xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 174cd4b1)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63 
64 #include <linux/kprobes.h>
65 #include <linux/kdebug.h>
66 
67 /* Transactional Memory debug */
68 #ifdef TM_DEBUG_SW
69 #define TM_DEBUG(x...) printk(KERN_INFO x)
70 #else
71 #define TM_DEBUG(x...) do { } while(0)
72 #endif
73 
74 extern unsigned long _get_SP(void);
75 
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 static void check_if_tm_restore_required(struct task_struct *tsk)
78 {
79 	/*
80 	 * If we are saving the current thread's registers, and the
81 	 * thread is in a transactional state, set the TIF_RESTORE_TM
82 	 * bit so that we know to restore the registers before
83 	 * returning to userspace.
84 	 */
85 	if (tsk == current && tsk->thread.regs &&
86 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 	    !test_thread_flag(TIF_RESTORE_TM)) {
88 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 		set_thread_flag(TIF_RESTORE_TM);
90 	}
91 }
92 
93 static inline bool msr_tm_active(unsigned long msr)
94 {
95 	return MSR_TM_ACTIVE(msr);
96 }
97 #else
98 static inline bool msr_tm_active(unsigned long msr) { return false; }
99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101 
102 bool strict_msr_control;
103 EXPORT_SYMBOL(strict_msr_control);
104 
105 static int __init enable_strict_msr_control(char *str)
106 {
107 	strict_msr_control = true;
108 	pr_info("Enabling strict facility control\n");
109 
110 	return 0;
111 }
112 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113 
114 unsigned long msr_check_and_set(unsigned long bits)
115 {
116 	unsigned long oldmsr = mfmsr();
117 	unsigned long newmsr;
118 
119 	newmsr = oldmsr | bits;
120 
121 #ifdef CONFIG_VSX
122 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 		newmsr |= MSR_VSX;
124 #endif
125 
126 	if (oldmsr != newmsr)
127 		mtmsr_isync(newmsr);
128 
129 	return newmsr;
130 }
131 
132 void __msr_check_and_clear(unsigned long bits)
133 {
134 	unsigned long oldmsr = mfmsr();
135 	unsigned long newmsr;
136 
137 	newmsr = oldmsr & ~bits;
138 
139 #ifdef CONFIG_VSX
140 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
141 		newmsr &= ~MSR_VSX;
142 #endif
143 
144 	if (oldmsr != newmsr)
145 		mtmsr_isync(newmsr);
146 }
147 EXPORT_SYMBOL(__msr_check_and_clear);
148 
149 #ifdef CONFIG_PPC_FPU
150 void __giveup_fpu(struct task_struct *tsk)
151 {
152 	unsigned long msr;
153 
154 	save_fpu(tsk);
155 	msr = tsk->thread.regs->msr;
156 	msr &= ~MSR_FP;
157 #ifdef CONFIG_VSX
158 	if (cpu_has_feature(CPU_FTR_VSX))
159 		msr &= ~MSR_VSX;
160 #endif
161 	tsk->thread.regs->msr = msr;
162 }
163 
164 void giveup_fpu(struct task_struct *tsk)
165 {
166 	check_if_tm_restore_required(tsk);
167 
168 	msr_check_and_set(MSR_FP);
169 	__giveup_fpu(tsk);
170 	msr_check_and_clear(MSR_FP);
171 }
172 EXPORT_SYMBOL(giveup_fpu);
173 
174 /*
175  * Make sure the floating-point register state in the
176  * the thread_struct is up to date for task tsk.
177  */
178 void flush_fp_to_thread(struct task_struct *tsk)
179 {
180 	if (tsk->thread.regs) {
181 		/*
182 		 * We need to disable preemption here because if we didn't,
183 		 * another process could get scheduled after the regs->msr
184 		 * test but before we have finished saving the FP registers
185 		 * to the thread_struct.  That process could take over the
186 		 * FPU, and then when we get scheduled again we would store
187 		 * bogus values for the remaining FP registers.
188 		 */
189 		preempt_disable();
190 		if (tsk->thread.regs->msr & MSR_FP) {
191 			/*
192 			 * This should only ever be called for current or
193 			 * for a stopped child process.  Since we save away
194 			 * the FP register state on context switch,
195 			 * there is something wrong if a stopped child appears
196 			 * to still have its FP state in the CPU registers.
197 			 */
198 			BUG_ON(tsk != current);
199 			giveup_fpu(tsk);
200 		}
201 		preempt_enable();
202 	}
203 }
204 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
205 
206 void enable_kernel_fp(void)
207 {
208 	unsigned long cpumsr;
209 
210 	WARN_ON(preemptible());
211 
212 	cpumsr = msr_check_and_set(MSR_FP);
213 
214 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
215 		check_if_tm_restore_required(current);
216 		/*
217 		 * If a thread has already been reclaimed then the
218 		 * checkpointed registers are on the CPU but have definitely
219 		 * been saved by the reclaim code. Don't need to and *cannot*
220 		 * giveup as this would save  to the 'live' structure not the
221 		 * checkpointed structure.
222 		 */
223 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
224 			return;
225 		__giveup_fpu(current);
226 	}
227 }
228 EXPORT_SYMBOL(enable_kernel_fp);
229 
230 static int restore_fp(struct task_struct *tsk) {
231 	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
232 		load_fp_state(&current->thread.fp_state);
233 		current->thread.load_fp++;
234 		return 1;
235 	}
236 	return 0;
237 }
238 #else
239 static int restore_fp(struct task_struct *tsk) { return 0; }
240 #endif /* CONFIG_PPC_FPU */
241 
242 #ifdef CONFIG_ALTIVEC
243 #define loadvec(thr) ((thr).load_vec)
244 
245 static void __giveup_altivec(struct task_struct *tsk)
246 {
247 	unsigned long msr;
248 
249 	save_altivec(tsk);
250 	msr = tsk->thread.regs->msr;
251 	msr &= ~MSR_VEC;
252 #ifdef CONFIG_VSX
253 	if (cpu_has_feature(CPU_FTR_VSX))
254 		msr &= ~MSR_VSX;
255 #endif
256 	tsk->thread.regs->msr = msr;
257 }
258 
259 void giveup_altivec(struct task_struct *tsk)
260 {
261 	check_if_tm_restore_required(tsk);
262 
263 	msr_check_and_set(MSR_VEC);
264 	__giveup_altivec(tsk);
265 	msr_check_and_clear(MSR_VEC);
266 }
267 EXPORT_SYMBOL(giveup_altivec);
268 
269 void enable_kernel_altivec(void)
270 {
271 	unsigned long cpumsr;
272 
273 	WARN_ON(preemptible());
274 
275 	cpumsr = msr_check_and_set(MSR_VEC);
276 
277 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
278 		check_if_tm_restore_required(current);
279 		/*
280 		 * If a thread has already been reclaimed then the
281 		 * checkpointed registers are on the CPU but have definitely
282 		 * been saved by the reclaim code. Don't need to and *cannot*
283 		 * giveup as this would save  to the 'live' structure not the
284 		 * checkpointed structure.
285 		 */
286 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
287 			return;
288 		__giveup_altivec(current);
289 	}
290 }
291 EXPORT_SYMBOL(enable_kernel_altivec);
292 
293 /*
294  * Make sure the VMX/Altivec register state in the
295  * the thread_struct is up to date for task tsk.
