1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 46 #include <asm/pgtable.h> 47 #include <asm/io.h> 48 #include <asm/processor.h> 49 #include <asm/mmu.h> 50 #include <asm/prom.h> 51 #include <asm/machdep.h> 52 #include <asm/time.h> 53 #include <asm/runlatch.h> 54 #include <asm/syscalls.h> 55 #include <asm/switch_to.h> 56 #include <asm/tm.h> 57 #include <asm/debug.h> 58 #ifdef CONFIG_PPC64 59 #include <asm/firmware.h> 60 #endif 61 #include <asm/code-patching.h> 62 #include <asm/exec.h> 63 #include <asm/livepatch.h> 64 #include <asm/cpu_has_feature.h> 65 #include <asm/asm-prototypes.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 /* 81 * Are we running in "Suspend disabled" mode? If so we have to block any 82 * sigreturn that would get us into suspended state, and we also warn in some 83 * other paths that we should never reach with suspend disabled. 84 */ 85 bool tm_suspend_disabled __ro_after_init = false; 86 87 static void check_if_tm_restore_required(struct task_struct *tsk) 88 { 89 /* 90 * If we are saving the current thread's registers, and the 91 * thread is in a transactional state, set the TIF_RESTORE_TM 92 * bit so that we know to restore the registers before 93 * returning to userspace. 94 */ 95 if (tsk == current && tsk->thread.regs && 96 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 97 !test_thread_flag(TIF_RESTORE_TM)) { 98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 99 set_thread_flag(TIF_RESTORE_TM); 100 } 101 } 102 103 static inline bool msr_tm_active(unsigned long msr) 104 { 105 return MSR_TM_ACTIVE(msr); 106 } 107 108 static bool tm_active_with_fp(struct task_struct *tsk) 109 { 110 return msr_tm_active(tsk->thread.regs->msr) && 111 (tsk->thread.ckpt_regs.msr & MSR_FP); 112 } 113 114 static bool tm_active_with_altivec(struct task_struct *tsk) 115 { 116 return msr_tm_active(tsk->thread.regs->msr) && 117 (tsk->thread.ckpt_regs.msr & MSR_VEC); 118 } 119 #else 120 static inline bool msr_tm_active(unsigned long msr) { return false; } 121 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 122 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 123 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 124 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 125 126 bool strict_msr_control; 127 EXPORT_SYMBOL(strict_msr_control); 128 129 static int __init enable_strict_msr_control(char *str) 130 { 131 strict_msr_control = true; 132 pr_info("Enabling strict facility control\n"); 133 134 return 0; 135 } 136 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 137 138 unsigned long msr_check_and_set(unsigned long bits) 139 { 140 unsigned long oldmsr = mfmsr(); 141 unsigned long newmsr; 142 143 newmsr = oldmsr | bits; 144 145 #ifdef CONFIG_VSX 146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 147 newmsr |= MSR_VSX; 148 #endif 149 150 if (oldmsr != newmsr) 151 mtmsr_isync(newmsr); 152 153 return newmsr; 154 } 155 156 void __msr_check_and_clear(unsigned long bits) 157 { 158 unsigned long oldmsr = mfmsr(); 159 unsigned long newmsr; 160 161 newmsr = oldmsr & ~bits; 162 163 #ifdef CONFIG_VSX 164 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 165 newmsr &= ~MSR_VSX; 166 #endif 167 168 if (oldmsr != newmsr) 169 mtmsr_isync(newmsr); 170 } 171 EXPORT_SYMBOL(__msr_check_and_clear); 172 173 #ifdef CONFIG_PPC_FPU 174 void __giveup_fpu(struct task_struct *tsk) 175 { 176 unsigned long msr; 177 178 save_fpu(tsk); 179 msr = tsk->thread.regs->msr; 180 msr &= ~MSR_FP; 181 #ifdef CONFIG_VSX 182 if (cpu_has_feature(CPU_FTR_VSX)) 183 msr &= ~MSR_VSX; 184 #endif 185 tsk->thread.regs->msr = msr; 186 } 187 188 void giveup_fpu(struct task_struct *tsk) 189 { 190 check_if_tm_restore_required(tsk); 191 192 msr_check_and_set(MSR_FP); 193 __giveup_fpu(tsk); 194 msr_check_and_clear(MSR_FP); 195 } 196 EXPORT_SYMBOL(giveup_fpu); 197 198 /* 199 * Make sure the floating-point register state in the 200 * the thread_struct is up to date for task tsk. 201 */ 202 void flush_fp_to_thread(struct task_struct *tsk) 203 { 204 if (tsk->thread.regs) { 205 /* 206 * We need to disable preemption here because if we didn't, 207 * another process could get scheduled after the regs->msr 208 * test but before we have finished saving the FP registers 209 * to the thread_struct. That process could take over the 210 * FPU, and then when we get scheduled again we would store 211 * bogus values for the remaining FP registers. 212 */ 213 preempt_disable(); 214 if (tsk->thread.regs->msr & MSR_FP) { 215 /* 216 * This should only ever be called for current or 217 * for a stopped child process. Since we save away 218 * the FP register state on context switch, 219 * there is something wrong if a stopped child appears 220 * to still have its FP state in the CPU registers. 221 */ 222 BUG_ON(tsk != current); 223 giveup_fpu(tsk); 224 } 225 preempt_enable(); 226 } 227 } 228 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 229 230 void enable_kernel_fp(void) 231 { 232 unsigned long cpumsr; 233 234 WARN_ON(preemptible()); 235 236 cpumsr = msr_check_and_set(MSR_FP); 237 238 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 239 check_if_tm_restore_required(current); 240 /* 241 * If a thread has already been reclaimed then the 242 * checkpointed registers are on the CPU but have definitely 243 * been saved by the reclaim code. Don't need to and *cannot* 244 * giveup as this would save to the 'live' structure not the 245 * checkpointed structure. 246 */ 247 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 248 return; 249 __giveup_fpu(current); 250 } 251 } 252 EXPORT_SYMBOL(enable_kernel_fp); 253 254 static int restore_fp(struct task_struct *tsk) 255 { 256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 257 load_fp_state(¤t->thread.fp_state); 258 current->thread.load_fp++; 259 return 1; 260 } 261 return 0; 262 } 263 #else 264 static int restore_fp(struct task_struct *tsk) { return 0; } 265 #endif /* CONFIG_PPC_FPU */ 266 267 #ifdef CONFIG_ALTIVEC 268 #define loadvec(thr) ((thr).load_vec) 269 270 static void __giveup_altivec(struct task_struct *tsk) 271 { 272 unsigned long msr; 273 274 save_altivec(tsk); 275 msr = tsk->thread.regs->msr; 276 msr &= ~MSR_VEC; 277 #ifdef CONFIG_VSX 278 if (cpu_has_feature(CPU_FTR_VSX)) 279 msr &= ~MSR_VSX; 280 #endif 281 tsk->thread.regs->msr = msr; 282 } 283 284 void giveup_altivec(struct task_struct *tsk) 285 { 286 check_if_tm_restore_required(tsk); 287 288 msr_check_and_set(MSR_VEC); 289 __giveup_altivec(tsk); 290 msr_check_and_clear(MSR_VEC); 291 } 292 EXPORT_SYMBOL(giveup_altivec); 293 294 void enable_kernel_altivec(void) 295 { 296 unsigned long cpumsr; 297 298 WARN_ON(preemptible()); 299 300 cpumsr = msr_check_and_set(MSR_VEC); 301 302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 303 check_if_tm_restore_required(current); 304 /* 305 * If a thread has already been reclaimed then the 306 * checkpointed registers are on the CPU but have definitely 307 * been saved by the reclaim code. Don't need to and *cannot* 308 * giveup as this would save to the 'live' structure not the 309 * checkpointed structure. 