1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/hw_breakpoint.h> 38 #include <linux/uaccess.h> 39 #include <linux/pkeys.h> 40 #include <linux/seq_buf.h> 41 42 #include <asm/interrupt.h> 43 #include <asm/io.h> 44 #include <asm/processor.h> 45 #include <asm/mmu.h> 46 #include <asm/prom.h> 47 #include <asm/machdep.h> 48 #include <asm/time.h> 49 #include <asm/runlatch.h> 50 #include <asm/syscalls.h> 51 #include <asm/switch_to.h> 52 #include <asm/tm.h> 53 #include <asm/debug.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/firmware.h> 56 #include <asm/hw_irq.h> 57 #endif 58 #include <asm/code-patching.h> 59 #include <asm/exec.h> 60 #include <asm/livepatch.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/asm-prototypes.h> 63 #include <asm/stacktrace.h> 64 #include <asm/hw_breakpoint.h> 65 66 #include <linux/kprobes.h> 67 #include <linux/kdebug.h> 68 69 /* Transactional Memory debug */ 70 #ifdef TM_DEBUG_SW 71 #define TM_DEBUG(x...) printk(KERN_INFO x) 72 #else 73 #define TM_DEBUG(x...) do { } while(0) 74 #endif 75 76 extern unsigned long _get_SP(void); 77 78 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 79 /* 80 * Are we running in "Suspend disabled" mode? If so we have to block any 81 * sigreturn that would get us into suspended state, and we also warn in some 82 * other paths that we should never reach with suspend disabled. 83 */ 84 bool tm_suspend_disabled __ro_after_init = false; 85 86 static void check_if_tm_restore_required(struct task_struct *tsk) 87 { 88 /* 89 * If we are saving the current thread's registers, and the 90 * thread is in a transactional state, set the TIF_RESTORE_TM 91 * bit so that we know to restore the registers before 92 * returning to userspace. 93 */ 94 if (tsk == current && tsk->thread.regs && 95 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 96 !test_thread_flag(TIF_RESTORE_TM)) { 97 regs_set_return_msr(&tsk->thread.ckpt_regs, 98 tsk->thread.regs->msr); 99 set_thread_flag(TIF_RESTORE_TM); 100 } 101 } 102 103 #else 104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 106 107 bool strict_msr_control; 108 EXPORT_SYMBOL(strict_msr_control); 109 110 static int __init enable_strict_msr_control(char *str) 111 { 112 strict_msr_control = true; 113 pr_info("Enabling strict facility control\n"); 114 115 return 0; 116 } 117 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 118 119 /* notrace because it's called by restore_math */ 120 unsigned long notrace msr_check_and_set(unsigned long bits) 121 { 122 unsigned long oldmsr = mfmsr(); 123 unsigned long newmsr; 124 125 newmsr = oldmsr | bits; 126 127 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 128 newmsr |= MSR_VSX; 129 130 if (oldmsr != newmsr) 131 mtmsr_isync(newmsr); 132 133 return newmsr; 134 } 135 EXPORT_SYMBOL_GPL(msr_check_and_set); 136 137 /* notrace because it's called by restore_math */ 138 void notrace __msr_check_and_clear(unsigned long bits) 139 { 140 unsigned long oldmsr = mfmsr(); 141 unsigned long newmsr; 142 143 newmsr = oldmsr & ~bits; 144 145 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 146 newmsr &= ~MSR_VSX; 147 148 if (oldmsr != newmsr) 149 mtmsr_isync(newmsr); 150 } 151 EXPORT_SYMBOL(__msr_check_and_clear); 152 153 #ifdef CONFIG_PPC_FPU 154 static void __giveup_fpu(struct task_struct *tsk) 155 { 156 unsigned long msr; 157 158 save_fpu(tsk); 159 msr = tsk->thread.regs->msr; 160 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 161 if (cpu_has_feature(CPU_FTR_VSX)) 162 msr &= ~MSR_VSX; 163 regs_set_return_msr(tsk->thread.regs, msr); 164 } 165 166 void giveup_fpu(struct task_struct *tsk) 167 { 168 check_if_tm_restore_required(tsk); 169 170 msr_check_and_set(MSR_FP); 171 __giveup_fpu(tsk); 172 msr_check_and_clear(MSR_FP); 173 } 174 EXPORT_SYMBOL(giveup_fpu); 175 176 /* 177 * Make sure the floating-point register state in the 178 * the thread_struct is up to date for task tsk. 179 */ 180 void flush_fp_to_thread(struct task_struct *tsk) 181 { 182 if (tsk->thread.regs) { 183 /* 184 * We need to disable preemption here because if we didn't, 185 * another process could get scheduled after the regs->msr 186 * test but before we have finished saving the FP registers 187 * to the thread_struct. That process could take over the 188 * FPU, and then when we get scheduled again we would store 189 * bogus values for the remaining FP registers. 190 */ 191 preempt_disable(); 192 if (tsk->thread.regs->msr & MSR_FP) { 193 /* 194 * This should only ever be called for current or 195 * for a stopped child process. Since we save away 196 * the FP register state on context switch, 197 * there is something wrong if a stopped child appears 198 * to still have its FP state in the CPU registers. 199 */ 200 BUG_ON(tsk != current); 201 giveup_fpu(tsk); 202 } 203 preempt_enable(); 204 } 205 } 206 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 207 208 void enable_kernel_fp(void) 209 { 210 unsigned long cpumsr; 211 212 WARN_ON(preemptible()); 213 214 cpumsr = msr_check_and_set(MSR_FP); 215 216 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 217 check_if_tm_restore_required(current); 218 /* 219 * If a thread has already been reclaimed then the 220 * checkpointed registers are on the CPU but have definitely 221 * been saved by the reclaim code. Don't need to and *cannot* 222 * giveup as this would save to the 'live' structure not the 223 * checkpointed structure. 224 */ 225 if (!MSR_TM_ACTIVE(cpumsr) && 226 MSR_TM_ACTIVE(current->thread.regs->msr)) 227 return; 228 __giveup_fpu(current); 229 } 230 } 231 EXPORT_SYMBOL(enable_kernel_fp); 232 #else 233 static inline void __giveup_fpu(struct task_struct *tsk) { } 234 #endif /* CONFIG_PPC_FPU */ 235 236 #ifdef CONFIG_ALTIVEC 237 static void __giveup_altivec(struct task_struct *tsk) 238 { 239 unsigned long msr; 240 241 save_altivec(tsk); 242 msr = tsk->thread.regs->msr; 243 msr &= ~MSR_VEC; 244 if (cpu_has_feature(CPU_FTR_VSX)) 245 msr &= ~MSR_VSX; 246 regs_set_return_msr(tsk->thread.regs, msr); 247 } 248 249 void giveup_altivec(struct task_struct *tsk) 250 { 251 check_if_tm_restore_required(tsk); 252 253 msr_check_and_set(MSR_VEC); 254 __giveup_altivec(tsk); 255 msr_check_and_clear(MSR_VEC); 256 } 257 EXPORT_SYMBOL(giveup_altivec); 258 259 void enable_kernel_altivec(void) 260 { 261 unsigned long cpumsr; 262 263 WARN_ON(preemptible()); 264 265 cpumsr = msr_check_and_set(MSR_VEC); 266 267 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 268 check_if_tm_restore_required(current); 269 /* 270 * If a thread has already been reclaimed then the 271 * checkpointed registers are on the CPU but have definitely 272 * been saved by the reclaim code. Don't need to and *cannot* 273 * giveup as this would save to the 'live' structure not the 274 * checkpointed structure. 275 */ 276 if (!MSR_TM_ACTIVE(cpumsr) && 277 MSR_TM_ACTIVE(current->thread.regs->msr)) 278 return; 279 __giveup_altivec(current); 280 } 281 } 282 EXPORT_SYMBOL(enable_kernel_altivec); 283 284 /* 285 * Make sure the VMX/Altivec register state in the 286 * the thread_struct is up to date for task tsk. 287 */ 288 void flush_altivec_to_thread(struct task_struct *tsk) 289 { 290 if (tsk->thread.regs) { 291 preempt_disable(); 292 if (tsk->thread.regs->msr & MSR_VEC) { 293 BUG_ON(tsk != current); 294 giveup_altivec(tsk); 295 } 296 preempt_enable(); 297 } 298 } 299 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 300 #endif /* CONFIG_ALTIVEC */ 301 302 #ifdef CONFIG_VSX 303 static void __giveup_vsx(struct task_struct *tsk) 304 { 305 unsigned long msr = tsk->thread.regs->msr; 306 307 /* 308 * We should never be setting MSR_VSX without also setting 309 * MSR_FP and MSR_VEC 310 */ 311 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 312 313 /* __giveup_fpu will clear MSR_VSX */ 314 if (msr & MSR_FP) 315 __giveup_fpu(tsk); 316 if (msr & MSR_VEC) 317 __giveup_altivec(tsk); 318 } 319 320 static void giveup_vsx(struct task_struct *tsk) 321 { 322 check_if_tm_restore_required(tsk); 323 324 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 325 __giveup_vsx(tsk); 326 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 327 } 328 329 void enable_kernel_vsx(void) 330 { 331 unsigned long cpumsr; 332 333 WARN_ON(preemptible()); 334 335 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 336 337 if (current->thread.regs && 338 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 339 check_if_tm_restore_required(current); 340 /* 341 * If a thread has already been reclaimed then the 342 * checkpointed registers are on the CPU but have definitely 343 * been saved by the reclaim code. Don't need to and *cannot* 344 * giveup as this would save to the 'live' structure not the 345 * checkpointed structure. 