 	for (i = 0; i < nr_wp_slots(); i++) {
652 		info = &current->thread.hw_brk[i];
653 		if (!info->address)
654 			continue;
655 
656 		if (wp_check_constraints(regs, instr, ea, type, size, info)) {
657 			__set_breakpoint(i, &null_brk);
658 			current->thread.hw_brk[i] = null_brk;
659 			current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
660 		}
661 	}
662 }
663 
664 DEFINE_INTERRUPT_HANDLER(do_break)
665 {
666 	current->thread.trap_nr = TRAP_HWBKPT;
667 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
668 			11, SIGSEGV) == NOTIFY_STOP)
669 		return;
670 
671 	if (debugger_break_match(regs))
672 		return;
673 
674 	/*
675 	 * We reach here only when watchpoint exception is generated by ptrace
676 	 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
677 	 * watchpoint is already handled by hw_breakpoint_handler() so we don't
678 	 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
679 	 * we need to manually handle the watchpoint here.
680 	 */
681 	if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
682 		do_break_handler(regs);
683 
684 	/* Deliver the signal to userspace */
685 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
686 }
687 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
688 
689 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
690 
691 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
692 /*
693  * Set the debug registers back to their default "safe" values.
694  */
695 static void set_debug_reg_defaults(struct thread_struct *thread)
696 {
697 	thread->debug.iac1 = thread->debug.iac2 = 0;
698 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
699 	thread->debug.iac3 = thread->debug.iac4 = 0;
700 #endif
701 	thread->debug.dac1 = thread->debug.dac2 = 0;
702 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
703 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
704 #endif
705 	thread->debug.dbcr0 = 0;
706 #ifdef CONFIG_BOOKE
707 	/*
708 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709 	 */
710 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
711 			DBCR1_IAC3US | DBCR1_IAC4US;
712 	/*
713 	 * Force Data Address Compare User/Supervisor bits to be User-only
714 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715 	 */
716 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
717 #else
718 	thread->debug.dbcr1 = 0;
719 #endif
720 }
721 
722 static void prime_debug_regs(struct debug_reg *debug)
723 {
724 	/*
725 	 * We could have inherited MSR_DE from userspace, since
726 	 * it doesn't get cleared on exception entry.  Make sure
727 	 * MSR_DE is clear before we enable any debug events.
728 	 */
729 	mtmsr(mfmsr() & ~MSR_DE);
730 
731 	mtspr(SPRN_IAC1, debug->iac1);
732 	mtspr(SPRN_IAC2, debug->iac2);
733 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
734 	mtspr(SPRN_IAC3, debug->iac3);
735 	mtspr(SPRN_IAC4, debug->iac4);
736 #endif
737 	mtspr(SPRN_DAC1, debug->dac1);
738 	mtspr(SPRN_DAC2, debug->dac2);
739 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
740 	mtspr(SPRN_DVC1, debug->dvc1);
741 	mtspr(SPRN_DVC2, debug->dvc2);
742 #endif
743 	mtspr(SPRN_DBCR0, debug->dbcr0);
744 	mtspr(SPRN_DBCR1, debug->dbcr1);
745 #ifdef CONFIG_BOOKE
746 	mtspr(SPRN_DBCR2, debug->dbcr2);
747 #endif
748 }
749 /*
750  * Unless neither the old or new thread are making use of the
751  * debug registers, set the debug registers from the values
752  * stored in the new thread.
753  */
754 void switch_booke_debug_regs(struct debug_reg *new_debug)
755 {
756 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
757 		|| (new_debug->dbcr0 & DBCR0_IDM))
758 			prime_debug_regs(new_debug);
759 }
760 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
761 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
762 #ifndef CONFIG_HAVE_HW_BREAKPOINT
763 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
764 {
765 	preempt_disable();
766 	__set_breakpoint(i, brk);
767 	preempt_enable();
768 }
769 
770 static void set_debug_reg_defaults(struct thread_struct *thread)
771 {
772 	int i;
773 	struct arch_hw_breakpoint null_brk = {0};
774 
775 	for (i = 0; i < nr_wp_slots(); i++) {
776 		thread->hw_brk[i] = null_brk;
777 		if (ppc_breakpoint_available())
778 			set_breakpoint(i, &thread->hw_brk[i]);
779 	}
780 }
781 
782 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
783 				struct arch_hw_breakpoint *b)
784 {
785 	if (a->address != b->address)
786 		return false;
787 	if (a->type != b->type)
788 		return false;
789 	if (a->len != b->len)
790 		return false;
791 	/* no need to check hw_len. it's calculated from address and len */
792 	return true;
793 }
794 
795 static void switch_hw_breakpoint(struct task_struct *new)
796 {
797 	int i;
798 
799 	for (i = 0; i < nr_wp_slots(); i++) {
800 		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
801 					&new->thread.hw_brk[i])))
802 			continue;
803 
804 		__set_breakpoint(i, &new->thread.hw_brk[i]);
805 	}
806 }
807 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
808 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
809 
810 static inline int set_dabr(struct arch_hw_breakpoint *brk)
811 {
812 	unsigned long dabr, dabrx;
813 
814 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
815 	dabrx = ((brk->type >> 3) & 0x7);
816 
817 	if (ppc_md.set_dabr)
818 		return ppc_md.set_dabr(dabr, dabrx);
819 
820 	if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
821 		mtspr(SPRN_DAC1, dabr);
822 		if (IS_ENABLED(CONFIG_PPC_47x))
823 			isync();
824 		return 0;
825 	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
826 		mtspr(SPRN_DABR, dabr);
827 		if (cpu_has_feature(CPU_FTR_DABRX))
828 			mtspr(SPRN_DABRX, dabrx);
829 		return 0;
830 	} else {
831 		return -EINVAL;
832 	}
833 }
834 
835 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
836 {
837 	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
838 			       LCTRL1_CRWF_RW;
839 	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
840 	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
841 	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
842 
843 	if (start_addr == 0)
844 		lctrl2 |= LCTRL2_LW0LA_F;
845 	else if (end_addr == 0)
846 		lctrl2 |= LCTRL2_LW0LA_E;
847 	else
848 		lctrl2 |= LCTRL2_LW0LA_EandF;
849 
850 	mtspr(SPRN_LCTRL2, 0);
851 
852 	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
853 		return 0;
854 
855 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
856 		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
857 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
858 		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
859 
860 	mtspr(SPRN_CMPE, start_addr - 1);
861 	mtspr(SPRN_CMPF, end_addr);
862 	mtspr(SPRN_LCTRL1, lctrl1);
863 	mtspr(SPRN_LCTRL2, lctrl2);
864 
865 	return 0;
866 }
867 
868 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
869 {
870 	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
871 
872 	if (dawr_enabled())
873 		// Power8 or later
874 		set_dawr(nr, brk);
875 	else if (IS_ENABLED(CONFIG_PPC_8xx))
876 		set_breakpoint_8xx(brk);
877 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
878 		// Power7 or earlier
879 		set_dabr(brk);
880 	else
881 		// Shouldn't happen due to higher level checks
882 		WARN_ON_ONCE(1);
883 }
884 
885 /* Check if we have DAWR or DABR hardware */
886 bool ppc_breakpoint_available(void)
887 {
888 	if (dawr_enabled())
889 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
890 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
891 		return false; /* POWER9 with DAWR disabled */
892 	/* DABR: Everything but POWER8 and POWER9 */
893 	return true;
894 }
895 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
896 
897 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
898 
899 static inline bool tm_enabled(struct task_struct *tsk)
900 {
901 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
902 }
903 
904 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
905 {
906 	/*
907 	 * Use the current MSR TM suspended bit to track if we have
908 	 * checkpointed state outstanding.