310 */ 311 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 312 return; 313 __giveup_altivec(current); 314 } 315 } 316 EXPORT_SYMBOL(enable_kernel_altivec); 317 318 /* 319 * Make sure the VMX/Altivec register state in the 320 * the thread_struct is up to date for task tsk. 321 */ 322 void flush_altivec_to_thread(struct task_struct *tsk) 323 { 324 if (tsk->thread.regs) { 325 preempt_disable(); 326 if (tsk->thread.regs->msr & MSR_VEC) { 327 BUG_ON(tsk != current); 328 giveup_altivec(tsk); 329 } 330 preempt_enable(); 331 } 332 } 333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 334 335 static int restore_altivec(struct task_struct *tsk) 336 { 337 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 338 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 339 load_vr_state(&tsk->thread.vr_state); 340 tsk->thread.used_vr = 1; 341 tsk->thread.load_vec++; 342 343 return 1; 344 } 345 return 0; 346 } 347 #else 348 #define loadvec(thr) 0 349 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 350 #endif /* CONFIG_ALTIVEC */ 351 352 #ifdef CONFIG_VSX 353 static void __giveup_vsx(struct task_struct *tsk) 354 { 355 unsigned long msr = tsk->thread.regs->msr; 356 357 /* 358 * We should never be ssetting MSR_VSX without also setting 359 * MSR_FP and MSR_VEC 360 */ 361 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 362 363 /* __giveup_fpu will clear MSR_VSX */ 364 if (msr & MSR_FP) 365 __giveup_fpu(tsk); 366 if (msr & MSR_VEC) 367 __giveup_altivec(tsk); 368 } 369 370 static void giveup_vsx(struct task_struct *tsk) 371 { 372 check_if_tm_restore_required(tsk); 373 374 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 375 __giveup_vsx(tsk); 376 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 377 } 378 379 void enable_kernel_vsx(void) 380 { 381 unsigned long cpumsr; 382 383 WARN_ON(preemptible()); 384 385 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 386 387 if (current->thread.regs && 388 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 389 check_if_tm_restore_required(current); 390 /* 391 * If a thread has already been reclaimed then the 392 * checkpointed registers are on the CPU but have definitely 393 * been saved by the reclaim code. Don't need to and *cannot* 394 * giveup as this would save to the 'live' structure not the 395 * checkpointed structure. 396 */ 397 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 398 return; 399 __giveup_vsx(current); 400 } 401 } 402 EXPORT_SYMBOL(enable_kernel_vsx); 403 404 void flush_vsx_to_thread(struct task_struct *tsk) 405 { 406 if (tsk->thread.regs) { 407 preempt_disable(); 408 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 409 BUG_ON(tsk != current); 410 giveup_vsx(tsk); 411 } 412 preempt_enable(); 413 } 414 } 415 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 416 417 static int restore_vsx(struct task_struct *tsk) 418 { 419 if (cpu_has_feature(CPU_FTR_VSX)) { 420 tsk->thread.used_vsr = 1; 421 return 1; 422 } 423 424 return 0; 425 } 426 #else 427 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 428 #endif /* CONFIG_VSX */ 429 430 #ifdef CONFIG_SPE 431 void giveup_spe(struct task_struct *tsk) 432 { 433 check_if_tm_restore_required(tsk); 434 435 msr_check_and_set(MSR_SPE); 436 __giveup_spe(tsk); 437 msr_check_and_clear(MSR_SPE); 438 } 439 EXPORT_SYMBOL(giveup_spe); 440 441 void enable_kernel_spe(void) 442 { 443 WARN_ON(preemptible()); 444 445 msr_check_and_set(MSR_SPE); 446 447 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 448 check_if_tm_restore_required(current); 449 __giveup_spe(current); 450 } 451 } 452 EXPORT_SYMBOL(enable_kernel_spe); 453 454 void flush_spe_to_thread(struct task_struct *tsk) 455 { 456 if (tsk->thread.regs) { 457 preempt_disable(); 458 if (tsk->thread.regs->msr & MSR_SPE) { 459 BUG_ON(tsk != current); 460 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 461 giveup_spe(tsk); 462 } 463 preempt_enable(); 464 } 465 } 466 #endif /* CONFIG_SPE */ 467 468 static unsigned long msr_all_available; 469 470 static int __init init_msr_all_available(void) 471 { 472 #ifdef CONFIG_PPC_FPU 473 msr_all_available |= MSR_FP; 474 #endif 475 #ifdef CONFIG_ALTIVEC 476 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 477 msr_all_available |= MSR_VEC; 478 #endif 479 #ifdef CONFIG_VSX 480 if (cpu_has_feature(CPU_FTR_VSX)) 481 msr_all_available |= MSR_VSX; 482 #endif 483 #ifdef CONFIG_SPE 484 if (cpu_has_feature(CPU_FTR_SPE)) 485 msr_all_available |= MSR_SPE; 486 #endif 487 488 return 0; 489 } 490 early_initcall(init_msr_all_available); 491 492 void giveup_all(struct task_struct *tsk) 493 { 494 unsigned long usermsr; 495 496 if (!tsk->thread.regs) 497 return; 498 499 usermsr = tsk->thread.regs->msr; 500 501 if ((usermsr & msr_all_available) == 0) 502 return; 503 504 msr_check_and_set(msr_all_available); 505 check_if_tm_restore_required(tsk); 506 507 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 508 509 #ifdef CONFIG_PPC_FPU 510 if (usermsr & MSR_FP) 511 __giveup_fpu(tsk); 512 #endif 513 #ifdef CONFIG_ALTIVEC 514 if (usermsr & MSR_VEC) 515 __giveup_altivec(tsk); 516 #endif 517 #ifdef CONFIG_SPE 518 if (usermsr & MSR_SPE) 519 __giveup_spe(tsk); 520 #endif 521 522 msr_check_and_clear(msr_all_available); 523 } 524 EXPORT_SYMBOL(giveup_all); 525 526 void restore_math(struct pt_regs *regs) 527 { 528 unsigned long msr; 529 530 if (!msr_tm_active(regs->msr) && 531 !current->thread.load_fp && !loadvec(current->thread)) 532 return; 533 534 msr = regs->msr; 535 msr_check_and_set(msr_all_available); 536 537 /* 538 * Only reload if the bit is not set in the user MSR, the bit BEING set 539 * indicates that the registers are hot 540 */ 541 if ((!(msr & MSR_FP)) && restore_fp(current)) 542 msr |= MSR_FP | current->thread.fpexc_mode; 543 544 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 545 msr |= MSR_VEC; 546 547 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 548 restore_vsx(current)) { 549 msr |= MSR_VSX; 550 } 551 552 msr_check_and_clear(msr_all_available); 553 554 regs->msr = msr; 555 } 556 557 void save_all(struct task_struct *tsk) 558 { 559 unsigned long usermsr; 560 561 if (!tsk->thread.regs) 562 return; 563 564 usermsr = tsk->thread.regs->msr; 565 566 if ((usermsr & msr_all_available) == 0) 567 return; 568 569 msr_check_and_set(msr_all_available); 570 571 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 572 573 if (usermsr & MSR_FP) 574 save_fpu(tsk); 575 576 if (usermsr & MSR_VEC) 577 save_altivec(tsk); 578 579 if (usermsr & MSR_SPE) 580 __giveup_spe(tsk); 581 582 msr_check_and_clear(msr_all_available); 583 } 584 585 void flush_all_to_thread(struct task_struct *tsk) 586 { 587 if (tsk->thread.regs) { 588 preempt_disable(); 589 BUG_ON(tsk != current); 590 save_all(tsk); 591 592 #ifdef CONFIG_SPE 593 if (tsk->thread.regs->msr & MSR_SPE) 594 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 595 #endif 596 597 preempt_enable(); 598 } 599 } 600 EXPORT_SYMBOL(flush_all_to_thread); 601 602 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 603 void do_send_trap(struct pt_regs *regs, unsigned long address, 604 unsigned long error_code, int signal_code, int breakpt) 605 { 606 siginfo_t info; 607 608 current->thread.trap_nr = signal_code; 609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 610 11, SIGSEGV) == NOTIFY_STOP) 611 return; 612 613 /* Deliver the signal to userspace */ 614 info.si_signo = SIGTRAP; 615 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 616 info.si_code = signal_code; 617 info.si_addr = (void __user *)address; 618 force_sig_info(SIGTRAP, &info, current); 619 } 620 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 621 void do_break (struct pt_regs *regs, unsigned long address, 622 unsigned long error_code) 623 { 624 siginfo_t info; 625 626 current->thread.trap_nr = TRAP_HWBKPT; 627 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 628 11, SIGSEGV) == NOTIFY_STOP) 629 return; 630 631 if (debugger_break_match(regs)) 632 return; 633 634 /* Clear the breakpoint */ 635 hw_breakpoint_disable(); 636 637 /* Deliver the signal to userspace */ 638 info.si_signo = SIGTRAP; 639 info.si_errno = 0; 640 info.si_code = TRAP_HWBKPT; 641 info.si_addr = (void __user *)address; 642 force_sig_info(SIGTRAP, &info, current); 643 } 644 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 645 646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 647 648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 649 /* 650 * Set the debug registers back to their default "safe" values. 