1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/mqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/utsname.h> 35 #include <linux/ftrace.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/personality.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/uaccess.h> 41 #include <linux/elf-randomize.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #endif 58 #include <asm/code-patching.h> 59 #include <asm/exec.h> 60 #include <asm/livepatch.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/asm-prototypes.h> 63 64 #include <linux/kprobes.h> 65 #include <linux/kdebug.h> 66 67 /* Transactional Memory debug */ 68 #ifdef TM_DEBUG_SW 69 #define TM_DEBUG(x...) printk(KERN_INFO x) 70 #else 71 #define TM_DEBUG(x...) do { } while(0) 72 #endif 73 74 extern unsigned long _get_SP(void); 75 76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 77 static void check_if_tm_restore_required(struct task_struct *tsk) 78 { 79 /* 80 * If we are saving the current thread's registers, and the 81 * thread is in a transactional state, set the TIF_RESTORE_TM 82 * bit so that we know to restore the registers before 83 * returning to userspace. 84 */ 85 if (tsk == current && tsk->thread.regs && 86 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 87 !test_thread_flag(TIF_RESTORE_TM)) { 88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 89 set_thread_flag(TIF_RESTORE_TM); 90 } 91 } 92 93 static inline bool msr_tm_active(unsigned long msr) 94 { 95 return MSR_TM_ACTIVE(msr); 96 } 97 #else 98 static inline bool msr_tm_active(unsigned long msr) { return false; } 99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 101 102 bool strict_msr_control; 103 EXPORT_SYMBOL(strict_msr_control); 104 105 static int __init enable_strict_msr_control(char *str) 106 { 107 strict_msr_control = true; 108 pr_info("Enabling strict facility control\n"); 109 110 return 0; 111 } 112 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 113 114 unsigned long msr_check_and_set(unsigned long bits) 115 { 116 unsigned long oldmsr = mfmsr(); 117 unsigned long newmsr; 118 119 newmsr = oldmsr | bits; 120 121 #ifdef CONFIG_VSX 122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 123 newmsr |= MSR_VSX; 124 #endif 125 126 if (oldmsr != newmsr) 127 mtmsr_isync(newmsr); 128 129 return newmsr; 130 } 131 132 void __msr_check_and_clear(unsigned long bits) 133 { 134 unsigned long oldmsr = mfmsr(); 135 unsigned long newmsr; 136 137 newmsr = oldmsr & ~bits; 138 139 #ifdef CONFIG_VSX 140 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 141 newmsr &= ~MSR_VSX; 142 #endif 143 144 if (oldmsr != newmsr) 145 mtmsr_isync(newmsr); 146 } 147 EXPORT_SYMBOL(__msr_check_and_clear); 148 149 #ifdef CONFIG_PPC_FPU 150 void __giveup_fpu(struct task_struct *tsk) 151 { 152 unsigned long msr; 153 154 save_fpu(tsk); 155 msr = tsk->thread.regs->msr; 156 msr &= ~MSR_FP; 157 #ifdef CONFIG_VSX 158 if (cpu_has_feature(CPU_FTR_VSX)) 159 msr &= ~MSR_VSX; 160 #endif 161 tsk->thread.regs->msr = msr; 162 } 163 164 void giveup_fpu(struct task_struct *tsk) 165 { 166 check_if_tm_restore_required(tsk); 167 168 msr_check_and_set(MSR_FP); 169 __giveup_fpu(tsk); 170 msr_check_and_clear(MSR_FP); 171 } 172 EXPORT_SYMBOL(giveup_fpu); 173 174 /* 175 * Make sure the floating-point register state in the 176 * the thread_struct is up to date for task tsk. 177 */ 178 void flush_fp_to_thread(struct task_struct *tsk) 179 { 180 if (tsk->thread.regs) { 181 /* 182 * We need to disable preemption here because if we didn't, 183 * another process could get scheduled after the regs->msr 184 * test but before we have finished saving the FP registers 185 * to the thread_struct. That process could take over the 186 * FPU, and then when we get scheduled again we would store 187 * bogus values for the remaining FP registers. 