xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 1fd02f66)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/uaccess.h>
39 #include <linux/pkeys.h>
40 #include <linux/seq_buf.h>
41 
42 #include <asm/interrupt.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #include <asm/hw_irq.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63 #include <asm/stacktrace.h>
64 #include <asm/hw_breakpoint.h>
65 
66 #include <linux/kprobes.h>
67 #include <linux/kdebug.h>
68 
69 /* Transactional Memory debug */
70 #ifdef TM_DEBUG_SW
71 #define TM_DEBUG(x...) printk(KERN_INFO x)
72 #else
73 #define TM_DEBUG(x...) do { } while(0)
74 #endif
75 
76 extern unsigned long _get_SP(void);
77 
78 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
79 /*
80  * Are we running in "Suspend disabled" mode? If so we have to block any
81  * sigreturn that would get us into suspended state, and we also warn in some
82  * other paths that we should never reach with suspend disabled.
83  */
84 bool tm_suspend_disabled __ro_after_init = false;
85 
86 static void check_if_tm_restore_required(struct task_struct *tsk)
87 {
88 	/*
89 	 * If we are saving the current thread's registers, and the
90 	 * thread is in a transactional state, set the TIF_RESTORE_TM
91 	 * bit so that we know to restore the registers before
92 	 * returning to userspace.
93 	 */
94 	if (tsk == current && tsk->thread.regs &&
95 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
96 	    !test_thread_flag(TIF_RESTORE_TM)) {
97 		regs_set_return_msr(&tsk->thread.ckpt_regs,
98 						tsk->thread.regs->msr);
99 		set_thread_flag(TIF_RESTORE_TM);
100 	}
101 }
102 
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106 
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109 
110 static int __init enable_strict_msr_control(char *str)
111 {
112 	strict_msr_control = true;
113 	pr_info("Enabling strict facility control\n");
114 
115 	return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118 
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122 	unsigned long oldmsr = mfmsr();
123 	unsigned long newmsr;
124 
125 	newmsr = oldmsr | bits;
126 
127 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
128 		newmsr |= MSR_VSX;
129 
130 	if (oldmsr != newmsr)
131 		mtmsr_isync(newmsr);
132 
133 	return newmsr;
134 }
135 EXPORT_SYMBOL_GPL(msr_check_and_set);
136 
137 /* notrace because it's called by restore_math */
138 void notrace __msr_check_and_clear(unsigned long bits)
139 {
140 	unsigned long oldmsr = mfmsr();
141 	unsigned long newmsr;
142 
143 	newmsr = oldmsr & ~bits;
144 
145 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
146 		newmsr &= ~MSR_VSX;
147 
148 	if (oldmsr != newmsr)
149 		mtmsr_isync(newmsr);
150 }
151 EXPORT_SYMBOL(__msr_check_and_clear);
152 
153 #ifdef CONFIG_PPC_FPU
154 static void __giveup_fpu(struct task_struct *tsk)
155 {
156 	unsigned long msr;
157 
158 	save_fpu(tsk);
159 	msr = tsk->thread.regs->msr;
160 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
161 	if (cpu_has_feature(CPU_FTR_VSX))
162 		msr &= ~MSR_VSX;
163 	regs_set_return_msr(tsk->thread.regs, msr);
164 }
165 
166 void giveup_fpu(struct task_struct *tsk)
167 {
168 	check_if_tm_restore_required(tsk);
169 
170 	msr_check_and_set(MSR_FP);
171 	__giveup_fpu(tsk);
172 	msr_check_and_clear(MSR_FP);
173 }
174 EXPORT_SYMBOL(giveup_fpu);
175 
176 /*
177  * Make sure the floating-point register state in the
178  * the thread_struct is up to date for task tsk.
179  */
180 void flush_fp_to_thread(struct task_struct *tsk)
181 {
182 	if (tsk->thread.regs) {
183 		/*
184 		 * We need to disable preemption here because if we didn't,
185 		 * another process could get scheduled after the regs->msr
186 		 * test but before we have finished saving the FP registers
187 		 * to the thread_struct.  That process could take over the
188 		 * FPU, and then when we get scheduled again we would store
189 		 * bogus values for the remaining FP registers.
190 		 */
191 		preempt_disable();
192 		if (tsk->thread.regs->msr & MSR_FP) {
193 			/*
194 			 * This should only ever be called for current or
195 			 * for a stopped child process.  Since we save away
196 			 * the FP register state on context switch,
197 			 * there is something wrong if a stopped child appears
198 			 * to still have its FP state in the CPU registers.
199 			 */
200 			BUG_ON(tsk != current);
201 			giveup_fpu(tsk);
202 		}
203 		preempt_enable();
204 	}
205 }
206 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
207 
208 void enable_kernel_fp(void)
209 {
210 	unsigned long cpumsr;
211 
212 	WARN_ON(preemptible());
213 
214 	cpumsr = msr_check_and_set(MSR_FP);
215 
216 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
217 		check_if_tm_restore_required(current);
218 		/*
219 		 * If a thread has already been reclaimed then the
220 		 * checkpointed registers are on the CPU but have definitely
221 		 * been saved by the reclaim code. Don't need to and *cannot*
222 		 * giveup as this would save  to the 'live' structure not the
223 		 * checkpointed structure.
224 		 */
225 		if (!MSR_TM_ACTIVE(cpumsr) &&
226 		     MSR_TM_ACTIVE(current->thread.regs->msr))
227 			return;
228 		__giveup_fpu(current);
229 	}
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232 #else
233 static inline void __giveup_fpu(struct task_struct *tsk) { }
234 #endif /* CONFIG_PPC_FPU */
235 
236 #ifdef CONFIG_ALTIVEC
237 static void __giveup_altivec(struct task_struct *tsk)
238 {
239 	unsigned long msr;
240 
241 	save_altivec(tsk);
242 	msr = tsk->thread.regs->msr;
243 	msr &= ~MSR_VEC;
244 	if (cpu_has_feature(CPU_FTR_VSX))
245 		msr &= ~MSR_VSX;
246 	regs_set_return_msr(tsk->thread.regs, msr);
247 }
248 
249 void giveup_altivec(struct task_struct *tsk)
250 {
251 	check_if_tm_restore_required(tsk);
252 
253 	msr_check_and_set(MSR_VEC);
254 	__giveup_altivec(tsk);
255 	msr_check_and_clear(MSR_VEC);
256 }
257 EXPORT_SYMBOL(giveup_altivec);
258 
259 void enable_kernel_altivec(void)
260 {
261 	unsigned long cpumsr;
262 
263 	WARN_ON(preemptible());
264 
265 	cpumsr = msr_check_and_set(MSR_VEC);
266 
267 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
268 		check_if_tm_restore_required(current);
269 		/*
270 		 * If a thread has already been reclaimed then the
271 		 * checkpointed registers are on the CPU but have definitely
272 		 * been saved by the reclaim code. Don't need to and *cannot*
273 		 * giveup as this would save  to the 'live' structure not the
274 		 * checkpointed structure.
275 		 */
276 		if (!MSR_TM_ACTIVE(cpumsr) &&
277 		     MSR_TM_ACTIVE(current->thread.regs->msr))
278 			return;
279 		__giveup_altivec(current);
280 	}
281 }
282 EXPORT_SYMBOL(enable_kernel_altivec);
283 
284 /*
285  * Make sure the VMX/Altivec register state in the
286  * the thread_struct is up to date for task tsk.
287  */
288 void flush_altivec_to_thread(struct task_struct *tsk)
289 {
290 	if (tsk->thread.regs) {
291 		preempt_disable();
292 		if (tsk->thread.regs->msr & MSR_VEC) {
293 			BUG_ON(tsk != current);
294 			giveup_altivec(tsk);
295 		}
296 		preempt_enable();
297 	}
298 }
299 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
300 #endif /* CONFIG_ALTIVEC */
301 
302 #ifdef CONFIG_VSX
303 static void __giveup_vsx(struct task_struct *tsk)
304 {
305 	unsigned long msr = tsk->thread.regs->msr;
306 
307 	/*
308 	 * We should never be setting MSR_VSX without also setting
309 	 * MSR_FP and MSR_VEC
310 	 */
311 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
312 
313 	/* __giveup_fpu will clear MSR_VSX */
314 	if (msr & MSR_FP)
315 		__giveup_fpu(tsk);
316 	if (msr & MSR_VEC)
317 		__giveup_altivec(tsk);
318 }
319 
320 static void giveup_vsx(struct task_struct *tsk)
321 {
322 	check_if_tm_restore_required(tsk);
323 
324 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
325 	__giveup_vsx(tsk);
326 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
327 }
328 
329 void enable_kernel_vsx(void)
330 {
331 	unsigned long cpumsr;
332 
333 	WARN_ON(preemptible());
334 
335 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
336 
337 	if (current->thread.regs &&
338 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
339 		check_if_tm_restore_required(current);
340 		/*
341 		 * If a thread has already been reclaimed then the
342 		 * checkpointed registers are on the CPU but have definitely
343 		 * been saved by the reclaim code. Don't need to and *cannot*
344 		 * giveup as this would save  to the 'live' structure not the
345 		 * checkpointed structure.