909 	 * On signal delivery, we'd normally reclaim the checkpointed
910 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
911 	 * This will then directly return to userspace without going
912 	 * through __switch_to(). However, if the stack frame is bad,
913 	 * we need to exit this thread which calls __switch_to() which
914 	 * will again attempt to reclaim the already saved tm state.
915 	 * Hence we need to check that we've not already reclaimed
916 	 * this state.
917 	 * We do this using the current MSR, rather tracking it in
918 	 * some specific thread_struct bit, as it has the additional
919 	 * benefit of checking for a potential TM bad thing exception.
920 	 */
921 	if (!MSR_TM_SUSPENDED(mfmsr()))
922 		return;
923 
924 	giveup_all(container_of(thr, struct task_struct, thread));
925 
926 	tm_reclaim(thr, cause);
927 
928 	/*
929 	 * If we are in a transaction and FP is off then we can't have
930 	 * used FP inside that transaction. Hence the checkpointed
931 	 * state is the same as the live state. We need to copy the
932 	 * live state to the checkpointed state so that when the
933 	 * transaction is restored, the checkpointed state is correct
934 	 * and the aborted transaction sees the correct state. We use
935 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
936 	 * determine if it's going to write the checkpointed state or
937 	 * not. So either this will write the checkpointed registers,
938 	 * or reclaim will. Similarly for VMX.
939 	 */
940 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
941 		memcpy(&thr->ckfp_state, &thr->fp_state,
942 		       sizeof(struct thread_fp_state));
943 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
944 		memcpy(&thr->ckvr_state, &thr->vr_state,
945 		       sizeof(struct thread_vr_state));
946 }
947 
948 void tm_reclaim_current(uint8_t cause)
949 {
950 	tm_enable();
951 	tm_reclaim_thread(&current->thread, cause);
952 }
953 
954 static inline void tm_reclaim_task(struct task_struct *tsk)
955 {
956 	/* We have to work out if we're switching from/to a task that's in the
957 	 * middle of a transaction.
958 	 *
959 	 * In switching we need to maintain a 2nd register state as
960 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
961 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
962 	 * ckvr_state
963 	 *
964 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
965 	 */
966 	struct thread_struct *thr = &tsk->thread;
967 
968 	if (!thr->regs)
969 		return;
970 
971 	if (!MSR_TM_ACTIVE(thr->regs->msr))
972 		goto out_and_saveregs;
973 
974 	WARN_ON(tm_suspend_disabled);
975 
976 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
977 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
978 		 tsk->pid, thr->regs->nip,
979 		 thr->regs->ccr, thr->regs->msr,
980 		 thr->regs->trap);
981 
982 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
983 
984 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
985 		 tsk->pid);
986 
987 out_and_saveregs:
988 	/* Always save the regs here, even if a transaction's not active.
989 	 * This context-switches a thread's TM info SPRs.  We do it here to
990 	 * be consistent with the restore path (in recheckpoint) which
991 	 * cannot happen later in _switch().
992 	 */
993 	tm_save_sprs(thr);
994 }
995 
996 extern void __tm_recheckpoint(struct thread_struct *thread);
997 
998 void tm_recheckpoint(struct thread_struct *thread)
999 {
1000 	unsigned long flags;
1001 
1002 	if (!(thread->regs->msr & MSR_TM))
1003 		return;
1004 
1005 	/* We really can't be interrupted here as the TEXASR registers can't
1006 	 * change and later in the trecheckpoint code, we have a userspace R1.
1007 	 * So let's hard disable over this region.
1008 	 */
1009 	local_irq_save(flags);
1010 	hard_irq_disable();
1011 
1012 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
1013 	 * before the trecheckpoint and no explosion occurs.
1014 	 */
1015 	tm_restore_sprs(thread);
1016 
1017 	__tm_recheckpoint(thread);
1018 
1019 	local_irq_restore(flags);
1020 }
1021 
1022 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1023 {
1024 	if (!cpu_has_feature(CPU_FTR_TM))
1025 		return;
1026 
1027 	/* Recheckpoint the registers of the thread we're about to switch to.
1028 	 *
1029 	 * If the task was using FP, we non-lazily reload both the original and
1030 	 * the speculative FP register states.  This is because the kernel
1031 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1032 	 * unavailable later, we are unable to determine which set of FP regs
1033 	 * need to be restored.
1034 	 */
1035 	if (!tm_enabled(new))
1036 		return;
1037 
1038 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1039 		tm_restore_sprs(&new->thread);
1040 		return;
1041 	}
1042 	/* Recheckpoint to restore original checkpointed register state. */
1043 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1044 		 new->pid, new->thread.regs->msr);
1045 
1046 	tm_recheckpoint(&new->thread);
1047 
1048 	/*
1049 	 * The checkpointed state has been restored but the live state has
1050 	 * not, ensure all the math functionality is turned off to trigger
1051 	 * restore_math() to reload.
1052 	 */
1053 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1054 
1055 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1056 		 "(kernel msr 0x%lx)\n",
1057 		 new->pid, mfmsr());
1058 }
1059 
1060 static inline void __switch_to_tm(struct task_struct *prev,
1061 		struct task_struct *new)
1062 {
1063 	if (cpu_has_feature(CPU_FTR_TM)) {
1064 		if (tm_enabled(prev) || tm_enabled(new))
1065 			tm_enable();
1066 
1067 		if (tm_enabled(prev)) {
1068 			prev->thread.load_tm++;
1069 			tm_reclaim_task(prev);
1070 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1071 				prev->thread.regs->msr &= ~MSR_TM;
1072 		}
1073 
1074 		tm_recheckpoint_new_task(new);
1075 	}
1076 }
1077 
1078 /*
1079  * This is called if we are on the way out to userspace and the
1080  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1081  * FP and/or vector state and does so if necessary.