296  */
297 void flush_altivec_to_thread(struct task_struct *tsk)
298 {
299 	if (tsk->thread.regs) {
300 		preempt_disable();
301 		if (tsk->thread.regs->msr & MSR_VEC) {
302 			BUG_ON(tsk != current);
303 			giveup_altivec(tsk);
304 		}
305 		preempt_enable();
306 	}
307 }
308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
309 
310 static int restore_altivec(struct task_struct *tsk)
311 {
312 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
313 		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
314 		load_vr_state(&tsk->thread.vr_state);
315 		tsk->thread.used_vr = 1;
316 		tsk->thread.load_vec++;
317 
318 		return 1;
319 	}
320 	return 0;
321 }
322 #else
323 #define loadvec(thr) 0
324 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
325 #endif /* CONFIG_ALTIVEC */
326 
327 #ifdef CONFIG_VSX
328 static void __giveup_vsx(struct task_struct *tsk)
329 {
330 	if (tsk->thread.regs->msr & MSR_FP)
331 		__giveup_fpu(tsk);
332 	if (tsk->thread.regs->msr & MSR_VEC)
333 		__giveup_altivec(tsk);
334 	tsk->thread.regs->msr &= ~MSR_VSX;
335 }
336 
337 static void giveup_vsx(struct task_struct *tsk)
338 {
339 	check_if_tm_restore_required(tsk);
340 
341 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342 	__giveup_vsx(tsk);
343 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
344 }
345 
346 static void save_vsx(struct task_struct *tsk)
347 {
348 	if (tsk->thread.regs->msr & MSR_FP)
349 		save_fpu(tsk);
350 	if (tsk->thread.regs->msr & MSR_VEC)
351 		save_altivec(tsk);
352 }
353 
354 void enable_kernel_vsx(void)
355 {
356 	unsigned long cpumsr;
357 
358 	WARN_ON(preemptible());
359 
360 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361 
362 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
363 		check_if_tm_restore_required(current);
364 		/*
365 		 * If a thread has already been reclaimed then the
366 		 * checkpointed registers are on the CPU but have definitely
367 		 * been saved by the reclaim code. Don't need to and *cannot*
368 		 * giveup as this would save  to the 'live' structure not the
369 		 * checkpointed structure.
370 		 */
371 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
372 			return;
373 		if (current->thread.regs->msr & MSR_FP)
374 			__giveup_fpu(current);
375 		if (current->thread.regs->msr & MSR_VEC)
376 			__giveup_altivec(current);
377 		__giveup_vsx(current);
378 	}
379 }
380 EXPORT_SYMBOL(enable_kernel_vsx);
381 
382 void flush_vsx_to_thread(struct task_struct *tsk)
383 {
384 	if (tsk->thread.regs) {
385 		preempt_disable();
386 		if (tsk->thread.regs->msr & MSR_VSX) {
387 			BUG_ON(tsk != current);
388 			giveup_vsx(tsk);
389 		}
390 		preempt_enable();
391 	}
392 }
393 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
394 
395 static int restore_vsx(struct task_struct *tsk)
396 {
397 	if (cpu_has_feature(CPU_FTR_VSX)) {
398 		tsk->thread.used_vsr = 1;
399 		return 1;
400 	}
401 
402 	return 0;
403 }
404 #else
405 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
406 static inline void save_vsx(struct task_struct *tsk) { }
407 #endif /* CONFIG_VSX */
408 
409 #ifdef CONFIG_SPE
410 void giveup_spe(struct task_struct *tsk)
411 {
412 	check_if_tm_restore_required(tsk);
413 
414 	msr_check_and_set(MSR_SPE);
415 	__giveup_spe(tsk);
416 	msr_check_and_clear(MSR_SPE);
417 }
418 EXPORT_SYMBOL(giveup_spe);
419 
420 void enable_kernel_spe(void)
421 {
422 	WARN_ON(preemptible());
423 
424 	msr_check_and_set(MSR_SPE);
425 
426 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427 		check_if_tm_restore_required(current);
428 		__giveup_spe(current);
429 	}
430 }
431 EXPORT_SYMBOL(enable_kernel_spe);
432 
433 void flush_spe_to_thread(struct task_struct *tsk)
434 {
435 	if (tsk->thread.regs) {
436 		preempt_disable();
437 		if (tsk->thread.regs->msr & MSR_SPE) {
438 			BUG_ON(tsk != current);
439 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440 			giveup_spe(tsk);
441 		}
442 		preempt_enable();
443 	}
444 }
445 #endif /* CONFIG_SPE */
446 
447 static unsigned long msr_all_available;
448 
449 static int __init init_msr_all_available(void)
450 {
451 #ifdef CONFIG_PPC_FPU
452 	msr_all_available |= MSR_FP;
453 #endif
454 #ifdef CONFIG_ALTIVEC
455 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
456 		msr_all_available |= MSR_VEC;
457 #endif
458 #ifdef CONFIG_VSX
459 	if (cpu_has_feature(CPU_FTR_VSX))
460 		msr_all_available |= MSR_VSX;
461 #endif
462 #ifdef CONFIG_SPE
463 	if (cpu_has_feature(CPU_FTR_SPE))
464 		msr_all_available |= MSR_SPE;
465 #endif
466 
467 	return 0;
468 }
469 early_initcall(init_msr_all_available);
470 
471 void giveup_all(struct task_struct *tsk)
472 {
473 	unsigned long usermsr;
474 
475 	if (!tsk->thread.regs)
476 		return;
477 
478 	usermsr = tsk->thread.regs->msr;
479 
480 	if ((usermsr & msr_all_available) == 0)
481 		return;
482 
483 	msr_check_and_set(msr_all_available);
484 	check_if_tm_restore_required(tsk);
485 
486 #ifdef CONFIG_PPC_FPU
487 	if (usermsr & MSR_FP)
488 		__giveup_fpu(tsk);
489 #endif
490 #ifdef CONFIG_ALTIVEC
491 	if (usermsr & MSR_VEC)
492 		__giveup_altivec(tsk);
493 #endif
494 #ifdef CONFIG_VSX
495 	if (usermsr & MSR_VSX)
496 		__giveup_vsx(tsk);
497 #endif
498 #ifdef CONFIG_SPE
499 	if (usermsr & MSR_SPE)
500 		__giveup_spe(tsk);
501 #endif
502 
503 	msr_check_and_clear(msr_all_available);
504 }
505 EXPORT_SYMBOL(giveup_all);
506 
507 void restore_math(struct pt_regs *regs)
508 {
509 	unsigned long msr;
510 
511 	if (!msr_tm_active(regs->msr) &&
512 		!current->thread.load_fp && !loadvec(current->thread))
513 		return;
514 
515 	msr = regs->msr;
516 	msr_check_and_set(msr_all_available);
517 
518 	/*
519 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
520 	 * indicates that the registers are hot
521 	 */
522 	if ((!(msr & MSR_FP)) && restore_fp(current))
523 		msr |= MSR_FP | current->thread.fpexc_mode;
524 
525 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
526 		msr |= MSR_VEC;
527 
528 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
529 			restore_vsx(current)) {
530 		msr |= MSR_VSX;
531 	}
532 
533 	msr_check_and_clear(msr_all_available);
534 
535 	regs->msr = msr;
536 }
537 
538 void save_all(struct task_struct *tsk)
539 {
540 	unsigned long usermsr;
541 
542 	if (!tsk->thread.regs)
543 		return;
544 
545 	usermsr = tsk->thread.regs->msr;
546 
547 	if ((usermsr & msr_all_available) == 0)
548 		return;
549 
550 	msr_check_and_set(msr_all_available);
551 
552 	/*
553 	 * Saving the way the register space is in hardware, save_vsx boils
554 	 * down to a save_fpu() and save_altivec()
555 	 */
556 	if (usermsr & MSR_VSX) {
557 		save_vsx(tsk);
558 	} else {
559 		if (usermsr & MSR_FP)
560 			save_fpu(tsk);
561 
562 		if (usermsr & MSR_VEC)
563 			save_altivec(tsk);
564 	}
565 
566 	if (usermsr & MSR_SPE)
567 		__giveup_spe(tsk);
568 
569 	msr_check_and_clear(msr_all_available);
570 }
571 
572 void flush_all_to_thread(struct task_struct *tsk)
573 {
574 	if (tsk->thread.regs) {
575 		preempt_disable();
576 		BUG_ON(tsk != current);
577 		save_all(tsk);
578 
579 #ifdef CONFIG_SPE
580 		if (tsk->thread.regs->msr & MSR_SPE)
581 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
582 #endif
583 
584 		preempt_enable();
585 	}
586 }
587 EXPORT_SYMBOL(flush_all_to_thread);
588 
589 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
590 void do_send_trap(struct pt_regs *regs, unsigned long address,
591 		  unsigned long error_code, int signal_code, int breakpt)
592 {
593 	siginfo_t info;
594 
595 	current->thread.trap_nr = signal_code;
596 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
597 			11, SIGSEGV) == NOTIFY_STOP)
598 		return;
599 
600 	/* Deliver the signal to userspace */
601 	info.si_signo = SIGTRAP;
602 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
603 	info.si_code = signal_code;
604 	info.si_addr = (void __user *)address;
605 	force_sig_info(SIGTRAP, &info, current);
606 }
607 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
608 void do_break (struct pt_regs *regs, unsigned long address,
609 		    unsigned long error_code)
610 {
611 	siginfo_t info;
612 
613 	current->thread.trap_nr = TRAP_HWBKPT;
614 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 			11, SIGSEGV) == NOTIFY_STOP)
616 		return;
617 
618 	if (debugger_break_match(regs))
619 		return;
620 
621 	/* Clear the breakpoint */
622 	hw_breakpoint_disable();
623 
624 	/* Deliver the signal to userspace */
625 	info.si_signo = SIGTRAP;
626 	info.si_errno = 0;
627 	info.si_code = TRAP_HWBKPT;
628 	info.si_addr = (void __user *)address;
629 	force_sig_info(SIGTRAP, &info, current);
630 }
631 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
632 
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
634 
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
636 /*
637  * Set the debug registers back to their default "safe" values.