346 */ 347 if (!MSR_TM_ACTIVE(cpumsr) && 348 MSR_TM_ACTIVE(current->thread.regs->msr)) 349 return; 350 __giveup_vsx(current); 351 } 352 } 353 EXPORT_SYMBOL(enable_kernel_vsx); 354 355 void flush_vsx_to_thread(struct task_struct *tsk) 356 { 357 if (tsk->thread.regs) { 358 preempt_disable(); 359 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 360 BUG_ON(tsk != current); 361 giveup_vsx(tsk); 362 } 363 preempt_enable(); 364 } 365 } 366 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 367 #endif /* CONFIG_VSX */ 368 369 #ifdef CONFIG_SPE 370 void giveup_spe(struct task_struct *tsk) 371 { 372 check_if_tm_restore_required(tsk); 373 374 msr_check_and_set(MSR_SPE); 375 __giveup_spe(tsk); 376 msr_check_and_clear(MSR_SPE); 377 } 378 EXPORT_SYMBOL(giveup_spe); 379 380 void enable_kernel_spe(void) 381 { 382 WARN_ON(preemptible()); 383 384 msr_check_and_set(MSR_SPE); 385 386 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 387 check_if_tm_restore_required(current); 388 __giveup_spe(current); 389 } 390 } 391 EXPORT_SYMBOL(enable_kernel_spe); 392 393 void flush_spe_to_thread(struct task_struct *tsk) 394 { 395 if (tsk->thread.regs) { 396 preempt_disable(); 397 if (tsk->thread.regs->msr & MSR_SPE) { 398 BUG_ON(tsk != current); 399 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 400 giveup_spe(tsk); 401 } 402 preempt_enable(); 403 } 404 } 405 #endif /* CONFIG_SPE */ 406 407 static unsigned long msr_all_available; 408 409 static int __init init_msr_all_available(void) 410 { 411 if (IS_ENABLED(CONFIG_PPC_FPU)) 412 msr_all_available |= MSR_FP; 413 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 414 msr_all_available |= MSR_VEC; 415 if (cpu_has_feature(CPU_FTR_VSX)) 416 msr_all_available |= MSR_VSX; 417 if (cpu_has_feature(CPU_FTR_SPE)) 418 msr_all_available |= MSR_SPE; 419 420 return 0; 421 } 422 early_initcall(init_msr_all_available); 423 424 void giveup_all(struct task_struct *tsk) 425 { 426 unsigned long usermsr; 427 428 if (!tsk->thread.regs) 429 return; 430 431 check_if_tm_restore_required(tsk); 432 433 usermsr = tsk->thread.regs->msr; 434 435 if ((usermsr & msr_all_available) == 0) 436 return; 437 438 msr_check_and_set(msr_all_available); 439 440 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 441 442 if (usermsr & MSR_FP) 443 __giveup_fpu(tsk); 444 if (usermsr & MSR_VEC) 445 __giveup_altivec(tsk); 446 if (usermsr & MSR_SPE) 447 __giveup_spe(tsk); 448 449 msr_check_and_clear(msr_all_available); 450 } 451 EXPORT_SYMBOL(giveup_all); 452 453 #ifdef CONFIG_PPC_BOOK3S_64 454 #ifdef CONFIG_PPC_FPU 455 static bool should_restore_fp(void) 456 { 457 if (current->thread.load_fp) { 458 current->thread.load_fp++; 459 return true; 460 } 461 return false; 462 } 463 464 static void do_restore_fp(void) 465 { 466 load_fp_state(¤t->thread.fp_state); 467 } 468 #else 469 static bool should_restore_fp(void) { return false; } 470 static void do_restore_fp(void) { } 471 #endif /* CONFIG_PPC_FPU */ 472 473 #ifdef CONFIG_ALTIVEC 474 static bool should_restore_altivec(void) 475 { 476 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { 477 current->thread.load_vec++; 478 return true; 479 } 480 return false; 481 } 482 483 static void do_restore_altivec(void) 484 { 485 load_vr_state(¤t->thread.vr_state); 486 current->thread.used_vr = 1; 487 } 488 #else 489 static bool should_restore_altivec(void) { return false; } 490 static void do_restore_altivec(void) { } 491 #endif /* CONFIG_ALTIVEC */ 492 493 static bool should_restore_vsx(void) 494 { 495 if (cpu_has_feature(CPU_FTR_VSX)) 496 return true; 497 return false; 498 } 499 #ifdef CONFIG_VSX 500 static void do_restore_vsx(void) 501 { 502 current->thread.used_vsr = 1; 503 } 504 #else 505 static void do_restore_vsx(void) { } 506 #endif /* CONFIG_VSX */ 507 508 /* 509 * The exception exit path calls restore_math() with interrupts hard disabled 510 * but the soft irq state not "reconciled". ftrace code that calls 511 * local_irq_save/restore causes warnings. 512 * 513 * Rather than complicate the exit path, just don't trace restore_math. This 514 * could be done by having ftrace entry code check for this un-reconciled 515 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 516 * temporarily fix it up for the duration of the ftrace call. 517 */ 518 void notrace restore_math(struct pt_regs *regs) 519 { 520 unsigned long msr; 521 unsigned long new_msr = 0; 522 523 msr = regs->msr; 524 525 /* 526 * new_msr tracks the facilities that are to be restored. Only reload 527 * if the bit is not set in the user MSR (if it is set, the registers 528 * are live for the user thread). 529 */ 530 if ((!(msr & MSR_FP)) && should_restore_fp()) 531 new_msr |= MSR_FP; 532 533 if ((!(msr & MSR_VEC)) && should_restore_altivec()) 534 new_msr |= MSR_VEC; 535 536 if ((!(msr & MSR_VSX)) && should_restore_vsx()) { 537 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) 538 new_msr |= MSR_VSX; 539 } 540 541 if (new_msr) { 542 unsigned long fpexc_mode = 0; 543 544 msr_check_and_set(new_msr); 545 546 if (new_msr & MSR_FP) { 547 do_restore_fp(); 548 549 // This also covers VSX, because VSX implies FP 550 fpexc_mode = current->thread.fpexc_mode; 551 } 552 553 if (new_msr & MSR_VEC) 554 do_restore_altivec(); 555 556 if (new_msr & MSR_VSX) 557 do_restore_vsx(); 558 559 msr_check_and_clear(new_msr); 560 561 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode); 562 } 563 } 564 #endif /* CONFIG_PPC_BOOK3S_64 */ 565 566 static void save_all(struct task_struct *tsk) 567 { 568 unsigned long usermsr; 569 570 if (!tsk->thread.regs) 571 return; 572 573 usermsr = tsk->thread.regs->msr; 574 575 if ((usermsr & msr_all_available) == 0) 576 return; 577 578 msr_check_and_set(msr_all_available); 579 580 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 581 582 if (usermsr & MSR_FP) 583 save_fpu(tsk); 584 585 if (usermsr & MSR_VEC) 586 save_altivec(tsk); 587 588 if (usermsr & MSR_SPE) 589 __giveup_spe(tsk); 590 591 msr_check_and_clear(msr_all_available); 592 } 593 594 void flush_all_to_thread(struct task_struct *tsk) 595 { 596 if (tsk->thread.regs) { 597 preempt_disable(); 598 BUG_ON(tsk != current); 599 #ifdef CONFIG_SPE 600 if (tsk->thread.regs->msr & MSR_SPE) 601 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 602 #endif 603 save_all(tsk); 604 605 preempt_enable(); 606 } 607 } 608 EXPORT_SYMBOL(flush_all_to_thread); 609 610 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 611 void do_send_trap(struct pt_regs *regs, unsigned long address, 612 unsigned long error_code, int breakpt) 613 { 614 current->thread.trap_nr = TRAP_HWBKPT; 615 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 616 11, SIGSEGV) == NOTIFY_STOP) 617 return; 618 619 /* Deliver the signal to userspace */ 620 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 621 (void __user *)address); 622 } 623 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 624 625 static void do_break_handler(struct pt_regs *regs) 626 { 627 struct arch_hw_breakpoint null_brk = {0}; 628 struct arch_hw_breakpoint *info; 629 ppc_inst_t instr = ppc_inst(0); 630 int type = 0; 631 int size = 0; 632 unsigned long ea; 633 int i; 634 635 /* 636 * If underneath hw supports only one watchpoint, we know it 637 * caused exception. 8xx also falls into this category. 