1082  * If userspace is inside a transaction (whether active or
1083  * suspended) and FP/VMX/VSX instructions have ever been enabled
1084  * inside that transaction, then we have to keep them enabled
1085  * and keep the FP/VMX/VSX state loaded while ever the transaction
1086  * continues.  The reason is that if we didn't, and subsequently
1087  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1088  * we don't know whether it's the same transaction, and thus we
1089  * don't know which of the checkpointed state and the transactional
1090  * state to use.
1091  */
1092 void restore_tm_state(struct pt_regs *regs)
1093 {
1094 	unsigned long msr_diff;
1095 
1096 	/*
1097 	 * This is the only moment we should clear TIF_RESTORE_TM as
1098 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1099 	 * again, anything else could lead to an incorrect ckpt_msr being
1100 	 * saved and therefore incorrect signal contexts.
1101 	 */
1102 	clear_thread_flag(TIF_RESTORE_TM);
1103 	if (!MSR_TM_ACTIVE(regs->msr))
1104 		return;
1105 
1106 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1107 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1108 
1109 	/* Ensure that restore_math() will restore */
1110 	if (msr_diff & MSR_FP)
1111 		current->thread.load_fp = 1;
1112 #ifdef CONFIG_ALTIVEC
1113 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1114 		current->thread.load_vec = 1;
1115 #endif
1116 	restore_math(regs);
1117 
1118 	regs_set_return_msr(regs, regs->msr | msr_diff);
1119 }
1120 
1121 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1122 #define tm_recheckpoint_new_task(new)
1123 #define __switch_to_tm(prev, new)
1124 void tm_reclaim_current(uint8_t cause) {}
1125 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1126 
1127 static inline void save_sprs(struct thread_struct *t)
1128 {
1129 #ifdef CONFIG_ALTIVEC
1130 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1131 		t->vrsave = mfspr(SPRN_VRSAVE);
1132 #endif
1133 #ifdef CONFIG_SPE
1134 	if (cpu_has_feature(CPU_FTR_SPE))
1135 		t->spefscr = mfspr(SPRN_SPEFSCR);
1136 #endif
1137 #ifdef CONFIG_PPC_BOOK3S_64
1138 	if (cpu_has_feature(CPU_FTR_DSCR))
1139 		t->dscr = mfspr(SPRN_DSCR);
1140 
1141 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1142 		t->bescr = mfspr(SPRN_BESCR);
1143 		t->ebbhr = mfspr(SPRN_EBBHR);
1144 		t->ebbrr = mfspr(SPRN_EBBRR);
1145 
1146 		t->fscr = mfspr(SPRN_FSCR);
1147 
1148 		/*
1149 		 * Note that the TAR is not available for use in the kernel.
1150 		 * (To provide this, the TAR should be backed up/restored on
1151 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1152 		 * this should be in pt_regs anyway (for debug).)
1153 		 */
1154 		t->tar = mfspr(SPRN_TAR);
1155 	}
1156 #endif
1157 }
1158 
1159 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1160 void kvmppc_save_user_regs(void)
1161 {
1162 	unsigned long usermsr;
1163 
1164 	if (!current->thread.regs)
1165 		return;
1166 
1167 	usermsr = current->thread.regs->msr;
1168 
1169 	if (usermsr & MSR_FP)
1170 		save_fpu(current);
1171 
1172 	if (usermsr & MSR_VEC)
1173 		save_altivec(current);
1174 
1175 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1176 	if (usermsr & MSR_TM) {
1177 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1178 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1179 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1180 		current->thread.regs->msr &= ~MSR_TM;
1181 	}
1182 #endif
1183 }
1184 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1185 
1186 void kvmppc_save_current_sprs(void)
1187 {
1188 	save_sprs(&current->thread);
1189 }
1190 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1191 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1192 
1193 static inline void restore_sprs(struct thread_struct *old_thread,
1194 				struct thread_struct *new_thread)
1195 {
1196 #ifdef CONFIG_ALTIVEC
1197 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1198 	    old_thread->vrsave != new_thread->vrsave)
1199 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1200 #endif
1201 #ifdef CONFIG_SPE
1202 	if (cpu_has_feature(CPU_FTR_SPE) &&
1203 	    old_thread->spefscr != new_thread->spefscr)
1204 		mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1205 #endif
1206 #ifdef CONFIG_PPC_BOOK3S_64
1207 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1208 		u64 dscr = get_paca()->dscr_default;
1209 		if (new_thread->dscr_inherit)
1210 			dscr = new_thread->dscr;
1211 
1212 		if (old_thread->dscr != dscr)
1213 			mtspr(SPRN_DSCR, dscr);
1214 	}
1215 
1216 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1217 		if (old_thread->bescr != new_thread->bescr)
1218 			mtspr(SPRN_BESCR, new_thread->bescr);
1219 		if (old_thread->ebbhr != new_thread->ebbhr)
1220 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1221 		if (old_thread->ebbrr != new_thread->ebbrr)
1222 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1223 
1224 		if (old_thread->fscr != new_thread->fscr)
1225 			mtspr(SPRN_FSCR, new_thread->fscr);
1226 
1227 		if (old_thread->tar != new_thread->tar)
1228 			mtspr(SPRN_TAR, new_thread->tar);
1229 	}
1230 
1231 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1232 	    old_thread->tidr != new_thread->tidr)
1233 		mtspr(SPRN_TIDR, new_thread->tidr);
1234 #endif
1235 
1236 }
1237 
1238 struct task_struct *__switch_to(struct task_struct *prev,
1239 	struct task_struct *new)
1240 {
1241 	struct thread_struct *new_thread, *old_thread;
1242 	struct task_struct *last;
1243 #ifdef CONFIG_PPC_64S_HASH_MMU
1244 	struct ppc64_tlb_batch *batch;
1245 #endif
1246 
1247 	new_thread = &new->thread;
1248 	old_thread = &current->thread;
1249 
1250 	WARN_ON(!irqs_disabled());
1251 
1252 #ifdef CONFIG_PPC_64S_HASH_MMU
1253 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1254 	if (batch->active) {
1255 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1256 		if (batch->index)
1257 			__flush_tlb_pending(batch);
1258 		batch->active = 0;
1259 	}
1260 
1261 	/*
1262 	 * On POWER9 the copy-paste buffer can only paste into
1263 	 * foreign real addresses, so unprivileged processes can not
1264 	 * see the data or use it in any way unless they have
1265 	 * foreign real mappings. If the new process has the foreign
1266 	 * real address mappings, we must issue a cp_abort to clear
1267 	 * any state and prevent snooping, corruption or a covert
1268 	 * channel. ISA v3.1 supports paste into local memory.
1269 	 */
1270 	if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1271 			atomic_read(&new->mm->context.vas_windows)))
1272 		asm volatile(PPC_CP_ABORT);
1273 #endif /* CONFIG_PPC_BOOK3S_64 */
1274 
1275 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1276 	switch_booke_debug_regs(&new->thread.debug);
1277 #else
1278 /*
1279  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1280  * schedule DABR
1281  */
1282 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1283 	switch_hw_breakpoint(new);
1284 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1285 #endif
1286 
1287 	/*
1288 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1289 	 * change a number of them.