346 		 */
347 		if (!MSR_TM_ACTIVE(cpumsr) &&
348 		     MSR_TM_ACTIVE(current->thread.regs->msr))
349 			return;
350 		__giveup_vsx(current);
351 	}
352 }
353 EXPORT_SYMBOL(enable_kernel_vsx);
354 
355 void flush_vsx_to_thread(struct task_struct *tsk)
356 {
357 	if (tsk->thread.regs) {
358 		preempt_disable();
359 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
360 			BUG_ON(tsk != current);
361 			giveup_vsx(tsk);
362 		}
363 		preempt_enable();
364 	}
365 }
366 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
367 #endif /* CONFIG_VSX */
368 
369 #ifdef CONFIG_SPE
370 void giveup_spe(struct task_struct *tsk)
371 {
372 	check_if_tm_restore_required(tsk);
373 
374 	msr_check_and_set(MSR_SPE);
375 	__giveup_spe(tsk);
376 	msr_check_and_clear(MSR_SPE);
377 }
378 EXPORT_SYMBOL(giveup_spe);
379 
380 void enable_kernel_spe(void)
381 {
382 	WARN_ON(preemptible());
383 
384 	msr_check_and_set(MSR_SPE);
385 
386 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
387 		check_if_tm_restore_required(current);
388 		__giveup_spe(current);
389 	}
390 }
391 EXPORT_SYMBOL(enable_kernel_spe);
392 
393 void flush_spe_to_thread(struct task_struct *tsk)
394 {
395 	if (tsk->thread.regs) {
396 		preempt_disable();
397 		if (tsk->thread.regs->msr & MSR_SPE) {
398 			BUG_ON(tsk != current);
399 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
400 			giveup_spe(tsk);
401 		}
402 		preempt_enable();
403 	}
404 }
405 #endif /* CONFIG_SPE */
406 
407 static unsigned long msr_all_available;
408 
409 static int __init init_msr_all_available(void)
410 {
411 	if (IS_ENABLED(CONFIG_PPC_FPU))
412 		msr_all_available |= MSR_FP;
413 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
414 		msr_all_available |= MSR_VEC;
415 	if (cpu_has_feature(CPU_FTR_VSX))
416 		msr_all_available |= MSR_VSX;
417 	if (cpu_has_feature(CPU_FTR_SPE))
418 		msr_all_available |= MSR_SPE;
419 
420 	return 0;
421 }
422 early_initcall(init_msr_all_available);
423 
424 void giveup_all(struct task_struct *tsk)
425 {
426 	unsigned long usermsr;
427 
428 	if (!tsk->thread.regs)
429 		return;
430 
431 	check_if_tm_restore_required(tsk);
432 
433 	usermsr = tsk->thread.regs->msr;
434 
435 	if ((usermsr & msr_all_available) == 0)
436 		return;
437 
438 	msr_check_and_set(msr_all_available);
439 
440 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
441 
442 	if (usermsr & MSR_FP)
443 		__giveup_fpu(tsk);
444 	if (usermsr & MSR_VEC)
445 		__giveup_altivec(tsk);
446 	if (usermsr & MSR_SPE)
447 		__giveup_spe(tsk);
448 
449 	msr_check_and_clear(msr_all_available);
450 }
451 EXPORT_SYMBOL(giveup_all);
452 
453 #ifdef CONFIG_PPC_BOOK3S_64
454 #ifdef CONFIG_PPC_FPU
455 static bool should_restore_fp(void)
456 {
457 	if (current->thread.load_fp) {
458 		current->thread.load_fp++;
459 		return true;
460 	}
461 	return false;
462 }
463 
464 static void do_restore_fp(void)
465 {
466 	load_fp_state(&current->thread.fp_state);
467 }
468 #else
469 static bool should_restore_fp(void) { return false; }
470 static void do_restore_fp(void) { }
471 #endif /* CONFIG_PPC_FPU */
472 
473 #ifdef CONFIG_ALTIVEC
474 static bool should_restore_altivec(void)
475 {
476 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
477 		current->thread.load_vec++;
478 		return true;
479 	}
480 	return false;
481 }
482 
483 static void do_restore_altivec(void)
484 {
485 	load_vr_state(&current->thread.vr_state);
486 	current->thread.used_vr = 1;
487 }
488 #else
489 static bool should_restore_altivec(void) { return false; }
490 static void do_restore_altivec(void) { }
491 #endif /* CONFIG_ALTIVEC */
492 
493 static bool should_restore_vsx(void)
494 {
495 	if (cpu_has_feature(CPU_FTR_VSX))
496 		return true;
497 	return false;
498 }
499 #ifdef CONFIG_VSX
500 static void do_restore_vsx(void)
501 {
502 	current->thread.used_vsr = 1;
503 }
504 #else
505 static void do_restore_vsx(void) { }
506 #endif /* CONFIG_VSX */
507 
508 /*
509  * The exception exit path calls restore_math() with interrupts hard disabled
510  * but the soft irq state not "reconciled". ftrace code that calls
511  * local_irq_save/restore causes warnings.
512  *
513  * Rather than complicate the exit path, just don't trace restore_math. This
514  * could be done by having ftrace entry code check for this un-reconciled
515  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
516  * temporarily fix it up for the duration of the ftrace call.
517  */
518 void notrace restore_math(struct pt_regs *regs)
519 {
520 	unsigned long msr;
521 	unsigned long new_msr = 0;
522 
523 	msr = regs->msr;
524 
525 	/*
526 	 * new_msr tracks the facilities that are to be restored. Only reload
527 	 * if the bit is not set in the user MSR (if it is set, the registers
528 	 * are live for the user thread).
529 	 */
530 	if ((!(msr & MSR_FP)) && should_restore_fp())
531 		new_msr |= MSR_FP;
532 
533 	if ((!(msr & MSR_VEC)) && should_restore_altivec())
534 		new_msr |= MSR_VEC;
535 
536 	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
537 		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
538 			new_msr |= MSR_VSX;
539 	}
540 
541 	if (new_msr) {
542 		unsigned long fpexc_mode = 0;
543 
544 		msr_check_and_set(new_msr);
545 
546 		if (new_msr & MSR_FP) {
547 			do_restore_fp();
548 
549 			// This also covers VSX, because VSX implies FP
550 			fpexc_mode = current->thread.fpexc_mode;
551 		}
552 
553 		if (new_msr & MSR_VEC)
554 			do_restore_altivec();
555 
556 		if (new_msr & MSR_VSX)
557 			do_restore_vsx();
558 
559 		msr_check_and_clear(new_msr);
560 
561 		regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
562 	}
563 }
564 #endif /* CONFIG_PPC_BOOK3S_64 */
565 
566 static void save_all(struct task_struct *tsk)
567 {
568 	unsigned long usermsr;
569 
570 	if (!tsk->thread.regs)
571 		return;
572 
573 	usermsr = tsk->thread.regs->msr;
574 
575 	if ((usermsr & msr_all_available) == 0)
576 		return;
577 
578 	msr_check_and_set(msr_all_available);
579 
580 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
581 
582 	if (usermsr & MSR_FP)
583 		save_fpu(tsk);
584 
585 	if (usermsr & MSR_VEC)
586 		save_altivec(tsk);
587 
588 	if (usermsr & MSR_SPE)
589 		__giveup_spe(tsk);
590 
591 	msr_check_and_clear(msr_all_available);
592 }
593 
594 void flush_all_to_thread(struct task_struct *tsk)
595 {
596 	if (tsk->thread.regs) {
597 		preempt_disable();
598 		BUG_ON(tsk != current);
599 #ifdef CONFIG_SPE
600 		if (tsk->thread.regs->msr & MSR_SPE)
601 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
602 #endif
603 		save_all(tsk);
604 
605 		preempt_enable();
606 	}
607 }
608 EXPORT_SYMBOL(flush_all_to_thread);
609 
610 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
611 void do_send_trap(struct pt_regs *regs, unsigned long address,
612 		  unsigned long error_code, int breakpt)
613 {
614 	current->thread.trap_nr = TRAP_HWBKPT;
615 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
616 			11, SIGSEGV) == NOTIFY_STOP)
617 		return;
618 
619 	/* Deliver the signal to userspace */
620 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
621 				    (void __user *)address);
622 }
623 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
624 
625 static void do_break_handler(struct pt_regs *regs)
626 {
627 	struct arch_hw_breakpoint null_brk = {0};
628 	struct arch_hw_breakpoint *info;
629 	ppc_inst_t instr = ppc_inst(0);
630 	int type = 0;
631 	int size = 0;
632 	unsigned long ea;
633 	int i;
634 
635 	/*
636 	 * If underneath hw supports only one watchpoint, we know it
637 	 * caused exception. 8xx also falls into this category.
