1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/pgtable.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #include <asm/time.h> 51 #include <asm/runlatch.h> 52 #include <asm/syscalls.h> 53 #include <asm/switch_to.h> 54 #include <asm/tm.h> 55 #include <asm/debug.h> 56 #ifdef CONFIG_PPC64 57 #include <asm/firmware.h> 58 #include <asm/hw_irq.h> 59 #endif 60 #include <asm/code-patching.h> 61 #include <asm/exec.h> 62 #include <asm/livepatch.h> 63 #include <asm/cpu_has_feature.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/stacktrace.h> 66 #include <asm/hw_breakpoint.h> 67 68 #include <linux/kprobes.h> 69 #include <linux/kdebug.h> 70 71 /* Transactional Memory debug */ 72 #ifdef TM_DEBUG_SW 73 #define TM_DEBUG(x...) printk(KERN_INFO x) 74 #else 75 #define TM_DEBUG(x...) do { } while(0) 76 #endif 77 78 extern unsigned long _get_SP(void); 79 80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 81 /* 82 * Are we running in "Suspend disabled" mode? If so we have to block any 83 * sigreturn that would get us into suspended state, and we also warn in some 84 * other paths that we should never reach with suspend disabled. 85 */ 86 bool tm_suspend_disabled __ro_after_init = false; 87 88 static void check_if_tm_restore_required(struct task_struct *tsk) 89 { 90 /* 91 * If we are saving the current thread's registers, and the 92 * thread is in a transactional state, set the TIF_RESTORE_TM 93 * bit so that we know to restore the registers before 94 * returning to userspace. 95 */ 96 if (tsk == current && tsk->thread.regs && 97 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 98 !test_thread_flag(TIF_RESTORE_TM)) { 99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 100 set_thread_flag(TIF_RESTORE_TM); 101 } 102 } 103 104 static bool tm_active_with_fp(struct task_struct *tsk) 105 { 106 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 107 (tsk->thread.ckpt_regs.msr & MSR_FP); 108 } 109 110 static bool tm_active_with_altivec(struct task_struct *tsk) 111 { 112 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 113 (tsk->thread.ckpt_regs.msr & MSR_VEC); 114 } 115 #else 116 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 117 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 118 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 120 121 bool strict_msr_control; 122 EXPORT_SYMBOL(strict_msr_control); 123 124 static int __init enable_strict_msr_control(char *str) 125 { 126 strict_msr_control = true; 127 pr_info("Enabling strict facility control\n"); 128 129 return 0; 130 } 131 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 132 133 /* notrace because it's called by restore_math */ 134 unsigned long notrace msr_check_and_set(unsigned long bits) 135 { 136 unsigned long oldmsr = mfmsr(); 137 unsigned long newmsr; 138 139 newmsr = oldmsr | bits; 140 141 #ifdef CONFIG_VSX 142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 143 newmsr |= MSR_VSX; 144 #endif 145 146 if (oldmsr != newmsr) 147 mtmsr_isync(newmsr); 148 149 return newmsr; 150 } 151 EXPORT_SYMBOL_GPL(msr_check_and_set); 152 153 /* notrace because it's called by restore_math */ 154 void notrace __msr_check_and_clear(unsigned long bits) 155 { 156 unsigned long oldmsr = mfmsr(); 157 unsigned long newmsr; 158 159 newmsr = oldmsr & ~bits; 160 161 #ifdef CONFIG_VSX 162 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 163 newmsr &= ~MSR_VSX; 164 #endif 165 166 if (oldmsr != newmsr) 167 mtmsr_isync(newmsr); 168 } 169 EXPORT_SYMBOL(__msr_check_and_clear); 170 171 #ifdef CONFIG_PPC_FPU 172 static void __giveup_fpu(struct task_struct *tsk) 173 { 174 unsigned long msr; 175 176 save_fpu(tsk); 177 msr = tsk->thread.regs->msr; 178 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 179 #ifdef CONFIG_VSX 180 if (cpu_has_feature(CPU_FTR_VSX)) 181 msr &= ~MSR_VSX; 182 #endif 183 tsk->thread.regs->msr = msr; 184 } 185 186 void giveup_fpu(struct task_struct *tsk) 187 { 188 check_if_tm_restore_required(tsk); 189 190 msr_check_and_set(MSR_FP); 191 __giveup_fpu(tsk); 192 msr_check_and_clear(MSR_FP); 193 } 194 EXPORT_SYMBOL(giveup_fpu); 195 196 /* 197 * Make sure the floating-point register state in the 198 * the thread_struct is up to date for task tsk. 199 */ 200 void flush_fp_to_thread(struct task_struct *tsk) 201 { 202 if (tsk->thread.regs) { 203 /* 204 * We need to disable preemption here because if we didn't, 205 * another process could get scheduled after the regs->msr 206 * test but before we have finished saving the FP registers 207 * to the thread_struct. That process could take over the 208 * FPU, and then when we get scheduled again we would store 209 * bogus values for the remaining FP registers. 210 */ 211 preempt_disable(); 212 if (tsk->thread.regs->msr & MSR_FP) { 213 /* 214 * This should only ever be called for current or 215 * for a stopped child process. Since we save away 216 * the FP register state on context switch, 217 * there is something wrong if a stopped child appears 218 * to still have its FP state in the CPU registers. 219 */ 220 BUG_ON(tsk != current); 221 giveup_fpu(tsk); 222 } 223 preempt_enable(); 224 } 225 } 226 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 227 228 void enable_kernel_fp(void) 229 { 230 unsigned long cpumsr; 231 232 WARN_ON(preemptible()); 233 234 cpumsr = msr_check_and_set(MSR_FP); 235 236 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 237 check_if_tm_restore_required(current); 238 /* 239 * If a thread has already been reclaimed then the 240 * checkpointed registers are on the CPU but have definitely 241 * been saved by the reclaim code. Don't need to and *cannot* 242 * giveup as this would save to the 'live' structure not the 243 * checkpointed structure. 244 */ 245 if (!MSR_TM_ACTIVE(cpumsr) && 246 MSR_TM_ACTIVE(current->thread.regs->msr)) 247 return; 248 __giveup_fpu(current); 249 } 250 } 251 EXPORT_SYMBOL(enable_kernel_fp); 252 253 static int restore_fp(struct task_struct *tsk) 254 { 255 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 256 load_fp_state(¤t->thread.fp_state); 257 current->thread.load_fp++; 258 return 1; 259 } 260 return 0; 261 } 262 #else 263 static int restore_fp(struct task_struct *tsk) { return 0; } 264 #endif /* CONFIG_PPC_FPU */ 265 266 #ifdef CONFIG_ALTIVEC 267 #define loadvec(thr) ((thr).load_vec) 268 269 static void __giveup_altivec(struct task_struct *tsk) 270 { 271 unsigned long msr; 272 273 save_altivec(tsk); 274 msr = tsk->thread.regs->msr; 275 msr &= ~MSR_VEC; 276 #ifdef CONFIG_VSX 277 if (cpu_has_feature(CPU_FTR_VSX)) 278 msr &= ~MSR_VSX; 279 #endif 280 tsk->thread.regs->msr = msr; 281 } 282 283 void giveup_altivec(struct task_struct *tsk) 284 { 285 check_if_tm_restore_required(tsk); 286 287 msr_check_and_set(MSR_VEC); 288 __giveup_altivec(tsk); 289 msr_check_and_clear(MSR_VEC); 290 } 291 EXPORT_SYMBOL(giveup_altivec); 292 293 void enable_kernel_altivec(void) 294 { 295 unsigned long cpumsr; 296 297 WARN_ON(preemptible()); 298 299 cpumsr = msr_check_and_set(MSR_VEC); 300 301 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 302 check_if_tm_restore_required(current); 303 /* 304 * If a thread has already been reclaimed then the 305 * checkpointed registers are on the CPU but have definitely 306 * been saved by the reclaim code. Don't need to and *cannot* 307 * giveup as this would save to the 'live' structure not the 308 * checkpointed structure. 