651 */ 652 static void set_debug_reg_defaults(struct thread_struct *thread) 653 { 654 thread->debug.iac1 = thread->debug.iac2 = 0; 655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 656 thread->debug.iac3 = thread->debug.iac4 = 0; 657 #endif 658 thread->debug.dac1 = thread->debug.dac2 = 0; 659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 660 thread->debug.dvc1 = thread->debug.dvc2 = 0; 661 #endif 662 thread->debug.dbcr0 = 0; 663 #ifdef CONFIG_BOOKE 664 /* 665 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 666 */ 667 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 668 DBCR1_IAC3US | DBCR1_IAC4US; 669 /* 670 * Force Data Address Compare User/Supervisor bits to be User-only 671 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 672 */ 673 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 674 #else 675 thread->debug.dbcr1 = 0; 676 #endif 677 } 678 679 static void prime_debug_regs(struct debug_reg *debug) 680 { 681 /* 682 * We could have inherited MSR_DE from userspace, since 683 * it doesn't get cleared on exception entry. Make sure 684 * MSR_DE is clear before we enable any debug events. 685 */ 686 mtmsr(mfmsr() & ~MSR_DE); 687 688 mtspr(SPRN_IAC1, debug->iac1); 689 mtspr(SPRN_IAC2, debug->iac2); 690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 691 mtspr(SPRN_IAC3, debug->iac3); 692 mtspr(SPRN_IAC4, debug->iac4); 693 #endif 694 mtspr(SPRN_DAC1, debug->dac1); 695 mtspr(SPRN_DAC2, debug->dac2); 696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 697 mtspr(SPRN_DVC1, debug->dvc1); 698 mtspr(SPRN_DVC2, debug->dvc2); 699 #endif 700 mtspr(SPRN_DBCR0, debug->dbcr0); 701 mtspr(SPRN_DBCR1, debug->dbcr1); 702 #ifdef CONFIG_BOOKE 703 mtspr(SPRN_DBCR2, debug->dbcr2); 704 #endif 705 } 706 /* 707 * Unless neither the old or new thread are making use of the 708 * debug registers, set the debug registers from the values 709 * stored in the new thread. 710 */ 711 void switch_booke_debug_regs(struct debug_reg *new_debug) 712 { 713 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 714 || (new_debug->dbcr0 & DBCR0_IDM)) 715 prime_debug_regs(new_debug); 716 } 717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 718 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 719 #ifndef CONFIG_HAVE_HW_BREAKPOINT 720 static void set_debug_reg_defaults(struct thread_struct *thread) 721 { 722 thread->hw_brk.address = 0; 723 thread->hw_brk.type = 0; 724 set_breakpoint(&thread->hw_brk); 725 } 726 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 727 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 728 729 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 731 { 732 mtspr(SPRN_DAC1, dabr); 733 #ifdef CONFIG_PPC_47x 734 isync(); 735 #endif 736 return 0; 737 } 738 #elif defined(CONFIG_PPC_BOOK3S) 739 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 740 { 741 mtspr(SPRN_DABR, dabr); 742 if (cpu_has_feature(CPU_FTR_DABRX)) 743 mtspr(SPRN_DABRX, dabrx); 744 return 0; 745 } 746 #elif defined(CONFIG_PPC_8xx) 747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 748 { 749 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 750 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 751 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 752 753 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 754 lctrl1 |= 0xa0000; 755 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 756 lctrl1 |= 0xf0000; 757 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 758 lctrl2 = 0; 759 760 mtspr(SPRN_LCTRL2, 0); 761 mtspr(SPRN_CMPE, addr); 762 mtspr(SPRN_CMPF, addr + 4); 763 mtspr(SPRN_LCTRL1, lctrl1); 764 mtspr(SPRN_LCTRL2, lctrl2); 765 766 return 0; 767 } 768 #else 769 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 770 { 771 return -EINVAL; 772 } 773 #endif 774 775 static inline int set_dabr(struct arch_hw_breakpoint *brk) 776 { 777 unsigned long dabr, dabrx; 778 779 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 780 dabrx = ((brk->type >> 3) & 0x7); 781 782 if (ppc_md.set_dabr) 783 return ppc_md.set_dabr(dabr, dabrx); 784 785 return __set_dabr(dabr, dabrx); 786 } 787 788 static inline int set_dawr(struct arch_hw_breakpoint *brk) 789 { 790 unsigned long dawr, dawrx, mrd; 791 792 dawr = brk->address; 793 794 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 795 << (63 - 58); //* read/write bits */ 796 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 797 << (63 - 59); //* translate */ 798 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 799 >> 3; //* PRIM bits */ 800 /* dawr length is stored in field MDR bits 48:53. Matches range in 801 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 802 0b111111=64DW. 803 brk->len is in bytes. 804 This aligns up to double word size, shifts and does the bias. 805 */ 806 mrd = ((brk->len + 7) >> 3) - 1; 807 dawrx |= (mrd & 0x3f) << (63 - 53); 808 809 if (ppc_md.set_dawr) 810 return ppc_md.set_dawr(dawr, dawrx); 811 mtspr(SPRN_DAWR, dawr); 812 mtspr(SPRN_DAWRX, dawrx); 813 return 0; 814 } 815 816 void __set_breakpoint(struct arch_hw_breakpoint *brk) 817 { 818 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 819 820 if (cpu_has_feature(CPU_FTR_DAWR)) 821 set_dawr(brk); 822 else 823 set_dabr(brk); 824 } 825 826 void set_breakpoint(struct arch_hw_breakpoint *brk) 827 { 828 preempt_disable(); 829 __set_breakpoint(brk); 830 preempt_enable(); 831 } 832 833 #ifdef CONFIG_PPC64 834 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 835 #endif 836 837 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 838 struct arch_hw_breakpoint *b) 839 { 840 if (a->address != b->address) 841 return false; 842 if (a->type != b->type) 843 return false; 844 if (a->len != b->len) 845 return false; 846 return true; 847 } 848 849 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 850 851 static inline bool tm_enabled(struct task_struct *tsk) 852 { 853 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 854 } 855 856 static void tm_reclaim_thread(struct thread_struct *thr, 857 struct thread_info *ti, uint8_t cause) 858 { 859 /* 860 * Use the current MSR TM suspended bit to track if we have 861 * checkpointed state outstanding. 862 * On signal delivery, we'd normally reclaim the checkpointed 863 * state to obtain stack pointer (see:get_tm_stackpointer()). 864 * This will then directly return to userspace without going 865 * through __switch_to(). However, if the stack frame is bad, 866 * we need to exit this thread which calls __switch_to() which 867 * will again attempt to reclaim the already saved tm state. 868 * Hence we need to check that we've not already reclaimed 869 * this state. 870 * We do this using the current MSR, rather tracking it in 871 * some specific thread_struct bit, as it has the additional 872 * benefit of checking for a potential TM bad thing exception. 873 */ 874 if (!MSR_TM_SUSPENDED(mfmsr())) 875 return; 876 877 giveup_all(container_of(thr, struct task_struct, thread)); 878 879 tm_reclaim(thr, cause); 880 881 /* 882 * If we are in a transaction and FP is off then we can't have 883 * used FP inside that transaction. Hence the checkpointed 884 * state is the same as the live state. We need to copy the 885 * live state to the checkpointed state so that when the 886 * transaction is restored, the checkpointed state is correct 887 * and the aborted transaction sees the correct state. We use 888 * ckpt_regs.msr here as that's what tm_reclaim will use to 889 * determine if it's going to write the checkpointed state or 890 * not. So either this will write the checkpointed registers, 891 * or reclaim will. Similarly for VMX. 892 */ 893 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 894 memcpy(&thr->ckfp_state, &thr->fp_state, 895 sizeof(struct thread_fp_state)); 896 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 897 memcpy(&thr->ckvr_state, &thr->vr_state, 898 sizeof(struct thread_vr_state)); 899 } 900 901 void tm_reclaim_current(uint8_t cause) 902 { 903 tm_enable(); 904 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 905 } 906 907 static inline void tm_reclaim_task(struct task_struct *tsk) 908 { 909 /* We have to work out if we're switching from/to a task that's in the 910 * middle of a transaction. 