638 	 */
639 	if (nr_wp_slots() == 1) {
640 		__set_breakpoint(0, &null_brk);
641 		current->thread.hw_brk[0] = null_brk;
642 		current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
643 		return;
644 	}
645 
646 	/* Otherwise find out which DAWR caused exception and disable it. */
647 	wp_get_instr_detail(regs, &instr, &type, &size, &ea);
648 
649 	for (i = 0; i < nr_wp_slots(); i++) {
650 		info = &current->thread.hw_brk[i];
651 		if (!info->address)
652 			continue;
653 
654 		if (wp_check_constraints(regs, instr, ea, type, size, info)) {
655 			__set_breakpoint(i, &null_brk);
656 			current->thread.hw_brk[i] = null_brk;
657 			current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
658 		}
659 	}
660 }
661 
662 DEFINE_INTERRUPT_HANDLER(do_break)
663 {
664 	current->thread.trap_nr = TRAP_HWBKPT;
665 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
666 			11, SIGSEGV) == NOTIFY_STOP)
667 		return;
668 
669 	if (debugger_break_match(regs))
670 		return;
671 
672 	/*
673 	 * We reach here only when watchpoint exception is generated by ptrace
674 	 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
675 	 * watchpoint is already handled by hw_breakpoint_handler() so we don't
676 	 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
677 	 * we need to manually handle the watchpoint here.
678 	 */
679 	if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
680 		do_break_handler(regs);
681 
682 	/* Deliver the signal to userspace */
683 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
684 }
685 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
686 
687 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
688 
689 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
690 /*
691  * Set the debug registers back to their default "safe" values.
692  */
693 static void set_debug_reg_defaults(struct thread_struct *thread)
694 {
695 	thread->debug.iac1 = thread->debug.iac2 = 0;
696 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
697 	thread->debug.iac3 = thread->debug.iac4 = 0;
698 #endif
699 	thread->debug.dac1 = thread->debug.dac2 = 0;
700 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
701 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
702 #endif
703 	thread->debug.dbcr0 = 0;
704 #ifdef CONFIG_BOOKE
705 	/*
706 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
707 	 */
708 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
709 			DBCR1_IAC3US | DBCR1_IAC4US;
710 	/*
711 	 * Force Data Address Compare User/Supervisor bits to be User-only
712 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
713 	 */
714 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
715 #else
716 	thread->debug.dbcr1 = 0;
717 #endif
718 }
719 
720 static void prime_debug_regs(struct debug_reg *debug)
721 {
722 	/*
723 	 * We could have inherited MSR_DE from userspace, since
724 	 * it doesn't get cleared on exception entry.  Make sure
725 	 * MSR_DE is clear before we enable any debug events.
726 	 */
727 	mtmsr(mfmsr() & ~MSR_DE);
728 
729 	mtspr(SPRN_IAC1, debug->iac1);
730 	mtspr(SPRN_IAC2, debug->iac2);
731 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
732 	mtspr(SPRN_IAC3, debug->iac3);
733 	mtspr(SPRN_IAC4, debug->iac4);
734 #endif
735 	mtspr(SPRN_DAC1, debug->dac1);
736 	mtspr(SPRN_DAC2, debug->dac2);
737 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
738 	mtspr(SPRN_DVC1, debug->dvc1);
739 	mtspr(SPRN_DVC2, debug->dvc2);
740 #endif
741 	mtspr(SPRN_DBCR0, debug->dbcr0);
742 	mtspr(SPRN_DBCR1, debug->dbcr1);
743 #ifdef CONFIG_BOOKE
744 	mtspr(SPRN_DBCR2, debug->dbcr2);
745 #endif
746 }
747 /*
748  * Unless neither the old or new thread are making use of the
749  * debug registers, set the debug registers from the values
750  * stored in the new thread.
751  */
752 void switch_booke_debug_regs(struct debug_reg *new_debug)
753 {
754 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
755 		|| (new_debug->dbcr0 & DBCR0_IDM))
756 			prime_debug_regs(new_debug);
757 }
758 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
759 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
760 #ifndef CONFIG_HAVE_HW_BREAKPOINT
761 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
762 {
763 	preempt_disable();
764 	__set_breakpoint(i, brk);
765 	preempt_enable();
766 }
767 
768 static void set_debug_reg_defaults(struct thread_struct *thread)
769 {
770 	int i;
771 	struct arch_hw_breakpoint null_brk = {0};
772 
773 	for (i = 0; i < nr_wp_slots(); i++) {
774 		thread->hw_brk[i] = null_brk;
775 		if (ppc_breakpoint_available())
776 			set_breakpoint(i, &thread->hw_brk[i]);
777 	}
778 }
779 
780 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
781 				struct arch_hw_breakpoint *b)
782 {
783 	if (a->address != b->address)
784 		return false;
785 	if (a->type != b->type)
786 		return false;
787 	if (a->len != b->len)
788 		return false;
789 	/* no need to check hw_len. it's calculated from address and len */
790 	return true;
791 }
792 
793 static void switch_hw_breakpoint(struct task_struct *new)
794 {
795 	int i;
796 
797 	for (i = 0; i < nr_wp_slots(); i++) {
798 		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
799 					&new->thread.hw_brk[i])))
800 			continue;
801 
802 		__set_breakpoint(i, &new->thread.hw_brk[i]);
803 	}
804 }
805 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
806 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
807 
808 static inline int set_dabr(struct arch_hw_breakpoint *brk)
809 {
810 	unsigned long dabr, dabrx;
811 
812 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
813 	dabrx = ((brk->type >> 3) & 0x7);
814 
815 	if (ppc_md.set_dabr)
816 		return ppc_md.set_dabr(dabr, dabrx);
817 
818 	if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
819 		mtspr(SPRN_DAC1, dabr);
820 		if (IS_ENABLED(CONFIG_PPC_47x))
821 			isync();
822 		return 0;
823 	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
824 		mtspr(SPRN_DABR, dabr);
825 		if (cpu_has_feature(CPU_FTR_DABRX))
826 			mtspr(SPRN_DABRX, dabrx);
827 		return 0;
828 	} else {
829 		return -EINVAL;
830 	}
831 }
832 
833 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
834 {
835 	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
836 			       LCTRL1_CRWF_RW;
837 	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
838 	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
839 	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
840 
841 	if (start_addr == 0)
842 		lctrl2 |= LCTRL2_LW0LA_F;
843 	else if (end_addr == 0)
844 		lctrl2 |= LCTRL2_LW0LA_E;
845 	else
846 		lctrl2 |= LCTRL2_LW0LA_EandF;
847 
848 	mtspr(SPRN_LCTRL2, 0);
849 
850 	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
851 		return 0;
852 
853 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
854 		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
855 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
856 		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
857 
858 	mtspr(SPRN_CMPE, start_addr - 1);
859 	mtspr(SPRN_CMPF, end_addr);
860 	mtspr(SPRN_LCTRL1, lctrl1);
861 	mtspr(SPRN_LCTRL2, lctrl2);
862 
863 	return 0;
864 }
865 
866 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
867 {
868 	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
869 
870 	if (dawr_enabled())
871 		// Power8 or later
872 		set_dawr(nr, brk);
873 	else if (IS_ENABLED(CONFIG_PPC_8xx))
874 		set_breakpoint_8xx(brk);
875 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
876 		// Power7 or earlier
877 		set_dabr(brk);
878 	else
879 		// Shouldn't happen due to higher level checks
880 		WARN_ON_ONCE(1);
881 }
882 
883 /* Check if we have DAWR or DABR hardware */
884 bool ppc_breakpoint_available(void)
885 {
886 	if (dawr_enabled())
887 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
888 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
889 		return false; /* POWER9 with DAWR disabled */
890 	/* DABR: Everything but POWER8 and POWER9 */
891 	return true;
892 }
893 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
894 
895 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
896 
897 static inline bool tm_enabled(struct task_struct *tsk)
898 {
899 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
900 }
901 
902 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
903 {
904 	/*
905 	 * Use the current MSR TM suspended bit to track if we have
906 	 * checkpointed state outstanding.
907 	 * On signal delivery, we'd normally reclaim the checkpointed
908 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
909 	 * This will then directly return to userspace without going
910 	 * through __switch_to(). However, if the stack frame is bad,
911 	 * we need to exit this thread which calls __switch_to() which
912 	 * will again attempt to reclaim the already saved tm state.
913 	 * Hence we need to check that we've not already reclaimed
914 	 * this state.
915 	 * We do this using the current MSR, rather tracking it in
916 	 * some specific thread_struct bit, as it has the additional
917 	 * benefit of checking for a potential TM bad thing exception.