638 */ 639 if (nr_wp_slots() == 1) { 640 __set_breakpoint(0, &null_brk); 641 current->thread.hw_brk[0] = null_brk; 642 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED; 643 return; 644 } 645 646 /* Otherwise find out which DAWR caused exception and disable it. */ 647 wp_get_instr_detail(regs, &instr, &type, &size, &ea); 648 649 for (i = 0; i < nr_wp_slots(); i++) { 650 info = ¤t->thread.hw_brk[i]; 651 if (!info->address) 652 continue; 653 654 if (wp_check_constraints(regs, instr, ea, type, size, info)) { 655 __set_breakpoint(i, &null_brk); 656 current->thread.hw_brk[i] = null_brk; 657 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED; 658 } 659 } 660 } 661 662 DEFINE_INTERRUPT_HANDLER(do_break) 663 { 664 current->thread.trap_nr = TRAP_HWBKPT; 665 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr, 666 11, SIGSEGV) == NOTIFY_STOP) 667 return; 668 669 if (debugger_break_match(regs)) 670 return; 671 672 /* 673 * We reach here only when watchpoint exception is generated by ptrace 674 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set, 675 * watchpoint is already handled by hw_breakpoint_handler() so we don't 676 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set, 677 * we need to manually handle the watchpoint here. 678 */ 679 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT)) 680 do_break_handler(regs); 681 682 /* Deliver the signal to userspace */ 683 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar); 684 } 685 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 686 687 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 688 689 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 690 /* 691 * Set the debug registers back to their default "safe" values. 692 */ 693 static void set_debug_reg_defaults(struct thread_struct *thread) 694 { 695 thread->debug.iac1 = thread->debug.iac2 = 0; 696 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 697 thread->debug.iac3 = thread->debug.iac4 = 0; 698 #endif 699 thread->debug.dac1 = thread->debug.dac2 = 0; 700 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 701 thread->debug.dvc1 = thread->debug.dvc2 = 0; 702 #endif 703 thread->debug.dbcr0 = 0; 704 #ifdef CONFIG_BOOKE 705 /* 706 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 707 */ 708 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 709 DBCR1_IAC3US | DBCR1_IAC4US; 710 /* 711 * Force Data Address Compare User/Supervisor bits to be User-only 712 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 713 */ 714 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 715 #else 716 thread->debug.dbcr1 = 0; 717 #endif 718 } 719 720 static void prime_debug_regs(struct debug_reg *debug) 721 { 722 /* 723 * We could have inherited MSR_DE from userspace, since 724 * it doesn't get cleared on exception entry. Make sure 725 * MSR_DE is clear before we enable any debug events. 726 */ 727 mtmsr(mfmsr() & ~MSR_DE); 728 729 mtspr(SPRN_IAC1, debug->iac1); 730 mtspr(SPRN_IAC2, debug->iac2); 731 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 732 mtspr(SPRN_IAC3, debug->iac3); 733 mtspr(SPRN_IAC4, debug->iac4); 734 #endif 735 mtspr(SPRN_DAC1, debug->dac1); 736 mtspr(SPRN_DAC2, debug->dac2); 737 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 738 mtspr(SPRN_DVC1, debug->dvc1); 739 mtspr(SPRN_DVC2, debug->dvc2); 740 #endif 741 mtspr(SPRN_DBCR0, debug->dbcr0); 742 mtspr(SPRN_DBCR1, debug->dbcr1); 743 #ifdef CONFIG_BOOKE 744 mtspr(SPRN_DBCR2, debug->dbcr2); 745 #endif 746 } 747 /* 748 * Unless neither the old or new thread are making use of the 749 * debug registers, set the debug registers from the values 750 * stored in the new thread. 751 */ 752 void switch_booke_debug_regs(struct debug_reg *new_debug) 753 { 754 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 755 || (new_debug->dbcr0 & DBCR0_IDM)) 756 prime_debug_regs(new_debug); 757 } 758 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 759 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 760 #ifndef CONFIG_HAVE_HW_BREAKPOINT 761 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 762 { 763 preempt_disable(); 764 __set_breakpoint(i, brk); 765 preempt_enable(); 766 } 767 768 static void set_debug_reg_defaults(struct thread_struct *thread) 769 { 770 int i; 771 struct arch_hw_breakpoint null_brk = {0}; 772 773 for (i = 0; i < nr_wp_slots(); i++) { 774 thread->hw_brk[i] = null_brk; 775 if (ppc_breakpoint_available()) 776 set_breakpoint(i, &thread->hw_brk[i]); 777 } 778 } 779 780 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 781 struct arch_hw_breakpoint *b) 782 { 783 if (a->address != b->address) 784 return false; 785 if (a->type != b->type) 786 return false; 787 if (a->len != b->len) 788 return false; 789 /* no need to check hw_len. it's calculated from address and len */ 790 return true; 791 } 792 793 static void switch_hw_breakpoint(struct task_struct *new) 794 { 795 int i; 796 797 for (i = 0; i < nr_wp_slots(); i++) { 798 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 799 &new->thread.hw_brk[i]))) 800 continue; 801 802 __set_breakpoint(i, &new->thread.hw_brk[i]); 803 } 804 } 805 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 806 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 807 808 static inline int set_dabr(struct arch_hw_breakpoint *brk) 809 { 810 unsigned long dabr, dabrx; 811 812 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 813 dabrx = ((brk->type >> 3) & 0x7); 814 815 if (ppc_md.set_dabr) 816 return ppc_md.set_dabr(dabr, dabrx); 817 818 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) { 819 mtspr(SPRN_DAC1, dabr); 820 if (IS_ENABLED(CONFIG_PPC_47x)) 821 isync(); 822 return 0; 823 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 824 mtspr(SPRN_DABR, dabr); 825 if (cpu_has_feature(CPU_FTR_DABRX)) 826 mtspr(SPRN_DABRX, dabrx); 827 return 0; 828 } else { 829 return -EINVAL; 830 } 831 } 832 833 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 834 { 835 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 836 LCTRL1_CRWF_RW; 837 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 838 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 839 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 840 841 if (start_addr == 0) 842 lctrl2 |= LCTRL2_LW0LA_F; 843 else if (end_addr == 0) 844 lctrl2 |= LCTRL2_LW0LA_E; 845 else 846 lctrl2 |= LCTRL2_LW0LA_EandF; 847 848 mtspr(SPRN_LCTRL2, 0); 849 850 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 851 return 0; 852 853 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 854 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 855 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 856 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 857 858 mtspr(SPRN_CMPE, start_addr - 1); 859 mtspr(SPRN_CMPF, end_addr); 860 mtspr(SPRN_LCTRL1, lctrl1); 861 mtspr(SPRN_LCTRL2, lctrl2); 862 863 return 0; 864 } 865 866 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 867 { 868 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 869 870 if (dawr_enabled()) 871 // Power8 or later 872 set_dawr(nr, brk); 873 else if (IS_ENABLED(CONFIG_PPC_8xx)) 874 set_breakpoint_8xx(brk); 875 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 876 // Power7 or earlier 877 set_dabr(brk); 878 else 879 // Shouldn't happen due to higher level checks 880 WARN_ON_ONCE(1); 881 } 882 883 /* Check if we have DAWR or DABR hardware */ 884 bool ppc_breakpoint_available(void) 885 { 886 if (dawr_enabled()) 887 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 888 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 889 return false; /* POWER9 with DAWR disabled */ 890 /* DABR: Everything but POWER8 and POWER9 */ 891 return true; 892 } 893 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 894 895 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 896 897 static inline bool tm_enabled(struct task_struct *tsk) 898 { 899 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 900 } 901 902 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 903 { 904 /* 905 * Use the current MSR TM suspended bit to track if we have 906 * checkpointed state outstanding. 907 * On signal delivery, we'd normally reclaim the checkpointed 908 * state to obtain stack pointer (see:get_tm_stackpointer()). 909 * This will then directly return to userspace without going 910 * through __switch_to(). However, if the stack frame is bad, 911 * we need to exit this thread which calls __switch_to() which 912 * will again attempt to reclaim the already saved tm state. 913 * Hence we need to check that we've not already reclaimed 914 * this state. 915 * We do this using the current MSR, rather tracking it in 916 * some specific thread_struct bit, as it has the additional 917 * benefit of checking for a potential TM bad thing exception. 