911 * 912 * In switching we need to maintain a 2nd register state as 913 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 914 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 915 * ckvr_state 916 * 917 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 918 */ 919 struct thread_struct *thr = &tsk->thread; 920 921 if (!thr->regs) 922 return; 923 924 if (!MSR_TM_ACTIVE(thr->regs->msr)) 925 goto out_and_saveregs; 926 927 WARN_ON(tm_suspend_disabled); 928 929 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 930 "ccr=%lx, msr=%lx, trap=%lx)\n", 931 tsk->pid, thr->regs->nip, 932 thr->regs->ccr, thr->regs->msr, 933 thr->regs->trap); 934 935 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 936 937 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 938 tsk->pid); 939 940 out_and_saveregs: 941 /* Always save the regs here, even if a transaction's not active. 942 * This context-switches a thread's TM info SPRs. We do it here to 943 * be consistent with the restore path (in recheckpoint) which 944 * cannot happen later in _switch(). 945 */ 946 tm_save_sprs(thr); 947 } 948 949 extern void __tm_recheckpoint(struct thread_struct *thread); 950 951 void tm_recheckpoint(struct thread_struct *thread) 952 { 953 unsigned long flags; 954 955 if (!(thread->regs->msr & MSR_TM)) 956 return; 957 958 /* We really can't be interrupted here as the TEXASR registers can't 959 * change and later in the trecheckpoint code, we have a userspace R1. 960 * So let's hard disable over this region. 961 */ 962 local_irq_save(flags); 963 hard_irq_disable(); 964 965 /* The TM SPRs are restored here, so that TEXASR.FS can be set 966 * before the trecheckpoint and no explosion occurs. 967 */ 968 tm_restore_sprs(thread); 969 970 __tm_recheckpoint(thread); 971 972 local_irq_restore(flags); 973 } 974 975 static inline void tm_recheckpoint_new_task(struct task_struct *new) 976 { 977 if (!cpu_has_feature(CPU_FTR_TM)) 978 return; 979 980 /* Recheckpoint the registers of the thread we're about to switch to. 981 * 982 * If the task was using FP, we non-lazily reload both the original and 983 * the speculative FP register states. This is because the kernel 984 * doesn't see if/when a TM rollback occurs, so if we take an FP 985 * unavailable later, we are unable to determine which set of FP regs 986 * need to be restored. 987 */ 988 if (!tm_enabled(new)) 989 return; 990 991 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 992 tm_restore_sprs(&new->thread); 993 return; 994 } 995 /* Recheckpoint to restore original checkpointed register state. */ 996 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 997 new->pid, new->thread.regs->msr); 998 999 tm_recheckpoint(&new->thread); 1000 1001 /* 1002 * The checkpointed state has been restored but the live state has 1003 * not, ensure all the math functionality is turned off to trigger 1004 * restore_math() to reload. 1005 */ 1006 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1007 1008 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1009 "(kernel msr 0x%lx)\n", 1010 new->pid, mfmsr()); 1011 } 1012 1013 static inline void __switch_to_tm(struct task_struct *prev, 1014 struct task_struct *new) 1015 { 1016 if (cpu_has_feature(CPU_FTR_TM)) { 1017 if (tm_enabled(prev) || tm_enabled(new)) 1018 tm_enable(); 1019 1020 if (tm_enabled(prev)) { 1021 prev->thread.load_tm++; 1022 tm_reclaim_task(prev); 1023 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1024 prev->thread.regs->msr &= ~MSR_TM; 1025 } 1026 1027 tm_recheckpoint_new_task(new); 1028 } 1029 } 1030 1031 /* 1032 * This is called if we are on the way out to userspace and the 1033 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1034 * FP and/or vector state and does so if necessary. 1035 * If userspace is inside a transaction (whether active or 1036 * suspended) and FP/VMX/VSX instructions have ever been enabled 1037 * inside that transaction, then we have to keep them enabled 1038 * and keep the FP/VMX/VSX state loaded while ever the transaction 1039 * continues. The reason is that if we didn't, and subsequently 1040 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1041 * we don't know whether it's the same transaction, and thus we 1042 * don't know which of the checkpointed state and the transactional 1043 * state to use. 1044 */ 1045 void restore_tm_state(struct pt_regs *regs) 1046 { 1047 unsigned long msr_diff; 1048 1049 /* 1050 * This is the only moment we should clear TIF_RESTORE_TM as 1051 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1052 * again, anything else could lead to an incorrect ckpt_msr being 1053 * saved and therefore incorrect signal contexts. 1054 */ 1055 clear_thread_flag(TIF_RESTORE_TM); 1056 if (!MSR_TM_ACTIVE(regs->msr)) 1057 return; 1058 1059 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1060 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1061 1062 /* Ensure that restore_math() will restore */ 1063 if (msr_diff & MSR_FP) 1064 current->thread.load_fp = 1; 1065 #ifdef CONFIG_ALTIVEC 1066 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1067 current->thread.load_vec = 1; 1068 #endif 1069 restore_math(regs); 1070 1071 regs->msr |= msr_diff; 1072 } 1073 1074 #else 1075 #define tm_recheckpoint_new_task(new) 1076 #define __switch_to_tm(prev, new) 1077 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1078 1079 static inline void save_sprs(struct thread_struct *t) 1080 { 1081 #ifdef CONFIG_ALTIVEC 1082 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1083 t->vrsave = mfspr(SPRN_VRSAVE); 1084 #endif 1085 #ifdef CONFIG_PPC_BOOK3S_64 1086 if (cpu_has_feature(CPU_FTR_DSCR)) 1087 t->dscr = mfspr(SPRN_DSCR); 1088 1089 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1090 t->bescr = mfspr(SPRN_BESCR); 1091 t->ebbhr = mfspr(SPRN_EBBHR); 1092 t->ebbrr = mfspr(SPRN_EBBRR); 1093 1094 t->fscr = mfspr(SPRN_FSCR); 1095 1096 /* 1097 * Note that the TAR is not available for use in the kernel. 1098 * (To provide this, the TAR should be backed up/restored on 1099 * exception entry/exit instead, and be in pt_regs. FIXME, 1100 * this should be in pt_regs anyway (for debug).) 1101 */ 1102 t->tar = mfspr(SPRN_TAR); 1103 } 1104 #endif 1105 } 1106 1107 static inline void restore_sprs(struct thread_struct *old_thread, 1108 struct thread_struct *new_thread) 1109 { 1110 #ifdef CONFIG_ALTIVEC 1111 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1112 old_thread->vrsave != new_thread->vrsave) 1113 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1114 #endif 1115 #ifdef CONFIG_PPC_BOOK3S_64 1116 if (cpu_has_feature(CPU_FTR_DSCR)) { 1117 u64 dscr = get_paca()->dscr_default; 1118 if (new_thread->dscr_inherit) 1119 dscr = new_thread->dscr; 1120 1121 if (old_thread->dscr != dscr) 1122 mtspr(SPRN_DSCR, dscr); 1123 } 1124 1125 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1126 if (old_thread->bescr != new_thread->bescr) 1127 mtspr(SPRN_BESCR, new_thread->bescr); 1128 if (old_thread->ebbhr != new_thread->ebbhr) 1129 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1130 if (old_thread->ebbrr != new_thread->ebbrr) 1131 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1132 1133 if (old_thread->fscr != new_thread->fscr) 1134 mtspr(SPRN_FSCR, new_thread->fscr); 1135 1136 if (old_thread->tar != new_thread->tar) 1137 mtspr(SPRN_TAR, new_thread->tar); 1138 } 1139 1140 if (cpu_has_feature(CPU_FTR_ARCH_300) && 1141 old_thread->tidr != new_thread->tidr) 1142 mtspr(SPRN_TIDR, new_thread->tidr); 1143 #endif 1144 } 1145 1146 #ifdef CONFIG_PPC_BOOK3S_64 1147 #define CP_SIZE 128 1148 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1149 #endif 1150 1151 struct task_struct *__switch_to(struct