309 */ 310 if (!MSR_TM_ACTIVE(cpumsr) && 311 MSR_TM_ACTIVE(current->thread.regs->msr)) 312 return; 313 __giveup_altivec(current); 314 } 315 } 316 EXPORT_SYMBOL(enable_kernel_altivec); 317 318 /* 319 * Make sure the VMX/Altivec register state in the 320 * the thread_struct is up to date for task tsk. 321 */ 322 void flush_altivec_to_thread(struct task_struct *tsk) 323 { 324 if (tsk->thread.regs) { 325 preempt_disable(); 326 if (tsk->thread.regs->msr & MSR_VEC) { 327 BUG_ON(tsk != current); 328 giveup_altivec(tsk); 329 } 330 preempt_enable(); 331 } 332 } 333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 334 335 static int restore_altivec(struct task_struct *tsk) 336 { 337 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 338 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 339 load_vr_state(&tsk->thread.vr_state); 340 tsk->thread.used_vr = 1; 341 tsk->thread.load_vec++; 342 343 return 1; 344 } 345 return 0; 346 } 347 #else 348 #define loadvec(thr) 0 349 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 350 #endif /* CONFIG_ALTIVEC */ 351 352 #ifdef CONFIG_VSX 353 static void __giveup_vsx(struct task_struct *tsk) 354 { 355 unsigned long msr = tsk->thread.regs->msr; 356 357 /* 358 * We should never be ssetting MSR_VSX without also setting 359 * MSR_FP and MSR_VEC 360 */ 361 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 362 363 /* __giveup_fpu will clear MSR_VSX */ 364 if (msr & MSR_FP) 365 __giveup_fpu(tsk); 366 if (msr & MSR_VEC) 367 __giveup_altivec(tsk); 368 } 369 370 static void giveup_vsx(struct task_struct *tsk) 371 { 372 check_if_tm_restore_required(tsk); 373 374 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 375 __giveup_vsx(tsk); 376 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 377 } 378 379 void enable_kernel_vsx(void) 380 { 381 unsigned long cpumsr; 382 383 WARN_ON(preemptible()); 384 385 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 386 387 if (current->thread.regs && 388 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 389 check_if_tm_restore_required(current); 390 /* 391 * If a thread has already been reclaimed then the 392 * checkpointed registers are on the CPU but have definitely 393 * been saved by the reclaim code. Don't need to and *cannot* 394 * giveup as this would save to the 'live' structure not the 395 * checkpointed structure. 396 */ 397 if (!MSR_TM_ACTIVE(cpumsr) && 398 MSR_TM_ACTIVE(current->thread.regs->msr)) 399 return; 400 __giveup_vsx(current); 401 } 402 } 403 EXPORT_SYMBOL(enable_kernel_vsx); 404 405 void flush_vsx_to_thread(struct task_struct *tsk) 406 { 407 if (tsk->thread.regs) { 408 preempt_disable(); 409 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 410 BUG_ON(tsk != current); 411 giveup_vsx(tsk); 412 } 413 preempt_enable(); 414 } 415 } 416 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 417 418 static int restore_vsx(struct task_struct *tsk) 419 { 420 if (cpu_has_feature(CPU_FTR_VSX)) { 421 tsk->thread.used_vsr = 1; 422 return 1; 423 } 424 425 return 0; 426 } 427 #else 428 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 429 #endif /* CONFIG_VSX */ 430 431 #ifdef CONFIG_SPE 432 void giveup_spe(struct task_struct *tsk) 433 { 434 check_if_tm_restore_required(tsk); 435 436 msr_check_and_set(MSR_SPE); 437 __giveup_spe(tsk); 438 msr_check_and_clear(MSR_SPE); 439 } 440 EXPORT_SYMBOL(giveup_spe); 441 442 void enable_kernel_spe(void) 443 { 444 WARN_ON(preemptible()); 445 446 msr_check_and_set(MSR_SPE); 447 448 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 449 check_if_tm_restore_required(current); 450 __giveup_spe(current); 451 } 452 } 453 EXPORT_SYMBOL(enable_kernel_spe); 454 455 void flush_spe_to_thread(struct task_struct *tsk) 456 { 457 if (tsk->thread.regs) { 458 preempt_disable(); 459 if (tsk->thread.regs->msr & MSR_SPE) { 460 BUG_ON(tsk != current); 461 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 462 giveup_spe(tsk); 463 } 464 preempt_enable(); 465 } 466 } 467 #endif /* CONFIG_SPE */ 468 469 static unsigned long msr_all_available; 470 471 static int __init init_msr_all_available(void) 472 { 473 #ifdef CONFIG_PPC_FPU 474 msr_all_available |= MSR_FP; 475 #endif 476 #ifdef CONFIG_ALTIVEC 477 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 478 msr_all_available |= MSR_VEC; 479 #endif 480 #ifdef CONFIG_VSX 481 if (cpu_has_feature(CPU_FTR_VSX)) 482 msr_all_available |= MSR_VSX; 483 #endif 484 #ifdef CONFIG_SPE 485 if (cpu_has_feature(CPU_FTR_SPE)) 486 msr_all_available |= MSR_SPE; 487 #endif 488 489 return 0; 490 } 491 early_initcall(init_msr_all_available); 492 493 void giveup_all(struct task_struct *tsk) 494 { 495 unsigned long usermsr; 496 497 if (!tsk->thread.regs) 498 return; 499 500 usermsr = tsk->thread.regs->msr; 501 502 if ((usermsr & msr_all_available) == 0) 503 return; 504 505 msr_check_and_set(msr_all_available); 506 check_if_tm_restore_required(tsk); 507 508 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 509 510 #ifdef CONFIG_PPC_FPU 511 if (usermsr & MSR_FP) 512 __giveup_fpu(tsk); 513 #endif 514 #ifdef CONFIG_ALTIVEC 515 if (usermsr & MSR_VEC) 516 __giveup_altivec(tsk); 517 #endif 518 #ifdef CONFIG_SPE 519 if (usermsr & MSR_SPE) 520 __giveup_spe(tsk); 521 #endif 522 523 msr_check_and_clear(msr_all_available); 524 } 525 EXPORT_SYMBOL(giveup_all); 526 527 /* 528 * The exception exit path calls restore_math() with interrupts hard disabled 529 * but the soft irq state not "reconciled". ftrace code that calls 530 * local_irq_save/restore causes warnings. 531 * 532 * Rather than complicate the exit path, just don't trace restore_math. This 533 * could be done by having ftrace entry code check for this un-reconciled 534 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 535 * temporarily fix it up for the duration of the ftrace call. 536 */ 537 void notrace restore_math(struct pt_regs *regs) 538 { 539 unsigned long msr; 540 541 if (!MSR_TM_ACTIVE(regs->msr) && 542 !current->thread.load_fp && !loadvec(current->thread)) 543 return; 544 545 msr = regs->msr; 546 msr_check_and_set(msr_all_available); 547 548 /* 549 * Only reload if the bit is not set in the user MSR, the bit BEING set 550 * indicates that the registers are hot 551 */ 552 if ((!(msr & MSR_FP)) && restore_fp(current)) 553 msr |= MSR_FP | current->thread.fpexc_mode; 554 555 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 556 msr |= MSR_VEC; 557 558 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 559 restore_vsx(current)) { 560 msr |= MSR_VSX; 561 } 562 563 msr_check_and_clear(msr_all_available); 564 565 regs->msr = msr; 566 } 567 568 static void save_all(struct task_struct *tsk) 569 { 570 unsigned long usermsr; 571 572 if (!tsk->thread.regs) 573 return; 574 575 usermsr = tsk->thread.regs->msr; 576 577 if ((usermsr & msr_all_available) == 0) 578 return; 579 580 msr_check_and_set(msr_all_available); 581 582 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 583 584 if (usermsr & MSR_FP) 585 save_fpu(tsk); 586 587 if (usermsr & MSR_VEC) 588 save_altivec(tsk); 589 590 if (usermsr & MSR_SPE) 591 __giveup_spe(tsk); 592 593 msr_check_and_clear(msr_all_available); 594 thread_pkey_regs_save(&tsk->thread); 595 } 596 597 void flush_all_to_thread(struct task_struct *tsk) 598 { 599 if (tsk->thread.regs) { 600 preempt_disable(); 601 BUG_ON(tsk != current); 602 #ifdef CONFIG_SPE 603 if (tsk->thread.regs->msr & MSR_SPE) 604 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 605 #endif 606 save_all(tsk); 607 608 preempt_enable(); 609 } 610 } 611 EXPORT_SYMBOL(flush_all_to_thread); 612 613 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 614 void do_send_trap(struct pt_regs *regs, unsigned long address, 615 unsigned long error_code, int breakpt) 616 { 617 current->thread.trap_nr = TRAP_HWBKPT; 618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 619 11, SIGSEGV) == NOTIFY_STOP) 620 return; 621 622 /* Deliver the signal to userspace */ 623 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 624 (void __user *)address); 625 } 626 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 627 void do_break (struct pt_regs *regs, unsigned long address, 628 unsigned long error_code) 629 { 630 current->thread.trap_nr = TRAP_HWBKPT; 631 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 632 11, SIGSEGV) == NOTIFY_STOP) 633 return; 634 635 if (debugger_break_match(regs)) 636 return; 637 638 /* Clear the breakpoint */ 639 hw_breakpoint_disable(); 640 641 /* Deliver the signal to userspace */ 642 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current); 643 } 644 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 645 646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 647 648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 649 /* 650 * Set the debug registers back to their default "safe" values. 