918 */ 919 if (!MSR_TM_SUSPENDED(mfmsr())) 920 return; 921 922 giveup_all(container_of(thr, struct task_struct, thread)); 923 924 tm_reclaim(thr, cause); 925 926 /* 927 * If we are in a transaction and FP is off then we can't have 928 * used FP inside that transaction. Hence the checkpointed 929 * state is the same as the live state. We need to copy the 930 * live state to the checkpointed state so that when the 931 * transaction is restored, the checkpointed state is correct 932 * and the aborted transaction sees the correct state. We use 933 * ckpt_regs.msr here as that's what tm_reclaim will use to 934 * determine if it's going to write the checkpointed state or 935 * not. So either this will write the checkpointed registers, 936 * or reclaim will. Similarly for VMX. 937 */ 938 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 939 memcpy(&thr->ckfp_state, &thr->fp_state, 940 sizeof(struct thread_fp_state)); 941 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 942 memcpy(&thr->ckvr_state, &thr->vr_state, 943 sizeof(struct thread_vr_state)); 944 } 945 946 void tm_reclaim_current(uint8_t cause) 947 { 948 tm_enable(); 949 tm_reclaim_thread(¤t->thread, cause); 950 } 951 952 static inline void tm_reclaim_task(struct task_struct *tsk) 953 { 954 /* We have to work out if we're switching from/to a task that's in the 955 * middle of a transaction. 956 * 957 * In switching we need to maintain a 2nd register state as 958 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 959 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 960 * ckvr_state 961 * 962 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 963 */ 964 struct thread_struct *thr = &tsk->thread; 965 966 if (!thr->regs) 967 return; 968 969 if (!MSR_TM_ACTIVE(thr->regs->msr)) 970 goto out_and_saveregs; 971 972 WARN_ON(tm_suspend_disabled); 973 974 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 975 "ccr=%lx, msr=%lx, trap=%lx)\n", 976 tsk->pid, thr->regs->nip, 977 thr->regs->ccr, thr->regs->msr, 978 thr->regs->trap); 979 980 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 981 982 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 983 tsk->pid); 984 985 out_and_saveregs: 986 /* Always save the regs here, even if a transaction's not active. 987 * This context-switches a thread's TM info SPRs. We do it here to 988 * be consistent with the restore path (in recheckpoint) which 989 * cannot happen later in _switch(). 990 */ 991 tm_save_sprs(thr); 992 } 993 994 extern void __tm_recheckpoint(struct thread_struct *thread); 995 996 void tm_recheckpoint(struct thread_struct *thread) 997 { 998 unsigned long flags; 999 1000 if (!(thread->regs->msr & MSR_TM)) 1001 return; 1002 1003 /* We really can't be interrupted here as the TEXASR registers can't 1004 * change and later in the trecheckpoint code, we have a userspace R1. 1005 * So let's hard disable over this region. 1006 */ 1007 local_irq_save(flags); 1008 hard_irq_disable(); 1009 1010 /* The TM SPRs are restored here, so that TEXASR.FS can be set 1011 * before the trecheckpoint and no explosion occurs. 1012 */ 1013 tm_restore_sprs(thread); 1014 1015 __tm_recheckpoint(thread); 1016 1017 local_irq_restore(flags); 1018 } 1019 1020 static inline void tm_recheckpoint_new_task(struct task_struct *new) 1021 { 1022 if (!cpu_has_feature(CPU_FTR_TM)) 1023 return; 1024 1025 /* Recheckpoint the registers of the thread we're about to switch to. 1026 * 1027 * If the task was using FP, we non-lazily reload both the original and 1028 * the speculative FP register states. This is because the kernel 1029 * doesn't see if/when a TM rollback occurs, so if we take an FP 1030 * unavailable later, we are unable to determine which set of FP regs 1031 * need to be restored. 1032 */ 1033 if (!tm_enabled(new)) 1034 return; 1035 1036 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1037 tm_restore_sprs(&new->thread); 1038 return; 1039 } 1040 /* Recheckpoint to restore original checkpointed register state. */ 1041 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1042 new->pid, new->thread.regs->msr); 1043 1044 tm_recheckpoint(&new->thread); 1045 1046 /* 1047 * The checkpointed state has been restored but the live state has 1048 * not, ensure all the math functionality is turned off to trigger 1049 * restore_math() to reload. 1050 */ 1051 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1052 1053 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1054 "(kernel msr 0x%lx)\n", 1055 new->pid, mfmsr()); 1056 } 1057 1058 static inline void __switch_to_tm(struct task_struct *prev, 1059 struct task_struct *new) 1060 { 1061 if (cpu_has_feature(CPU_FTR_TM)) { 1062 if (tm_enabled(prev) || tm_enabled(new)) 1063 tm_enable(); 1064 1065 if (tm_enabled(prev)) { 1066 prev->thread.load_tm++; 1067 tm_reclaim_task(prev); 1068 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1069 prev->thread.regs->msr &= ~MSR_TM; 1070 } 1071 1072 tm_recheckpoint_new_task(new); 1073 } 1074 } 1075 1076 /* 1077 * This is called if we are on the way out to userspace and the 1078 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1079 * FP and/or vector state and does so if necessary. 1080 * If userspace is inside a transaction (whether active or 1081 * suspended) and FP/VMX/VSX instructions have ever been enabled 1082 * inside that transaction, then we have to keep them enabled 1083 * and keep the FP/VMX/VSX state loaded while ever the transaction 1084 * continues. The reason is that if we didn't, and subsequently 1085 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1086 * we don't know whether it's the same transaction, and thus we 1087 * don't know which of the checkpointed state and the transactional 1088 * state to use. 1089 */ 1090 void restore_tm_state(struct pt_regs *regs) 1091 { 1092 unsigned long msr_diff; 1093 1094 /* 1095 * This is the only moment we should clear TIF_RESTORE_TM as 1096 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1097 * again, anything else could lead to an incorrect ckpt_msr being 1098 * saved and therefore incorrect signal contexts. 1099 */ 1100 clear_thread_flag(TIF_RESTORE_TM); 1101 if (!MSR_TM_ACTIVE(regs->msr)) 1102 return; 1103 1104 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1105 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1106 1107 /* Ensure that restore_math() will restore */ 1108 if (msr_diff & MSR_FP) 1109 current->thread.load_fp = 1; 1110 #ifdef CONFIG_ALTIVEC 1111 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1112 current->thread.load_vec = 1; 1113 #endif 1114 restore_math(regs); 1115 1116 regs_set_return_msr(regs, regs->msr | msr_diff); 1117 } 1118 1119 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */ 1120 #define tm_recheckpoint_new_task(new) 1121 #define __switch_to_tm(prev, new) 1122 void tm_reclaim_current(uint8_t cause) {} 1123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1124 1125 static inline void save_sprs(struct thread_struct *t) 1126 { 1127 #ifdef CONFIG_ALTIVEC 1128 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1129 t->vrsave = mfspr(SPRN_VRSAVE); 1130 #endif 1131 #ifdef CONFIG_SPE 1132 if (cpu_has_feature(CPU_FTR_SPE)) 1133 t->spefscr = mfspr(SPRN_SPEFSCR); 1134 #endif 1135 #ifdef CONFIG_PPC_BOOK3S_64 1136 if (cpu_has_feature(CPU_FTR_DSCR)) 1137 t->dscr = mfspr(SPRN_DSCR); 1138 1139 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1140 t->bescr = mfspr(SPRN_BESCR); 1141 t->ebbhr = mfspr(SPRN_EBBHR); 1142 t->ebbrr = mfspr(SPRN_EBBRR); 1143 1144 t->fscr = mfspr(SPRN_FSCR); 1145 1146 /* 1147 * Note that the TAR is not available for use in the kernel. 1148 * (To provide this, the TAR should be backed up/restored on 1149 * exception entry/exit instead, and be in pt_regs. FIXME, 1150 * this should be in pt_regs anyway (for debug).) 