task_struct *prev, 1152 struct task_struct *new) 1153 { 1154 struct thread_struct *new_thread, *old_thread; 1155 struct task_struct *last; 1156 #ifdef CONFIG_PPC_BOOK3S_64 1157 struct ppc64_tlb_batch *batch; 1158 #endif 1159 1160 new_thread = &new->thread; 1161 old_thread = ¤t->thread; 1162 1163 WARN_ON(!irqs_disabled()); 1164 1165 #ifdef CONFIG_PPC64 1166 /* 1167 * Collect processor utilization data per process 1168 */ 1169 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1170 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1171 long unsigned start_tb, current_tb; 1172 start_tb = old_thread->start_tb; 1173 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1174 old_thread->accum_tb += (current_tb - start_tb); 1175 new_thread->start_tb = current_tb; 1176 } 1177 #endif /* CONFIG_PPC64 */ 1178 1179 #ifdef CONFIG_PPC_BOOK3S_64 1180 batch = this_cpu_ptr(&ppc64_tlb_batch); 1181 if (batch->active) { 1182 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1183 if (batch->index) 1184 __flush_tlb_pending(batch); 1185 batch->active = 0; 1186 } 1187 #endif /* CONFIG_PPC_BOOK3S_64 */ 1188 1189 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1190 switch_booke_debug_regs(&new->thread.debug); 1191 #else 1192 /* 1193 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1194 * schedule DABR 1195 */ 1196 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1197 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1198 __set_breakpoint(&new->thread.hw_brk); 1199 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1200 #endif 1201 1202 /* 1203 * We need to save SPRs before treclaim/trecheckpoint as these will 1204 * change a number of them. 1205 */ 1206 save_sprs(&prev->thread); 1207 1208 /* Save FPU, Altivec, VSX and SPE state */ 1209 giveup_all(prev); 1210 1211 __switch_to_tm(prev, new); 1212 1213 if (!radix_enabled()) { 1214 /* 1215 * We can't take a PMU exception inside _switch() since there 1216 * is a window where the kernel stack SLB and the kernel stack 1217 * are out of sync. Hard disable here. 1218 */ 1219 hard_irq_disable(); 1220 } 1221 1222 /* 1223 * Call restore_sprs() before calling _switch(). If we move it after 1224 * _switch() then we miss out on calling it for new tasks. The reason 1225 * for this is we manually create a stack frame for new tasks that 1226 * directly returns through ret_from_fork() or 1227 * ret_from_kernel_thread(). See copy_thread() for details. 1228 */ 1229 restore_sprs(old_thread, new_thread); 1230 1231 last = _switch(old_thread, new_thread); 1232 1233 #ifdef CONFIG_PPC_BOOK3S_64 1234 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1235 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1236 batch = this_cpu_ptr(&ppc64_tlb_batch); 1237 batch->active = 1; 1238 } 1239 1240 if (current_thread_info()->task->thread.regs) { 1241 restore_math(current_thread_info()->task->thread.regs); 1242 1243 /* 1244 * The copy-paste buffer can only store into foreign real 1245 * addresses, so unprivileged processes can not see the 1246 * data or use it in any way unless they have foreign real 1247 * mappings. If the new process has the foreign real address 1248 * mappings, we must issue a cp_abort to clear any state and 1249 * prevent snooping, corruption or a covert channel. 1250 * 1251 * DD1 allows paste into normal system memory so we do an 1252 * unpaired copy, rather than cp_abort, to clear the buffer, 1253 * since cp_abort is quite expensive. 1254 */ 1255 if (current_thread_info()->task->thread.used_vas) { 1256 asm volatile(PPC_CP_ABORT); 1257 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { 1258 asm volatile(PPC_COPY(%0, %1) 1259 : : "r"(dummy_copy_buffer), "r"(0)); 1260 } 1261 } 1262 #endif /* CONFIG_PPC_BOOK3S_64 */ 1263 1264 return last; 1265 } 1266 1267 static int instructions_to_print = 16; 1268 1269 static void show_instructions(struct pt_regs *regs) 1270 { 1271 int i; 1272 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1273 sizeof(int)); 1274 1275 printk("Instruction dump:"); 1276 1277 for (i = 0; i < instructions_to_print; i++) { 1278 int instr; 1279 1280 if (!(i % 8)) 1281 pr_cont("\n"); 1282 1283 #if !defined(CONFIG_BOOKE) 1284 /* If executing with the IMMU off, adjust pc rather 1285 * than print XXXXXXXX. 1286 */ 1287 if (!(regs->msr & MSR_IR)) 1288 pc = (unsigned long)phys_to_virt(pc); 1289 #endif 1290 1291 if (!__kernel_text_address(pc) || 1292 probe_kernel_address((unsigned int __user *)pc, instr)) { 1293 pr_cont("XXXXXXXX "); 1294 } else { 1295 if (regs->nip == pc) 1296 pr_cont("<%08x> ", instr); 1297 else 1298 pr_cont("%08x ", instr); 1299 } 1300 1301 pc += sizeof(int); 1302 } 1303 1304 pr_cont("\n"); 1305 } 1306 1307 struct regbit { 1308 unsigned long bit; 1309 const char *name; 1310 }; 1311 1312 static struct regbit msr_bits[] = { 1313 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1314 {MSR_SF, "SF"}, 1315 {MSR_HV, "HV"}, 1316 #endif 1317 {MSR_VEC, "VEC"}, 1318 {MSR_VSX, "VSX"}, 1319 #ifdef CONFIG_BOOKE 1320 {MSR_CE, "CE"}, 1321 #endif 1322 {MSR_EE, "EE"}, 1323 {MSR_PR, "PR"}, 1324 {MSR_FP, "FP"}, 1325 {MSR_ME, "ME"}, 1326 #ifdef CONFIG_BOOKE 1327 {MSR_DE, "DE"}, 1328 #else 1329 {MSR_SE, "SE"}, 1330 {MSR_BE, "BE"}, 1331 #endif 1332 {MSR_IR, "IR"}, 1333 {MSR_DR, "DR"}, 1334 {MSR_PMM, "PMM"}, 1335 #ifndef CONFIG_BOOKE 1336 {MSR_RI, "RI"}, 1337 {MSR_LE, "LE"}, 1338 #endif 1339 {0, NULL} 1340 }; 1341 1342 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1343 { 1344 const char *s = ""; 1345 1346 for (; bits->bit; ++bits) 1347 if (val & bits->bit) { 1348 pr_cont("%s%s", s, bits->name); 1349 s = sep; 1350 } 1351 } 1352 1353 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1354 static struct regbit msr_tm_bits[] = { 1355 {MSR_TS_T, "T"}, 1356 {MSR_TS_S, "S"}, 1357 {MSR_TM, "E"}, 1358 {0, NULL} 1359 }; 1360 1361 static void print_tm_bits(unsigned long val) 1362 { 1363 /* 1364 * This only prints something if at least one of the TM bit is set. 1365 * Inside the TM[], the output means: 1366 * E: Enabled (bit 32) 1367 * S: Suspended (bit 33) 1368 * T: Transactional (bit 34) 1369 */ 1370 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1371 pr_cont(",TM["); 1372 print_bits(val, msr_tm_bits, ""); 1373 pr_cont("]"); 1374 } 1375 } 1376 #else 1377 static void print_tm_bits(unsigned long val) {} 1378 #endif 1379 1380 static void print_msr_bits(unsigned long val) 1381 { 1382 pr_cont("<"); 1383 print_bits(val, msr_bits, ","); 1384 print_tm_bits(val); 1385 pr_cont(">"); 1386 } 1387 1388 #ifdef CONFIG_PPC64 1389 #define REG "%016lx" 1390 #define REGS_PER_LINE 4 1391 #define LAST_VOLATILE 13 1392 #else 1393 #define REG "%08lx" 1394 #define REGS_PER_LINE 8 1395 #define LAST_VOLATILE 12 1396 #endif 1397 1398 void show_regs(struct pt_regs * regs) 1399 { 1400 int i, trap; 1401 1402 show_regs_print_info(KERN_DEFAULT); 1403 1404 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1405 regs->nip, regs->link, regs->ctr); 1406 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1407 regs, regs->trap, print_tainted(), init_utsname()->release); 1408 printk("MSR: "REG" ", regs->msr); 1409 print_msr_bits(regs->msr); 1410 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1411 trap = TRAP(regs); 1412 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1413 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1414 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1415 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1416 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1417 #else 1418 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1419 #endif 1420 #ifdef CONFIG_PPC64 1421 pr_cont("SOFTE: %ld ", regs->softe); 1422 #endif 1423 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1424 if (MSR_TM_ACTIVE(regs->msr)) 1425 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1426 #endif 1427 1428 for (i = 0; i < 32; i++) { 1429 if ((i % REGS_PER_LINE) == 