651 */ 652 static void set_debug_reg_defaults(struct thread_struct *thread) 653 { 654 thread->debug.iac1 = thread->debug.iac2 = 0; 655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 656 thread->debug.iac3 = thread->debug.iac4 = 0; 657 #endif 658 thread->debug.dac1 = thread->debug.dac2 = 0; 659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 660 thread->debug.dvc1 = thread->debug.dvc2 = 0; 661 #endif 662 thread->debug.dbcr0 = 0; 663 #ifdef CONFIG_BOOKE 664 /* 665 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 666 */ 667 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 668 DBCR1_IAC3US | DBCR1_IAC4US; 669 /* 670 * Force Data Address Compare User/Supervisor bits to be User-only 671 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 672 */ 673 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 674 #else 675 thread->debug.dbcr1 = 0; 676 #endif 677 } 678 679 static void prime_debug_regs(struct debug_reg *debug) 680 { 681 /* 682 * We could have inherited MSR_DE from userspace, since 683 * it doesn't get cleared on exception entry. Make sure 684 * MSR_DE is clear before we enable any debug events. 685 */ 686 mtmsr(mfmsr() & ~MSR_DE); 687 688 mtspr(SPRN_IAC1, debug->iac1); 689 mtspr(SPRN_IAC2, debug->iac2); 690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 691 mtspr(SPRN_IAC3, debug->iac3); 692 mtspr(SPRN_IAC4, debug->iac4); 693 #endif 694 mtspr(SPRN_DAC1, debug->dac1); 695 mtspr(SPRN_DAC2, debug->dac2); 696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 697 mtspr(SPRN_DVC1, debug->dvc1); 698 mtspr(SPRN_DVC2, debug->dvc2); 699 #endif 700 mtspr(SPRN_DBCR0, debug->dbcr0); 701 mtspr(SPRN_DBCR1, debug->dbcr1); 702 #ifdef CONFIG_BOOKE 703 mtspr(SPRN_DBCR2, debug->dbcr2); 704 #endif 705 } 706 /* 707 * Unless neither the old or new thread are making use of the 708 * debug registers, set the debug registers from the values 709 * stored in the new thread. 710 */ 711 void switch_booke_debug_regs(struct debug_reg *new_debug) 712 { 713 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 714 || (new_debug->dbcr0 & DBCR0_IDM)) 715 prime_debug_regs(new_debug); 716 } 717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 718 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 719 #ifndef CONFIG_HAVE_HW_BREAKPOINT 720 static void set_breakpoint(struct arch_hw_breakpoint *brk) 721 { 722 preempt_disable(); 723 __set_breakpoint(brk); 724 preempt_enable(); 725 } 726 727 static void set_debug_reg_defaults(struct thread_struct *thread) 728 { 729 thread->hw_brk.address = 0; 730 thread->hw_brk.type = 0; 731 if (ppc_breakpoint_available()) 732 set_breakpoint(&thread->hw_brk); 733 } 734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 735 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 736 737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 739 { 740 mtspr(SPRN_DAC1, dabr); 741 #ifdef CONFIG_PPC_47x 742 isync(); 743 #endif 744 return 0; 745 } 746 #elif defined(CONFIG_PPC_BOOK3S) 747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 748 { 749 mtspr(SPRN_DABR, dabr); 750 if (cpu_has_feature(CPU_FTR_DABRX)) 751 mtspr(SPRN_DABRX, dabrx); 752 return 0; 753 } 754 #elif defined(CONFIG_PPC_8xx) 755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 756 { 757 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 758 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 759 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 760 761 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 762 lctrl1 |= 0xa0000; 763 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 764 lctrl1 |= 0xf0000; 765 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 766 lctrl2 = 0; 767 768 mtspr(SPRN_LCTRL2, 0); 769 mtspr(SPRN_CMPE, addr); 770 mtspr(SPRN_CMPF, addr + 4); 771 mtspr(SPRN_LCTRL1, lctrl1); 772 mtspr(SPRN_LCTRL2, lctrl2); 773 774 return 0; 775 } 776 #else 777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 778 { 779 return -EINVAL; 780 } 781 #endif 782 783 static inline int set_dabr(struct arch_hw_breakpoint *brk) 784 { 785 unsigned long dabr, dabrx; 786 787 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 788 dabrx = ((brk->type >> 3) & 0x7); 789 790 if (ppc_md.set_dabr) 791 return ppc_md.set_dabr(dabr, dabrx); 792 793 return __set_dabr(dabr, dabrx); 794 } 795 796 int set_dawr(struct arch_hw_breakpoint *brk) 797 { 798 unsigned long dawr, dawrx, mrd; 799 800 dawr = brk->address; 801 802 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 803 << (63 - 58); //* read/write bits */ 804 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 805 << (63 - 59); //* translate */ 806 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 807 >> 3; //* PRIM bits */ 808 /* dawr length is stored in field MDR bits 48:53. Matches range in 809 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 810 0b111111=64DW. 811 brk->len is in bytes. 812 This aligns up to double word size, shifts and does the bias. 813 */ 814 mrd = ((brk->len + 7) >> 3) - 1; 815 dawrx |= (mrd & 0x3f) << (63 - 53); 816 817 if (ppc_md.set_dawr) 818 return ppc_md.set_dawr(dawr, dawrx); 819 mtspr(SPRN_DAWR, dawr); 820 mtspr(SPRN_DAWRX, dawrx); 821 return 0; 822 } 823 824 void __set_breakpoint(struct arch_hw_breakpoint *brk) 825 { 826 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 827 828 if (dawr_enabled()) 829 // Power8 or later 830 set_dawr(brk); 831 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 832 // Power7 or earlier 833 set_dabr(brk); 834 else 835 // Shouldn't happen due to higher level checks 836 WARN_ON_ONCE(1); 837 } 838 839 /* Check if we have DAWR or DABR hardware */ 840 bool ppc_breakpoint_available(void) 841 { 842 if (dawr_enabled()) 843 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 844 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 845 return false; /* POWER9 with DAWR disabled */ 846 /* DABR: Everything but POWER8 and POWER9 */ 847 return true; 848 } 849 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 850 851 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 852 struct arch_hw_breakpoint *b) 853 { 854 if (a->address != b->address) 855 return false; 856 if (a->type != b->type) 857 return false; 858 if (a->len != b->len) 859 return false; 860 return true; 861 } 862 863 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 864 865 static inline bool tm_enabled(struct task_struct *tsk) 866 { 867 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 868 } 869 870 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 871 { 872 /* 873 * Use the current MSR TM suspended bit to track if we have 874 * checkpointed state outstanding. 875 * On signal delivery, we'd normally reclaim the checkpointed 876 * state to obtain stack pointer (see:get_tm_stackpointer()). 877 * This will then directly return to userspace without going 878 * through __switch_to(). However, if the stack frame is bad, 879 * we need to exit this thread which calls __switch_to() which 880 * will again attempt to reclaim the already saved tm state. 881 * Hence we need to check that we've not already reclaimed 882 * this state. 883 * We do this using the current MSR, rather tracking it in 884 * some specific thread_struct bit, as it has the additional 885 * benefit of checking for a potential TM bad thing exception. 