1151 */ 1152 t->tar = mfspr(SPRN_TAR); 1153 } 1154 #endif 1155 } 1156 1157 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1158 void kvmppc_save_user_regs(void) 1159 { 1160 unsigned long usermsr; 1161 1162 if (!current->thread.regs) 1163 return; 1164 1165 usermsr = current->thread.regs->msr; 1166 1167 if (usermsr & MSR_FP) 1168 save_fpu(current); 1169 1170 if (usermsr & MSR_VEC) 1171 save_altivec(current); 1172 1173 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1174 if (usermsr & MSR_TM) { 1175 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 1176 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 1177 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 1178 current->thread.regs->msr &= ~MSR_TM; 1179 } 1180 #endif 1181 } 1182 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs); 1183 1184 void kvmppc_save_current_sprs(void) 1185 { 1186 save_sprs(¤t->thread); 1187 } 1188 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs); 1189 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1190 1191 static inline void restore_sprs(struct thread_struct *old_thread, 1192 struct thread_struct *new_thread) 1193 { 1194 #ifdef CONFIG_ALTIVEC 1195 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1196 old_thread->vrsave != new_thread->vrsave) 1197 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1198 #endif 1199 #ifdef CONFIG_SPE 1200 if (cpu_has_feature(CPU_FTR_SPE) && 1201 old_thread->spefscr != new_thread->spefscr) 1202 mtspr(SPRN_SPEFSCR, new_thread->spefscr); 1203 #endif 1204 #ifdef CONFIG_PPC_BOOK3S_64 1205 if (cpu_has_feature(CPU_FTR_DSCR)) { 1206 u64 dscr = get_paca()->dscr_default; 1207 if (new_thread->dscr_inherit) 1208 dscr = new_thread->dscr; 1209 1210 if (old_thread->dscr != dscr) 1211 mtspr(SPRN_DSCR, dscr); 1212 } 1213 1214 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1215 if (old_thread->bescr != new_thread->bescr) 1216 mtspr(SPRN_BESCR, new_thread->bescr); 1217 if (old_thread->ebbhr != new_thread->ebbhr) 1218 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1219 if (old_thread->ebbrr != new_thread->ebbrr) 1220 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1221 1222 if (old_thread->fscr != new_thread->fscr) 1223 mtspr(SPRN_FSCR, new_thread->fscr); 1224 1225 if (old_thread->tar != new_thread->tar) 1226 mtspr(SPRN_TAR, new_thread->tar); 1227 } 1228 1229 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1230 old_thread->tidr != new_thread->tidr) 1231 mtspr(SPRN_TIDR, new_thread->tidr); 1232 #endif 1233 1234 } 1235 1236 struct task_struct *__switch_to(struct task_struct *prev, 1237 struct task_struct *new) 1238 { 1239 struct thread_struct *new_thread, *old_thread; 1240 struct task_struct *last; 1241 #ifdef CONFIG_PPC_64S_HASH_MMU 1242 struct ppc64_tlb_batch *batch; 1243 #endif 1244 1245 new_thread = &new->thread; 1246 old_thread = ¤t->thread; 1247 1248 WARN_ON(!irqs_disabled()); 1249 1250 #ifdef CONFIG_PPC_64S_HASH_MMU 1251 batch = this_cpu_ptr(&ppc64_tlb_batch); 1252 if (batch->active) { 1253 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1254 if (batch->index) 1255 __flush_tlb_pending(batch); 1256 batch->active = 0; 1257 } 1258 1259 /* 1260 * On POWER9 the copy-paste buffer can only paste into 1261 * foreign real addresses, so unprivileged processes can not 1262 * see the data or use it in any way unless they have 1263 * foreign real mappings. If the new process has the foreign 1264 * real address mappings, we must issue a cp_abort to clear 1265 * any state and prevent snooping, corruption or a covert 1266 * channel. ISA v3.1 supports paste into local memory. 1267 */ 1268 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) || 1269 atomic_read(&new->mm->context.vas_windows))) 1270 asm volatile(PPC_CP_ABORT); 1271 #endif /* CONFIG_PPC_BOOK3S_64 */ 1272 1273 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1274 switch_booke_debug_regs(&new->thread.debug); 1275 #else 1276 /* 1277 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1278 * schedule DABR 1279 */ 1280 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1281 switch_hw_breakpoint(new); 1282 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1283 #endif 1284 1285 /* 1286 * We need to save SPRs before treclaim/trecheckpoint as these will 1287 * change a number of them. 1288 */ 1289 save_sprs(&prev->thread); 1290 1291 /* Save FPU, Altivec, VSX and SPE state */ 1292 giveup_all(prev); 1293 1294 __switch_to_tm(prev, new); 1295 1296 if (!radix_enabled()) { 1297 /* 1298 * We can't take a PMU exception inside _switch() since there 1299 * is a window where the kernel stack SLB and the kernel stack 1300 * are out of sync. Hard disable here. 1301 */ 1302 hard_irq_disable(); 1303 } 1304 1305 /* 1306 * Call restore_sprs() and set_return_regs_changed() before calling 1307 * _switch(). If we move it after _switch() then we miss out on calling 1308 * it for new tasks. The reason for this is we manually create a stack 1309 * frame for new tasks that directly returns through ret_from_fork() or 1310 * ret_from_kernel_thread(). See copy_thread() for details. 1311 */ 1312 restore_sprs(old_thread, new_thread); 1313 1314 set_return_regs_changed(); /* _switch changes stack (and regs) */ 1315 1316 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1317 kuap_assert_locked(); 1318 1319 last = _switch(old_thread, new_thread); 1320 1321 /* 1322 * Nothing after _switch will be run for newly created tasks, 1323 * because they switch directly to ret_from_fork/ret_from_kernel_thread 1324 * etc. Code added here should have a comment explaining why that is 1325 * okay. 1326 */ 1327 1328 #ifdef CONFIG_PPC_BOOK3S_64 1329 #ifdef CONFIG_PPC_64S_HASH_MMU 1330 /* 1331 * This applies to a process that was context switched while inside 1332 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was 1333 * deactivated above, before _switch(). This will never be the case 1334 * for new tasks. 1335 */ 1336 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1337 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1338 batch = this_cpu_ptr(&ppc64_tlb_batch); 1339 batch->active = 1; 1340 } 1341 #endif 1342 1343 /* 1344 * Math facilities are masked out of the child MSR in copy_thread. 1345 * A new task does not need to restore_math because it will 1346 * demand fault them. 1347 */ 1348 if (current->thread.regs) 1349 restore_math(current->thread.regs); 1350 #endif /* CONFIG_PPC_BOOK3S_64 */ 1351 1352 return last; 1353 } 1354 1355 #define NR_INSN_TO_PRINT 16 1356 1357 static void show_instructions(struct pt_regs *regs) 1358 { 1359 int i; 1360 unsigned long nip = regs->nip; 1361 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1362 1363 printk("Instruction dump:"); 1364 1365 /* 1366 * If we were executing with the MMU off for instructions, adjust pc 1367 * rather than printing XXXXXXXX. 1368 */ 1369 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { 1370 pc = (unsigned long)phys_to_virt(pc); 1371 nip = (unsigned long)phys_to_virt(regs->nip); 1372 } 1373 1374 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1375 int instr; 1376 1377 if (!(i % 8)) 1378 pr_cont("\n"); 1379 1380 if (!__kernel_text_address(pc) || 1381 get_kernel_nofault(instr, (const void *)pc)) { 1382 pr_cont("XXXXXXXX "); 1383 } else { 1384 if (nip == pc) 1385 pr_cont("<%08x> ", instr); 1386 else 1387 pr_cont("%08x ", instr); 1388 } 1389 1390 pc += sizeof(int); 1391 } 1392 1393 pr_cont("\n"); 1394 } 1395 1396 void show_user_instructions(struct pt_regs *regs) 1397 { 1398 unsigned long pc; 1399 int n = NR_INSN_TO_PRINT; 1400 struct seq_buf s; 1401 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1402 1403 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1404 1405 seq_buf_init(&s, buf, sizeof(buf)); 1406 1407 while (n) { 1408 int i; 1409 1410 seq_buf_clear(&s); 1411 1412 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1413 int instr; 1414 1415 if (copy_from_user_nofault(&instr, (void __user *)pc, 1416 sizeof(instr))) { 1417 seq_buf_printf(&s, "XXXXXXXX "); 1418 continue; 1419 } 1420 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1421 } 1422 1423 if (!seq_buf_has_overflowed(&s)) 1424 pr_info("%s[%d]: code: %s\n", current->comm, 1425 current->pid, s.buffer); 1426 } 1427 } 1428 1429 struct regbit { 1430 unsigned long bit; 1431 const char *name; 1432 }; 1433 1434 static struct regbit msr_bits[] = { 1435 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1436 {MSR_SF, "SF"}, 1437 {MSR_HV, "HV"}, 1438 #endif 1439 {MSR_VEC, "VEC"}, 1440 {MSR_VSX, "VSX"}, 1441 #ifdef CONFIG_BOOKE 1442 {MSR_CE, "CE"}, 1443 #endif 1444 {MSR_EE, "EE"}, 1445 {MSR_PR, "PR"}, 1446 {MSR_FP, "FP"}, 1447 {MSR_ME, "ME"}, 1448 #ifdef CONFIG_BOOKE 1449 {MSR_DE, "DE"}, 1450 #else 1451 {MSR_SE, "SE"}, 1452 {MSR_BE, "BE"}, 1453 #endif 1454 {MSR_IR, "IR"}, 1455 {MSR_DR, "DR"}, 1456 {MSR_PMM, "PMM"}, 1457 #ifndef CONFIG_BOOKE 1458 {MSR_RI, "RI"}, 1459 {MSR_LE, "LE"}, 1460 #endif 1461 {0, NULL} 1462 }; 1463 1464 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1465 { 1466 const char *s = ""; 