1290 	 */
1291 	save_sprs(&prev->thread);
1292 
1293 	/* Save FPU, Altivec, VSX and SPE state */
1294 	giveup_all(prev);
1295 
1296 	__switch_to_tm(prev, new);
1297 
1298 	if (!radix_enabled()) {
1299 		/*
1300 		 * We can't take a PMU exception inside _switch() since there
1301 		 * is a window where the kernel stack SLB and the kernel stack
1302 		 * are out of sync. Hard disable here.
1303 		 */
1304 		hard_irq_disable();
1305 	}
1306 
1307 	/*
1308 	 * Call restore_sprs() and set_return_regs_changed() before calling
1309 	 * _switch(). If we move it after _switch() then we miss out on calling
1310 	 * it for new tasks. The reason for this is we manually create a stack
1311 	 * frame for new tasks that directly returns through ret_from_fork() or
1312 	 * ret_from_kernel_thread(). See copy_thread() for details.
1313 	 */
1314 	restore_sprs(old_thread, new_thread);
1315 
1316 	set_return_regs_changed(); /* _switch changes stack (and regs) */
1317 
1318 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1319 		kuap_assert_locked();
1320 
1321 	last = _switch(old_thread, new_thread);
1322 
1323 	/*
1324 	 * Nothing after _switch will be run for newly created tasks,
1325 	 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1326 	 * etc. Code added here should have a comment explaining why that is
1327 	 * okay.
1328 	 */
1329 
1330 #ifdef CONFIG_PPC_BOOK3S_64
1331 #ifdef CONFIG_PPC_64S_HASH_MMU
1332 	/*
1333 	 * This applies to a process that was context switched while inside
1334 	 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1335 	 * deactivated above, before _switch(). This will never be the case
1336 	 * for new tasks.
1337 	 */
1338 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1339 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1340 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1341 		batch->active = 1;
1342 	}
1343 #endif
1344 
1345 	/*
1346 	 * Math facilities are masked out of the child MSR in copy_thread.
1347 	 * A new task does not need to restore_math because it will
1348 	 * demand fault them.
1349 	 */
1350 	if (current->thread.regs)
1351 		restore_math(current->thread.regs);
1352 #endif /* CONFIG_PPC_BOOK3S_64 */
1353 
1354 	return last;
1355 }
1356 
1357 #define NR_INSN_TO_PRINT	16
1358 
1359 static void show_instructions(struct pt_regs *regs)
1360 {
1361 	int i;
1362 	unsigned long nip = regs->nip;
1363 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1364 
1365 	printk("Instruction dump:");
1366 
1367 	/*
1368 	 * If we were executing with the MMU off for instructions, adjust pc
1369 	 * rather than printing XXXXXXXX.
1370 	 */
1371 	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1372 		pc = (unsigned long)phys_to_virt(pc);
1373 		nip = (unsigned long)phys_to_virt(regs->nip);
1374 	}
1375 
1376 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1377 		int instr;
1378 
1379 		if (!(i % 8))
1380 			pr_cont("\n");
1381 
1382 		if (!__kernel_text_address(pc) ||
1383 		    get_kernel_nofault(instr, (const void *)pc)) {
1384 			pr_cont("XXXXXXXX ");
1385 		} else {
1386 			if (nip == pc)
1387 				pr_cont("<%08x> ", instr);
1388 			else
1389 				pr_cont("%08x ", instr);
1390 		}
1391 
1392 		pc += sizeof(int);
1393 	}
1394 
1395 	pr_cont("\n");
1396 }
1397 
1398 void show_user_instructions(struct pt_regs *regs)
1399 {
1400 	unsigned long pc;
1401 	int n = NR_INSN_TO_PRINT;
1402 	struct seq_buf s;
1403 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1404 
1405 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1406 
1407 	seq_buf_init(&s, buf, sizeof(buf));
1408 
1409 	while (n) {
1410 		int i;
1411 
1412 		seq_buf_clear(&s);
1413 
1414 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1415 			int instr;
1416 
1417 			if (copy_from_user_nofault(&instr, (void __user *)pc,
1418 					sizeof(instr))) {
1419 				seq_buf_printf(&s, "XXXXXXXX ");
1420 				continue;
1421 			}
1422 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1423 		}
1424 
1425 		if (!seq_buf_has_overflowed(&s))
1426 			pr_info("%s[%d]: code: %s\n", current->comm,
1427 				current->pid, s.buffer);
1428 	}
1429 }
1430 
1431 struct regbit {
1432 	unsigned long bit;
1433 	const char *name;
1434 };
1435 
1436 static struct regbit msr_bits[] = {
1437 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1438 	{MSR_SF,	"SF"},
1439 	{MSR_HV,	"HV"},
1440 #endif
1441 	{MSR_VEC,	"VEC"},
1442 	{MSR_VSX,	"VSX"},
1443 #ifdef CONFIG_BOOKE
1444 	{MSR_CE,	"CE"},
1445 #endif
1446 	{MSR_EE,	"EE"},
1447 	{MSR_PR,	"PR"},
1448 	{MSR_FP,	"FP"},
1449 	{MSR_ME,	"ME"},
1450 #ifdef CONFIG_BOOKE
1451 	{MSR_DE,	"DE"},
1452 #else
1453 	{MSR_SE,	"SE"},
1454 	{MSR_BE,	"BE"},
1455 #endif
1456 	{MSR_IR,	"IR"},
1457 	{MSR_DR,	"DR"},
1458 	{MSR_PMM,	"PMM"},
1459 #ifndef CONFIG_BOOKE
1460 	{MSR_RI,	"RI"},
1461 	{MSR_LE,	"LE"},
1462 #endif
1463 	{0,		NULL}
1464 };
1465 
1466 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1467 {
1468 	const char *s = "";
1469 
1470 	for (; bits->bit; ++bits)
1471 		if (val & bits->bit) {
1472 			pr_cont("%s%s", s, bits->name);
1473 			s = sep;
1474 		}
1475 }
1476 
1477 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1478 static struct regbit msr_tm_bits[] = {
1479 	{MSR_TS_T,	"T"},
1480 	{MSR_TS_S,	"S"},
1481 	{MSR_TM,	"E"},
1482 	{0,		NULL}
1483 };
1484 
1485 static void print_tm_bits(unsigned long val)
1486 {
1487 /*
1488  * This only prints something if at least one of the TM bit is set.