0) 1430 pr_cont("\nGPR%02d: ", i); 1431 pr_cont(REG " ", regs->gpr[i]); 1432 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1433 break; 1434 } 1435 pr_cont("\n"); 1436 #ifdef CONFIG_KALLSYMS 1437 /* 1438 * Lookup NIP late so we have the best change of getting the 1439 * above info out without failing 1440 */ 1441 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1442 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1443 #endif 1444 show_stack(current, (unsigned long *) regs->gpr[1]); 1445 if (!user_mode(regs)) 1446 show_instructions(regs); 1447 } 1448 1449 void flush_thread(void) 1450 { 1451 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1452 flush_ptrace_hw_breakpoint(current); 1453 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1454 set_debug_reg_defaults(¤t->thread); 1455 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1456 } 1457 1458 int set_thread_uses_vas(void) 1459 { 1460 #ifdef CONFIG_PPC_BOOK3S_64 1461 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1462 return -EINVAL; 1463 1464 current->thread.used_vas = 1; 1465 1466 /* 1467 * Even a process that has no foreign real address mapping can use 1468 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1469 * to clear any pending COPY and prevent a covert channel. 1470 * 1471 * __switch_to() will issue CP_ABORT on future context switches. 1472 */ 1473 asm volatile(PPC_CP_ABORT); 1474 1475 #endif /* CONFIG_PPC_BOOK3S_64 */ 1476 return 0; 1477 } 1478 1479 #ifdef CONFIG_PPC64 1480 static DEFINE_SPINLOCK(vas_thread_id_lock); 1481 static DEFINE_IDA(vas_thread_ida); 1482 1483 /* 1484 * We need to assign a unique thread id to each thread in a process. 1485 * 1486 * This thread id, referred to as TIDR, and separate from the Linux's tgid, 1487 * is intended to be used to direct an ASB_Notify from the hardware to the 1488 * thread, when a suitable event occurs in the system. 1489 * 1490 * One such event is a "paste" instruction in the context of Fast Thread 1491 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard 1492 * (VAS) in POWER9. 1493 * 1494 * To get a unique TIDR per process we could simply reuse task_pid_nr() but 1495 * the problem is that task_pid_nr() is not yet available copy_thread() is 1496 * called. Fixing that would require changing more intrusive arch-neutral 1497 * code in code path in copy_process()?. 1498 * 1499 * Further, to assign unique TIDRs within each process, we need an atomic 1500 * field (or an IDR) in task_struct, which again intrudes into the arch- 1501 * neutral code. So try to assign globally unique TIDRs for now. 1502 * 1503 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value. 1504 * For now, only threads that expect to be notified by the VAS 1505 * hardware need a TIDR value and we assign values > 0 for those. 1506 */ 1507 #define MAX_THREAD_CONTEXT ((1 << 16) - 1) 1508 static int assign_thread_tidr(void) 1509 { 1510 int index; 1511 int err; 1512 1513 again: 1514 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL)) 1515 return -ENOMEM; 1516 1517 spin_lock(&vas_thread_id_lock); 1518 err = ida_get_new_above(&vas_thread_ida, 1, &index); 1519 spin_unlock(&vas_thread_id_lock); 1520 1521 if (err == -EAGAIN) 1522 goto again; 1523 else if (err) 1524 return err; 1525 1526 if (index > MAX_THREAD_CONTEXT) { 1527 spin_lock(&vas_thread_id_lock); 1528 ida_remove(&vas_thread_ida, index); 1529 spin_unlock(&vas_thread_id_lock); 1530 return -ENOMEM; 1531 } 1532 1533 return index; 1534 } 1535 1536 static void free_thread_tidr(int id) 1537 { 1538 spin_lock(&vas_thread_id_lock); 1539 ida_remove(&vas_thread_ida, id); 1540 spin_unlock(&vas_thread_id_lock); 1541 } 1542 1543 /* 1544 * Clear any TIDR value assigned to this thread. 1545 */ 1546 void clear_thread_tidr(struct task_struct *t) 1547 { 1548 if (!t->thread.tidr) 1549 return; 1550 1551 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1552 WARN_ON_ONCE(1); 1553 return; 1554 } 1555 1556 mtspr(SPRN_TIDR, 0); 1557 free_thread_tidr(t->thread.tidr); 1558 t->thread.tidr = 0; 1559 } 1560 1561 void arch_release_task_struct(struct task_struct *t) 1562 { 1563 clear_thread_tidr(t); 1564 } 1565 1566 /* 1567 * Assign a unique TIDR (thread id) for task @t and set it in the thread 1568 * structure. For now, we only support setting TIDR for 'current' task. 1569 */ 1570 int set_thread_tidr(struct task_struct *t) 1571 { 1572 int rc; 1573 1574 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1575 return -EINVAL; 1576 1577 if (t != current) 1578 return -EINVAL; 1579 1580 if (t->thread.tidr) 1581 return 0; 1582 1583 rc = assign_thread_tidr(); 1584 if (rc < 0) 1585 return rc; 1586 1587 t->thread.tidr = rc; 1588 mtspr(SPRN_TIDR, t->thread.tidr); 1589 1590 return 0; 1591 } 1592 1593 #endif /* CONFIG_PPC64 */ 1594 1595 void 1596 release_thread(struct task_struct *t) 1597 { 1598 } 1599 1600 /* 1601 * this gets called so that we can store coprocessor state into memory and 1602 * copy the current task into the new thread. 1603 */ 1604 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1605 { 1606 flush_all_to_thread(src); 1607 /* 1608 * Flush TM state out so we can copy it. __switch_to_tm() does this 1609 * flush but it removes the checkpointed state from the current CPU and 1610 * transitions the CPU out of TM mode. Hence we need to call 1611 * tm_recheckpoint_new_task() (on the same task) to restore the 1612 * checkpointed state back and the TM mode. 1613 * 1614 * Can't pass dst because it isn't ready. Doesn't matter, passing 1615 * dst is only important for __switch_to() 1616 */ 1617 __switch_to_tm(src, src); 1618 1619 *dst = *src; 1620 1621 clear_task_ebb(dst); 1622 1623 return 0; 1624 } 1625 1626 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1627 { 1628 #ifdef CONFIG_PPC_BOOK3S_64 1629 unsigned long sp_vsid; 1630 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1631 1632 if (radix_enabled()) 1633 return; 1634 1635 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1636 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1637 << SLB_VSID_SHIFT_1T; 1638 else 1639 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1640 << SLB_VSID_SHIFT; 1641 sp_vsid |= SLB_VSID_KERNEL | llp; 1642 p->thread.ksp_vsid = sp_vsid; 1643 #endif 1644 } 1645 1646 /* 1647 * Copy a thread.. 1648 */ 1649 1650 /* 1651 * Copy architecture-specific thread state 1652 */ 1653 int copy_thread(unsigned long clone_flags, unsigned long usp, 1654 unsigned long kthread_arg, struct task_struct *p) 1655 { 1656 struct pt_regs *childregs, *kregs; 1657 extern void ret_from_fork(void); 1658 extern void ret_from_kernel_thread(void); 1659 void (*f)(void); 1660 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1661 struct thread_info *ti = task_thread_info(p); 1662 1663 klp_init_thread_info(ti); 1664 1665 /* Copy registers */ 1666 sp -= sizeof(struct pt_regs); 1667 childregs = (struct pt_regs *) sp; 1668 if (unlikely(p->flags & PF_KTHREAD)) { 1669 /* kernel thread */ 1670 memset(childregs, 0, sizeof(struct pt_regs)); 1671 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1672 /* function */ 1673 if (usp) 1674 childregs->gpr[14] = ppc_function_entry((void *)usp); 1675 #ifdef CONFIG_PPC64 1676 clear_tsk_thread_flag(p, TIF_32BIT); 1677 childregs->softe = 1; 1678 #endif 1679 childregs->gpr[15] = kthread_arg; 1680 p->thread.regs = NULL; /* no user register state */ 1681 ti->flags |= _TIF_RESTOREALL; 1682 f = ret_from_kernel_thread; 1683 } else { 1684 /* user thread */ 1685 struct pt_regs *regs = current_pt_regs(); 1686 CHECK_FULL_REGS(regs); 1687 *childregs = *regs; 1688 if (usp) 1689 childregs->gpr[1] = usp; 1690 p->thread.regs = childregs; 1691 childregs->gpr[3] = 0; /* Result from fork() */ 1692 if (clone_flags & CLONE_SETTLS) { 1693 #ifdef CONFIG_PPC64 1694 if (!is_32bit_task()) 1695 childregs->gpr[13] = childregs->gpr[6]; 1696 else 1697 #endif 1698 childregs->gpr[2] = childregs->gpr[6]; 1699 } 1700 1701 f = ret_from_fork; 1702 } 1703 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1704 sp -= STACK_FRAME_OVERHEAD; 1705 1706 /* 1707 * The way this works is that at some point in the future 1708 * some task will call _switch to switch to the new task. 1709 * That will pop off the stack frame created below and start 1710 * the new task running at ret_from_fork. The new task will 1711 * do some house keeping and then return from the fork or clone 1712 * system call, using the stack frame created above. 