886 */ 887 if (!MSR_TM_SUSPENDED(mfmsr())) 888 return; 889 890 giveup_all(container_of(thr, struct task_struct, thread)); 891 892 tm_reclaim(thr, cause); 893 894 /* 895 * If we are in a transaction and FP is off then we can't have 896 * used FP inside that transaction. Hence the checkpointed 897 * state is the same as the live state. We need to copy the 898 * live state to the checkpointed state so that when the 899 * transaction is restored, the checkpointed state is correct 900 * and the aborted transaction sees the correct state. We use 901 * ckpt_regs.msr here as that's what tm_reclaim will use to 902 * determine if it's going to write the checkpointed state or 903 * not. So either this will write the checkpointed registers, 904 * or reclaim will. Similarly for VMX. 905 */ 906 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 907 memcpy(&thr->ckfp_state, &thr->fp_state, 908 sizeof(struct thread_fp_state)); 909 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 910 memcpy(&thr->ckvr_state, &thr->vr_state, 911 sizeof(struct thread_vr_state)); 912 } 913 914 void tm_reclaim_current(uint8_t cause) 915 { 916 tm_enable(); 917 tm_reclaim_thread(¤t->thread, cause); 918 } 919 920 static inline void tm_reclaim_task(struct task_struct *tsk) 921 { 922 /* We have to work out if we're switching from/to a task that's in the 923 * middle of a transaction. 924 * 925 * In switching we need to maintain a 2nd register state as 926 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 927 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 928 * ckvr_state 929 * 930 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 931 */ 932 struct thread_struct *thr = &tsk->thread; 933 934 if (!thr->regs) 935 return; 936 937 if (!MSR_TM_ACTIVE(thr->regs->msr)) 938 goto out_and_saveregs; 939 940 WARN_ON(tm_suspend_disabled); 941 942 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 943 "ccr=%lx, msr=%lx, trap=%lx)\n", 944 tsk->pid, thr->regs->nip, 945 thr->regs->ccr, thr->regs->msr, 946 thr->regs->trap); 947 948 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 949 950 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 951 tsk->pid); 952 953 out_and_saveregs: 954 /* Always save the regs here, even if a transaction's not active. 955 * This context-switches a thread's TM info SPRs. We do it here to 956 * be consistent with the restore path (in recheckpoint) which 957 * cannot happen later in _switch(). 958 */ 959 tm_save_sprs(thr); 960 } 961 962 extern void __tm_recheckpoint(struct thread_struct *thread); 963 964 void tm_recheckpoint(struct thread_struct *thread) 965 { 966 unsigned long flags; 967 968 if (!(thread->regs->msr & MSR_TM)) 969 return; 970 971 /* We really can't be interrupted here as the TEXASR registers can't 972 * change and later in the trecheckpoint code, we have a userspace R1. 973 * So let's hard disable over this region. 974 */ 975 local_irq_save(flags); 976 hard_irq_disable(); 977 978 /* The TM SPRs are restored here, so that TEXASR.FS can be set 979 * before the trecheckpoint and no explosion occurs. 980 */ 981 tm_restore_sprs(thread); 982 983 __tm_recheckpoint(thread); 984 985 local_irq_restore(flags); 986 } 987 988 static inline void tm_recheckpoint_new_task(struct task_struct *new) 989 { 990 if (!cpu_has_feature(CPU_FTR_TM)) 991 return; 992 993 /* Recheckpoint the registers of the thread we're about to switch to. 994 * 995 * If the task was using FP, we non-lazily reload both the original and 996 * the speculative FP register states. This is because the kernel 997 * doesn't see if/when a TM rollback occurs, so if we take an FP 998 * unavailable later, we are unable to determine which set of FP regs 999 * need to be restored. 1000 */ 1001 if (!tm_enabled(new)) 1002 return; 1003 1004 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1005 tm_restore_sprs(&new->thread); 1006 return; 1007 } 1008 /* Recheckpoint to restore original checkpointed register state. */ 1009 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1010 new->pid, new->thread.regs->msr); 1011 1012 tm_recheckpoint(&new->thread); 1013 1014 /* 1015 * The checkpointed state has been restored but the live state has 1016 * not, ensure all the math functionality is turned off to trigger 1017 * restore_math() to reload. 1018 */ 1019 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1020 1021 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1022 "(kernel msr 0x%lx)\n", 1023 new->pid, mfmsr()); 1024 } 1025 1026 static inline void __switch_to_tm(struct task_struct *prev, 1027 struct task_struct *new) 1028 { 1029 if (cpu_has_feature(CPU_FTR_TM)) { 1030 if (tm_enabled(prev) || tm_enabled(new)) 1031 tm_enable(); 1032 1033 if (tm_enabled(prev)) { 1034 prev->thread.load_tm++; 1035 tm_reclaim_task(prev); 1036 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1037 prev->thread.regs->msr &= ~MSR_TM; 1038 } 1039 1040 tm_recheckpoint_new_task(new); 1041 } 1042 } 1043 1044 /* 1045 * This is called if we are on the way out to userspace and the 1046 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1047 * FP and/or vector state and does so if necessary. 1048 * If userspace is inside a transaction (whether active or 1049 * suspended) and FP/VMX/VSX instructions have ever been enabled 1050 * inside that transaction, then we have to keep them enabled 1051 * and keep the FP/VMX/VSX state loaded while ever the transaction 1052 * continues. The reason is that if we didn't, and subsequently 1053 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1054 * we don't know whether it's the same transaction, and thus we 1055 * don't know which of the checkpointed state and the transactional 1056 * state to use. 1057 */ 1058 void restore_tm_state(struct pt_regs *regs) 1059 { 1060 unsigned long msr_diff; 1061 1062 /* 1063 * This is the only moment we should clear TIF_RESTORE_TM as 1064 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1065 * again, anything else could lead to an incorrect ckpt_msr being 1066 * saved and therefore incorrect signal contexts. 1067 */ 1068 clear_thread_flag(TIF_RESTORE_TM); 1069 if (!MSR_TM_ACTIVE(regs->msr)) 1070 return; 1071 1072 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1073 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1074 1075 /* Ensure that restore_math() will restore */ 1076 if (msr_diff & MSR_FP) 1077 current->thread.load_fp = 1; 1078 #ifdef CONFIG_ALTIVEC 1079 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1080 current->thread.load_vec = 1; 1081 #endif 1082 restore_math(regs); 1083 1084 regs->msr |= msr_diff; 1085 } 1086 1087 #else 1088 #define tm_recheckpoint_new_task(new) 1089 #define __switch_to_tm(prev, new) 1090 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1091 1092 static inline void save_sprs(struct thread_struct *t) 1093 { 1094 #ifdef CONFIG_ALTIVEC 1095 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1096 t->vrsave = mfspr(SPRN_VRSAVE); 1097 #endif 1098 #ifdef CONFIG_PPC_BOOK3S_64 1099 if (cpu_has_feature(CPU_FTR_DSCR)) 1100 t->dscr = mfspr(SPRN_DSCR); 1101 1102 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1103 t->bescr = mfspr(SPRN_BESCR); 1104 t->ebbhr = mfspr(SPRN_EBBHR); 1105 t->ebbrr = mfspr(SPRN_EBBRR); 1106 1107 t->fscr = mfspr(SPRN_FSCR); 1108 1109 /* 1110 * Note that the TAR is not available for use in the kernel. 1111 * (To provide this, the TAR should be backed up/restored on 1112 * exception entry/exit instead, and be in pt_regs. FIXME, 1113 * this should be in pt_regs anyway (for debug).) 