638  */
639 static void set_debug_reg_defaults(struct thread_struct *thread)
640 {
641 	thread->debug.iac1 = thread->debug.iac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 	thread->debug.iac3 = thread->debug.iac4 = 0;
644 #endif
645 	thread->debug.dac1 = thread->debug.dac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
648 #endif
649 	thread->debug.dbcr0 = 0;
650 #ifdef CONFIG_BOOKE
651 	/*
652 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
653 	 */
654 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655 			DBCR1_IAC3US | DBCR1_IAC4US;
656 	/*
657 	 * Force Data Address Compare User/Supervisor bits to be User-only
658 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
659 	 */
660 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661 #else
662 	thread->debug.dbcr1 = 0;
663 #endif
664 }
665 
666 static void prime_debug_regs(struct debug_reg *debug)
667 {
668 	/*
669 	 * We could have inherited MSR_DE from userspace, since
670 	 * it doesn't get cleared on exception entry.  Make sure
671 	 * MSR_DE is clear before we enable any debug events.
672 	 */
673 	mtmsr(mfmsr() & ~MSR_DE);
674 
675 	mtspr(SPRN_IAC1, debug->iac1);
676 	mtspr(SPRN_IAC2, debug->iac2);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678 	mtspr(SPRN_IAC3, debug->iac3);
679 	mtspr(SPRN_IAC4, debug->iac4);
680 #endif
681 	mtspr(SPRN_DAC1, debug->dac1);
682 	mtspr(SPRN_DAC2, debug->dac2);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684 	mtspr(SPRN_DVC1, debug->dvc1);
685 	mtspr(SPRN_DVC2, debug->dvc2);
686 #endif
687 	mtspr(SPRN_DBCR0, debug->dbcr0);
688 	mtspr(SPRN_DBCR1, debug->dbcr1);
689 #ifdef CONFIG_BOOKE
690 	mtspr(SPRN_DBCR2, debug->dbcr2);
691 #endif
692 }
693 /*
694  * Unless neither the old or new thread are making use of the
695  * debug registers, set the debug registers from the values
696  * stored in the new thread.
697  */
698 void switch_booke_debug_regs(struct debug_reg *new_debug)
699 {
700 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701 		|| (new_debug->dbcr0 & DBCR0_IDM))
702 			prime_debug_regs(new_debug);
703 }
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_debug_reg_defaults(struct thread_struct *thread)
708 {
709 	thread->hw_brk.address = 0;
710 	thread->hw_brk.type = 0;
711 	set_breakpoint(&thread->hw_brk);
712 }
713 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
714 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
715 
716 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
717 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
718 {
719 	mtspr(SPRN_DAC1, dabr);
720 #ifdef CONFIG_PPC_47x
721 	isync();
722 #endif
723 	return 0;
724 }
725 #elif defined(CONFIG_PPC_BOOK3S)
726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
727 {
728 	mtspr(SPRN_DABR, dabr);
729 	if (cpu_has_feature(CPU_FTR_DABRX))
730 		mtspr(SPRN_DABRX, dabrx);
731 	return 0;
732 }
733 #elif defined(CONFIG_PPC_8xx)
734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735 {
736 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
737 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
738 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
739 
740 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
741 		lctrl1 |= 0xa0000;
742 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
743 		lctrl1 |= 0xf0000;
744 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
745 		lctrl2 = 0;
746 
747 	mtspr(SPRN_LCTRL2, 0);
748 	mtspr(SPRN_CMPE, addr);
749 	mtspr(SPRN_CMPF, addr + 4);
750 	mtspr(SPRN_LCTRL1, lctrl1);
751 	mtspr(SPRN_LCTRL2, lctrl2);
752 
753 	return 0;
754 }
755 #else
756 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
757 {
758 	return -EINVAL;
759 }
760 #endif
761 
762 static inline int set_dabr(struct arch_hw_breakpoint *brk)
763 {
764 	unsigned long dabr, dabrx;
765 
766 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
767 	dabrx = ((brk->type >> 3) & 0x7);
768 
769 	if (ppc_md.set_dabr)
770 		return ppc_md.set_dabr(dabr, dabrx);
771 
772 	return __set_dabr(dabr, dabrx);
773 }
774 
775 static inline int set_dawr(struct arch_hw_breakpoint *brk)
776 {
777 	unsigned long dawr, dawrx, mrd;
778 
779 	dawr = brk->address;
780 
781 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
782 		                   << (63 - 58); //* read/write bits */
783 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
784 		                   << (63 - 59); //* translate */
785 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
786 		                   >> 3; //* PRIM bits */
787 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
788 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
789 	   0b111111=64DW.
790 	   brk->len is in bytes.