1489  * Inside the TM[], the output means:
1490  *   E: Enabled		(bit 32)
1491  *   S: Suspended	(bit 33)
1492  *   T: Transactional	(bit 34)
1493  */
1494 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1495 		pr_cont(",TM[");
1496 		print_bits(val, msr_tm_bits, "");
1497 		pr_cont("]");
1498 	}
1499 }
1500 #else
1501 static void print_tm_bits(unsigned long val) {}
1502 #endif
1503 
1504 static void print_msr_bits(unsigned long val)
1505 {
1506 	pr_cont("<");
1507 	print_bits(val, msr_bits, ",");
1508 	print_tm_bits(val);
1509 	pr_cont(">");
1510 }
1511 
1512 #ifdef CONFIG_PPC64
1513 #define REG		"%016lx"
1514 #define REGS_PER_LINE	4
1515 #else
1516 #define REG		"%08lx"
1517 #define REGS_PER_LINE	8
1518 #endif
1519 
1520 static void __show_regs(struct pt_regs *regs)
1521 {
1522 	int i, trap;
1523 
1524 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1525 	       regs->nip, regs->link, regs->ctr);
1526 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1527 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1528 	printk("MSR:  "REG" ", regs->msr);
1529 	print_msr_bits(regs->msr);
1530 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1531 	trap = TRAP(regs);
1532 	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1533 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1534 	if (trap == INTERRUPT_MACHINE_CHECK ||
1535 	    trap == INTERRUPT_DATA_STORAGE ||
1536 	    trap == INTERRUPT_ALIGNMENT) {
1537 		if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1538 			pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1539 		else
1540 			pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1541 	}
1542 
1543 #ifdef CONFIG_PPC64
1544 	pr_cont("IRQMASK: %lx ", regs->softe);
1545 #endif
1546 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1547 	if (MSR_TM_ACTIVE(regs->msr))
1548 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1549 #endif
1550 
1551 	for (i = 0;  i < 32;  i++) {
1552 		if ((i % REGS_PER_LINE) == 0)
1553 			pr_cont("\nGPR%02d: ", i);
1554 		pr_cont(REG " ", regs->gpr[i]);
1555 	}
1556 	pr_cont("\n");
1557 	/*
1558 	 * Lookup NIP late so we have the best change of getting the
1559 	 * above info out without failing
1560 	 */
1561 	if (IS_ENABLED(CONFIG_KALLSYMS)) {
1562 		printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1563 		printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1564 	}
1565 }
1566 
1567 void show_regs(struct pt_regs *regs)
1568 {
1569 	show_regs_print_info(KERN_DEFAULT);
1570 	__show_regs(regs);
1571 	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1572 	if (!user_mode(regs))
1573 		show_instructions(regs);
1574 }
1575 
1576 void flush_thread(void)
1577 {
1578 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1579 	flush_ptrace_hw_breakpoint(current);
1580 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1581 	set_debug_reg_defaults(&current->thread);
1582 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1583 }
1584 
1585 void arch_setup_new_exec(void)
1586 {
1587 
1588 #ifdef CONFIG_PPC_BOOK3S_64
1589 	if (!radix_enabled())
1590 		hash__setup_new_exec();
1591 #endif
1592 	/*
1593 	 * If we exec out of a kernel thread then thread.regs will not be
1594 	 * set.  Do it now.
1595 	 */
1596 	if (!current->thread.regs) {
1597 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1598 		current->thread.regs = regs - 1;
1599 	}
1600 
1601 #ifdef CONFIG_PPC_MEM_KEYS
1602 	current->thread.regs->amr  = default_amr;
1603 	current->thread.regs->iamr  = default_iamr;
1604 #endif
1605 }
1606 
1607 #ifdef CONFIG_PPC64
1608 /**
1609  * Assign a TIDR (thread ID) for task @t and set it in the thread
1610  * structure. For now, we only support setting TIDR for 'current' task.
1611  *
1612  * Since the TID value is a truncated form of it PID, it is possible
1613  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1614  * that 2 threads share the same TID and are waiting, one of the following
1615  * cases will happen:
1616  *
1617  * 1. The correct thread is running, the wrong thread is not
1618  * In this situation, the correct thread is woken and proceeds to pass it's
1619  * condition check.
1620  *
1621  * 2. Neither threads are running
1622  * In this situation, neither thread will be woken. When scheduled, the waiting
1623  * threads will execute either a wait, which will return immediately, followed
1624  * by a condition check, which will pass for the correct thread and fail
1625  * for the wrong thread, or they will execute the condition check immediately.
1626  *
1627  * 3. The wrong thread is running, the correct thread is not
1628  * The wrong thread will be woken, but will fail it's condition check and
1629  * re-execute wait. The correct thread, when scheduled, will execute either
1630  * it's condition check (which will pass), or wait, which returns immediately
1631  * when called the first time after the thread is scheduled, followed by it's
1632  * condition check (which will pass).
1633  *
1634  * 4. Both threads are running
1635  * Both threads will be woken. The wrong thread will fail it's condition check
1636  * and execute another wait, while the correct thread will pass it's condition
1637  * check.
1638  *
1639  * @t: the task to set the thread ID for
1640  */
1641 int set_thread_tidr(struct task_struct *t)
1642 {
1643 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1644 		return -EINVAL;
1645 
1646 	if (t != current)
1647 		return -EINVAL;
1648 
1649 	if (t->thread.tidr)
1650 		return 0;
1651 
1652 	t->thread.tidr = (u16)task_pid_nr(t);
1653 	mtspr(SPRN_TIDR, t->thread.tidr);
1654 
1655 	return 0;
1656 }
1657 EXPORT_SYMBOL_GPL(set_thread_tidr);
1658 
1659 #endif /* CONFIG_PPC64 */
1660 
1661 void
1662 release_thread(struct task_struct *t)
1663 {
1664 }
1665 
1666 /*
1667  * this gets called so that we can store coprocessor state into memory and
1668  * copy the current task into the new thread.
1669  */
1670 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1671 {
1672 	flush_all_to_thread(src);
1673 	/*
1674 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1675 	 * flush but it removes the checkpointed state from the current CPU and
1676 	 * transitions the CPU out of TM mode.  Hence we need to call
1677 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1678 	 * checkpointed state back and the TM mode.
1679 	 *
1680 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1681 	 * dst is only important for __switch_to()
1682 	 */
1683 	__switch_to_tm(src, src);
1684 
1685 	*dst = *src;
1686 
1687 	clear_task_ebb(dst);
1688 
1689 	return 0;
1690 }
1691 
1692 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1693 {
1694 #ifdef CONFIG_PPC_64S_HASH_MMU
1695 	unsigned long sp_vsid;
1696 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1697 
1698 	if (radix_enabled())
1699 		return;
1700 
1701 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1702 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1703 			<< SLB_VSID_SHIFT_1T;
1704 	else
1705 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1706 			<< SLB_VSID_SHIFT;
1707 	sp_vsid |= SLB_VSID_KERNEL | llp;
1708 	p->thread.ksp_vsid = sp_vsid;
1709 #endif
1710 }
1711 
1712 /*
1713  * Copy a thread..