1114 */ 1115 t->tar = mfspr(SPRN_TAR); 1116 } 1117 #endif 1118 1119 thread_pkey_regs_save(t); 1120 } 1121 1122 static inline void restore_sprs(struct thread_struct *old_thread, 1123 struct thread_struct *new_thread) 1124 { 1125 #ifdef CONFIG_ALTIVEC 1126 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1127 old_thread->vrsave != new_thread->vrsave) 1128 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1129 #endif 1130 #ifdef CONFIG_PPC_BOOK3S_64 1131 if (cpu_has_feature(CPU_FTR_DSCR)) { 1132 u64 dscr = get_paca()->dscr_default; 1133 if (new_thread->dscr_inherit) 1134 dscr = new_thread->dscr; 1135 1136 if (old_thread->dscr != dscr) 1137 mtspr(SPRN_DSCR, dscr); 1138 } 1139 1140 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1141 if (old_thread->bescr != new_thread->bescr) 1142 mtspr(SPRN_BESCR, new_thread->bescr); 1143 if (old_thread->ebbhr != new_thread->ebbhr) 1144 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1145 if (old_thread->ebbrr != new_thread->ebbrr) 1146 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1147 1148 if (old_thread->fscr != new_thread->fscr) 1149 mtspr(SPRN_FSCR, new_thread->fscr); 1150 1151 if (old_thread->tar != new_thread->tar) 1152 mtspr(SPRN_TAR, new_thread->tar); 1153 } 1154 1155 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1156 old_thread->tidr != new_thread->tidr) 1157 mtspr(SPRN_TIDR, new_thread->tidr); 1158 #endif 1159 1160 thread_pkey_regs_restore(new_thread, old_thread); 1161 } 1162 1163 struct task_struct *__switch_to(struct task_struct *prev, 1164 struct task_struct *new) 1165 { 1166 struct thread_struct *new_thread, *old_thread; 1167 struct task_struct *last; 1168 #ifdef CONFIG_PPC_BOOK3S_64 1169 struct ppc64_tlb_batch *batch; 1170 #endif 1171 1172 new_thread = &new->thread; 1173 old_thread = ¤t->thread; 1174 1175 WARN_ON(!irqs_disabled()); 1176 1177 #ifdef CONFIG_PPC_BOOK3S_64 1178 batch = this_cpu_ptr(&ppc64_tlb_batch); 1179 if (batch->active) { 1180 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1181 if (batch->index) 1182 __flush_tlb_pending(batch); 1183 batch->active = 0; 1184 } 1185 #endif /* CONFIG_PPC_BOOK3S_64 */ 1186 1187 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1188 switch_booke_debug_regs(&new->thread.debug); 1189 #else 1190 /* 1191 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1192 * schedule DABR 1193 */ 1194 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1195 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1196 __set_breakpoint(&new->thread.hw_brk); 1197 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1198 #endif 1199 1200 /* 1201 * We need to save SPRs before treclaim/trecheckpoint as these will 1202 * change a number of them. 1203 */ 1204 save_sprs(&prev->thread); 1205 1206 /* Save FPU, Altivec, VSX and SPE state */ 1207 giveup_all(prev); 1208 1209 __switch_to_tm(prev, new); 1210 1211 if (!radix_enabled()) { 1212 /* 1213 * We can't take a PMU exception inside _switch() since there 1214 * is a window where the kernel stack SLB and the kernel stack 1215 * are out of sync. Hard disable here. 1216 */ 1217 hard_irq_disable(); 1218 } 1219 1220 /* 1221 * Call restore_sprs() before calling _switch(). If we move it after 1222 * _switch() then we miss out on calling it for new tasks. The reason 1223 * for this is we manually create a stack frame for new tasks that 1224 * directly returns through ret_from_fork() or 1225 * ret_from_kernel_thread(). See copy_thread() for details. 1226 */ 1227 restore_sprs(old_thread, new_thread); 1228 1229 last = _switch(old_thread, new_thread); 1230 1231 #ifdef CONFIG_PPC_BOOK3S_64 1232 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1233 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1234 batch = this_cpu_ptr(&ppc64_tlb_batch); 1235 batch->active = 1; 1236 } 1237 1238 if (current->thread.regs) { 1239 restore_math(current->thread.regs); 1240 1241 /* 1242 * The copy-paste buffer can only store into foreign real 1243 * addresses, so unprivileged processes can not see the 1244 * data or use it in any way unless they have foreign real 1245 * mappings. If the new process has the foreign real address 1246 * mappings, we must issue a cp_abort to clear any state and 1247 * prevent snooping, corruption or a covert channel. 1248 */ 1249 if (current->thread.used_vas) 1250 asm volatile(PPC_CP_ABORT); 1251 } 1252 #endif /* CONFIG_PPC_BOOK3S_64 */ 1253 1254 return last; 1255 } 1256 1257 #define NR_INSN_TO_PRINT 16 1258 1259 static void show_instructions(struct pt_regs *regs) 1260 { 1261 int i; 1262 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1263 1264 printk("Instruction dump:"); 1265 1266 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1267 int instr; 1268 1269 if (!(i % 8)) 1270 pr_cont("\n"); 1271 1272 #if !defined(CONFIG_BOOKE) 1273 /* If executing with the IMMU off, adjust pc rather 1274 * than print XXXXXXXX. 1275 */ 1276 if (!(regs->msr & MSR_IR)) 1277 pc = (unsigned long)phys_to_virt(pc); 1278 #endif 1279 1280 if (!__kernel_text_address(pc) || 1281 probe_kernel_address((const void *)pc, instr)) { 1282 pr_cont("XXXXXXXX "); 1283 } else { 1284 if (regs->nip == pc) 1285 pr_cont("<%08x> ", instr); 1286 else 1287 pr_cont("%08x ", instr); 1288 } 1289 1290 pc += sizeof(int); 1291 } 1292 1293 pr_cont("\n"); 1294 } 1295 1296 void show_user_instructions(struct pt_regs *regs) 1297 { 1298 unsigned long pc; 1299 int n = NR_INSN_TO_PRINT; 1300 struct seq_buf s; 1301 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1302 1303 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1304 1305 /* 1306 * Make sure the NIP points at userspace, not kernel text/data or 1307 * elsewhere. 1308 */ 1309 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1310 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1311 current->comm, current->pid); 1312 return; 1313 } 1314 1315 seq_buf_init(&s, buf, sizeof(buf)); 1316 1317 while (n) { 1318 int i; 1319 1320 seq_buf_clear(&s); 1321 1322 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1323 int instr; 1324 1325 if (probe_kernel_address((const void *)pc, instr)) { 1326 seq_buf_printf(&s, "XXXXXXXX "); 1327 continue; 1328 } 1329 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1330 } 1331 1332 if (!seq_buf_has_overflowed(&s)) 1333 pr_info("%s[%d]: code: %s\n", current->comm, 1334 current->pid, s.buffer); 1335 } 1336 } 1337 1338 struct regbit { 1339 unsigned long bit; 1340 const char *name; 1341 }; 1342 1343 static struct regbit msr_bits[] = { 1344 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1345 {MSR_SF, "SF"}, 1346 {MSR_HV, "HV"}, 1347 #endif 1348 {MSR_VEC, "VEC"}, 1349 {MSR_VSX, "VSX"}, 1350 #ifdef CONFIG_BOOKE 1351 {MSR_CE, "CE"}, 1352 #endif 1353 {MSR_EE, "EE"}, 1354 {MSR_PR, "PR"}, 1355 {MSR_FP, "FP"}, 1356 {MSR_ME, "ME"}, 1357 #ifdef CONFIG_BOOKE 1358 {MSR_DE, "DE"}, 1359 #else 1360 {MSR_SE, "SE"}, 1361 {MSR_BE, "BE"}, 1362 #endif 1363 {MSR_IR, "IR"}, 1364 {MSR_DR, "DR"}, 1365 {MSR_PMM, "PMM"}, 1366 #ifndef CONFIG_BOOKE 1367 {MSR_RI, "RI"}, 1368 {MSR_LE, "LE"}, 1369 #endif 1370 {0, NULL} 1371 }; 1372 1373 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1374 { 1375 const char *s = ""; 1376 1377 for (; bits->bit; ++bits) 1378 if (val & bits->bit) { 1379 pr_cont("%s%s", s, bits->name); 1380 s = sep; 1381 } 1382 } 1383 1384 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1385 static struct regbit msr_tm_bits[] = { 1386 {MSR_TS_T, "T"}, 1387 {MSR_TS_S, "S"}, 1388 {MSR_TM, "E"}, 1389 {0, NULL} 1390 }; 1391 1392 static void print_tm_bits(unsigned long val) 1393 { 1394 /* 1395 * This only prints something if at least one of the TM bit is set. 1396 * Inside the TM[], the output means: 1397 * E: Enabled (bit 32) 1398 * S: Suspended (bit 33) 1399 * T: Transactional (bit 34) 1400 */ 1401 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1402 pr_cont(",TM["); 1403 print_bits(val, msr_tm_bits, ""); 1404 pr_cont("]"); 1405 } 1406 } 1407 #else 1408 static void print_tm_bits(unsigned long val) {} 1409 #endif 1410 1411 static void print_msr_bits(unsigned long val) 1412 { 1413 pr_cont("<"); 1414 print_bits(val, msr_bits, ","); 1415 print_tm_bits(val); 1416 pr_cont(">"); 1417 } 1418 1419 #ifdef CONFIG_PPC64 1420 #define REG "%016lx" 1421 #define REGS_PER_LINE 4 1422 #define LAST_VOLATILE 13 1423 #else 1424 #define REG "%08lx" 1425 #define REGS_PER_LINE 8 1426 #define LAST_VOLATILE 12 1427 #endif 1428 1429 void show_regs(struct pt_regs * regs) 1430 { 1431 int i, trap; 1432 1433 show_regs_print_info(KERN_DEFAULT); 1434 1435 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1436 regs->nip, regs->link, regs->ctr); 1437 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1438 regs, regs->trap, print_tainted(), init_utsname()->release); 