1467 1468 for (; bits->bit; ++bits) 1469 if (val & bits->bit) { 1470 pr_cont("%s%s", s, bits->name); 1471 s = sep; 1472 } 1473 } 1474 1475 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1476 static struct regbit msr_tm_bits[] = { 1477 {MSR_TS_T, "T"}, 1478 {MSR_TS_S, "S"}, 1479 {MSR_TM, "E"}, 1480 {0, NULL} 1481 }; 1482 1483 static void print_tm_bits(unsigned long val) 1484 { 1485 /* 1486 * This only prints something if at least one of the TM bit is set. 1487 * Inside the TM[], the output means: 1488 * E: Enabled (bit 32) 1489 * S: Suspended (bit 33) 1490 * T: Transactional (bit 34) 1491 */ 1492 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1493 pr_cont(",TM["); 1494 print_bits(val, msr_tm_bits, ""); 1495 pr_cont("]"); 1496 } 1497 } 1498 #else 1499 static void print_tm_bits(unsigned long val) {} 1500 #endif 1501 1502 static void print_msr_bits(unsigned long val) 1503 { 1504 pr_cont("<"); 1505 print_bits(val, msr_bits, ","); 1506 print_tm_bits(val); 1507 pr_cont(">"); 1508 } 1509 1510 #ifdef CONFIG_PPC64 1511 #define REG "%016lx" 1512 #define REGS_PER_LINE 4 1513 #else 1514 #define REG "%08lx" 1515 #define REGS_PER_LINE 8 1516 #endif 1517 1518 static void __show_regs(struct pt_regs *regs) 1519 { 1520 int i, trap; 1521 1522 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1523 regs->nip, regs->link, regs->ctr); 1524 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1525 regs, regs->trap, print_tainted(), init_utsname()->release); 1526 printk("MSR: "REG" ", regs->msr); 1527 print_msr_bits(regs->msr); 1528 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1529 trap = TRAP(regs); 1530 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1531 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1532 if (trap == INTERRUPT_MACHINE_CHECK || 1533 trap == INTERRUPT_DATA_STORAGE || 1534 trap == INTERRUPT_ALIGNMENT) { 1535 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE)) 1536 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr); 1537 else 1538 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1539 } 1540 1541 #ifdef CONFIG_PPC64 1542 pr_cont("IRQMASK: %lx ", regs->softe); 1543 #endif 1544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1545 if (MSR_TM_ACTIVE(regs->msr)) 1546 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1547 #endif 1548 1549 for (i = 0; i < 32; i++) { 1550 if ((i % REGS_PER_LINE) == 0) 1551 pr_cont("\nGPR%02d: ", i); 1552 pr_cont(REG " ", regs->gpr[i]); 1553 } 1554 pr_cont("\n"); 1555 /* 1556 * Lookup NIP late so we have the best change of getting the 1557 * above info out without failing 1558 */ 1559 if (IS_ENABLED(CONFIG_KALLSYMS)) { 1560 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1561 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1562 } 1563 } 1564 1565 void show_regs(struct pt_regs *regs) 1566 { 1567 show_regs_print_info(KERN_DEFAULT); 1568 __show_regs(regs); 1569 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1570 if (!user_mode(regs)) 1571 show_instructions(regs); 1572 } 1573 1574 void flush_thread(void) 1575 { 1576 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1577 flush_ptrace_hw_breakpoint(current); 1578 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1579 set_debug_reg_defaults(¤t->thread); 1580 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1581 } 1582 1583 void arch_setup_new_exec(void) 1584 { 1585 1586 #ifdef CONFIG_PPC_BOOK3S_64 1587 if (!radix_enabled()) 1588 hash__setup_new_exec(); 1589 #endif 1590 /* 1591 * If we exec out of a kernel thread then thread.regs will not be 1592 * set. Do it now. 1593 */ 1594 if (!current->thread.regs) { 1595 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1596 current->thread.regs = regs - 1; 1597 } 1598 1599 #ifdef CONFIG_PPC_MEM_KEYS 1600 current->thread.regs->amr = default_amr; 1601 current->thread.regs->iamr = default_iamr; 1602 #endif 1603 } 1604 1605 #ifdef CONFIG_PPC64 1606 /** 1607 * Assign a TIDR (thread ID) for task @t and set it in the thread 1608 * structure. For now, we only support setting TIDR for 'current' task. 1609 * 1610 * Since the TID value is a truncated form of it PID, it is possible 1611 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1612 * that 2 threads share the same TID and are waiting, one of the following 1613 * cases will happen: 1614 * 1615 * 1. The correct thread is running, the wrong thread is not 1616 * In this situation, the correct thread is woken and proceeds to pass it's 1617 * condition check. 1618 * 1619 * 2. Neither threads are running 1620 * In this situation, neither thread will be woken. When scheduled, the waiting 1621 * threads will execute either a wait, which will return immediately, followed 1622 * by a condition check, which will pass for the correct thread and fail 1623 * for the wrong thread, or they will execute the condition check immediately. 1624 * 1625 * 3. The wrong thread is running, the correct thread is not 1626 * The wrong thread will be woken, but will fail it's condition check and 1627 * re-execute wait. The correct thread, when scheduled, will execute either 1628 * it's condition check (which will pass), or wait, which returns immediately 1629 * when called the first time after the thread is scheduled, followed by it's 1630 * condition check (which will pass). 1631 * 1632 * 4. Both threads are running 1633 * Both threads will be woken. The wrong thread will fail it's condition check 1634 * and execute another wait, while the correct thread will pass it's condition 1635 * check. 1636 * 1637 * @t: the task to set the thread ID for 1638 */ 1639 int set_thread_tidr(struct task_struct *t) 1640 { 1641 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1642 return -EINVAL; 1643 1644 if (t != current) 1645 return -EINVAL; 1646 1647 if (t->thread.tidr) 1648 return 0; 1649 1650 t->thread.tidr = (u16)task_pid_nr(t); 1651 mtspr(SPRN_TIDR, t->thread.tidr); 1652 1653 return 0; 1654 } 1655 EXPORT_SYMBOL_GPL(set_thread_tidr); 1656 1657 #endif /* CONFIG_PPC64 */ 1658 1659 void 1660 release_thread(struct task_struct *t) 1661 { 1662 } 1663 1664 /* 1665 * this gets called so that we can store coprocessor state into memory and 1666 * copy the current task into the new thread. 1667 */ 1668 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1669 { 1670 flush_all_to_thread(src); 1671 /* 1672 * Flush TM state out so we can copy it. __switch_to_tm() does this 1673 * flush but it removes the checkpointed state from the current CPU and 1674 * transitions the CPU out of TM mode. Hence we need to call 1675 * tm_recheckpoint_new_task() (on the same task) to restore the 1676 * checkpointed state back and the TM mode. 1677 * 1678 * Can't pass dst because it isn't ready. Doesn't matter, passing 1679 * dst is only important for __switch_to() 1680 */ 1681 __switch_to_tm(src, src); 1682 1683 *dst = *src; 1684 1685 clear_task_ebb(dst); 1686 1687 return 0; 1688 } 1689 1690 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1691 { 1692 #ifdef CONFIG_PPC_64S_HASH_MMU 1693 unsigned long sp_vsid; 1694 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1695 1696 if (radix_enabled()) 1697 return; 1698 1699 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1700 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1701 << SLB_VSID_SHIFT_1T; 1702 else 1703 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1704 << SLB_VSID_SHIFT; 1705 sp_vsid |= SLB_VSID_KERNEL | llp; 1706 p->thread.ksp_vsid = sp_vsid; 1707 #endif 1708 } 1709 1710 /* 1711 * Copy a thread.. 