1714  */
1715 
1716 /*
1717  * Copy architecture-specific thread state
1718  */
1719 int copy_thread(unsigned long clone_flags, unsigned long usp,
1720 		unsigned long kthread_arg, struct task_struct *p,
1721 		unsigned long tls)
1722 {
1723 	struct pt_regs *childregs, *kregs;
1724 	extern void ret_from_fork(void);
1725 	extern void ret_from_fork_scv(void);
1726 	extern void ret_from_kernel_thread(void);
1727 	void (*f)(void);
1728 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1729 	struct thread_info *ti = task_thread_info(p);
1730 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1731 	int i;
1732 #endif
1733 
1734 	klp_init_thread_info(p);
1735 
1736 	/* Copy registers */
1737 	sp -= sizeof(struct pt_regs);
1738 	childregs = (struct pt_regs *) sp;
1739 	if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1740 		/* kernel thread */
1741 		memset(childregs, 0, sizeof(struct pt_regs));
1742 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1743 		/* function */
1744 		if (usp)
1745 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1746 #ifdef CONFIG_PPC64
1747 		clear_tsk_thread_flag(p, TIF_32BIT);
1748 		childregs->softe = IRQS_ENABLED;
1749 #endif
1750 		childregs->gpr[15] = kthread_arg;
1751 		p->thread.regs = NULL;	/* no user register state */
1752 		ti->flags |= _TIF_RESTOREALL;
1753 		f = ret_from_kernel_thread;
1754 	} else {
1755 		/* user thread */
1756 		struct pt_regs *regs = current_pt_regs();
1757 		*childregs = *regs;
1758 		if (usp)
1759 			childregs->gpr[1] = usp;
1760 		p->thread.regs = childregs;
1761 		/* 64s sets this in ret_from_fork */
1762 		if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1763 			childregs->gpr[3] = 0;  /* Result from fork() */
1764 		if (clone_flags & CLONE_SETTLS) {
1765 			if (!is_32bit_task())
1766 				childregs->gpr[13] = tls;
1767 			else
1768 				childregs->gpr[2] = tls;
1769 		}
1770 
1771 		if (trap_is_scv(regs))
1772 			f = ret_from_fork_scv;
1773 		else
1774 			f = ret_from_fork;
1775 	}
1776 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1777 	sp -= STACK_FRAME_OVERHEAD;
1778 
1779 	/*
1780 	 * The way this works is that at some point in the future
1781 	 * some task will call _switch to switch to the new task.
1782 	 * That will pop off the stack frame created below and start
1783 	 * the new task running at ret_from_fork.  The new task will
1784 	 * do some house keeping and then return from the fork or clone
1785 	 * system call, using the stack frame created above.
1786 	 */
1787 	((unsigned long *)sp)[0] = 0;
1788 	sp -= sizeof(struct pt_regs);
1789 	kregs = (struct pt_regs *) sp;
1790 	sp -= STACK_FRAME_OVERHEAD;
1791 	p->thread.ksp = sp;
1792 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1793 	for (i = 0; i < nr_wp_slots(); i++)
1794 		p->thread.ptrace_bps[i] = NULL;
1795 #endif
1796 
1797 #ifdef CONFIG_PPC_FPU_REGS
1798 	p->thread.fp_save_area = NULL;
1799 #endif
1800 #ifdef CONFIG_ALTIVEC
1801 	p->thread.vr_save_area = NULL;
1802 #endif
1803 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1804 	p->thread.kuap = KUAP_NONE;
1805 #endif
1806 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1807 	p->thread.pid = MMU_NO_CONTEXT;
1808 #endif
1809 
1810 	setup_ksp_vsid(p, sp);
1811 
1812 #ifdef CONFIG_PPC64
1813 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1814 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1815 		p->thread.dscr = mfspr(SPRN_DSCR);
1816 	}
1817 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1818 		childregs->ppr = DEFAULT_PPR;
1819 
1820 	p->thread.tidr = 0;
1821 #endif
1822 	/*
1823 	 * Run with the current AMR value of the kernel
1824 	 */
1825 #ifdef CONFIG_PPC_PKEY
1826 	if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1827 		kregs->amr = AMR_KUAP_BLOCKED;
1828 
1829 	if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1830 		kregs->iamr = AMR_KUEP_BLOCKED;
1831 #endif
1832 	kregs->nip = ppc_function_entry(f);
1833 	return 0;
1834 }
1835 
1836 void preload_new_slb_context(unsigned long start, unsigned long sp);
1837 
1838 /*
1839  * Set up a thread for executing a new program
1840  */
1841 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1842 {
1843 #ifdef CONFIG_PPC64
1844 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1845 
1846 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1847 		preload_new_slb_context(start, sp);
1848 #endif
1849 
1850 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1851 	/*
1852 	 * Clear any transactional state, we're exec()ing. The cause is
1853 	 * not important as there will never be a recheckpoint so it's not
1854 	 * user visible.
1855 	 */
1856 	if (MSR_TM_SUSPENDED(mfmsr()))
1857 		tm_reclaim_current(0);
1858 #endif
1859 
1860 	memset(regs->gpr, 0, sizeof(regs->gpr));
1861 	regs->ctr = 0;
1862 	regs->link = 0;
1863 	regs->xer = 0;
1864 	regs->ccr = 0;
1865 	regs->gpr[1] = sp;
1866 
1867 #ifdef CONFIG_PPC32
1868 	regs->mq = 0;
1869 	regs->nip = start;
1870 	regs->msr = MSR_USER;
1871 #else
1872 	if (!is_32bit_task()) {
1873 		unsigned long entry;
1874 
1875 		if (is_elf2_task()) {
1876 			/* Look ma, no function descriptors! */
1877 			entry = start;
1878 
1879 			/*
1880 			 * Ulrich says:
1881 			 *   The latest iteration of the ABI requires that when
1882 			 *   calling a function (at its global entry point),
1883 			 *   the caller must ensure r12 holds the entry point
1884 			 *   address (so that the function can quickly
1885 			 *   establish addressability).
1886 			 */
1887 			regs->gpr[12] = start;
1888 			/* Make sure that's restored on entry to userspace. */
1889 			set_thread_flag(TIF_RESTOREALL);
1890 		} else {
1891 			unsigned long toc;
1892 
1893 			/* start is a relocated pointer to the function
1894 			 * descriptor for the elf _start routine.  The first
1895 			 * entry in the function descriptor is the entry
1896 			 * address of _start and the second entry is the TOC
1897 			 * value we need to use.
1898 			 */
1899 			__get_user(entry, (unsigned long __user *)start);
1900 			__get_user(toc, (unsigned long __user *)start+1);
1901 
1902 			/* Check whether the e_entry function descriptor entries
1903 			 * need to be relocated before we can use them.