791 	   This aligns up to double word size, shifts and does the bias.
792 	*/
793 	mrd = ((brk->len + 7) >> 3) - 1;
794 	dawrx |= (mrd & 0x3f) << (63 - 53);
795 
796 	if (ppc_md.set_dawr)
797 		return ppc_md.set_dawr(dawr, dawrx);
798 	mtspr(SPRN_DAWR, dawr);
799 	mtspr(SPRN_DAWRX, dawrx);
800 	return 0;
801 }
802 
803 void __set_breakpoint(struct arch_hw_breakpoint *brk)
804 {
805 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
806 
807 	if (cpu_has_feature(CPU_FTR_DAWR))
808 		set_dawr(brk);
809 	else
810 		set_dabr(brk);
811 }
812 
813 void set_breakpoint(struct arch_hw_breakpoint *brk)
814 {
815 	preempt_disable();
816 	__set_breakpoint(brk);
817 	preempt_enable();
818 }
819 
820 #ifdef CONFIG_PPC64
821 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
822 #endif
823 
824 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
825 			      struct arch_hw_breakpoint *b)
826 {
827 	if (a->address != b->address)
828 		return false;
829 	if (a->type != b->type)
830 		return false;
831 	if (a->len != b->len)
832 		return false;
833 	return true;
834 }
835 
836 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
837 
838 static inline bool tm_enabled(struct task_struct *tsk)
839 {
840 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
841 }
842 
843 static void tm_reclaim_thread(struct thread_struct *thr,
844 			      struct thread_info *ti, uint8_t cause)
845 {
846 	/*
847 	 * Use the current MSR TM suspended bit to track if we have
848 	 * checkpointed state outstanding.
849 	 * On signal delivery, we'd normally reclaim the checkpointed
850 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
851 	 * This will then directly return to userspace without going
852 	 * through __switch_to(). However, if the stack frame is bad,
853 	 * we need to exit this thread which calls __switch_to() which
854 	 * will again attempt to reclaim the already saved tm state.
855 	 * Hence we need to check that we've not already reclaimed
856 	 * this state.
857 	 * We do this using the current MSR, rather tracking it in
858 	 * some specific thread_struct bit, as it has the additional
859 	 * benefit of checking for a potential TM bad thing exception.
860 	 */
861 	if (!MSR_TM_SUSPENDED(mfmsr()))
862 		return;
863 
864 	giveup_all(container_of(thr, struct task_struct, thread));
865 
866 	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
867 }
868 
869 void tm_reclaim_current(uint8_t cause)
870 {
871 	tm_enable();
872 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
873 }
874 
875 static inline void tm_reclaim_task(struct task_struct *tsk)
876 {
877 	/* We have to work out if we're switching from/to a task that's in the
878 	 * middle of a transaction.
879 	 *
880 	 * In switching we need to maintain a 2nd register state as
881 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
882 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
883 	 * ckvr_state
884 	 *
885 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
886 	 */
887 	struct thread_struct *thr = &tsk->thread;
888 
889 	if (!thr->regs)
890 		return;
891 
892 	if (!MSR_TM_ACTIVE(thr->regs->msr))
893 		goto out_and_saveregs;
894 
895 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
896 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
897 		 tsk->pid, thr->regs->nip,
898 		 thr->regs->ccr, thr->regs->msr,
899 		 thr->regs->trap);
900 
901 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
902 
903 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
904 		 tsk->pid);
905 
906 out_and_saveregs:
907 	/* Always save the regs here, even if a transaction's not active.
908 	 * This context-switches a thread's TM info SPRs.  We do it here to
909 	 * be consistent with the restore path (in recheckpoint) which
910 	 * cannot happen later in _switch().
911 	 */
912 	tm_save_sprs(thr);
913 }
914 
915 extern void __tm_recheckpoint(struct thread_struct *thread,
916 			      unsigned long orig_msr);
917 
918 void tm_recheckpoint(struct thread_struct *thread,
919 		     unsigned long orig_msr)
920 {
921 	unsigned long flags;
922 
923 	if (!(thread->regs->msr & MSR_TM))
924 		return;
925 
926 	/* We really can't be interrupted here as the TEXASR registers can't
927 	 * change and later in the trecheckpoint code, we have a userspace R1.
928 	 * So let's hard disable over this region.
929 	 */
930 	local_irq_save(flags);
931 	hard_irq_disable();
932 
933 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
934 	 * before the trecheckpoint and no explosion occurs.
935 	 */
936 	tm_restore_sprs(thread);
937 
938 	__tm_recheckpoint(thread, orig_msr);
939 
940 	local_irq_restore(flags);
941 }
942 
943 static inline void tm_recheckpoint_new_task(struct task_struct *new)
944 {
945 	unsigned long msr;
946 
947 	if (!cpu_has_feature(CPU_FTR_TM))
948 		return;
949 
950 	/* Recheckpoint the registers of the thread we're about to switch to.
951 	 *
952 	 * If the task was using FP, we non-lazily reload both the original and
953 	 * the speculative FP register states.  This is because the kernel
954 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
955 	 * unavailable later, we are unable to determine which set of FP regs
956 	 * need to be restored.
957 	 */
958 	if (!tm_enabled(new))
959 		return;
960 
961 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
962 		tm_restore_sprs(&new->thread);
963 		return;
964 	}
965 	msr = new->thread.ckpt_regs.msr;
966 	/* Recheckpoint to restore original checkpointed register state. */
967 	TM_DEBUG("*** tm_recheckpoint of pid %d "
968 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
969 		 new->pid, new->thread.regs->msr, msr);
970 
971 	tm_recheckpoint(&new->thread, msr);
972 
973 	/*
974 	 * The checkpointed state has been restored but the live state has
975 	 * not, ensure all the math functionality is turned off to trigger
976 	 * restore_math() to reload.
977 	 */
978 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
979 
980 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
981 		 "(kernel msr 0x%lx)\n",
982 		 new->pid, mfmsr());
983 }
984 
985 static inline void __switch_to_tm(struct task_struct *prev,
986 		struct task_struct *new)
987 {
988 	if (cpu_has_feature(CPU_FTR_TM)) {
989 		if (tm_enabled(prev) || tm_enabled(new))
990 			tm_enable();
991 
992 		if (tm_enabled(prev)) {
993 			prev->thread.load_tm++;
994 			tm_reclaim_task(prev);
995 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
996 				prev->thread.regs->msr &= ~MSR_TM;
997 		}
998 
999 		tm_recheckpoint_new_task(new);
1000 	}
1001 }
1002 
1003 /*
1004  * This is called if we are on the way out to userspace and the
1005  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1006  * FP and/or vector state and does so if necessary.
1007  * If userspace is inside a transaction (whether active or
1008  * suspended) and FP/VMX/VSX instructions have ever been enabled
1009  * inside that transaction, then we have to keep them enabled
1010  * and keep the FP/VMX/VSX state loaded while ever the transaction
1011  * continues.  The reason is that if we didn't, and subsequently
1012  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1013  * we don't know whether it's the same transaction, and thus we
1014  * don't know which of the checkpointed state and the transactional
1015  * state to use.
1016  */
1017 void restore_tm_state(struct pt_regs *regs)
1018 {
1019 	unsigned long msr_diff;
1020 
1021 	/*
1022 	 * This is the only moment we should clear TIF_RESTORE_TM as
1023 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1024 	 * again, anything else could lead to an incorrect ckpt_msr being
1025 	 * saved and therefore incorrect signal contexts.
1026 	 */
1027 	clear_thread_flag(TIF_RESTORE_TM);
1028 	if (!MSR_TM_ACTIVE(regs->msr))
1029 		return;
1030 
1031 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1032 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1033 
1034 	/* Ensure that restore_math() will restore */
1035 	if (msr_diff & MSR_FP)
1036 		current->thread.load_fp = 1;
1037 #ifdef CONFIG_ALTIVEC
1038 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1039 		current->thread.load_vec = 1;
1040 #endif
1041 	restore_math(regs);
1042 
1043 	regs->msr |= msr_diff;
1044 }
1045 
1046 #else
1047 #define tm_recheckpoint_new_task(new)
1048 #define __switch_to_tm(prev, new)
1049 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1050 
1051 static inline void save_sprs(struct thread_struct *t)
1052 {
1053 #ifdef CONFIG_ALTIVEC
1054 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1055 		t->vrsave = mfspr(SPRN_VRSAVE);
1056 #endif
1057 #ifdef CONFIG_PPC_BOOK3S_64
1058 	if (cpu_has_feature(CPU_FTR_DSCR))
1059 		t->dscr = mfspr(SPRN_DSCR);
1060 
1061 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1062 		t->bescr = mfspr(SPRN_BESCR);
1063 		t->ebbhr = mfspr(SPRN_EBBHR);
1064 		t->ebbrr = mfspr(SPRN_EBBRR);
1065 
1066 		t->fscr = mfspr(SPRN_FSCR);
1067 
1068 		/*
1069 		 * Note that the TAR is not available for use in the kernel.