918 	 */
919 	if (!MSR_TM_SUSPENDED(mfmsr()))
920 		return;
921 
922 	giveup_all(container_of(thr, struct task_struct, thread));
923 
924 	tm_reclaim(thr, cause);
925 
926 	/*
927 	 * If we are in a transaction and FP is off then we can't have
928 	 * used FP inside that transaction. Hence the checkpointed
929 	 * state is the same as the live state. We need to copy the
930 	 * live state to the checkpointed state so that when the
931 	 * transaction is restored, the checkpointed state is correct
932 	 * and the aborted transaction sees the correct state. We use
933 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
934 	 * determine if it's going to write the checkpointed state or
935 	 * not. So either this will write the checkpointed registers,
936 	 * or reclaim will. Similarly for VMX.
937 	 */
938 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
939 		memcpy(&thr->ckfp_state, &thr->fp_state,
940 		       sizeof(struct thread_fp_state));
941 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
942 		memcpy(&thr->ckvr_state, &thr->vr_state,
943 		       sizeof(struct thread_vr_state));
944 }
945 
946 void tm_reclaim_current(uint8_t cause)
947 {
948 	tm_enable();
949 	tm_reclaim_thread(&current->thread, cause);
950 }
951 
952 static inline void tm_reclaim_task(struct task_struct *tsk)
953 {
954 	/* We have to work out if we're switching from/to a task that's in the
955 	 * middle of a transaction.
956 	 *
957 	 * In switching we need to maintain a 2nd register state as
958 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
959 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
960 	 * ckvr_state
961 	 *
962 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
963 	 */
964 	struct thread_struct *thr = &tsk->thread;
965 
966 	if (!thr->regs)
967 		return;
968 
969 	if (!MSR_TM_ACTIVE(thr->regs->msr))
970 		goto out_and_saveregs;
971 
972 	WARN_ON(tm_suspend_disabled);
973 
974 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
975 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
976 		 tsk->pid, thr->regs->nip,
977 		 thr->regs->ccr, thr->regs->msr,
978 		 thr->regs->trap);
979 
980 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
981 
982 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
983 		 tsk->pid);
984 
985 out_and_saveregs:
986 	/* Always save the regs here, even if a transaction's not active.
987 	 * This context-switches a thread's TM info SPRs.  We do it here to
988 	 * be consistent with the restore path (in recheckpoint) which
989 	 * cannot happen later in _switch().
990 	 */
991 	tm_save_sprs(thr);
992 }
993 
994 extern void __tm_recheckpoint(struct thread_struct *thread);
995 
996 void tm_recheckpoint(struct thread_struct *thread)
997 {
998 	unsigned long flags;
999 
1000 	if (!(thread->regs->msr & MSR_TM))
1001 		return;
1002 
1003 	/* We really can't be interrupted here as the TEXASR registers can't
1004 	 * change and later in the trecheckpoint code, we have a userspace R1.
1005 	 * So let's hard disable over this region.
1006 	 */
1007 	local_irq_save(flags);
1008 	hard_irq_disable();
1009 
1010 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
1011 	 * before the trecheckpoint and no explosion occurs.
1012 	 */
1013 	tm_restore_sprs(thread);
1014 
1015 	__tm_recheckpoint(thread);
1016 
1017 	local_irq_restore(flags);
1018 }
1019 
1020 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1021 {
1022 	if (!cpu_has_feature(CPU_FTR_TM))
1023 		return;
1024 
1025 	/* Recheckpoint the registers of the thread we're about to switch to.
1026 	 *
1027 	 * If the task was using FP, we non-lazily reload both the original and
1028 	 * the speculative FP register states.  This is because the kernel
1029 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1030 	 * unavailable later, we are unable to determine which set of FP regs
1031 	 * need to be restored.
1032 	 */
1033 	if (!tm_enabled(new))
1034 		return;
1035 
1036 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1037 		tm_restore_sprs(&new->thread);
1038 		return;
1039 	}
1040 	/* Recheckpoint to restore original checkpointed register state. */
1041 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1042 		 new->pid, new->thread.regs->msr);
1043 
1044 	tm_recheckpoint(&new->thread);
1045 
1046 	/*
1047 	 * The checkpointed state has been restored but the live state has
1048 	 * not, ensure all the math functionality is turned off to trigger
1049 	 * restore_math() to reload.
1050 	 */
1051 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1052 
1053 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1054 		 "(kernel msr 0x%lx)\n",
1055 		 new->pid, mfmsr());
1056 }
1057 
1058 static inline void __switch_to_tm(struct task_struct *prev,
1059 		struct task_struct *new)
1060 {
1061 	if (cpu_has_feature(CPU_FTR_TM)) {
1062 		if (tm_enabled(prev) || tm_enabled(new))
1063 			tm_enable();
1064 
1065 		if (tm_enabled(prev)) {
1066 			prev->thread.load_tm++;
1067 			tm_reclaim_task(prev);
1068 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1069 				prev->thread.regs->msr &= ~MSR_TM;
1070 		}
1071 
1072 		tm_recheckpoint_new_task(new);
1073 	}
1074 }
1075 
1076 /*
1077  * This is called if we are on the way out to userspace and the
1078  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1079  * FP and/or vector state and does so if necessary.
1080  * If userspace is inside a transaction (whether active or
1081  * suspended) and FP/VMX/VSX instructions have ever been enabled
1082  * inside that transaction, then we have to keep them enabled
1083  * and keep the FP/VMX/VSX state loaded while ever the transaction
1084  * continues.  The reason is that if we didn't, and subsequently
1085  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1086  * we don't know whether it's the same transaction, and thus we
1087  * don't know which of the checkpointed state and the transactional
1088  * state to use.
1089  */
1090 void restore_tm_state(struct pt_regs *regs)
1091 {
1092 	unsigned long msr_diff;
1093 
1094 	/*
1095 	 * This is the only moment we should clear TIF_RESTORE_TM as
1096 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1097 	 * again, anything else could lead to an incorrect ckpt_msr being
1098 	 * saved and therefore incorrect signal contexts.
1099 	 */
1100 	clear_thread_flag(TIF_RESTORE_TM);
1101 	if (!MSR_TM_ACTIVE(regs->msr))
1102 		return;
1103 
1104 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1105 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1106 
1107 	/* Ensure that restore_math() will restore */
1108 	if (msr_diff & MSR_FP)
1109 		current->thread.load_fp = 1;
1110 #ifdef CONFIG_ALTIVEC
1111 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1112 		current->thread.load_vec = 1;
1113 #endif
1114 	restore_math(regs);
1115 
1116 	regs_set_return_msr(regs, regs->msr | msr_diff);
1117 }
1118 
1119 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1120 #define tm_recheckpoint_new_task(new)
1121 #define __switch_to_tm(prev, new)
1122 void tm_reclaim_current(uint8_t cause) {}
1123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1124 
1125 static inline void save_sprs(struct thread_struct *t)
1126 {
1127 #ifdef CONFIG_ALTIVEC
1128 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1129 		t->vrsave = mfspr(SPRN_VRSAVE);
1130 #endif
1131 #ifdef CONFIG_SPE
1132 	if (cpu_has_feature(CPU_FTR_SPE))
1133 		t->spefscr = mfspr(SPRN_SPEFSCR);
1134 #endif
1135 #ifdef CONFIG_PPC_BOOK3S_64
1136 	if (cpu_has_feature(CPU_FTR_DSCR))
1137 		t->dscr = mfspr(SPRN_DSCR);
1138 
1139 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1140 		t->bescr = mfspr(SPRN_BESCR);
1141 		t->ebbhr = mfspr(SPRN_EBBHR);
1142 		t->ebbrr = mfspr(SPRN_EBBRR);
1143 
1144 		t->fscr = mfspr(SPRN_FSCR);
1145 
1146 		/*
1147 		 * Note that the TAR is not available for use in the kernel.
1148 		 * (To provide this, the TAR should be backed up/restored on
1149 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1150 		 * this should be in pt_regs anyway (for debug).)