1439 printk("MSR: "REG" ", regs->msr); 1440 print_msr_bits(regs->msr); 1441 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1442 trap = TRAP(regs); 1443 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1444 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1445 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1446 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1447 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1448 #else 1449 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1450 #endif 1451 #ifdef CONFIG_PPC64 1452 pr_cont("IRQMASK: %lx ", regs->softe); 1453 #endif 1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1455 if (MSR_TM_ACTIVE(regs->msr)) 1456 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1457 #endif 1458 1459 for (i = 0; i < 32; i++) { 1460 if ((i % REGS_PER_LINE) == 0) 1461 pr_cont("\nGPR%02d: ", i); 1462 pr_cont(REG " ", regs->gpr[i]); 1463 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1464 break; 1465 } 1466 pr_cont("\n"); 1467 #ifdef CONFIG_KALLSYMS 1468 /* 1469 * Lookup NIP late so we have the best change of getting the 1470 * above info out without failing 1471 */ 1472 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1473 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1474 #endif 1475 show_stack(current, (unsigned long *) regs->gpr[1]); 1476 if (!user_mode(regs)) 1477 show_instructions(regs); 1478 } 1479 1480 void flush_thread(void) 1481 { 1482 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1483 flush_ptrace_hw_breakpoint(current); 1484 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1485 set_debug_reg_defaults(¤t->thread); 1486 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1487 } 1488 1489 #ifdef CONFIG_PPC_BOOK3S_64 1490 void arch_setup_new_exec(void) 1491 { 1492 if (radix_enabled()) 1493 return; 1494 hash__setup_new_exec(); 1495 } 1496 #endif 1497 1498 int set_thread_uses_vas(void) 1499 { 1500 #ifdef CONFIG_PPC_BOOK3S_64 1501 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1502 return -EINVAL; 1503 1504 current->thread.used_vas = 1; 1505 1506 /* 1507 * Even a process that has no foreign real address mapping can use 1508 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1509 * to clear any pending COPY and prevent a covert channel. 1510 * 1511 * __switch_to() will issue CP_ABORT on future context switches. 1512 */ 1513 asm volatile(PPC_CP_ABORT); 1514 1515 #endif /* CONFIG_PPC_BOOK3S_64 */ 1516 return 0; 1517 } 1518 1519 #ifdef CONFIG_PPC64 1520 /** 1521 * Assign a TIDR (thread ID) for task @t and set it in the thread 1522 * structure. For now, we only support setting TIDR for 'current' task. 1523 * 1524 * Since the TID value is a truncated form of it PID, it is possible 1525 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1526 * that 2 threads share the same TID and are waiting, one of the following 1527 * cases will happen: 1528 * 1529 * 1. The correct thread is running, the wrong thread is not 1530 * In this situation, the correct thread is woken and proceeds to pass it's 1531 * condition check. 1532 * 1533 * 2. Neither threads are running 1534 * In this situation, neither thread will be woken. When scheduled, the waiting 1535 * threads will execute either a wait, which will return immediately, followed 1536 * by a condition check, which will pass for the correct thread and fail 1537 * for the wrong thread, or they will execute the condition check immediately. 1538 * 1539 * 3. The wrong thread is running, the correct thread is not 1540 * The wrong thread will be woken, but will fail it's condition check and 1541 * re-execute wait. The correct thread, when scheduled, will execute either 1542 * it's condition check (which will pass), or wait, which returns immediately 1543 * when called the first time after the thread is scheduled, followed by it's 1544 * condition check (which will pass). 1545 * 1546 * 4. Both threads are running 1547 * Both threads will be woken. The wrong thread will fail it's condition check 1548 * and execute another wait, while the correct thread will pass it's condition 1549 * check. 1550 * 1551 * @t: the task to set the thread ID for 1552 */ 1553 int set_thread_tidr(struct task_struct *t) 1554 { 1555 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1556 return -EINVAL; 1557 1558 if (t != current) 1559 return -EINVAL; 1560 1561 if (t->thread.tidr) 1562 return 0; 1563 1564 t->thread.tidr = (u16)task_pid_nr(t); 1565 mtspr(SPRN_TIDR, t->thread.tidr); 1566 1567 return 0; 1568 } 1569 EXPORT_SYMBOL_GPL(set_thread_tidr); 1570 1571 #endif /* CONFIG_PPC64 */ 1572 1573 void 1574 release_thread(struct task_struct *t) 1575 { 1576 } 1577 1578 /* 1579 * this gets called so that we can store coprocessor state into memory and 1580 * copy the current task into the new thread. 1581 */ 1582 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1583 { 1584 flush_all_to_thread(src); 1585 /* 1586 * Flush TM state out so we can copy it. __switch_to_tm() does this 1587 * flush but it removes the checkpointed state from the current CPU and 1588 * transitions the CPU out of TM mode. Hence we need to call 1589 * tm_recheckpoint_new_task() (on the same task) to restore the 1590 * checkpointed state back and the TM mode. 1591 * 1592 * Can't pass dst because it isn't ready. Doesn't matter, passing 1593 * dst is only important for __switch_to() 1594 */ 1595 __switch_to_tm(src, src); 1596 1597 *dst = *src; 1598 1599 clear_task_ebb(dst); 1600 1601 return 0; 1602 } 1603 1604 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1605 { 1606 #ifdef CONFIG_PPC_BOOK3S_64 1607 unsigned long sp_vsid; 1608 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1609 1610 if (radix_enabled()) 1611 return; 1612 1613 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1614 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1615 << SLB_VSID_SHIFT_1T; 1616 else 1617 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1618 << SLB_VSID_SHIFT; 1619 sp_vsid |= SLB_VSID_KERNEL | llp; 1620 p->thread.ksp_vsid = sp_vsid; 1621 #endif 1622 } 1623 1624 /* 1625 * Copy a thread.. 1626 */ 1627 1628 /* 1629 * Copy architecture-specific thread state 1630 */ 1631 int copy_thread(unsigned long clone_flags, unsigned long usp, 1632 unsigned long kthread_arg, struct task_struct *p) 1633 { 1634 struct pt_regs *childregs, *kregs; 1635 extern void ret_from_fork(void); 1636 extern void ret_from_kernel_thread(void); 1637 void (*f)(void); 1638 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1639 struct thread_info *ti = task_thread_info(p); 1640 1641 klp_init_thread_info(p); 1642 1643 /* Copy registers */ 1644 sp -= sizeof(struct pt_regs); 1645 childregs = (struct pt_regs *) sp; 1646 if (unlikely(p->flags & PF_KTHREAD)) { 1647 /* kernel thread */ 1648 memset(childregs, 0, sizeof(struct pt_regs)); 1649 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1650 /* function */ 1651 if (usp) 1652 childregs->gpr[14] = ppc_function_entry((void *)usp); 1653 #ifdef CONFIG_PPC64 1654 clear_tsk_thread_flag(p, TIF_32BIT); 1655 childregs->softe = IRQS_ENABLED; 1656 #endif 1657 childregs->gpr[15] = kthread_arg; 1658 p->thread.regs = NULL; /* no user register state */ 1659 ti->flags |= _TIF_RESTOREALL; 1660 f = ret_from_kernel_thread; 1661 } else { 1662 /* user thread */ 1663 struct pt_regs *regs = current_pt_regs(); 1664 CHECK_FULL_REGS(regs); 1665 *childregs = *regs; 1666 if (usp) 1667 childregs->gpr[1] = usp; 1668 p->thread.regs = childregs; 1669 childregs->gpr[3] = 0; /* Result from fork() */ 1670 if (clone_flags & CLONE_SETTLS) { 1671 #ifdef CONFIG_PPC64 1672 if (!is_32bit_task()) 1673 childregs->gpr[13] = childregs->gpr[6]; 1674 else 1675 #endif 1676 childregs->gpr[2] = childregs->gpr[6]; 1677 } 1678 1679 f = ret_from_fork; 1680 } 1681 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1682 sp -= STACK_FRAME_OVERHEAD; 1683 1684 /* 1685 * The way this works is that at some point in the future 1686 * some task will call _switch to switch to the new task. 1687 * That will pop off the stack frame created below and start 1688 * the new task running at ret_from_fork. The new task will 1689 * do some house keeping and then return from the fork or clone 1690 * system call, using the stack frame created above. 