1712 */ 1713 1714 /* 1715 * Copy architecture-specific thread state 1716 */ 1717 int copy_thread(unsigned long clone_flags, unsigned long usp, 1718 unsigned long kthread_arg, struct task_struct *p, 1719 unsigned long tls) 1720 { 1721 struct pt_regs *childregs, *kregs; 1722 extern void ret_from_fork(void); 1723 extern void ret_from_fork_scv(void); 1724 extern void ret_from_kernel_thread(void); 1725 void (*f)(void); 1726 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1727 struct thread_info *ti = task_thread_info(p); 1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1729 int i; 1730 #endif 1731 1732 klp_init_thread_info(p); 1733 1734 /* Copy registers */ 1735 sp -= sizeof(struct pt_regs); 1736 childregs = (struct pt_regs *) sp; 1737 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) { 1738 /* kernel thread */ 1739 memset(childregs, 0, sizeof(struct pt_regs)); 1740 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1741 /* function */ 1742 if (usp) 1743 childregs->gpr[14] = ppc_function_entry((void *)usp); 1744 #ifdef CONFIG_PPC64 1745 clear_tsk_thread_flag(p, TIF_32BIT); 1746 childregs->softe = IRQS_ENABLED; 1747 #endif 1748 childregs->gpr[15] = kthread_arg; 1749 p->thread.regs = NULL; /* no user register state */ 1750 ti->flags |= _TIF_RESTOREALL; 1751 f = ret_from_kernel_thread; 1752 } else { 1753 /* user thread */ 1754 struct pt_regs *regs = current_pt_regs(); 1755 *childregs = *regs; 1756 if (usp) 1757 childregs->gpr[1] = usp; 1758 p->thread.regs = childregs; 1759 /* 64s sets this in ret_from_fork */ 1760 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1761 childregs->gpr[3] = 0; /* Result from fork() */ 1762 if (clone_flags & CLONE_SETTLS) { 1763 if (!is_32bit_task()) 1764 childregs->gpr[13] = tls; 1765 else 1766 childregs->gpr[2] = tls; 1767 } 1768 1769 if (trap_is_scv(regs)) 1770 f = ret_from_fork_scv; 1771 else 1772 f = ret_from_fork; 1773 } 1774 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1775 sp -= STACK_FRAME_OVERHEAD; 1776 1777 /* 1778 * The way this works is that at some point in the future 1779 * some task will call _switch to switch to the new task. 1780 * That will pop off the stack frame created below and start 1781 * the new task running at ret_from_fork. The new task will 1782 * do some house keeping and then return from the fork or clone 1783 * system call, using the stack frame created above. 1784 */ 1785 ((unsigned long *)sp)[0] = 0; 1786 sp -= sizeof(struct pt_regs); 1787 kregs = (struct pt_regs *) sp; 1788 sp -= STACK_FRAME_OVERHEAD; 1789 p->thread.ksp = sp; 1790 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1791 for (i = 0; i < nr_wp_slots(); i++) 1792 p->thread.ptrace_bps[i] = NULL; 1793 #endif 1794 1795 #ifdef CONFIG_PPC_FPU_REGS 1796 p->thread.fp_save_area = NULL; 1797 #endif 1798 #ifdef CONFIG_ALTIVEC 1799 p->thread.vr_save_area = NULL; 1800 #endif 1801 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP) 1802 p->thread.kuap = KUAP_NONE; 1803 #endif 1804 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP) 1805 p->thread.pid = MMU_NO_CONTEXT; 1806 #endif 1807 1808 setup_ksp_vsid(p, sp); 1809 1810 #ifdef CONFIG_PPC64 1811 if (cpu_has_feature(CPU_FTR_DSCR)) { 1812 p->thread.dscr_inherit = current->thread.dscr_inherit; 1813 p->thread.dscr = mfspr(SPRN_DSCR); 1814 } 1815 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1816 childregs->ppr = DEFAULT_PPR; 1817 1818 p->thread.tidr = 0; 1819 #endif 1820 /* 1821 * Run with the current AMR value of the kernel 1822 */ 1823 #ifdef CONFIG_PPC_PKEY 1824 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP)) 1825 kregs->amr = AMR_KUAP_BLOCKED; 1826 1827 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP)) 1828 kregs->iamr = AMR_KUEP_BLOCKED; 1829 #endif 1830 kregs->nip = ppc_function_entry(f); 1831 return 0; 1832 } 1833 1834 void preload_new_slb_context(unsigned long start, unsigned long sp); 1835 1836 /* 1837 * Set up a thread for executing a new program 1838 */ 1839 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1840 { 1841 #ifdef CONFIG_PPC64 1842 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1843 1844 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled()) 1845 preload_new_slb_context(start, sp); 1846 #endif 1847 1848 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1849 /* 1850 * Clear any transactional state, we're exec()ing. The cause is 1851 * not important as there will never be a recheckpoint so it's not 1852 * user visible. 1853 */ 1854 if (MSR_TM_SUSPENDED(mfmsr())) 1855 tm_reclaim_current(0); 1856 #endif 1857 1858 memset(regs->gpr, 0, sizeof(regs->gpr)); 1859 regs->ctr = 0; 1860 regs->link = 0; 1861 regs->xer = 0; 1862 regs->ccr = 0; 1863 regs->gpr[1] = sp; 1864 1865 #ifdef CONFIG_PPC32 1866 regs->mq = 0; 1867 regs->nip = start; 1868 regs->msr = MSR_USER; 1869 #else 1870 if (!is_32bit_task()) { 1871 unsigned long entry; 1872 1873 if (is_elf2_task()) { 1874 /* Look ma, no function descriptors! */ 1875 entry = start; 1876 1877 /* 1878 * Ulrich says: 1879 * The latest iteration of the ABI requires that when 1880 * calling a function (at its global entry point), 1881 * the caller must ensure r12 holds the entry point 1882 * address (so that the function can quickly 1883 * establish addressability). 1884 */ 1885 regs->gpr[12] = start; 1886 /* Make sure that's restored on entry to userspace. */ 1887 set_thread_flag(TIF_RESTOREALL); 1888 } else { 1889 unsigned long toc; 1890 1891 /* start is a relocated pointer to the function 1892 * descriptor for the elf _start routine. The first 1893 * entry in the function descriptor is the entry 1894 * address of _start and the second entry is the TOC 1895 * value we need to use. 1896 */ 1897 __get_user(entry, (unsigned long __user *)start); 1898 __get_user(toc, (unsigned long __user *)start+1); 1899 1900 /* Check whether the e_entry function descriptor entries 1901 * need to be relocated before we can use them. 1902 */ 1903 if (load_addr != 0) { 1904 entry += load_addr; 1905 toc += load_addr; 1906 } 1907 regs->gpr[2] = toc; 1908 } 1909 regs_set_return_ip(regs, entry); 1910 regs_set_return_msr(regs, MSR_USER64); 1911 } else { 1912 regs->gpr[2] = 0; 1913 regs_set_return_ip(regs, start); 1914 regs_set_return_msr(regs, MSR_USER32); 1915 } 1916 1917 #endif 1918 #ifdef CONFIG_VSX 1919 current->thread.used_vsr = 0; 1920 #endif 1921 current->thread.load_slb = 0; 1922 current->thread.load_fp = 0; 1923 #ifdef CONFIG_PPC_FPU_REGS 1924 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1925 current->thread.fp_save_area = NULL; 1926 #endif 1927 #ifdef CONFIG_ALTIVEC 1928 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1929 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1930 current->thread.vr_save_area = NULL; 1931 current->thread.vrsave = 0; 1932 current->thread.used_vr = 0; 1933 current->thread.load_vec = 0; 1934 #endif /* CONFIG_ALTIVEC */ 1935 #ifdef CONFIG_SPE 1936 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1937 current->thread.acc = 0; 1938 current->thread.spefscr = 0; 1939 current->thread.used_spe = 0; 1940 #endif /* CONFIG_SPE */ 1941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1942 current->thread.tm_tfhar = 0; 1943 current->thread.tm_texasr = 0; 1944 current->thread.tm_tfiar = 0; 1945 current->thread.load_tm = 0; 1946 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1947 } 1948 EXPORT_SYMBOL(start_thread); 1949 1950 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1951 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1952 1953 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1954 { 1955 struct pt_regs *regs = tsk->thread.regs; 1956 1957 /* This is a bit hairy. If we are an SPE enabled processor 1958 * (have embedded fp) we store the IEEE exception enable flags in 1959 * fpexc_mode. fpexc_mode is also used for setting FP exception 1960 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1961 if (val & PR_FP_EXC_SW_ENABLE) { 1962 if (cpu_has_feature(CPU_FTR_SPE)) { 1963 /* 1964 * When the sticky exception bits are set 1965 * directly by userspace, it must call prctl 1966 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1967 * in the existing prctl settings) or 1968 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1969 * the bits being set). <fenv.h> functions 1970 * saving and restoring the whole 1971 * floating-point environment need to do so 1972 * anyway to restore the prctl settings from 1973 * the saved environment. 