1151 		 */
1152 		t->tar = mfspr(SPRN_TAR);
1153 	}
1154 #endif
1155 }
1156 
1157 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1158 void kvmppc_save_user_regs(void)
1159 {
1160 	unsigned long usermsr;
1161 
1162 	if (!current->thread.regs)
1163 		return;
1164 
1165 	usermsr = current->thread.regs->msr;
1166 
1167 	if (usermsr & MSR_FP)
1168 		save_fpu(current);
1169 
1170 	if (usermsr & MSR_VEC)
1171 		save_altivec(current);
1172 
1173 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1174 	if (usermsr & MSR_TM) {
1175 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1176 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1177 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1178 		current->thread.regs->msr &= ~MSR_TM;
1179 	}
1180 #endif
1181 }
1182 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1183 
1184 void kvmppc_save_current_sprs(void)
1185 {
1186 	save_sprs(&current->thread);
1187 }
1188 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1189 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1190 
1191 static inline void restore_sprs(struct thread_struct *old_thread,
1192 				struct thread_struct *new_thread)
1193 {
1194 #ifdef CONFIG_ALTIVEC
1195 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1196 	    old_thread->vrsave != new_thread->vrsave)
1197 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1198 #endif
1199 #ifdef CONFIG_SPE
1200 	if (cpu_has_feature(CPU_FTR_SPE) &&
1201 	    old_thread->spefscr != new_thread->spefscr)
1202 		mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1203 #endif
1204 #ifdef CONFIG_PPC_BOOK3S_64
1205 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1206 		u64 dscr = get_paca()->dscr_default;
1207 		if (new_thread->dscr_inherit)
1208 			dscr = new_thread->dscr;
1209 
1210 		if (old_thread->dscr != dscr)
1211 			mtspr(SPRN_DSCR, dscr);
1212 	}
1213 
1214 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1215 		if (old_thread->bescr != new_thread->bescr)
1216 			mtspr(SPRN_BESCR, new_thread->bescr);
1217 		if (old_thread->ebbhr != new_thread->ebbhr)
1218 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1219 		if (old_thread->ebbrr != new_thread->ebbrr)
1220 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1221 
1222 		if (old_thread->fscr != new_thread->fscr)
1223 			mtspr(SPRN_FSCR, new_thread->fscr);
1224 
1225 		if (old_thread->tar != new_thread->tar)
1226 			mtspr(SPRN_TAR, new_thread->tar);
1227 	}
1228 
1229 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1230 	    old_thread->tidr != new_thread->tidr)
1231 		mtspr(SPRN_TIDR, new_thread->tidr);
1232 #endif
1233 
1234 }
1235 
1236 struct task_struct *__switch_to(struct task_struct *prev,
1237 	struct task_struct *new)
1238 {
1239 	struct thread_struct *new_thread, *old_thread;
1240 	struct task_struct *last;
1241 #ifdef CONFIG_PPC_64S_HASH_MMU
1242 	struct ppc64_tlb_batch *batch;
1243 #endif
1244 
1245 	new_thread = &new->thread;
1246 	old_thread = &current->thread;
1247 
1248 	WARN_ON(!irqs_disabled());
1249 
1250 #ifdef CONFIG_PPC_64S_HASH_MMU
1251 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1252 	if (batch->active) {
1253 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1254 		if (batch->index)
1255 			__flush_tlb_pending(batch);
1256 		batch->active = 0;
1257 	}
1258 
1259 	/*
1260 	 * On POWER9 the copy-paste buffer can only paste into
1261 	 * foreign real addresses, so unprivileged processes can not
1262 	 * see the data or use it in any way unless they have
1263 	 * foreign real mappings. If the new process has the foreign
1264 	 * real address mappings, we must issue a cp_abort to clear
1265 	 * any state and prevent snooping, corruption or a covert
1266 	 * channel. ISA v3.1 supports paste into local memory.
1267 	 */
1268 	if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1269 			atomic_read(&new->mm->context.vas_windows)))
1270 		asm volatile(PPC_CP_ABORT);
1271 #endif /* CONFIG_PPC_BOOK3S_64 */
1272 
1273 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1274 	switch_booke_debug_regs(&new->thread.debug);
1275 #else
1276 /*
1277  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1278  * schedule DABR
1279  */
1280 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1281 	switch_hw_breakpoint(new);
1282 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1283 #endif
1284 
1285 	/*
1286 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1287 	 * change a number of them.
1288 	 */
1289 	save_sprs(&prev->thread);
1290 
1291 	/* Save FPU, Altivec, VSX and SPE state */
1292 	giveup_all(prev);
1293 
1294 	__switch_to_tm(prev, new);
1295 
1296 	if (!radix_enabled()) {
1297 		/*
1298 		 * We can't take a PMU exception inside _switch() since there
1299 		 * is a window where the kernel stack SLB and the kernel stack
1300 		 * are out of sync. Hard disable here.
1301 		 */
1302 		hard_irq_disable();
1303 	}
1304 
1305 	/*
1306 	 * Call restore_sprs() and set_return_regs_changed() before calling
1307 	 * _switch(). If we move it after _switch() then we miss out on calling
1308 	 * it for new tasks. The reason for this is we manually create a stack
1309 	 * frame for new tasks that directly returns through ret_from_fork() or
1310 	 * ret_from_kernel_thread(). See copy_thread() for details.
1311 	 */
1312 	restore_sprs(old_thread, new_thread);
1313 
1314 	set_return_regs_changed(); /* _switch changes stack (and regs) */
1315 
1316 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1317 		kuap_assert_locked();
1318 
1319 	last = _switch(old_thread, new_thread);
1320 
1321 	/*
1322 	 * Nothing after _switch will be run for newly created tasks,
1323 	 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1324 	 * etc. Code added here should have a comment explaining why that is
1325 	 * okay.
1326 	 */
1327 
1328 #ifdef CONFIG_PPC_BOOK3S_64
1329 #ifdef CONFIG_PPC_64S_HASH_MMU
1330 	/*
1331 	 * This applies to a process that was context switched while inside
1332 	 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1333 	 * deactivated above, before _switch(). This will never be the case
1334 	 * for new tasks.
1335 	 */
1336 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1337 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1338 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1339 		batch->active = 1;
1340 	}
1341 #endif
1342 
1343 	/*
1344 	 * Math facilities are masked out of the child MSR in copy_thread.
1345 	 * A new task does not need to restore_math because it will
1346 	 * demand fault them.
1347 	 */
1348 	if (current->thread.regs)
1349 		restore_math(current->thread.regs);
1350 #endif /* CONFIG_PPC_BOOK3S_64 */
1351 
1352 	return last;
1353 }
1354 
1355 #define NR_INSN_TO_PRINT	16
1356 
1357 static void show_instructions(struct pt_regs *regs)
1358 {
1359 	int i;
1360 	unsigned long nip = regs->nip;
1361 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1362 
1363 	printk("Instruction dump:");
1364 
1365 	/*
1366 	 * If we were executing with the MMU off for instructions, adjust pc
1367 	 * rather than printing XXXXXXXX.
1368 	 */
1369 	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1370 		pc = (unsigned long)phys_to_virt(pc);
1371 		nip = (unsigned long)phys_to_virt(regs->nip);
1372 	}
1373 
1374 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1375 		int instr;
1376 
1377 		if (!(i % 8))
1378 			pr_cont("\n");
1379 
1380 		if (!__kernel_text_address(pc) ||
1381 		    get_kernel_nofault(instr, (const void *)pc)) {
1382 			pr_cont("XXXXXXXX ");
1383 		} else {
1384 			if (nip == pc)
1385 				pr_cont("<%08x> ", instr);
1386 			else
1387 				pr_cont("%08x ", instr);
1388 		}
1389 
1390 		pc += sizeof(int);
1391 	}
1392 
1393 	pr_cont("\n");
1394 }
1395 
1396 void show_user_instructions(struct pt_regs *regs)
1397 {
1398 	unsigned long pc;
1399 	int n = NR_INSN_TO_PRINT;
1400 	struct seq_buf s;
1401 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1402 
1403 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1404 
1405 	seq_buf_init(&s, buf, sizeof(buf));
1406 
1407 	while (n) {
1408 		int i;
1409 
1410 		seq_buf_clear(&s);
1411 
1412 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1413 			int instr;
1414 
1415 			if (copy_from_user_nofault(&instr, (void __user *)pc,
1416 					sizeof(instr))) {
1417 				seq_buf_printf(&s, "XXXXXXXX ");
1418 				continue;
1419 			}
1420 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1421 		}
1422 
1423 		if (!seq_buf_has_overflowed(&s))
1424 			pr_info("%s[%d]: code: %s\n", current->comm,
1425 				current->pid, s.buffer);
1426 	}
1427 }
1428 
1429 struct regbit {
1430 	unsigned long bit;
1431 	const char *name;
1432 };
1433 
1434 static struct regbit msr_bits[] = {
1435 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1436 	{MSR_SF,	"SF"},
1437 	{MSR_HV,	"HV"},
1438 #endif
1439 	{MSR_VEC,	"VEC"},
1440 	{MSR_VSX,	"VSX"},
1441 #ifdef CONFIG_BOOKE
1442 	{MSR_CE,	"CE"},
1443 #endif
1444 	{MSR_EE,	"EE"},
1445 	{MSR_PR,	"PR"},
1446 	{MSR_FP,	"FP"},
1447 	{MSR_ME,	"ME"},
1448 #ifdef CONFIG_BOOKE
1449 	{MSR_DE,	"DE"},
1450 #else
1451 	{MSR_SE,	"SE"},
1452 	{MSR_BE,	"BE"},
1453 #endif
1454 	{MSR_IR,	"IR"},
1455 	{MSR_DR,	"DR"},
1456 	{MSR_PMM,	"PMM"},
1457 #ifndef CONFIG_BOOKE
1458 	{MSR_RI,	"RI"},
1459 	{MSR_LE,	"LE"},
1460 #endif
1461 	{0,		NULL}
1462 };
1463 
1464 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1465 {
1466 	const char *s = "";
1467 
1468 	for (; bits->bit; ++bits)
1469 		if (val & bits->bit) {
1470 			pr_cont("%s%s", s, bits->name);
1471 			s = sep;
1472 		}
1473 }
1474 
1475 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1476 static struct regbit msr_tm_bits[] = {
1477 	{MSR_TS_T,	"T"},
1478 	{MSR_TS_S,	"S"},
1479 	{MSR_TM,	"E"},
1480 	{0,		NULL}
1481 };
1482 
1483 static void print_tm_bits(unsigned long val)
1484 {
1485 /*
1486  * This only prints something if at least one of the TM bit is set.