1691 */ 1692 ((unsigned long *)sp)[0] = 0; 1693 sp -= sizeof(struct pt_regs); 1694 kregs = (struct pt_regs *) sp; 1695 sp -= STACK_FRAME_OVERHEAD; 1696 p->thread.ksp = sp; 1697 #ifdef CONFIG_PPC32 1698 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1699 #endif 1700 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1701 p->thread.ptrace_bps[0] = NULL; 1702 #endif 1703 1704 p->thread.fp_save_area = NULL; 1705 #ifdef CONFIG_ALTIVEC 1706 p->thread.vr_save_area = NULL; 1707 #endif 1708 1709 setup_ksp_vsid(p, sp); 1710 1711 #ifdef CONFIG_PPC64 1712 if (cpu_has_feature(CPU_FTR_DSCR)) { 1713 p->thread.dscr_inherit = current->thread.dscr_inherit; 1714 p->thread.dscr = mfspr(SPRN_DSCR); 1715 } 1716 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1717 childregs->ppr = DEFAULT_PPR; 1718 1719 p->thread.tidr = 0; 1720 #endif 1721 kregs->nip = ppc_function_entry(f); 1722 return 0; 1723 } 1724 1725 void preload_new_slb_context(unsigned long start, unsigned long sp); 1726 1727 /* 1728 * Set up a thread for executing a new program 1729 */ 1730 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1731 { 1732 #ifdef CONFIG_PPC64 1733 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1734 1735 #ifdef CONFIG_PPC_BOOK3S_64 1736 if (!radix_enabled()) 1737 preload_new_slb_context(start, sp); 1738 #endif 1739 #endif 1740 1741 /* 1742 * If we exec out of a kernel thread then thread.regs will not be 1743 * set. Do it now. 1744 */ 1745 if (!current->thread.regs) { 1746 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1747 current->thread.regs = regs - 1; 1748 } 1749 1750 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1751 /* 1752 * Clear any transactional state, we're exec()ing. The cause is 1753 * not important as there will never be a recheckpoint so it's not 1754 * user visible. 1755 */ 1756 if (MSR_TM_SUSPENDED(mfmsr())) 1757 tm_reclaim_current(0); 1758 #endif 1759 1760 memset(regs->gpr, 0, sizeof(regs->gpr)); 1761 regs->ctr = 0; 1762 regs->link = 0; 1763 regs->xer = 0; 1764 regs->ccr = 0; 1765 regs->gpr[1] = sp; 1766 1767 /* 1768 * We have just cleared all the nonvolatile GPRs, so make 1769 * FULL_REGS(regs) return true. This is necessary to allow 1770 * ptrace to examine the thread immediately after exec. 1771 */ 1772 regs->trap &= ~1UL; 1773 1774 #ifdef CONFIG_PPC32 1775 regs->mq = 0; 1776 regs->nip = start; 1777 regs->msr = MSR_USER; 1778 #else 1779 if (!is_32bit_task()) { 1780 unsigned long entry; 1781 1782 if (is_elf2_task()) { 1783 /* Look ma, no function descriptors! */ 1784 entry = start; 1785 1786 /* 1787 * Ulrich says: 1788 * The latest iteration of the ABI requires that when 1789 * calling a function (at its global entry point), 1790 * the caller must ensure r12 holds the entry point 1791 * address (so that the function can quickly 1792 * establish addressability). 1793 */ 1794 regs->gpr[12] = start; 1795 /* Make sure that's restored on entry to userspace. */ 1796 set_thread_flag(TIF_RESTOREALL); 1797 } else { 1798 unsigned long toc; 1799 1800 /* start is a relocated pointer to the function 1801 * descriptor for the elf _start routine. The first 1802 * entry in the function descriptor is the entry 1803 * address of _start and the second entry is the TOC 1804 * value we need to use. 1805 */ 1806 __get_user(entry, (unsigned long __user *)start); 1807 __get_user(toc, (unsigned long __user *)start+1); 1808 1809 /* Check whether the e_entry function descriptor entries 1810 * need to be relocated before we can use them. 1811 */ 1812 if (load_addr != 0) { 1813 entry += load_addr; 1814 toc += load_addr; 1815 } 1816 regs->gpr[2] = toc; 1817 } 1818 regs->nip = entry; 1819 regs->msr = MSR_USER64; 1820 } else { 1821 regs->nip = start; 1822 regs->gpr[2] = 0; 1823 regs->msr = MSR_USER32; 1824 } 1825 #endif 1826 #ifdef CONFIG_VSX 1827 current->thread.used_vsr = 0; 1828 #endif 1829 current->thread.load_slb = 0; 1830 current->thread.load_fp = 0; 1831 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1832 current->thread.fp_save_area = NULL; 1833 #ifdef CONFIG_ALTIVEC 1834 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1835 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1836 current->thread.vr_save_area = NULL; 1837 current->thread.vrsave = 0; 1838 current->thread.used_vr = 0; 1839 current->thread.load_vec = 0; 1840 #endif /* CONFIG_ALTIVEC */ 1841 #ifdef CONFIG_SPE 1842 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1843 current->thread.acc = 0; 1844 current->thread.spefscr = 0; 1845 current->thread.used_spe = 0; 1846 #endif /* CONFIG_SPE */ 1847 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1848 current->thread.tm_tfhar = 0; 1849 current->thread.tm_texasr = 0; 1850 current->thread.tm_tfiar = 0; 1851 current->thread.load_tm = 0; 1852 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1853 1854 thread_pkey_regs_init(¤t->thread); 1855 } 1856 EXPORT_SYMBOL(start_thread); 1857 1858 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1859 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1860 1861 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1862 { 1863 struct pt_regs *regs = tsk->thread.regs; 1864 1865 /* This is a bit hairy. If we are an SPE enabled processor 1866 * (have embedded fp) we store the IEEE exception enable flags in 1867 * fpexc_mode. fpexc_mode is also used for setting FP exception 1868 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1869 if (val & PR_FP_EXC_SW_ENABLE) { 1870 #ifdef CONFIG_SPE 1871 if (cpu_has_feature(CPU_FTR_SPE)) { 1872 /* 1873 * When the sticky exception bits are set 1874 * directly by userspace, it must call prctl 1875 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1876 * in the existing prctl settings) or 1877 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1878 * the bits being set). <fenv.h> functions 1879 * saving and restoring the whole 1880 * floating-point environment need to do so 1881 * anyway to restore the prctl settings from 1882 * the saved environment. 1883 */ 1884 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1885 tsk->thread.fpexc_mode = val & 1886 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1887 return 0; 1888 } else { 1889 return -EINVAL; 1890 } 1891 #else 1892 return -EINVAL; 1893 #endif 1894 } 1895 1896 /* on a CONFIG_SPE this does not hurt us. The bits that 1897 * __pack_fe01 use do not overlap with bits used for 1898 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1899 * on CONFIG_SPE implementations are reserved so writing to 1900 * them does not change anything */ 1901 if (val > PR_FP_EXC_PRECISE) 1902 return -EINVAL; 1903 tsk->thread.fpexc_mode = __pack_fe01(val); 1904 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1905 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1906 | tsk->thread.fpexc_mode; 1907 return 0; 1908 } 1909 1910 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1911 { 1912 unsigned int val; 1913 1914 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1915 #ifdef CONFIG_SPE 1916 if (cpu_has_feature(CPU_FTR_SPE)) { 1917 /* 1918 * When the sticky exception bits are set 1919 * directly by userspace, it must call prctl 1920 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1921 * in the existing prctl settings) or 1922 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1923 * the bits being set). <fenv.h> functions 1924 * saving and restoring the whole 1925 * floating-point environment need to do so 1926 * anyway to restore the prctl settings from 1927 * the saved environment. 