1904 			 */
1905 			if (load_addr != 0) {
1906 				entry += load_addr;
1907 				toc   += load_addr;
1908 			}
1909 			regs->gpr[2] = toc;
1910 		}
1911 		regs_set_return_ip(regs, entry);
1912 		regs_set_return_msr(regs, MSR_USER64);
1913 	} else {
1914 		regs->gpr[2] = 0;
1915 		regs_set_return_ip(regs, start);
1916 		regs_set_return_msr(regs, MSR_USER32);
1917 	}
1918 
1919 #endif
1920 #ifdef CONFIG_VSX
1921 	current->thread.used_vsr = 0;
1922 #endif
1923 	current->thread.load_slb = 0;
1924 	current->thread.load_fp = 0;
1925 #ifdef CONFIG_PPC_FPU_REGS
1926 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1927 	current->thread.fp_save_area = NULL;
1928 #endif
1929 #ifdef CONFIG_ALTIVEC
1930 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1931 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1932 	current->thread.vr_save_area = NULL;
1933 	current->thread.vrsave = 0;
1934 	current->thread.used_vr = 0;
1935 	current->thread.load_vec = 0;
1936 #endif /* CONFIG_ALTIVEC */
1937 #ifdef CONFIG_SPE
1938 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1939 	current->thread.acc = 0;
1940 	current->thread.spefscr = 0;
1941 	current->thread.used_spe = 0;
1942 #endif /* CONFIG_SPE */
1943 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1944 	current->thread.tm_tfhar = 0;
1945 	current->thread.tm_texasr = 0;
1946 	current->thread.tm_tfiar = 0;
1947 	current->thread.load_tm = 0;
1948 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1949 }
1950 EXPORT_SYMBOL(start_thread);
1951 
1952 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1953 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1954 
1955 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1956 {
1957 	struct pt_regs *regs = tsk->thread.regs;
1958 
1959 	/* This is a bit hairy.  If we are an SPE enabled  processor
1960 	 * (have embedded fp) we store the IEEE exception enable flags in
1961 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1962 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1963 	if (val & PR_FP_EXC_SW_ENABLE) {
1964 		if (cpu_has_feature(CPU_FTR_SPE)) {
1965 			/*
1966 			 * When the sticky exception bits are set
1967 			 * directly by userspace, it must call prctl
1968 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1969 			 * in the existing prctl settings) or
1970 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1971 			 * the bits being set).  <fenv.h> functions
1972 			 * saving and restoring the whole
1973 			 * floating-point environment need to do so
1974 			 * anyway to restore the prctl settings from
1975 			 * the saved environment.
1976 			 */
1977 #ifdef CONFIG_SPE
1978 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1979 			tsk->thread.fpexc_mode = val &
1980 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1981 #endif
1982 			return 0;
1983 		} else {
1984 			return -EINVAL;
1985 		}
1986 	}
1987 
1988 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1989 	 * __pack_fe01 use do not overlap with bits used for
1990 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1991 	 * on CONFIG_SPE implementations are reserved so writing to
1992 	 * them does not change anything */
1993 	if (val > PR_FP_EXC_PRECISE)
1994 		return -EINVAL;
1995 	tsk->thread.fpexc_mode = __pack_fe01(val);
1996 	if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1997 		regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1998 						| tsk->thread.fpexc_mode);
1999 	}
2000 	return 0;
2001 }
2002 
2003 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2004 {
2005 	unsigned int val = 0;
2006 
2007 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2008 		if (cpu_has_feature(CPU_FTR_SPE)) {
2009 			/*
2010 			 * When the sticky exception bits are set
2011 			 * directly by userspace, it must call prctl
2012 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2013 			 * in the existing prctl settings) or
2014 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2015 			 * the bits being set).  <fenv.h> functions
2016 			 * saving and restoring the whole
2017 			 * floating-point environment need to do so
2018 			 * anyway to restore the prctl settings from
2019 			 * the saved environment.
2020 			 */
2021 #ifdef CONFIG_SPE
2022 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2023 			val = tsk->thread.fpexc_mode;
2024 #endif
2025 		} else
2026 			return -EINVAL;
2027 	} else {
2028 		val = __unpack_fe01(tsk->thread.fpexc_mode);
2029 	}
2030 	return put_user(val, (unsigned int __user *) adr);
2031 }
2032 
2033 int set_endian(struct task_struct *tsk, unsigned int val)
2034 {
2035 	struct pt_regs *regs = tsk->thread.regs;
2036 
2037 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2038 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2039 		return -EINVAL;
2040 
2041 	if (regs == NULL)
2042 		return -EINVAL;
2043 
2044 	if (val == PR_ENDIAN_BIG)
2045 		regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2046 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2047 		regs_set_return_msr(regs, regs->msr | MSR_LE);
2048 	else
2049 		return -EINVAL;
2050 
2051 	return 0;
2052 }
2053 
2054 int get_endian(struct task_struct *tsk, unsigned long adr)
2055 {
2056 	struct pt_regs *regs = tsk->thread.regs;
2057 	unsigned int val;
2058 
2059 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2060 	    !cpu_has_feature(CPU_FTR_REAL_LE))
2061 		return -EINVAL;
2062 
2063 	if (regs == NULL)
2064 		return -EINVAL;
2065 
2066 	if (regs->msr & MSR_LE) {
2067 		if (cpu_has_feature(CPU_FTR_REAL_LE))
2068 			val = PR_ENDIAN_LITTLE;
2069 		else
2070 			val = PR_ENDIAN_PPC_LITTLE;
2071 	} else
2072 		val = PR_ENDIAN_BIG;
2073 
2074 	return put_user(val, (unsigned int __user *)adr);
2075 }
2076 
2077 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2078 {
2079 	tsk->thread.align_ctl = val;
2080 	return 0;
2081 }
2082 
2083 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2084 {
2085 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2086 }
2087 
2088 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2089 				  unsigned long nbytes)
2090 {
2091 	unsigned long stack_page;
2092 	unsigned long cpu = task_cpu(p);
2093 
2094 	stack_page = (unsigned long)hardirq_ctx[cpu];
2095 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2096 		return 1;
2097 
2098 	stack_page = (unsigned long)softirq_ctx[cpu];
2099 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2100 		return 1;
2101 
2102 	return 0;
2103 }
2104 
2105 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2106 					unsigned long nbytes)
2107 {
2108 #ifdef CONFIG_PPC64
2109 	unsigned long stack_page;