1487  * Inside the TM[], the output means:
1488  *   E: Enabled		(bit 32)
1489  *   S: Suspended	(bit 33)
1490  *   T: Transactional	(bit 34)
1491  */
1492 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1493 		pr_cont(",TM[");
1494 		print_bits(val, msr_tm_bits, "");
1495 		pr_cont("]");
1496 	}
1497 }
1498 #else
1499 static void print_tm_bits(unsigned long val) {}
1500 #endif
1501 
1502 static void print_msr_bits(unsigned long val)
1503 {
1504 	pr_cont("<");
1505 	print_bits(val, msr_bits, ",");
1506 	print_tm_bits(val);
1507 	pr_cont(">");
1508 }
1509 
1510 #ifdef CONFIG_PPC64
1511 #define REG		"%016lx"
1512 #define REGS_PER_LINE	4
1513 #else
1514 #define REG		"%08lx"
1515 #define REGS_PER_LINE	8
1516 #endif
1517 
1518 static void __show_regs(struct pt_regs *regs)
1519 {
1520 	int i, trap;
1521 
1522 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1523 	       regs->nip, regs->link, regs->ctr);
1524 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1525 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1526 	printk("MSR:  "REG" ", regs->msr);
1527 	print_msr_bits(regs->msr);
1528 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1529 	trap = TRAP(regs);
1530 	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1531 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1532 	if (trap == INTERRUPT_MACHINE_CHECK ||
1533 	    trap == INTERRUPT_DATA_STORAGE ||
1534 	    trap == INTERRUPT_ALIGNMENT) {
1535 		if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1536 			pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1537 		else
1538 			pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1539 	}
1540 
1541 #ifdef CONFIG_PPC64
1542 	pr_cont("IRQMASK: %lx ", regs->softe);
1543 #endif
1544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1545 	if (MSR_TM_ACTIVE(regs->msr))
1546 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1547 #endif
1548 
1549 	for (i = 0;  i < 32;  i++) {
1550 		if ((i % REGS_PER_LINE) == 0)
1551 			pr_cont("\nGPR%02d: ", i);
1552 		pr_cont(REG " ", regs->gpr[i]);
1553 	}
1554 	pr_cont("\n");
1555 	/*
1556 	 * Lookup NIP late so we have the best change of getting the
1557 	 * above info out without failing
1558 	 */
1559 	if (IS_ENABLED(CONFIG_KALLSYMS)) {
1560 		printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1561 		printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1562 	}
1563 }
1564 
1565 void show_regs(struct pt_regs *regs)
1566 {
1567 	show_regs_print_info(KERN_DEFAULT);
1568 	__show_regs(regs);
1569 	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1570 	if (!user_mode(regs))
1571 		show_instructions(regs);
1572 }
1573 
1574 void flush_thread(void)
1575 {
1576 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1577 	flush_ptrace_hw_breakpoint(current);
1578 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1579 	set_debug_reg_defaults(&current->thread);
1580 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1581 }
1582 
1583 void arch_setup_new_exec(void)
1584 {
1585 
1586 #ifdef CONFIG_PPC_BOOK3S_64
1587 	if (!radix_enabled())
1588 		hash__setup_new_exec();
1589 #endif
1590 	/*
1591 	 * If we exec out of a kernel thread then thread.regs will not be
1592 	 * set.  Do it now.
1593 	 */
1594 	if (!current->thread.regs) {
1595 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1596 		current->thread.regs = regs - 1;
1597 	}
1598 
1599 #ifdef CONFIG_PPC_MEM_KEYS
1600 	current->thread.regs->amr  = default_amr;
1601 	current->thread.regs->iamr  = default_iamr;
1602 #endif
1603 }
1604 
1605 #ifdef CONFIG_PPC64
1606 /**
1607  * Assign a TIDR (thread ID) for task @t and set it in the thread
1608  * structure. For now, we only support setting TIDR for 'current' task.
1609  *
1610  * Since the TID value is a truncated form of it PID, it is possible
1611  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1612  * that 2 threads share the same TID and are waiting, one of the following
1613  * cases will happen:
1614  *
1615  * 1. The correct thread is running, the wrong thread is not
1616  * In this situation, the correct thread is woken and proceeds to pass it's
1617  * condition check.
1618  *
1619  * 2. Neither threads are running
1620  * In this situation, neither thread will be woken. When scheduled, the waiting
1621  * threads will execute either a wait, which will return immediately, followed
1622  * by a condition check, which will pass for the correct thread and fail
1623  * for the wrong thread, or they will execute the condition check immediately.
1624  *
1625  * 3. The wrong thread is running, the correct thread is not
1626  * The wrong thread will be woken, but will fail it's condition check and
1627  * re-execute wait. The correct thread, when scheduled, will execute either
1628  * it's condition check (which will pass), or wait, which returns immediately
1629  * when called the first time after the thread is scheduled, followed by it's
1630  * condition check (which will pass).
1631  *
1632  * 4. Both threads are running
1633  * Both threads will be woken. The wrong thread will fail it's condition check
1634  * and execute another wait, while the correct thread will pass it's condition
1635  * check.
1636  *
1637  * @t: the task to set the thread ID for
1638  */
1639 int set_thread_tidr(struct task_struct *t)
1640 {
1641 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1642 		return -EINVAL;
1643 
1644 	if (t != current)
1645 		return -EINVAL;
1646 
1647 	if (t->thread.tidr)
1648 		return 0;
1649 
1650 	t->thread.tidr = (u16)task_pid_nr(t);
1651 	mtspr(SPRN_TIDR, t->thread.tidr);
1652 
1653 	return 0;
1654 }
1655 EXPORT_SYMBOL_GPL(set_thread_tidr);
1656 
1657 #endif /* CONFIG_PPC64 */
1658 
1659 void
1660 release_thread(struct task_struct *t)
1661 {
1662 }
1663 
1664 /*
1665  * this gets called so that we can store coprocessor state into memory and
1666  * copy the current task into the new thread.
1667  */
1668 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1669 {
1670 	flush_all_to_thread(src);
1671 	/*
1672 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1673 	 * flush but it removes the checkpointed state from the current CPU and
1674 	 * transitions the CPU out of TM mode.  Hence we need to call
1675 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1676 	 * checkpointed state back and the TM mode.
1677 	 *
1678 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1679 	 * dst is only important for __switch_to()
1680 	 */
1681 	__switch_to_tm(src, src);
1682 
1683 	*dst = *src;
1684 
1685 	clear_task_ebb(dst);
1686 
1687 	return 0;
1688 }
1689 
1690 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1691 {
1692 #ifdef CONFIG_PPC_64S_HASH_MMU
1693 	unsigned long sp_vsid;
1694 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1695 
1696 	if (radix_enabled())
1697 		return;
1698 
1699 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1700 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1701 			<< SLB_VSID_SHIFT_1T;
1702 	else
1703 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1704 			<< SLB_VSID_SHIFT;
1705 	sp_vsid |= SLB_VSID_KERNEL | llp;
1706 	p->thread.ksp_vsid = sp_vsid;
1707 #endif
1708 }
1709 
1710 /*
1711  * Copy a thread..
1712  */
1713 
1714 /*
1715  * Copy architecture-specific thread state
1716  */
1717 int copy_thread(unsigned long clone_flags, unsigned long usp,
1718 		unsigned long kthread_arg, struct task_struct *p,
1719 		unsigned long tls)
1720 {
1721 	struct pt_regs *childregs, *kregs;
1722 	extern void ret_from_fork(void);
1723 	extern void ret_from_fork_scv(void);
1724 	extern void ret_from_kernel_thread(void);
1725 	void (*f)(void);
1726 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1727 	struct thread_info *ti = task_thread_info(p);
1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1729 	int i;
1730 #endif
1731 
1732 	klp_init_thread_info(p);
1733 
1734 	/* Copy registers */
1735 	sp -= sizeof(struct pt_regs);
1736 	childregs = (struct pt_regs *) sp;
1737 	if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1738 		/* kernel thread */
1739 		memset(childregs, 0, sizeof(struct pt_regs));
1740 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1741 		/* function */
1742 		if (usp)
1743 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1744 #ifdef CONFIG_PPC64
1745 		clear_tsk_thread_flag(p, TIF_32BIT);
1746 		childregs->softe = IRQS_ENABLED;
1747 #endif
1748 		childregs->gpr[15] = kthread_arg;
1749 		p->thread.regs = NULL;	/* no user register state */
1750 		ti->flags |= _TIF_RESTOREALL;
1751 		f = ret_from_kernel_thread;
1752 	} else {
1753 		/* user thread */
1754 		struct pt_regs *regs = current_pt_regs();
1755 		*childregs = *regs;
1756 		if (usp)
1757 			childregs->gpr[1] = usp;
1758 		p->thread.regs = childregs;
1759 		/* 64s sets this in ret_from_fork */
1760 		if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1761 			childregs->gpr[3] = 0;  /* Result from fork() */
1762 		if (clone_flags & CLONE_SETTLS) {
1763 			if (!is_32bit_task())
1764 				childregs->gpr[13] = tls;
1765 			else
1766 				childregs->gpr[2] = tls;
1767 		}
1768 
1769 		if (trap_is_scv(regs))
1770 			f = ret_from_fork_scv;
1771 		else
1772 			f = ret_from_fork;
1773 	}
1774 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1775 	sp -= STACK_FRAME_OVERHEAD;
1776 
1777 	/*
1778 	 * The way this works is that at some point in the future
1779 	 * some task will call _switch to switch to the new task.