1928 */ 1929 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1930 val = tsk->thread.fpexc_mode; 1931 } else 1932 return -EINVAL; 1933 #else 1934 return -EINVAL; 1935 #endif 1936 else 1937 val = __unpack_fe01(tsk->thread.fpexc_mode); 1938 return put_user(val, (unsigned int __user *) adr); 1939 } 1940 1941 int set_endian(struct task_struct *tsk, unsigned int val) 1942 { 1943 struct pt_regs *regs = tsk->thread.regs; 1944 1945 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1946 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1947 return -EINVAL; 1948 1949 if (regs == NULL) 1950 return -EINVAL; 1951 1952 if (val == PR_ENDIAN_BIG) 1953 regs->msr &= ~MSR_LE; 1954 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1955 regs->msr |= MSR_LE; 1956 else 1957 return -EINVAL; 1958 1959 return 0; 1960 } 1961 1962 int get_endian(struct task_struct *tsk, unsigned long adr) 1963 { 1964 struct pt_regs *regs = tsk->thread.regs; 1965 unsigned int val; 1966 1967 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1968 !cpu_has_feature(CPU_FTR_REAL_LE)) 1969 return -EINVAL; 1970 1971 if (regs == NULL) 1972 return -EINVAL; 1973 1974 if (regs->msr & MSR_LE) { 1975 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1976 val = PR_ENDIAN_LITTLE; 1977 else 1978 val = PR_ENDIAN_PPC_LITTLE; 1979 } else 1980 val = PR_ENDIAN_BIG; 1981 1982 return put_user(val, (unsigned int __user *)adr); 1983 } 1984 1985 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1986 { 1987 tsk->thread.align_ctl = val; 1988 return 0; 1989 } 1990 1991 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1992 { 1993 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1994 } 1995 1996 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1997 unsigned long nbytes) 1998 { 1999 unsigned long stack_page; 2000 unsigned long cpu = task_cpu(p); 2001 2002 stack_page = (unsigned long)hardirq_ctx[cpu]; 2003 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2004 return 1; 2005 2006 stack_page = (unsigned long)softirq_ctx[cpu]; 2007 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2008 return 1; 2009 2010 return 0; 2011 } 2012 2013 int validate_sp(unsigned long sp, struct task_struct *p, 2014 unsigned long nbytes) 2015 { 2016 unsigned long stack_page = (unsigned long)task_stack_page(p); 2017 2018 if (sp < THREAD_SIZE) 2019 return 0; 2020 2021 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2022 return 1; 2023 2024 return valid_irq_stack(sp, p, nbytes); 2025 } 2026 2027 EXPORT_SYMBOL(validate_sp); 2028 2029 static unsigned long __get_wchan(struct task_struct *p) 2030 { 2031 unsigned long ip, sp; 2032 int count = 0; 2033 2034 if (!p || p == current || p->state == TASK_RUNNING) 2035 return 0; 2036 2037 sp = p->thread.ksp; 2038 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2039 return 0; 2040 2041 do { 2042 sp = *(unsigned long *)sp; 2043 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2044 p->state == TASK_RUNNING) 2045 return 0; 2046 if (count > 0) { 2047 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2048 if (!in_sched_functions(ip)) 2049 return ip; 2050 } 2051 } while (count++ < 16); 2052 return 0; 2053 } 2054 2055 unsigned long get_wchan(struct task_struct *p) 2056 { 2057 unsigned long ret; 2058 2059 if (!try_get_task_stack(p)) 2060 return 0; 2061 2062 ret = __get_wchan(p); 2063 2064 put_task_stack(p); 2065 2066 return ret; 2067 } 2068 2069 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2070 2071 void show_stack(struct task_struct *tsk, unsigned long *stack) 2072 { 2073 unsigned long sp, ip, lr, newsp; 2074 int count = 0; 2075 int firstframe = 1; 2076 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2077 struct ftrace_ret_stack *ret_stack; 2078 extern void return_to_handler(void); 2079 unsigned long rth = (unsigned long)return_to_handler; 2080 int curr_frame = 0; 2081 #endif 2082 2083 if (tsk == NULL) 2084 tsk = current; 2085 2086 if (!try_get_task_stack(tsk)) 2087 return; 2088 2089 sp = (unsigned long) stack; 2090 if (sp == 0) { 2091 if (tsk == current) 2092 sp = current_stack_pointer(); 2093 else 2094 sp = tsk->thread.ksp; 2095 } 2096 2097 lr = 0; 2098 printk("Call Trace:\n"); 2099 do { 2100 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2101 break; 2102 2103 stack = (unsigned long *) sp; 2104 newsp = stack[0]; 2105 ip = stack[STACK_FRAME_LR_SAVE]; 2106 if (!firstframe || ip != lr) { 2107 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2108 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2109 if ((ip == rth) && curr_frame >= 0) { 2110 ret_stack = ftrace_graph_get_ret_stack(current, 2111 curr_frame++); 2112 if (ret_stack) 2113 pr_cont(" (%pS)", 2114 (void *)ret_stack->ret); 2115 else 2116 curr_frame = -1; 2117 } 2118 #endif 2119 if (firstframe) 2120 pr_cont(" (unreliable)"); 2121 pr_cont("\n"); 2122 } 2123 firstframe = 0; 2124 2125 /* 2126 * See if this is an exception frame. 2127 * We look for the "regshere" marker in the current frame. 2128 */ 2129 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2130 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2131 struct pt_regs *regs = (struct pt_regs *) 2132 (sp + STACK_FRAME_OVERHEAD); 2133 lr = regs->link; 2134 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2135 regs->trap, (void *)regs->nip, (void *)lr); 2136 firstframe = 1; 2137 } 2138 2139 sp = newsp; 2140 } while (count++ < kstack_depth_to_print); 2141 2142 put_task_stack(tsk); 2143 } 2144 2145 #ifdef CONFIG_PPC64 2146 /* Called with hard IRQs off */ 2147 void notrace __ppc64_runlatch_on(void) 2148 { 2149 struct thread_info *ti = current_thread_info(); 2150 2151 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2152 /* 2153 * Least significant bit (RUN) is the only writable bit of 2154 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2155 * earliest ISA where this is the case, but it's convenient. 2156 */ 2157 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2158 } else { 2159 unsigned long ctrl; 2160 2161 /* 2162 * Some architectures (e.g., Cell) have writable fields other 2163 * than RUN, so do the read-modify-write. 2164 */ 2165 ctrl = mfspr(SPRN_CTRLF); 2166 ctrl |= CTRL_RUNLATCH; 2167 mtspr(SPRN_CTRLT, ctrl); 2168 } 2169 2170 ti->local_flags |= _TLF_RUNLATCH; 2171 } 2172 2173 /* Called with hard IRQs off */ 2174 void notrace __ppc64_runlatch_off(void) 2175 { 2176 struct thread_info *ti = current_thread_info(); 2177 2178 ti->local_flags &= ~_TLF_RUNLATCH; 2179 2180 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2181 mtspr(SPRN_CTRLT, 0); 2182 } else { 2183 unsigned long ctrl; 2184 2185 ctrl = mfspr(SPRN_CTRLF); 2186 ctrl &= ~CTRL_RUNLATCH; 2187 mtspr(SPRN_CTRLT, ctrl); 2188 } 2189 } 2190 #endif /* CONFIG_PPC64 */ 2191 2192 unsigned long arch_align_stack(unsigned long sp) 2193 { 2194 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2195 sp -= get_random_int() & ~PAGE_MASK; 2196 return sp & ~0xf; 2197 } 2198 2199 static inline unsigned long brk_rnd(void) 2200 { 2201 unsigned long rnd = 0; 2202 2203 /* 8MB for 32bit, 1GB for 64bit */ 2204 if (is_32bit_task()) 2205 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2206 else 2207 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2208 2209 return rnd << PAGE_SHIFT; 2210 } 2211 2212 unsigned long arch_randomize_brk(struct mm_struct *mm) 2213 { 2214 unsigned long base = mm->brk; 2215 unsigned long ret; 2216 2217 #ifdef CONFIG_PPC_BOOK3S_64 2218 /* 2219 * If we are using 1TB segments and we are allowed to randomise 2220 * the heap, we can put it above 1TB so it is backed by a 1TB 2221 * segment. Otherwise the heap will be in the bottom 1TB 2222 * which always uses 256MB segments and this may result in a 2223 * performance penalty. We don't need to worry about radix. For 2224 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2225 */ 2226 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2227 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2228 #endif 2229 2230 ret = PAGE_ALIGN(base + brk_rnd()); 2231 2232 if (ret < mm->brk) 2233 return mm->brk; 2234 2235 return ret; 2236 } 2237 2238