2110 	unsigned long cpu = task_cpu(p);
2111 
2112 	if (!paca_ptrs)
2113 		return 0;
2114 
2115 	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2116 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2117 		return 1;
2118 
2119 # ifdef CONFIG_PPC_BOOK3S_64
2120 	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2121 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2122 		return 1;
2123 
2124 	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2125 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2126 		return 1;
2127 # endif
2128 #endif
2129 
2130 	return 0;
2131 }
2132 
2133 
2134 int validate_sp(unsigned long sp, struct task_struct *p,
2135 		       unsigned long nbytes)
2136 {
2137 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2138 
2139 	if (sp < THREAD_SIZE)
2140 		return 0;
2141 
2142 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2143 		return 1;
2144 
2145 	if (valid_irq_stack(sp, p, nbytes))
2146 		return 1;
2147 
2148 	return valid_emergency_stack(sp, p, nbytes);
2149 }
2150 
2151 EXPORT_SYMBOL(validate_sp);
2152 
2153 static unsigned long ___get_wchan(struct task_struct *p)
2154 {
2155 	unsigned long ip, sp;
2156 	int count = 0;
2157 
2158 	sp = p->thread.ksp;
2159 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2160 		return 0;
2161 
2162 	do {
2163 		sp = *(unsigned long *)sp;
2164 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2165 		    task_is_running(p))
2166 			return 0;
2167 		if (count > 0) {
2168 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2169 			if (!in_sched_functions(ip))
2170 				return ip;
2171 		}
2172 	} while (count++ < 16);
2173 	return 0;
2174 }
2175 
2176 unsigned long __get_wchan(struct task_struct *p)
2177 {
2178 	unsigned long ret;
2179 
2180 	if (!try_get_task_stack(p))
2181 		return 0;
2182 
2183 	ret = ___get_wchan(p);
2184 
2185 	put_task_stack(p);
2186 
2187 	return ret;
2188 }
2189 
2190 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2191 
2192 void __no_sanitize_address show_stack(struct task_struct *tsk,
2193 				      unsigned long *stack,
2194 				      const char *loglvl)
2195 {
2196 	unsigned long sp, ip, lr, newsp;
2197 	int count = 0;
2198 	int firstframe = 1;
2199 	unsigned long ret_addr;
2200 	int ftrace_idx = 0;
2201 
2202 	if (tsk == NULL)
2203 		tsk = current;
2204 
2205 	if (!try_get_task_stack(tsk))
2206 		return;
2207 
2208 	sp = (unsigned long) stack;
2209 	if (sp == 0) {
2210 		if (tsk == current)
2211 			sp = current_stack_frame();
2212 		else
2213 			sp = tsk->thread.ksp;
2214 	}
2215 
2216 	lr = 0;
2217 	printk("%sCall Trace:\n", loglvl);
2218 	do {
2219 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2220 			break;
2221 
2222 		stack = (unsigned long *) sp;
2223 		newsp = stack[0];
2224 		ip = stack[STACK_FRAME_LR_SAVE];
2225 		if (!firstframe || ip != lr) {
2226 			printk("%s["REG"] ["REG"] %pS",
2227 				loglvl, sp, ip, (void *)ip);
2228 			ret_addr = ftrace_graph_ret_addr(current,
2229 						&ftrace_idx, ip, stack);
2230 			if (ret_addr != ip)
2231 				pr_cont(" (%pS)", (void *)ret_addr);
2232 			if (firstframe)
2233 				pr_cont(" (unreliable)");
2234 			pr_cont("\n");
2235 		}
2236 		firstframe = 0;
2237 
2238 		/*
2239 		 * See if this is an exception frame.
2240 		 * We look for the "regshere" marker in the current frame.
2241 		 */
2242 		if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2243 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2244 			struct pt_regs *regs = (struct pt_regs *)
2245 				(sp + STACK_FRAME_OVERHEAD);
2246 
2247 			lr = regs->link;
2248 			printk("%s--- interrupt: %lx at %pS\n",
2249 			       loglvl, regs->trap, (void *)regs->nip);
2250 			__show_regs(regs);
2251 			printk("%s--- interrupt: %lx\n",
2252 			       loglvl, regs->trap);
2253 
2254 			firstframe = 1;
2255 		}
2256 
2257 		sp = newsp;
2258 	} while (count++ < kstack_depth_to_print);
2259 
2260 	put_task_stack(tsk);
2261 }
2262 
2263 #ifdef CONFIG_PPC64
2264 /* Called with hard IRQs off */
2265 void notrace __ppc64_runlatch_on(void)
2266 {
2267 	struct thread_info *ti = current_thread_info();
2268 
2269 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2270 		/*
2271 		 * Least significant bit (RUN) is the only writable bit of
2272 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2273 		 * earliest ISA where this is the case, but it's convenient.
2274 		 */
2275 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2276 	} else {
2277 		unsigned long ctrl;
2278 
2279 		/*
2280 		 * Some architectures (e.g., Cell) have writable fields other
2281 		 * than RUN, so do the read-modify-write.
2282 		 */
2283 		ctrl = mfspr(SPRN_CTRLF);
2284 		ctrl |= CTRL_RUNLATCH;
2285 		mtspr(SPRN_CTRLT, ctrl);
2286 	}
2287 
2288 	ti->local_flags |= _TLF_RUNLATCH;
2289 }
2290 
2291 /* Called with hard IRQs off */
2292 void notrace __ppc64_runlatch_off(void)
2293 {
2294 	struct thread_info *ti = current_thread_info();
2295 
2296 	ti->local_flags &= ~_TLF_RUNLATCH;
2297 
2298 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2299 		mtspr(SPRN_CTRLT, 0);
2300 	} else {
2301 		unsigned long ctrl;
2302 
2303 		ctrl = mfspr(SPRN_CTRLF);
2304 		ctrl &= ~CTRL_RUNLATCH;
2305 		mtspr(SPRN_CTRLT, ctrl);
2306 	}
2307 }
2308 #endif /* CONFIG_PPC64 */
2309 
2310 unsigned long arch_align_stack(unsigned long sp)
2311 {
2312 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2313 		sp -= get_random_int() & ~PAGE_MASK;
2314 	return sp & ~0xf;
2315 }
2316 
2317 static inline unsigned long brk_rnd(void)
2318 {
2319         unsigned long rnd = 0;
2320 
2321 	/* 8MB for 32bit, 1GB for 64bit */
2322 	if (is_32bit_task())
2323 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2324 	else
2325 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2326 
2327 	return rnd << PAGE_SHIFT;
2328 }
2329 
2330 unsigned long arch_randomize_brk(struct mm_struct *mm)
2331 {
2332 	unsigned long base = mm->brk;
2333 	unsigned long ret;
2334 
2335 #ifdef CONFIG_PPC_BOOK3S_64
2336 	/*
2337 	 * If we are using 1TB segments and we are allowed to randomise
2338 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2339 	 * segment. Otherwise the heap will be in the bottom 1TB
2340 	 * which always uses 256MB segments and this may result in a
2341 	 * performance penalty.
2342 	 */
2343 	if (!radix_enabled() && !is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2344 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2345 #endif
2346 
2347 	ret = PAGE_ALIGN(base + brk_rnd());
2348 
2349 	if (ret < mm->brk)
2350 		return mm->brk;
2351 
2352 	return ret;
2353 }
2354 
2355