1070 		 * (To provide this, the TAR should be backed up/restored on
1071 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1072 		 * this should be in pt_regs anyway (for debug).)
1073 		 */
1074 		t->tar = mfspr(SPRN_TAR);
1075 	}
1076 #endif
1077 }
1078 
1079 static inline void restore_sprs(struct thread_struct *old_thread,
1080 				struct thread_struct *new_thread)
1081 {
1082 #ifdef CONFIG_ALTIVEC
1083 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1084 	    old_thread->vrsave != new_thread->vrsave)
1085 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1086 #endif
1087 #ifdef CONFIG_PPC_BOOK3S_64
1088 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1089 		u64 dscr = get_paca()->dscr_default;
1090 		if (new_thread->dscr_inherit)
1091 			dscr = new_thread->dscr;
1092 
1093 		if (old_thread->dscr != dscr)
1094 			mtspr(SPRN_DSCR, dscr);
1095 	}
1096 
1097 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1098 		if (old_thread->bescr != new_thread->bescr)
1099 			mtspr(SPRN_BESCR, new_thread->bescr);
1100 		if (old_thread->ebbhr != new_thread->ebbhr)
1101 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1102 		if (old_thread->ebbrr != new_thread->ebbrr)
1103 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1104 
1105 		if (old_thread->fscr != new_thread->fscr)
1106 			mtspr(SPRN_FSCR, new_thread->fscr);
1107 
1108 		if (old_thread->tar != new_thread->tar)
1109 			mtspr(SPRN_TAR, new_thread->tar);
1110 	}
1111 #endif
1112 }
1113 
1114 struct task_struct *__switch_to(struct task_struct *prev,
1115 	struct task_struct *new)
1116 {
1117 	struct thread_struct *new_thread, *old_thread;
1118 	struct task_struct *last;
1119 #ifdef CONFIG_PPC_BOOK3S_64
1120 	struct ppc64_tlb_batch *batch;
1121 #endif
1122 
1123 	new_thread = &new->thread;
1124 	old_thread = &current->thread;
1125 
1126 	WARN_ON(!irqs_disabled());
1127 
1128 #ifdef CONFIG_PPC64
1129 	/*
1130 	 * Collect processor utilization data per process
1131 	 */
1132 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1133 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1134 		long unsigned start_tb, current_tb;
1135 		start_tb = old_thread->start_tb;
1136 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1137 		old_thread->accum_tb += (current_tb - start_tb);
1138 		new_thread->start_tb = current_tb;
1139 	}
1140 #endif /* CONFIG_PPC64 */
1141 
1142 #ifdef CONFIG_PPC_STD_MMU_64
1143 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1144 	if (batch->active) {
1145 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1146 		if (batch->index)
1147 			__flush_tlb_pending(batch);
1148 		batch->active = 0;
1149 	}
1150 #endif /* CONFIG_PPC_STD_MMU_64 */
1151 
1152 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1153 	switch_booke_debug_regs(&new->thread.debug);
1154 #else
1155 /*
1156  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1157  * schedule DABR
1158  */
1159 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1160 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1161 		__set_breakpoint(&new->thread.hw_brk);
1162 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1163 #endif
1164 
1165 	/*
1166 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1167 	 * change a number of them.
1168 	 */
1169 	save_sprs(&prev->thread);
1170 
1171 	/* Save FPU, Altivec, VSX and SPE state */
1172 	giveup_all(prev);
1173 
1174 	__switch_to_tm(prev, new);
1175 
1176 	/*
1177 	 * We can't take a PMU exception inside _switch() since there is a
1178 	 * window where the kernel stack SLB and the kernel stack are out
1179 	 * of sync. Hard disable here.
1180 	 */
1181 	hard_irq_disable();
1182 
1183 	/*
1184 	 * Call restore_sprs() before calling _switch(). If we move it after
1185 	 * _switch() then we miss out on calling it for new tasks. The reason
1186 	 * for this is we manually create a stack frame for new tasks that
1187 	 * directly returns through ret_from_fork() or
1188 	 * ret_from_kernel_thread(). See copy_thread() for details.
1189 	 */
1190 	restore_sprs(old_thread, new_thread);
1191 
1192 	last = _switch(old_thread, new_thread);
1193 
1194 #ifdef CONFIG_PPC_STD_MMU_64
1195 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1196 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1197 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1198 		batch->active = 1;
1199 	}
1200 
1201 	if (current_thread_info()->task->thread.regs)
1202 		restore_math(current_thread_info()->task->thread.regs);
1203 #endif /* CONFIG_PPC_STD_MMU_64 */
1204 
1205 	return last;
1206 }
1207 
1208 static int instructions_to_print = 16;
1209 
1210 static void show_instructions(struct pt_regs *regs)
1211 {
1212 	int i;
1213 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1214 			sizeof(int));
1215 
1216 	printk("Instruction dump:");
1217 
1218 	for (i = 0; i < instructions_to_print; i++) {
1219 		int instr;
1220 
1221 		if (!(i % 8))
1222 			pr_cont("\n");
1223 
1224 #if !defined(CONFIG_BOOKE)
1225 		/* If executing with the IMMU off, adjust pc rather
1226 		 * than print XXXXXXXX.
1227 		 */
1228 		if (!(regs->msr & MSR_IR))
1229 			pc = (unsigned long)phys_to_virt(pc);
1230 #endif
1231 
1232 		if (!__kernel_text_address(pc) ||
1233 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1234 			pr_cont("XXXXXXXX ");
1235 		} else {
1236 			if (regs->nip == pc)
1237 				pr_cont("<%08x> ", instr);
1238 			else
1239 				pr_cont("%08x ", instr);
1240 		}
1241 
1242 		pc += sizeof(int);
1243 	}
1244 
1245 	pr_cont("\n");
1246 }
1247 
1248 struct regbit {
1249 	unsigned long bit;
1250 	const char *name;
1251 };
1252 
1253 static struct regbit msr_bits[] = {
1254 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1255 	{MSR_SF,	"SF"},
1256 	{MSR_HV,	"HV"},
1257 #endif
1258 	{MSR_VEC,	"VEC"},
1259 	{MSR_VSX,	"VSX"},
1260 #ifdef CONFIG_BOOKE
1261 	{MSR_CE,	"CE"},
1262 #endif
1263 	{MSR_EE,	"EE"},
1264 	{MSR_PR,	"PR"},
1265 	{MSR_FP,	"FP"},
1266 	{MSR_ME,	"ME"},
1267 #ifdef CONFIG_BOOKE
1268 	{MSR_DE,	"DE"},
1269 #else
1270 	{MSR_SE,	"SE"},
1271 	{MSR_BE,	"BE"},
1272 #endif
1273 	{MSR_IR,	"IR"},
1274 	{MSR_DR,	"DR"},
1275 	{MSR_PMM,	"PMM"},
1276 #ifndef CONFIG_BOOKE
1277 	{MSR_RI,	"RI"},
1278 	{MSR_LE,	"LE"},
1279 #endif
1280 	{0,		NULL}
1281 };
1282 
1283 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1284 {
1285 	const char *s = "";
1286 
1287 	for (; bits->bit; ++bits)
1288 		if (val & bits->bit) {
1289 			pr_cont("%s%s", s, bits->name);
1290 			s = sep;
1291 		}
1292 }
1293 
1294 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1295 static struct regbit msr_tm_bits[] = {
1296 	{MSR_TS_T,	"T"},
1297 	{MSR_TS_S,	"S"},
1298 	{MSR_TM,	"E"},
1299 	{0,		NULL}
1300 };
1301 
1302 static void print_tm_bits(unsigned long val)
1303 {
1304 /*
1305  * This only prints something if at least one of the TM bit is set.