1713 */ 1714 ((unsigned long *)sp)[0] = 0; 1715 sp -= sizeof(struct pt_regs); 1716 kregs = (struct pt_regs *) sp; 1717 sp -= STACK_FRAME_OVERHEAD; 1718 p->thread.ksp = sp; 1719 #ifdef CONFIG_PPC32 1720 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1721 _ALIGN_UP(sizeof(struct thread_info), 16); 1722 #endif 1723 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1724 p->thread.ptrace_bps[0] = NULL; 1725 #endif 1726 1727 p->thread.fp_save_area = NULL; 1728 #ifdef CONFIG_ALTIVEC 1729 p->thread.vr_save_area = NULL; 1730 #endif 1731 1732 setup_ksp_vsid(p, sp); 1733 1734 #ifdef CONFIG_PPC64 1735 if (cpu_has_feature(CPU_FTR_DSCR)) { 1736 p->thread.dscr_inherit = current->thread.dscr_inherit; 1737 p->thread.dscr = mfspr(SPRN_DSCR); 1738 } 1739 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1740 p->thread.ppr = INIT_PPR; 1741 1742 p->thread.tidr = 0; 1743 #endif 1744 kregs->nip = ppc_function_entry(f); 1745 return 0; 1746 } 1747 1748 /* 1749 * Set up a thread for executing a new program 1750 */ 1751 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1752 { 1753 #ifdef CONFIG_PPC64 1754 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1755 #endif 1756 1757 /* 1758 * If we exec out of a kernel thread then thread.regs will not be 1759 * set. Do it now. 1760 */ 1761 if (!current->thread.regs) { 1762 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1763 current->thread.regs = regs - 1; 1764 } 1765 1766 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1767 /* 1768 * Clear any transactional state, we're exec()ing. The cause is 1769 * not important as there will never be a recheckpoint so it's not 1770 * user visible. 1771 */ 1772 if (MSR_TM_SUSPENDED(mfmsr())) 1773 tm_reclaim_current(0); 1774 #endif 1775 1776 memset(regs->gpr, 0, sizeof(regs->gpr)); 1777 regs->ctr = 0; 1778 regs->link = 0; 1779 regs->xer = 0; 1780 regs->ccr = 0; 1781 regs->gpr[1] = sp; 1782 1783 /* 1784 * We have just cleared all the nonvolatile GPRs, so make 1785 * FULL_REGS(regs) return true. This is necessary to allow 1786 * ptrace to examine the thread immediately after exec. 1787 */ 1788 regs->trap &= ~1UL; 1789 1790 #ifdef CONFIG_PPC32 1791 regs->mq = 0; 1792 regs->nip = start; 1793 regs->msr = MSR_USER; 1794 #else 1795 if (!is_32bit_task()) { 1796 unsigned long entry; 1797 1798 if (is_elf2_task()) { 1799 /* Look ma, no function descriptors! */ 1800 entry = start; 1801 1802 /* 1803 * Ulrich says: 1804 * The latest iteration of the ABI requires that when 1805 * calling a function (at its global entry point), 1806 * the caller must ensure r12 holds the entry point 1807 * address (so that the function can quickly 1808 * establish addressability). 1809 */ 1810 regs->gpr[12] = start; 1811 /* Make sure that's restored on entry to userspace. */ 1812 set_thread_flag(TIF_RESTOREALL); 1813 } else { 1814 unsigned long toc; 1815 1816 /* start is a relocated pointer to the function 1817 * descriptor for the elf _start routine. The first 1818 * entry in the function descriptor is the entry 1819 * address of _start and the second entry is the TOC 1820 * value we need to use. 1821 */ 1822 __get_user(entry, (unsigned long __user *)start); 1823 __get_user(toc, (unsigned long __user *)start+1); 1824 1825 /* Check whether the e_entry function descriptor entries 1826 * need to be relocated before we can use them. 1827 */ 1828 if (load_addr != 0) { 1829 entry += load_addr; 1830 toc += load_addr; 1831 } 1832 regs->gpr[2] = toc; 1833 } 1834 regs->nip = entry; 1835 regs->msr = MSR_USER64; 1836 } else { 1837 regs->nip = start; 1838 regs->gpr[2] = 0; 1839 regs->msr = MSR_USER32; 1840 } 1841 #endif 1842 #ifdef CONFIG_VSX 1843 current->thread.used_vsr = 0; 1844 #endif 1845 current->thread.load_fp = 0; 1846 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1847 current->thread.fp_save_area = NULL; 1848 #ifdef CONFIG_ALTIVEC 1849 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1850 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1851 current->thread.vr_save_area = NULL; 1852 current->thread.vrsave = 0; 1853 current->thread.used_vr = 0; 1854 current->thread.load_vec = 0; 1855 #endif /* CONFIG_ALTIVEC */ 1856 #ifdef CONFIG_SPE 1857 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1858 current->thread.acc = 0; 1859 current->thread.spefscr = 0; 1860 current->thread.used_spe = 0; 1861 #endif /* CONFIG_SPE */ 1862 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1863 current->thread.tm_tfhar = 0; 1864 current->thread.tm_texasr = 0; 1865 current->thread.tm_tfiar = 0; 1866 current->thread.load_tm = 0; 1867 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1868 } 1869 EXPORT_SYMBOL(start_thread); 1870 1871 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1872 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1873 1874 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1875 { 1876 struct pt_regs *regs = tsk->thread.regs; 1877 1878 /* This is a bit hairy. If we are an SPE enabled processor 1879 * (have embedded fp) we store the IEEE exception enable flags in 1880 * fpexc_mode. fpexc_mode is also used for setting FP exception 1881 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1882 if (val & PR_FP_EXC_SW_ENABLE) { 1883 #ifdef CONFIG_SPE 1884 if (cpu_has_feature(CPU_FTR_SPE)) { 1885 /* 1886 * When the sticky exception bits are set 1887 * directly by userspace, it must call prctl 1888 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1889 * in the existing prctl settings) or 1890 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1891 * the bits being set). <fenv.h> functions 1892 * saving and restoring the whole 1893 * floating-point environment need to do so 1894 * anyway to restore the prctl settings from 1895 * the saved environment. 1896 */ 1897 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1898 tsk->thread.fpexc_mode = val & 1899 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1900 return 0; 1901 } else { 1902 return -EINVAL; 1903 } 1904 #else 1905 return -EINVAL; 1906 #endif 1907 } 1908 1909 /* on a CONFIG_SPE this does not hurt us. The bits that 1910 * __pack_fe01 use do not overlap with bits used for 1911 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1912 * on CONFIG_SPE implementations are reserved so writing to 1913 * them does not change anything */ 1914 if (val > PR_FP_EXC_PRECISE) 1915 return -EINVAL; 1916 tsk->thread.fpexc_mode = __pack_fe01(val); 1917 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1918 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1919 | tsk->thread.fpexc_mode; 1920 return 0; 1921 } 1922 1923 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1924 { 1925 unsigned int val; 1926 1927 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1928 #ifdef CONFIG_SPE 1929 if (cpu_has_feature(CPU_FTR_SPE)) { 1930 /* 1931 * When the sticky exception bits are set 1932 * directly by userspace, it must call prctl 1933 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1934 * in the existing prctl settings) or 1935 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1936 * the bits being set). <fenv.h> functions 1937 * saving and restoring the whole 1938 * floating-point environment need to do so 1939 * anyway to restore the prctl settings from 1940 * the saved environment. 