1780 	 * That will pop off the stack frame created below and start
1781 	 * the new task running at ret_from_fork.  The new task will
1782 	 * do some house keeping and then return from the fork or clone
1783 	 * system call, using the stack frame created above.
1784 	 */
1785 	((unsigned long *)sp)[0] = 0;
1786 	sp -= sizeof(struct pt_regs);
1787 	kregs = (struct pt_regs *) sp;
1788 	sp -= STACK_FRAME_OVERHEAD;
1789 	p->thread.ksp = sp;
1790 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1791 	for (i = 0; i < nr_wp_slots(); i++)
1792 		p->thread.ptrace_bps[i] = NULL;
1793 #endif
1794 
1795 #ifdef CONFIG_PPC_FPU_REGS
1796 	p->thread.fp_save_area = NULL;
1797 #endif
1798 #ifdef CONFIG_ALTIVEC
1799 	p->thread.vr_save_area = NULL;
1800 #endif
1801 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1802 	p->thread.kuap = KUAP_NONE;
1803 #endif
1804 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1805 	p->thread.pid = MMU_NO_CONTEXT;
1806 #endif
1807 
1808 	setup_ksp_vsid(p, sp);
1809 
1810 #ifdef CONFIG_PPC64
1811 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1812 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1813 		p->thread.dscr = mfspr(SPRN_DSCR);
1814 	}
1815 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1816 		childregs->ppr = DEFAULT_PPR;
1817 
1818 	p->thread.tidr = 0;
1819 #endif
1820 	/*
1821 	 * Run with the current AMR value of the kernel
1822 	 */
1823 #ifdef CONFIG_PPC_PKEY
1824 	if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1825 		kregs->amr = AMR_KUAP_BLOCKED;
1826 
1827 	if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1828 		kregs->iamr = AMR_KUEP_BLOCKED;
1829 #endif
1830 	kregs->nip = ppc_function_entry(f);
1831 	return 0;
1832 }
1833 
1834 void preload_new_slb_context(unsigned long start, unsigned long sp);
1835 
1836 /*
1837  * Set up a thread for executing a new program
1838  */
1839 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1840 {
1841 #ifdef CONFIG_PPC64
1842 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1843 
1844 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1845 		preload_new_slb_context(start, sp);
1846 #endif
1847 
1848 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1849 	/*
1850 	 * Clear any transactional state, we're exec()ing. The cause is
1851 	 * not important as there will never be a recheckpoint so it's not
1852 	 * user visible.
1853 	 */
1854 	if (MSR_TM_SUSPENDED(mfmsr()))
1855 		tm_reclaim_current(0);
1856 #endif
1857 
1858 	memset(regs->gpr, 0, sizeof(regs->gpr));
1859 	regs->ctr = 0;
1860 	regs->link = 0;
1861 	regs->xer = 0;
1862 	regs->ccr = 0;
1863 	regs->gpr[1] = sp;
1864 
1865 #ifdef CONFIG_PPC32
1866 	regs->mq = 0;
1867 	regs->nip = start;
1868 	regs->msr = MSR_USER;
1869 #else
1870 	if (!is_32bit_task()) {
1871 		unsigned long entry;
1872 
1873 		if (is_elf2_task()) {
1874 			/* Look ma, no function descriptors! */
1875 			entry = start;
1876 
1877 			/*
1878 			 * Ulrich says:
1879 			 *   The latest iteration of the ABI requires that when
1880 			 *   calling a function (at its global entry point),
1881 			 *   the caller must ensure r12 holds the entry point
1882 			 *   address (so that the function can quickly
1883 			 *   establish addressability).
1884 			 */
1885 			regs->gpr[12] = start;
1886 			/* Make sure that's restored on entry to userspace. */
1887 			set_thread_flag(TIF_RESTOREALL);
1888 		} else {
1889 			unsigned long toc;
1890 
1891 			/* start is a relocated pointer to the function
1892 			 * descriptor for the elf _start routine.  The first
1893 			 * entry in the function descriptor is the entry
1894 			 * address of _start and the second entry is the TOC
1895 			 * value we need to use.
1896 			 */
1897 			__get_user(entry, (unsigned long __user *)start);
1898 			__get_user(toc, (unsigned long __user *)start+1);
1899 
1900 			/* Check whether the e_entry function descriptor entries
1901 			 * need to be relocated before we can use them.
1902 			 */
1903 			if (load_addr != 0) {
1904 				entry += load_addr;
1905 				toc   += load_addr;
1906 			}
1907 			regs->gpr[2] = toc;
1908 		}
1909 		regs_set_return_ip(regs, entry);
1910 		regs_set_return_msr(regs, MSR_USER64);
1911 	} else {
1912 		regs->gpr[2] = 0;
1913 		regs_set_return_ip(regs, start);
1914 		regs_set_return_msr(regs, MSR_USER32);
1915 	}
1916 
1917 #endif
1918 #ifdef CONFIG_VSX
1919 	current->thread.used_vsr = 0;
1920 #endif
1921 	current->thread.load_slb = 0;
1922 	current->thread.load_fp = 0;
1923 #ifdef CONFIG_PPC_FPU_REGS
1924 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1925 	current->thread.fp_save_area = NULL;
1926 #endif
1927 #ifdef CONFIG_ALTIVEC
1928 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1929 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1930 	current->thread.vr_save_area = NULL;
1931 	current->thread.vrsave = 0;
1932 	current->thread.used_vr = 0;
1933 	current->thread.load_vec = 0;
1934 #endif /* CONFIG_ALTIVEC */
1935 #ifdef CONFIG_SPE
1936 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1937 	current->thread.acc = 0;
1938 	current->thread.spefscr = 0;
1939 	current->thread.used_spe = 0;
1940 #endif /* CONFIG_SPE */
1941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1942 	current->thread.tm_tfhar = 0;
1943 	current->thread.tm_texasr = 0;
1944 	current->thread.tm_tfiar = 0;
1945 	current->thread.load_tm = 0;
1946 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1947 }
1948 EXPORT_SYMBOL(start_thread);
1949 
1950 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1951 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1952 
1953 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1954 {
1955 	struct pt_regs *regs = tsk->thread.regs;
1956 
1957 	/* This is a bit hairy.  If we are an SPE enabled  processor
1958 	 * (have embedded fp) we store the IEEE exception enable flags in
1959 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1960 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1961 	if (val & PR_FP_EXC_SW_ENABLE) {
1962 		if (cpu_has_feature(CPU_FTR_SPE)) {
1963 			/*
1964 			 * When the sticky exception bits are set
1965 			 * directly by userspace, it must call prctl
1966 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1967 			 * in the existing prctl settings) or
1968 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1969 			 * the bits being set).  <fenv.h> functions
1970 			 * saving and restoring the whole
1971 			 * floating-point environment need to do so
1972 			 * anyway to restore the prctl settings from
1973 			 * the saved environment.
1974 			 */
1975 #ifdef CONFIG_SPE
1976 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1977 			tsk->thread.fpexc_mode = val &
1978 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1979 #endif
1980 			return 0;
1981 		} else {
1982 			return -EINVAL;
1983 		}
1984 	}
1985 
1986 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1987 	 * __pack_fe01 use do not overlap with bits used for
1988 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1989 	 * on CONFIG_SPE implementations are reserved so writing to
1990 	 * them does not change anything */
1991 	if (val > PR_FP_EXC_PRECISE)
1992 		return -EINVAL;
1993 	tsk->thread.fpexc_mode = __pack_fe01(val);
1994 	if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1995 		regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1996 						| tsk->thread.fpexc_mode);
1997 	}
1998 	return 0;
1999 }
2000 
2001 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2002 {
2003 	unsigned int val = 0;
2004 
2005 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2006 		if (cpu_has_feature(CPU_FTR_SPE)) {
2007 			/*
2008 			 * When the sticky exception bits are set
2009 			 * directly by userspace, it must call prctl
2010 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2011 			 * in the existing prctl settings) or
2012 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2013 			 * the bits being set).  <fenv.h> functions
2014 			 * saving and restoring the whole
2015 			 * floating-point environment need to do so
2016 			 * anyway to restore the prctl settings from
2017 			 * the saved environment.