1306  * Inside the TM[], the output means:
1307  *   E: Enabled		(bit 32)
1308  *   S: Suspended	(bit 33)
1309  *   T: Transactional	(bit 34)
1310  */
1311 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1312 		pr_cont(",TM[");
1313 		print_bits(val, msr_tm_bits, "");
1314 		pr_cont("]");
1315 	}
1316 }
1317 #else
1318 static void print_tm_bits(unsigned long val) {}
1319 #endif
1320 
1321 static void print_msr_bits(unsigned long val)
1322 {
1323 	pr_cont("<");
1324 	print_bits(val, msr_bits, ",");
1325 	print_tm_bits(val);
1326 	pr_cont(">");
1327 }
1328 
1329 #ifdef CONFIG_PPC64
1330 #define REG		"%016lx"
1331 #define REGS_PER_LINE	4
1332 #define LAST_VOLATILE	13
1333 #else
1334 #define REG		"%08lx"
1335 #define REGS_PER_LINE	8
1336 #define LAST_VOLATILE	12
1337 #endif
1338 
1339 void show_regs(struct pt_regs * regs)
1340 {
1341 	int i, trap;
1342 
1343 	show_regs_print_info(KERN_DEFAULT);
1344 
1345 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1346 	       regs->nip, regs->link, regs->ctr);
1347 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1348 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1349 	printk("MSR: "REG" ", regs->msr);
1350 	print_msr_bits(regs->msr);
1351 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1352 	trap = TRAP(regs);
1353 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1354 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1355 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1356 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1357 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1358 #else
1359 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1360 #endif
1361 #ifdef CONFIG_PPC64
1362 	pr_cont("SOFTE: %ld ", regs->softe);
1363 #endif
1364 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1365 	if (MSR_TM_ACTIVE(regs->msr))
1366 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1367 #endif
1368 
1369 	for (i = 0;  i < 32;  i++) {
1370 		if ((i % REGS_PER_LINE) == 0)
1371 			pr_cont("\nGPR%02d: ", i);
1372 		pr_cont(REG " ", regs->gpr[i]);
1373 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1374 			break;
1375 	}
1376 	pr_cont("\n");
1377 #ifdef CONFIG_KALLSYMS
1378 	/*
1379 	 * Lookup NIP late so we have the best change of getting the
1380 	 * above info out without failing
1381 	 */
1382 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1383 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1384 #endif
1385 	show_stack(current, (unsigned long *) regs->gpr[1]);
1386 	if (!user_mode(regs))
1387 		show_instructions(regs);
1388 }
1389 
1390 void flush_thread(void)
1391 {
1392 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1393 	flush_ptrace_hw_breakpoint(current);
1394 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1395 	set_debug_reg_defaults(&current->thread);
1396 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1397 }
1398 
1399 void
1400 release_thread(struct task_struct *t)
1401 {
1402 }
1403 
1404 /*
1405  * this gets called so that we can store coprocessor state into memory and
1406  * copy the current task into the new thread.
1407  */
1408 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1409 {
1410 	flush_all_to_thread(src);
1411 	/*
1412 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1413 	 * flush but it removes the checkpointed state from the current CPU and
1414 	 * transitions the CPU out of TM mode.  Hence we need to call
1415 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1416 	 * checkpointed state back and the TM mode.
1417 	 *
1418 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1419 	 * dst is only important for __switch_to()
1420 	 */
1421 	__switch_to_tm(src, src);
1422 
1423 	*dst = *src;
1424 
1425 	clear_task_ebb(dst);
1426 
1427 	return 0;
1428 }
1429 
1430 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1431 {
1432 #ifdef CONFIG_PPC_STD_MMU_64
1433 	unsigned long sp_vsid;
1434 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1435 
1436 	if (radix_enabled())
1437 		return;
1438 
1439 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1440 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1441 			<< SLB_VSID_SHIFT_1T;
1442 	else
1443 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1444 			<< SLB_VSID_SHIFT;
1445 	sp_vsid |= SLB_VSID_KERNEL | llp;
1446 	p->thread.ksp_vsid = sp_vsid;
1447 #endif
1448 }
1449 
1450 /*
1451  * Copy a thread..
1452  */
1453 
1454 /*
1455  * Copy architecture-specific thread state
1456  */
1457 int copy_thread(unsigned long clone_flags, unsigned long usp,
1458 		unsigned long kthread_arg, struct task_struct *p)
1459 {
1460 	struct pt_regs *childregs, *kregs;
1461 	extern void ret_from_fork(void);
1462 	extern void ret_from_kernel_thread(void);
1463 	void (*f)(void);
1464 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1465 	struct thread_info *ti = task_thread_info(p);
1466 
1467 	klp_init_thread_info(ti);
1468 
1469 	/* Copy registers */
1470 	sp -= sizeof(struct pt_regs);
1471 	childregs = (struct pt_regs *) sp;
1472 	if (unlikely(p->flags & PF_KTHREAD)) {
1473 		/* kernel thread */
1474 		memset(childregs, 0, sizeof(struct pt_regs));
1475 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1476 		/* function */
1477 		if (usp)
1478 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1479 #ifdef CONFIG_PPC64
1480 		clear_tsk_thread_flag(p, TIF_32BIT);
1481 		childregs->softe = 1;
1482 #endif
1483 		childregs->gpr[15] = kthread_arg;
1484 		p->thread.regs = NULL;	/* no user register state */
1485 		ti->flags |= _TIF_RESTOREALL;
1486 		f = ret_from_kernel_thread;
1487 	} else {
1488 		/* user thread */
1489 		struct pt_regs *regs = current_pt_regs();
1490 		CHECK_FULL_REGS(regs);
1491 		*childregs = *regs;
1492 		if (usp)
1493 			childregs->gpr[1] = usp;
1494 		p->thread.regs = childregs;
1495 		childregs->gpr[3] = 0;  /* Result from fork() */
1496 		if (clone_flags & CLONE_SETTLS) {
1497 #ifdef CONFIG_PPC64
1498 			if (!is_32bit_task())
1499 				childregs->gpr[13] = childregs->gpr[6];
1500 			else
1501 #endif
1502 				childregs->gpr[2] = childregs->gpr[6];
1503 		}
1504 
1505 		f = ret_from_fork;
1506 	}
1507 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1508 	sp -= STACK_FRAME_OVERHEAD;
1509 
1510 	/*
1511 	 * The way this works is that at some point in the future
1512 	 * some task will call _switch to switch to the new task.
1513 	 * That will pop off the stack frame created below and start
1514 	 * the new task running at ret_from_fork.  The new task will
1515 	 * do some house keeping and then return from the fork or clone
1516 	 * system call, using the stack frame created above.