1974 */ 1975 #ifdef CONFIG_SPE 1976 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1977 tsk->thread.fpexc_mode = val & 1978 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1979 #endif 1980 return 0; 1981 } else { 1982 return -EINVAL; 1983 } 1984 } 1985 1986 /* on a CONFIG_SPE this does not hurt us. The bits that 1987 * __pack_fe01 use do not overlap with bits used for 1988 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1989 * on CONFIG_SPE implementations are reserved so writing to 1990 * them does not change anything */ 1991 if (val > PR_FP_EXC_PRECISE) 1992 return -EINVAL; 1993 tsk->thread.fpexc_mode = __pack_fe01(val); 1994 if (regs != NULL && (regs->msr & MSR_FP) != 0) { 1995 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1)) 1996 | tsk->thread.fpexc_mode); 1997 } 1998 return 0; 1999 } 2000 2001 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 2002 { 2003 unsigned int val = 0; 2004 2005 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) { 2006 if (cpu_has_feature(CPU_FTR_SPE)) { 2007 /* 2008 * When the sticky exception bits are set 2009 * directly by userspace, it must call prctl 2010 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 2011 * in the existing prctl settings) or 2012 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 2013 * the bits being set). <fenv.h> functions 2014 * saving and restoring the whole 2015 * floating-point environment need to do so 2016 * anyway to restore the prctl settings from 2017 * the saved environment. 2018 */ 2019 #ifdef CONFIG_SPE 2020 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 2021 val = tsk->thread.fpexc_mode; 2022 #endif 2023 } else 2024 return -EINVAL; 2025 } else { 2026 val = __unpack_fe01(tsk->thread.fpexc_mode); 2027 } 2028 return put_user(val, (unsigned int __user *) adr); 2029 } 2030 2031 int set_endian(struct task_struct *tsk, unsigned int val) 2032 { 2033 struct pt_regs *regs = tsk->thread.regs; 2034 2035 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 2036 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 2037 return -EINVAL; 2038 2039 if (regs == NULL) 2040 return -EINVAL; 2041 2042 if (val == PR_ENDIAN_BIG) 2043 regs_set_return_msr(regs, regs->msr & ~MSR_LE); 2044 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 2045 regs_set_return_msr(regs, regs->msr | MSR_LE); 2046 else 2047 return -EINVAL; 2048 2049 return 0; 2050 } 2051 2052 int get_endian(struct task_struct *tsk, unsigned long adr) 2053 { 2054 struct pt_regs *regs = tsk->thread.regs; 2055 unsigned int val; 2056 2057 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 2058 !cpu_has_feature(CPU_FTR_REAL_LE)) 2059 return -EINVAL; 2060 2061 if (regs == NULL) 2062 return -EINVAL; 2063 2064 if (regs->msr & MSR_LE) { 2065 if (cpu_has_feature(CPU_FTR_REAL_LE)) 2066 val = PR_ENDIAN_LITTLE; 2067 else 2068 val = PR_ENDIAN_PPC_LITTLE; 2069 } else 2070 val = PR_ENDIAN_BIG; 2071 2072 return put_user(val, (unsigned int __user *)adr); 2073 } 2074 2075 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 2076 { 2077 tsk->thread.align_ctl = val; 2078 return 0; 2079 } 2080 2081 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2082 { 2083 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2084 } 2085 2086 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2087 unsigned long nbytes) 2088 { 2089 unsigned long stack_page; 2090 unsigned long cpu = task_cpu(p); 2091 2092 stack_page = (unsigned long)hardirq_ctx[cpu]; 2093 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2094 return 1; 2095 2096 stack_page = (unsigned long)softirq_ctx[cpu]; 2097 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2098 return 1; 2099 2100 return 0; 2101 } 2102 2103 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 2104 unsigned long nbytes) 2105 { 2106 #ifdef CONFIG_PPC64 2107 unsigned long stack_page; 2108 unsigned long cpu = task_cpu(p); 2109 2110 if (!paca_ptrs) 2111 return 0; 2112 2113 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 2114 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2115 return 1; 2116 2117 # ifdef CONFIG_PPC_BOOK3S_64 2118 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 2119 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2120 return 1; 2121 2122 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2123 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2124 return 1; 2125 # endif 2126 #endif 2127 2128 return 0; 2129 } 2130 2131 2132 int validate_sp(unsigned long sp, struct task_struct *p, 2133 unsigned long nbytes) 2134 { 2135 unsigned long stack_page = (unsigned long)task_stack_page(p); 2136 2137 if (sp < THREAD_SIZE) 2138 return 0; 2139 2140 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2141 return 1; 2142 2143 if (valid_irq_stack(sp, p, nbytes)) 2144 return 1; 2145 2146 return valid_emergency_stack(sp, p, nbytes); 2147 } 2148 2149 EXPORT_SYMBOL(validate_sp); 2150 2151 static unsigned long ___get_wchan(struct task_struct *p) 2152 { 2153 unsigned long ip, sp; 2154 int count = 0; 2155 2156 sp = p->thread.ksp; 2157 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2158 return 0; 2159 2160 do { 2161 sp = *(unsigned long *)sp; 2162 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2163 task_is_running(p)) 2164 return 0; 2165 if (count > 0) { 2166 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2167 if (!in_sched_functions(ip)) 2168 return ip; 2169 } 2170 } while (count++ < 16); 2171 return 0; 2172 } 2173 2174 unsigned long __get_wchan(struct task_struct *p) 2175 { 2176 unsigned long ret; 2177 2178 if (!try_get_task_stack(p)) 2179 return 0; 2180 2181 ret = ___get_wchan(p); 2182 2183 put_task_stack(p); 2184 2185 return ret; 2186 } 2187 2188 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2189 2190 void __no_sanitize_address show_stack(struct task_struct *tsk, 2191 unsigned long *stack, 2192 const char *loglvl) 2193 { 2194 unsigned long sp, ip, lr, newsp; 2195 int count = 0; 2196 int firstframe = 1; 2197 unsigned long ret_addr; 2198 int ftrace_idx = 0; 2199 2200 if (tsk == NULL) 2201 tsk = current; 2202 2203 if (!try_get_task_stack(tsk)) 2204 return; 2205 2206 sp = (unsigned long) stack; 2207 if (sp == 0) { 2208 if (tsk == current) 2209 sp = current_stack_frame(); 2210 else 2211 sp = tsk->thread.ksp; 2212 } 2213 2214 lr = 0; 2215 printk("%sCall Trace:\n", loglvl); 2216 do { 2217 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2218 break; 2219 2220 stack = (unsigned long *) sp; 2221 newsp = stack[0]; 2222 ip = stack[STACK_FRAME_LR_SAVE]; 2223 if (!firstframe || ip != lr) { 2224 printk("%s["REG"] ["REG"] %pS", 2225 loglvl, sp, ip, (void *)ip); 2226 ret_addr = ftrace_graph_ret_addr(current, 2227 &ftrace_idx, ip, stack); 2228 if (ret_addr != ip) 2229 pr_cont(" (%pS)", (void *)ret_addr); 2230 if (firstframe) 2231 pr_cont(" (unreliable)"); 2232 pr_cont("\n"); 2233 } 2234 firstframe = 0; 2235 2236 /* 2237 * See if this is an exception frame. 2238 * We look for the "regshere" marker in the current frame. 2239 */ 2240 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS) 2241 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2242 struct pt_regs *regs = (struct pt_regs *) 2243 (sp + STACK_FRAME_OVERHEAD); 2244 2245 lr = regs->link; 2246 printk("%s--- interrupt: %lx at %pS\n", 2247 loglvl, regs->trap, (void *)regs->nip); 2248 __show_regs(regs); 2249 printk("%s--- interrupt: %lx\n", 2250 loglvl, regs->trap); 2251 2252 firstframe = 1; 2253 } 2254 2255 sp = newsp; 2256 } while (count++ < kstack_depth_to_print); 2257 2258 put_task_stack(tsk); 2259 } 2260 2261 #ifdef CONFIG_PPC64 2262 /* Called with hard IRQs off */ 2263 void notrace __ppc64_runlatch_on(void) 2264 { 2265 struct thread_info *ti = current_thread_info(); 2266 2267 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2268 /* 2269 * Least significant bit (RUN) is the only writable bit of 2270 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2271 * earliest ISA where this is the case, but it's convenient. 2272 */ 2273 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2274 } else { 2275 unsigned long ctrl; 2276 2277 /* 2278 * Some architectures (e.g., Cell) have writable fields other 2279 * than RUN, so do the read-modify-write. 2280 */ 2281 ctrl = mfspr(SPRN_CTRLF); 2282 ctrl |= CTRL_RUNLATCH; 2283 mtspr(SPRN_CTRLT, ctrl); 2284 } 2285 2286 ti->local_flags |= _TLF_RUNLATCH; 2287 } 2288 2289 /* Called with hard IRQs off */ 2290 void notrace __ppc64_runlatch_off(void) 2291 { 2292 struct thread_info *ti = current_thread_info(); 2293 2294 ti->local_flags &= ~_TLF_RUNLATCH; 2295 2296 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2297 mtspr(SPRN_CTRLT, 0); 2298 } else { 2299 unsigned long ctrl; 2300 2301 ctrl = mfspr(SPRN_CTRLF); 2302 ctrl &= ~CTRL_RUNLATCH; 2303 mtspr(SPRN_CTRLT, ctrl); 2304 } 2305 } 2306 #endif /* CONFIG_PPC64 */ 2307 2308 unsigned long arch_align_stack(unsigned long sp) 2309 { 2310 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2311 sp -= get_random_int() & ~PAGE_MASK; 2312 return sp & ~0xf; 2313 } 2314