1941 */ 1942 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1943 val = tsk->thread.fpexc_mode; 1944 } else 1945 return -EINVAL; 1946 #else 1947 return -EINVAL; 1948 #endif 1949 else 1950 val = __unpack_fe01(tsk->thread.fpexc_mode); 1951 return put_user(val, (unsigned int __user *) adr); 1952 } 1953 1954 int set_endian(struct task_struct *tsk, unsigned int val) 1955 { 1956 struct pt_regs *regs = tsk->thread.regs; 1957 1958 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1959 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1960 return -EINVAL; 1961 1962 if (regs == NULL) 1963 return -EINVAL; 1964 1965 if (val == PR_ENDIAN_BIG) 1966 regs->msr &= ~MSR_LE; 1967 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1968 regs->msr |= MSR_LE; 1969 else 1970 return -EINVAL; 1971 1972 return 0; 1973 } 1974 1975 int get_endian(struct task_struct *tsk, unsigned long adr) 1976 { 1977 struct pt_regs *regs = tsk->thread.regs; 1978 unsigned int val; 1979 1980 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1981 !cpu_has_feature(CPU_FTR_REAL_LE)) 1982 return -EINVAL; 1983 1984 if (regs == NULL) 1985 return -EINVAL; 1986 1987 if (regs->msr & MSR_LE) { 1988 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1989 val = PR_ENDIAN_LITTLE; 1990 else 1991 val = PR_ENDIAN_PPC_LITTLE; 1992 } else 1993 val = PR_ENDIAN_BIG; 1994 1995 return put_user(val, (unsigned int __user *)adr); 1996 } 1997 1998 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1999 { 2000 tsk->thread.align_ctl = val; 2001 return 0; 2002 } 2003 2004 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2005 { 2006 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2007 } 2008 2009 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2010 unsigned long nbytes) 2011 { 2012 unsigned long stack_page; 2013 unsigned long cpu = task_cpu(p); 2014 2015 /* 2016 * Avoid crashing if the stack has overflowed and corrupted 2017 * task_cpu(p), which is in the thread_info struct. 2018 */ 2019 if (cpu < NR_CPUS && cpu_possible(cpu)) { 2020 stack_page = (unsigned long) hardirq_ctx[cpu]; 2021 if (sp >= stack_page + sizeof(struct thread_struct) 2022 && sp <= stack_page + THREAD_SIZE - nbytes) 2023 return 1; 2024 2025 stack_page = (unsigned long) softirq_ctx[cpu]; 2026 if (sp >= stack_page + sizeof(struct thread_struct) 2027 && sp <= stack_page + THREAD_SIZE - nbytes) 2028 return 1; 2029 } 2030 return 0; 2031 } 2032 2033 int validate_sp(unsigned long sp, struct task_struct *p, 2034 unsigned long nbytes) 2035 { 2036 unsigned long stack_page = (unsigned long)task_stack_page(p); 2037 2038 if (sp >= stack_page + sizeof(struct thread_struct) 2039 && sp <= stack_page + THREAD_SIZE - nbytes) 2040 return 1; 2041 2042 return valid_irq_stack(sp, p, nbytes); 2043 } 2044 2045 EXPORT_SYMBOL(validate_sp); 2046 2047 unsigned long get_wchan(struct task_struct *p) 2048 { 2049 unsigned long ip, sp; 2050 int count = 0; 2051 2052 if (!p || p == current || p->state == TASK_RUNNING) 2053 return 0; 2054 2055 sp = p->thread.ksp; 2056 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2057 return 0; 2058 2059 do { 2060 sp = *(unsigned long *)sp; 2061 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2062 p->state == TASK_RUNNING) 2063 return 0; 2064 if (count > 0) { 2065 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2066 if (!in_sched_functions(ip)) 2067 return ip; 2068 } 2069 } while (count++ < 16); 2070 return 0; 2071 } 2072 2073 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2074 2075 void show_stack(struct task_struct *tsk, unsigned long *stack) 2076 { 2077 unsigned long sp, ip, lr, newsp; 2078 int count = 0; 2079 int firstframe = 1; 2080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2081 int curr_frame = current->curr_ret_stack; 2082 extern void return_to_handler(void); 2083 unsigned long rth = (unsigned long)return_to_handler; 2084 #endif 2085 2086 sp = (unsigned long) stack; 2087 if (tsk == NULL) 2088 tsk = current; 2089 if (sp == 0) { 2090 if (tsk == current) 2091 sp = current_stack_pointer(); 2092 else 2093 sp = tsk->thread.ksp; 2094 } 2095 2096 lr = 0; 2097 printk("Call Trace:\n"); 2098 do { 2099 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2100 return; 2101 2102 stack = (unsigned long *) sp; 2103 newsp = stack[0]; 2104 ip = stack[STACK_FRAME_LR_SAVE]; 2105 if (!firstframe || ip != lr) { 2106 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2107 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2108 if ((ip == rth) && curr_frame >= 0) { 2109 pr_cont(" (%pS)", 2110 (void *)current->ret_stack[curr_frame].ret); 2111 curr_frame--; 2112 } 2113 #endif 2114 if (firstframe) 2115 pr_cont(" (unreliable)"); 2116 pr_cont("\n"); 2117 } 2118 firstframe = 0; 2119 2120 /* 2121 * See if this is an exception frame. 2122 * We look for the "regshere" marker in the current frame. 2123 */ 2124 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2125 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2126 struct pt_regs *regs = (struct pt_regs *) 2127 (sp + STACK_FRAME_OVERHEAD); 2128 lr = regs->link; 2129 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2130 regs->trap, (void *)regs->nip, (void *)lr); 2131 firstframe = 1; 2132 } 2133 2134 sp = newsp; 2135 } while (count++ < kstack_depth_to_print); 2136 } 2137 2138 #ifdef CONFIG_PPC64 2139 /* Called with hard IRQs off */ 2140 void notrace __ppc64_runlatch_on(void) 2141 { 2142 struct thread_info *ti = current_thread_info(); 2143 2144 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2145 /* 2146 * Least significant bit (RUN) is the only writable bit of 2147 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2148 * earliest ISA where this is the case, but it's convenient. 2149 */ 2150 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2151 } else { 2152 unsigned long ctrl; 2153 2154 /* 2155 * Some architectures (e.g., Cell) have writable fields other 2156 * than RUN, so do the read-modify-write. 2157 */ 2158 ctrl = mfspr(SPRN_CTRLF); 2159 ctrl |= CTRL_RUNLATCH; 2160 mtspr(SPRN_CTRLT, ctrl); 2161 } 2162 2163 ti->local_flags |= _TLF_RUNLATCH; 2164 } 2165 2166 /* Called with hard IRQs off */ 2167 void notrace __ppc64_runlatch_off(void) 2168 { 2169 struct thread_info *ti = current_thread_info(); 2170 2171 ti->local_flags &= ~_TLF_RUNLATCH; 2172 2173 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2174 mtspr(SPRN_CTRLT, 0); 2175 } else { 2176 unsigned long ctrl; 2177 2178 ctrl = mfspr(SPRN_CTRLF); 2179 ctrl &= ~CTRL_RUNLATCH; 2180 mtspr(SPRN_CTRLT, ctrl); 2181 } 2182 } 2183 #endif /* CONFIG_PPC64 */ 2184 2185 unsigned long arch_align_stack(unsigned long sp) 2186 { 2187 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2188 sp -= get_random_int() & ~PAGE_MASK; 2189 return sp & ~0xf; 2190 } 2191 2192 static inline unsigned long brk_rnd(void) 2193 { 2194 unsigned long rnd = 0; 2195 2196 /* 8MB for 32bit, 1GB for 64bit */ 2197 if (is_32bit_task()) 2198 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2199 else 2200 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2201 2202 return rnd << PAGE_SHIFT; 2203 } 2204 2205 unsigned long arch_randomize_brk(struct mm_struct *mm) 2206 { 2207 unsigned long base = mm->brk; 2208 unsigned long ret; 2209 2210 #ifdef CONFIG_PPC_BOOK3S_64 2211 /* 2212 * If we are using 1TB segments and we are allowed to randomise 2213 * the heap, we can put it above 1TB so it is backed by a 1TB 2214 * segment. Otherwise the heap will be in the bottom 1TB 2215 * which always uses 256MB segments and this may result in a 2216 * performance penalty. We don't need to worry about radix. For 2217 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2218 */ 2219 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2220 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2221 #endif 2222 2223 ret = PAGE_ALIGN(base + brk_rnd()); 2224 2225 if (ret < mm->brk) 2226 return mm->brk; 2227 2228 return ret; 2229 } 2230 2231