1517 	 */
1518 	((unsigned long *)sp)[0] = 0;
1519 	sp -= sizeof(struct pt_regs);
1520 	kregs = (struct pt_regs *) sp;
1521 	sp -= STACK_FRAME_OVERHEAD;
1522 	p->thread.ksp = sp;
1523 #ifdef CONFIG_PPC32
1524 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1525 				_ALIGN_UP(sizeof(struct thread_info), 16);
1526 #endif
1527 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1528 	p->thread.ptrace_bps[0] = NULL;
1529 #endif
1530 
1531 	p->thread.fp_save_area = NULL;
1532 #ifdef CONFIG_ALTIVEC
1533 	p->thread.vr_save_area = NULL;
1534 #endif
1535 
1536 	setup_ksp_vsid(p, sp);
1537 
1538 #ifdef CONFIG_PPC64
1539 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1540 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1541 		p->thread.dscr = mfspr(SPRN_DSCR);
1542 	}
1543 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1544 		p->thread.ppr = INIT_PPR;
1545 #endif
1546 	kregs->nip = ppc_function_entry(f);
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Set up a thread for executing a new program
1552  */
1553 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1554 {
1555 #ifdef CONFIG_PPC64
1556 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1557 #endif
1558 
1559 	/*
1560 	 * If we exec out of a kernel thread then thread.regs will not be
1561 	 * set.  Do it now.
1562 	 */
1563 	if (!current->thread.regs) {
1564 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1565 		current->thread.regs = regs - 1;
1566 	}
1567 
1568 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1569 	/*
1570 	 * Clear any transactional state, we're exec()ing. The cause is
1571 	 * not important as there will never be a recheckpoint so it's not
1572 	 * user visible.
1573 	 */
1574 	if (MSR_TM_SUSPENDED(mfmsr()))
1575 		tm_reclaim_current(0);
1576 #endif
1577 
1578 	memset(regs->gpr, 0, sizeof(regs->gpr));
1579 	regs->ctr = 0;
1580 	regs->link = 0;
1581 	regs->xer = 0;
1582 	regs->ccr = 0;
1583 	regs->gpr[1] = sp;
1584 
1585 	/*
1586 	 * We have just cleared all the nonvolatile GPRs, so make
1587 	 * FULL_REGS(regs) return true.  This is necessary to allow
1588 	 * ptrace to examine the thread immediately after exec.
1589 	 */
1590 	regs->trap &= ~1UL;
1591 
1592 #ifdef CONFIG_PPC32
1593 	regs->mq = 0;
1594 	regs->nip = start;
1595 	regs->msr = MSR_USER;
1596 #else
1597 	if (!is_32bit_task()) {
1598 		unsigned long entry;
1599 
1600 		if (is_elf2_task()) {
1601 			/* Look ma, no function descriptors! */
1602 			entry = start;
1603 
1604 			/*
1605 			 * Ulrich says:
1606 			 *   The latest iteration of the ABI requires that when
1607 			 *   calling a function (at its global entry point),
1608 			 *   the caller must ensure r12 holds the entry point
1609 			 *   address (so that the function can quickly
1610 			 *   establish addressability).
1611 			 */
1612 			regs->gpr[12] = start;
1613 			/* Make sure that's restored on entry to userspace. */
1614 			set_thread_flag(TIF_RESTOREALL);
1615 		} else {
1616 			unsigned long toc;
1617 
1618 			/* start is a relocated pointer to the function
1619 			 * descriptor for the elf _start routine.  The first
1620 			 * entry in the function descriptor is the entry
1621 			 * address of _start and the second entry is the TOC
1622 			 * value we need to use.
1623 			 */
1624 			__get_user(entry, (unsigned long __user *)start);
1625 			__get_user(toc, (unsigned long __user *)start+1);
1626 
1627 			/* Check whether the e_entry function descriptor entries
1628 			 * need to be relocated before we can use them.
1629 			 */
1630 			if (load_addr != 0) {
1631 				entry += load_addr;
1632 				toc   += load_addr;
1633 			}
1634 			regs->gpr[2] = toc;
1635 		}
1636 		regs->nip = entry;
1637 		regs->msr = MSR_USER64;
1638 	} else {
1639 		regs->nip = start;
1640 		regs->gpr[2] = 0;
1641 		regs->msr = MSR_USER32;
1642 	}
1643 #endif
1644 #ifdef CONFIG_VSX
1645 	current->thread.used_vsr = 0;
1646 #endif
1647 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1648 	current->thread.fp_save_area = NULL;
1649 #ifdef CONFIG_ALTIVEC
1650 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1651 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1652 	current->thread.vr_save_area = NULL;
1653 	current->thread.vrsave = 0;
1654 	current->thread.used_vr = 0;
1655 #endif /* CONFIG_ALTIVEC */
1656 #ifdef CONFIG_SPE
1657 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1658 	current->thread.acc = 0;
1659 	current->thread.spefscr = 0;
1660 	current->thread.used_spe = 0;
1661 #endif /* CONFIG_SPE */
1662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1663 	current->thread.tm_tfhar = 0;
1664 	current->thread.tm_texasr = 0;
1665 	current->thread.tm_tfiar = 0;
1666 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1667 }
1668 EXPORT_SYMBOL(start_thread);
1669 
1670 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1671 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1672 
1673 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1674 {
1675 	struct pt_regs *regs = tsk->thread.regs;
1676 
1677 	/* This is a bit hairy.  If we are an SPE enabled  processor
1678 	 * (have embedded fp) we store the IEEE exception enable flags in
1679 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1680 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1681 	if (val & PR_FP_EXC_SW_ENABLE) {
1682 #ifdef CONFIG_SPE
1683 		if (cpu_has_feature(CPU_FTR_SPE)) {
1684 			/*
1685 			 * When the sticky exception bits are set
1686 			 * directly by userspace, it must call prctl
1687 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1688 			 * in the existing prctl settings) or
1689 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1690 			 * the bits being set).  <fenv.h> functions
1691 			 * saving and restoring the whole
1692 			 * floating-point environment need to do so
1693 			 * anyway to restore the prctl settings from
1694 			 * the saved environment.
1695 			 */
1696 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1697 			tsk->thread.fpexc_mode = val &
1698 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1699 			return 0;
1700 		} else {
1701 			return -EINVAL;
1702 		}
1703 #else
1704 		return -EINVAL;
1705 #endif
1706 	}
1707 
1708 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1709 	 * __pack_fe01 use do not overlap with bits used for
1710 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1711 	 * on CONFIG_SPE implementations are reserved so writing to
1712 	 * them does not change anything */
1713 	if (val > PR_FP_EXC_PRECISE)
1714 		return -EINVAL;
1715 	tsk->thread.fpexc_mode = __pack_fe01(val);
1716 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1717 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1718 			| tsk->thread.fpexc_mode;
1719 	return 0;
1720 }
1721 
1722 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1723 {
1724 	unsigned int val;
1725 
1726 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1727 #ifdef CONFIG_SPE
1728 		if (cpu_has_feature(CPU_FTR_SPE)) {
1729 			/*
1730 			 * When the sticky exception bits are set
1731 			 * directly by userspace, it must call prctl
1732 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1733 			 * in the existing prctl settings) or
1734 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1735 			 * the bits being set).  <fenv.h> functions
1736 			 * saving and restoring the whole
1737 			 * floating-point environment need to do so
1738 			 * anyway to restore the prctl settings from
1739 			 * the saved environment.