2018 			 */
2019 #ifdef CONFIG_SPE
2020 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2021 			val = tsk->thread.fpexc_mode;
2022 #endif
2023 		} else
2024 			return -EINVAL;
2025 	} else {
2026 		val = __unpack_fe01(tsk->thread.fpexc_mode);
2027 	}
2028 	return put_user(val, (unsigned int __user *) adr);
2029 }
2030 
2031 int set_endian(struct task_struct *tsk, unsigned int val)
2032 {
2033 	struct pt_regs *regs = tsk->thread.regs;
2034 
2035 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2036 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2037 		return -EINVAL;
2038 
2039 	if (regs == NULL)
2040 		return -EINVAL;
2041 
2042 	if (val == PR_ENDIAN_BIG)
2043 		regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2044 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2045 		regs_set_return_msr(regs, regs->msr | MSR_LE);
2046 	else
2047 		return -EINVAL;
2048 
2049 	return 0;
2050 }
2051 
2052 int get_endian(struct task_struct *tsk, unsigned long adr)
2053 {
2054 	struct pt_regs *regs = tsk->thread.regs;
2055 	unsigned int val;
2056 
2057 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2058 	    !cpu_has_feature(CPU_FTR_REAL_LE))
2059 		return -EINVAL;
2060 
2061 	if (regs == NULL)
2062 		return -EINVAL;
2063 
2064 	if (regs->msr & MSR_LE) {
2065 		if (cpu_has_feature(CPU_FTR_REAL_LE))
2066 			val = PR_ENDIAN_LITTLE;
2067 		else
2068 			val = PR_ENDIAN_PPC_LITTLE;
2069 	} else
2070 		val = PR_ENDIAN_BIG;
2071 
2072 	return put_user(val, (unsigned int __user *)adr);
2073 }
2074 
2075 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2076 {
2077 	tsk->thread.align_ctl = val;
2078 	return 0;
2079 }
2080 
2081 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2082 {
2083 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2084 }
2085 
2086 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2087 				  unsigned long nbytes)
2088 {
2089 	unsigned long stack_page;
2090 	unsigned long cpu = task_cpu(p);
2091 
2092 	stack_page = (unsigned long)hardirq_ctx[cpu];
2093 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2094 		return 1;
2095 
2096 	stack_page = (unsigned long)softirq_ctx[cpu];
2097 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2098 		return 1;
2099 
2100 	return 0;
2101 }
2102 
2103 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2104 					unsigned long nbytes)
2105 {
2106 #ifdef CONFIG_PPC64
2107 	unsigned long stack_page;
2108 	unsigned long cpu = task_cpu(p);
2109 
2110 	if (!paca_ptrs)
2111 		return 0;
2112 
2113 	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2114 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2115 		return 1;
2116 
2117 # ifdef CONFIG_PPC_BOOK3S_64
2118 	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2119 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2120 		return 1;
2121 
2122 	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2123 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2124 		return 1;
2125 # endif
2126 #endif
2127 
2128 	return 0;
2129 }
2130 
2131 
2132 int validate_sp(unsigned long sp, struct task_struct *p,
2133 		       unsigned long nbytes)
2134 {
2135 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2136 
2137 	if (sp < THREAD_SIZE)
2138 		return 0;
2139 
2140 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2141 		return 1;
2142 
2143 	if (valid_irq_stack(sp, p, nbytes))
2144 		return 1;
2145 
2146 	return valid_emergency_stack(sp, p, nbytes);
2147 }
2148 
2149 EXPORT_SYMBOL(validate_sp);
2150 
2151 static unsigned long ___get_wchan(struct task_struct *p)
2152 {
2153 	unsigned long ip, sp;
2154 	int count = 0;
2155 
2156 	sp = p->thread.ksp;
2157 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2158 		return 0;
2159 
2160 	do {
2161 		sp = *(unsigned long *)sp;
2162 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2163 		    task_is_running(p))
2164 			return 0;
2165 		if (count > 0) {
2166 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2167 			if (!in_sched_functions(ip))
2168 				return ip;
2169 		}
2170 	} while (count++ < 16);
2171 	return 0;
2172 }
2173 
2174 unsigned long __get_wchan(struct task_struct *p)
2175 {
2176 	unsigned long ret;
2177 
2178 	if (!try_get_task_stack(p))
2179 		return 0;
2180 
2181 	ret = ___get_wchan(p);
2182 
2183 	put_task_stack(p);
2184 
2185 	return ret;
2186 }
2187 
2188 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2189 
2190 void __no_sanitize_address show_stack(struct task_struct *tsk,
2191 				      unsigned long *stack,
2192 				      const char *loglvl)
2193 {
2194 	unsigned long sp, ip, lr, newsp;
2195 	int count = 0;
2196 	int firstframe = 1;
2197 	unsigned long ret_addr;
2198 	int ftrace_idx = 0;
2199 
2200 	if (tsk == NULL)
2201 		tsk = current;
2202 
2203 	if (!try_get_task_stack(tsk))
2204 		return;
2205 
2206 	sp = (unsigned long) stack;
2207 	if (sp == 0) {
2208 		if (tsk == current)
2209 			sp = current_stack_frame();
2210 		else
2211 			sp = tsk->thread.ksp;
2212 	}
2213 
2214 	lr = 0;
2215 	printk("%sCall Trace:\n", loglvl);
2216 	do {
2217 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2218 			break;
2219 
2220 		stack = (unsigned long *) sp;
2221 		newsp = stack[0];
2222 		ip = stack[STACK_FRAME_LR_SAVE];
2223 		if (!firstframe || ip != lr) {
2224 			printk("%s["REG"] ["REG"] %pS",
2225 				loglvl, sp, ip, (void *)ip);
2226 			ret_addr = ftrace_graph_ret_addr(current,
2227 						&ftrace_idx, ip, stack);
2228 			if (ret_addr != ip)
2229 				pr_cont(" (%pS)", (void *)ret_addr);
2230 			if (firstframe)
2231 				pr_cont(" (unreliable)");
2232 			pr_cont("\n");
2233 		}
2234 		firstframe = 0;
2235 
2236 		/*
2237 		 * See if this is an exception frame.
2238 		 * We look for the "regshere" marker in the current frame.
2239 		 */
2240 		if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2241 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2242 			struct pt_regs *regs = (struct pt_regs *)
2243 				(sp + STACK_FRAME_OVERHEAD);
2244 
2245 			lr = regs->link;
2246 			printk("%s--- interrupt: %lx at %pS\n",
2247 			       loglvl, regs->trap, (void *)regs->nip);
2248 			__show_regs(regs);
2249 			printk("%s--- interrupt: %lx\n",
2250 			       loglvl, regs->trap);
2251 
2252 			firstframe = 1;
2253 		}
2254 
2255 		sp = newsp;
2256 	} while (count++ < kstack_depth_to_print);
2257 
2258 	put_task_stack(tsk);
2259 }
2260 
2261 #ifdef CONFIG_PPC64
2262 /* Called with hard IRQs off */
2263 void notrace __ppc64_runlatch_on(void)
2264 {
2265 	struct thread_info *ti = current_thread_info();
2266 
2267 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2268 		/*
2269 		 * Least significant bit (RUN) is the only writable bit of
2270 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2271 		 * earliest ISA where this is the case, but it's convenient.
2272 		 */
2273 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2274 	} else {
2275 		unsigned long ctrl;
2276 
2277 		/*
2278 		 * Some architectures (e.g., Cell) have writable fields other
2279 		 * than RUN, so do the read-modify-write.
2280 		 */
2281 		ctrl = mfspr(SPRN_CTRLF);
2282 		ctrl |= CTRL_RUNLATCH;
2283 		mtspr(SPRN_CTRLT, ctrl);
2284 	}
2285 
2286 	ti->local_flags |= _TLF_RUNLATCH;
2287 }
2288 
2289 /* Called with hard IRQs off */
2290 void notrace __ppc64_runlatch_off(void)
2291 {
2292 	struct thread_info *ti = current_thread_info();
2293 
2294 	ti->local_flags &= ~_TLF_RUNLATCH;
2295 
2296 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2297 		mtspr(SPRN_CTRLT, 0);
2298 	} else {
2299 		unsigned long ctrl;
2300 
2301 		ctrl = mfspr(SPRN_CTRLF);
2302 		ctrl &= ~CTRL_RUNLATCH;
2303 		mtspr(SPRN_CTRLT, ctrl);
2304 	}
2305 }
2306 #endif /* CONFIG_PPC64 */
2307 
2308 unsigned long arch_align_stack(unsigned long sp)
2309 {
2310 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2311 		sp -= get_random_int() & ~PAGE_MASK;
2312 	return sp & ~0xf;
2313 }
2314