1740 			 */
1741 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1742 			val = tsk->thread.fpexc_mode;
1743 		} else
1744 			return -EINVAL;
1745 #else
1746 		return -EINVAL;
1747 #endif
1748 	else
1749 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1750 	return put_user(val, (unsigned int __user *) adr);
1751 }
1752 
1753 int set_endian(struct task_struct *tsk, unsigned int val)
1754 {
1755 	struct pt_regs *regs = tsk->thread.regs;
1756 
1757 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1758 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1759 		return -EINVAL;
1760 
1761 	if (regs == NULL)
1762 		return -EINVAL;
1763 
1764 	if (val == PR_ENDIAN_BIG)
1765 		regs->msr &= ~MSR_LE;
1766 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1767 		regs->msr |= MSR_LE;
1768 	else
1769 		return -EINVAL;
1770 
1771 	return 0;
1772 }
1773 
1774 int get_endian(struct task_struct *tsk, unsigned long adr)
1775 {
1776 	struct pt_regs *regs = tsk->thread.regs;
1777 	unsigned int val;
1778 
1779 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1780 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1781 		return -EINVAL;
1782 
1783 	if (regs == NULL)
1784 		return -EINVAL;
1785 
1786 	if (regs->msr & MSR_LE) {
1787 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1788 			val = PR_ENDIAN_LITTLE;
1789 		else
1790 			val = PR_ENDIAN_PPC_LITTLE;
1791 	} else
1792 		val = PR_ENDIAN_BIG;
1793 
1794 	return put_user(val, (unsigned int __user *)adr);
1795 }
1796 
1797 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1798 {
1799 	tsk->thread.align_ctl = val;
1800 	return 0;
1801 }
1802 
1803 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1804 {
1805 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1806 }
1807 
1808 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1809 				  unsigned long nbytes)
1810 {
1811 	unsigned long stack_page;
1812 	unsigned long cpu = task_cpu(p);
1813 
1814 	/*
1815 	 * Avoid crashing if the stack has overflowed and corrupted
1816 	 * task_cpu(p), which is in the thread_info struct.
1817 	 */
1818 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1819 		stack_page = (unsigned long) hardirq_ctx[cpu];
1820 		if (sp >= stack_page + sizeof(struct thread_struct)
1821 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1822 			return 1;
1823 
1824 		stack_page = (unsigned long) softirq_ctx[cpu];
1825 		if (sp >= stack_page + sizeof(struct thread_struct)
1826 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1827 			return 1;
1828 	}
1829 	return 0;
1830 }
1831 
1832 int validate_sp(unsigned long sp, struct task_struct *p,
1833 		       unsigned long nbytes)
1834 {
1835 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1836 
1837 	if (sp >= stack_page + sizeof(struct thread_struct)
1838 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1839 		return 1;
1840 
1841 	return valid_irq_stack(sp, p, nbytes);
1842 }
1843 
1844 EXPORT_SYMBOL(validate_sp);
1845 
1846 unsigned long get_wchan(struct task_struct *p)
1847 {
1848 	unsigned long ip, sp;
1849 	int count = 0;
1850 
1851 	if (!p || p == current || p->state == TASK_RUNNING)
1852 		return 0;
1853 
1854 	sp = p->thread.ksp;
1855 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1856 		return 0;
1857 
1858 	do {
1859 		sp = *(unsigned long *)sp;
1860 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1861 			return 0;
1862 		if (count > 0) {
1863 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1864 			if (!in_sched_functions(ip))
1865 				return ip;
1866 		}
1867 	} while (count++ < 16);
1868 	return 0;
1869 }
1870 
1871 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1872 
1873 void show_stack(struct task_struct *tsk, unsigned long *stack)
1874 {
1875 	unsigned long sp, ip, lr, newsp;
1876 	int count = 0;
1877 	int firstframe = 1;
1878 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1879 	int curr_frame = current->curr_ret_stack;
1880 	extern void return_to_handler(void);
1881 	unsigned long rth = (unsigned long)return_to_handler;
1882 #endif
1883 
1884 	sp = (unsigned long) stack;
1885 	if (tsk == NULL)
1886 		tsk = current;
1887 	if (sp == 0) {
1888 		if (tsk == current)
1889 			sp = current_stack_pointer();
1890 		else
1891 			sp = tsk->thread.ksp;
1892 	}
1893 
1894 	lr = 0;
1895 	printk("Call Trace:\n");
1896 	do {
1897 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1898 			return;
1899 
1900 		stack = (unsigned long *) sp;
1901 		newsp = stack[0];
1902 		ip = stack[STACK_FRAME_LR_SAVE];
1903 		if (!firstframe || ip != lr) {
1904 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1905 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1906 			if ((ip == rth) && curr_frame >= 0) {
1907 				pr_cont(" (%pS)",
1908 				       (void *)current->ret_stack[curr_frame].ret);
1909 				curr_frame--;
1910 			}
1911 #endif
1912 			if (firstframe)
1913 				pr_cont(" (unreliable)");
1914 			pr_cont("\n");
1915 		}
1916 		firstframe = 0;
1917 
1918 		/*
1919 		 * See if this is an exception frame.
1920 		 * We look for the "regshere" marker in the current frame.
1921 		 */
1922 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1923 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1924 			struct pt_regs *regs = (struct pt_regs *)
1925 				(sp + STACK_FRAME_OVERHEAD);
1926 			lr = regs->link;
1927 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1928 			       regs->trap, (void *)regs->nip, (void *)lr);
1929 			firstframe = 1;
1930 		}
1931 
1932 		sp = newsp;
1933 	} while (count++ < kstack_depth_to_print);
1934 }
1935 
1936 #ifdef CONFIG_PPC64
1937 /* Called with hard IRQs off */
1938 void notrace __ppc64_runlatch_on(void)
1939 {
1940 	struct thread_info *ti = current_thread_info();
1941 	unsigned long ctrl;
1942 
1943 	ctrl = mfspr(SPRN_CTRLF);
1944 	ctrl |= CTRL_RUNLATCH;
1945 	mtspr(SPRN_CTRLT, ctrl);
1946 
1947 	ti->local_flags |= _TLF_RUNLATCH;
1948 }
1949 
1950 /* Called with hard IRQs off */
1951 void notrace __ppc64_runlatch_off(void)
1952 {
1953 	struct thread_info *ti = current_thread_info();
1954 	unsigned long ctrl;
1955 
1956 	ti->local_flags &= ~_TLF_RUNLATCH;
1957 
1958 	ctrl = mfspr(SPRN_CTRLF);
1959 	ctrl &= ~CTRL_RUNLATCH;
1960 	mtspr(SPRN_CTRLT, ctrl);
1961 }
1962 #endif /* CONFIG_PPC64 */
1963 
1964 unsigned long arch_align_stack(unsigned long sp)
1965 {
1966 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1967 		sp -= get_random_int() & ~PAGE_MASK;
1968 	return sp & ~0xf;
1969 }
1970 
1971 static inline unsigned long brk_rnd(void)
1972 {
1973         unsigned long rnd = 0;
1974 
1975 	/* 8MB for 32bit, 1GB for 64bit */
1976 	if (is_32bit_task())
1977 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1978 	else
1979 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1980 
1981 	return rnd << PAGE_SHIFT;
1982 }
1983 
1984 unsigned long arch_randomize_brk(struct mm_struct *mm)
1985 {
1986 	unsigned long base = mm->brk;
1987 	unsigned long ret;
1988 
1989 #ifdef CONFIG_PPC_STD_MMU_64
1990 	/*
1991 	 * If we are using 1TB segments and we are allowed to randomise
1992 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1993 	 * segment. Otherwise the heap will be in the bottom 1TB
1994 	 * which always uses 256MB segments and this may result in a
1995 	 * performance penalty. We don't need to worry about radix. For
1996 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1997 	 */
1998 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1999 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2000 #endif
2001 
2002 	ret = PAGE_ALIGN(base + brk_rnd());
2003 
2004 	if (ret < mm->brk)
2005 		return mm->brk;
2006 
2007 	return ret;
2008 }
2009 
2010