188 */ 189 preempt_disable(); 190 if (tsk->thread.regs->msr & MSR_FP) { 191 /* 192 * This should only ever be called for current or 193 * for a stopped child process. Since we save away 194 * the FP register state on context switch, 195 * there is something wrong if a stopped child appears 196 * to still have its FP state in the CPU registers. 197 */ 198 BUG_ON(tsk != current); 199 giveup_fpu(tsk); 200 } 201 preempt_enable(); 202 } 203 } 204 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 205 206 void enable_kernel_fp(void) 207 { 208 unsigned long cpumsr; 209 210 WARN_ON(preemptible()); 211 212 cpumsr = msr_check_and_set(MSR_FP); 213 214 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 215 check_if_tm_restore_required(current); 216 /* 217 * If a thread has already been reclaimed then the 218 * checkpointed registers are on the CPU but have definitely 219 * been saved by the reclaim code. Don't need to and *cannot* 220 * giveup as this would save to the 'live' structure not the 221 * checkpointed structure. 222 */ 223 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 224 return; 225 __giveup_fpu(current); 226 } 227 } 228 EXPORT_SYMBOL(enable_kernel_fp); 229 230 static int restore_fp(struct task_struct *tsk) { 231 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) { 232 load_fp_state(¤t->thread.fp_state); 233 current->thread.load_fp++; 234 return 1; 235 } 236 return 0; 237 } 238 #else 239 static int restore_fp(struct task_struct *tsk) { return 0; } 240 #endif /* CONFIG_PPC_FPU */ 241 242 #ifdef CONFIG_ALTIVEC 243 #define loadvec(thr) ((thr).load_vec) 244 245 static void __giveup_altivec(struct task_struct *tsk) 246 { 247 unsigned long msr; 248 249 save_altivec(tsk); 250 msr = tsk->thread.regs->msr; 251 msr &= ~MSR_VEC; 252 #ifdef CONFIG_VSX 253 if (cpu_has_feature(CPU_FTR_VSX)) 254 msr &= ~MSR_VSX; 255 #endif 256 tsk->thread.regs->msr = msr; 257 } 258 259 void giveup_altivec(struct task_struct *tsk) 260 { 261 check_if_tm_restore_required(tsk); 262 263 msr_check_and_set(MSR_VEC); 264 __giveup_altivec(tsk); 265 msr_check_and_clear(MSR_VEC); 266 } 267 EXPORT_SYMBOL(giveup_altivec); 268 269 void enable_kernel_altivec(void) 270 { 271 unsigned long cpumsr; 272 273 WARN_ON(preemptible()); 274 275 cpumsr = msr_check_and_set(MSR_VEC); 276 277 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 278 check_if_tm_restore_required(current); 279 /* 280 * If a thread has already been reclaimed then the 281 * checkpointed registers are on the CPU but have definitely 282 * been saved by the reclaim code. Don't need to and *cannot* 283 * giveup as this would save to the 'live' structure not the 284 * checkpointed structure. 285 */ 286 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 287 return; 288 __giveup_altivec(current); 289 } 290 } 291 EXPORT_SYMBOL(enable_kernel_altivec); 292 293 /* 294 * Make sure the VMX/Altivec register state in the 295 * the thread_struct is up to date for task tsk. 296 */ 297 void flush_altivec_to_thread(struct task_struct *tsk) 298 { 299 if (tsk->thread.regs) { 300 preempt_disable(); 301 if (tsk->thread.regs->msr & MSR_VEC) { 302 BUG_ON(tsk != current); 303 giveup_altivec(tsk); 304 } 305 preempt_enable(); 306 } 307 } 308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 309 310 static int restore_altivec(struct task_struct *tsk) 311 { 312 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 313 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) { 314 load_vr_state(&tsk->thread.vr_state); 315 tsk->thread.used_vr = 1; 316 tsk->thread.load_vec++; 317 318 return 1; 319 } 320 return 0; 321 } 322 #else 323 #define loadvec(thr) 0 324 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 325 #endif /* CONFIG_ALTIVEC */ 326 327 #ifdef CONFIG_VSX 328 static void __giveup_vsx(struct task_struct *tsk) 329 { 330 if (tsk->thread.regs->msr & MSR_FP) 331 __giveup_fpu(tsk); 332 if (tsk->thread.regs->msr & MSR_VEC) 333 __giveup_altivec(tsk); 334 tsk->thread.regs->msr &= ~MSR_VSX; 335 } 336 337 static void giveup_vsx(struct task_struct *tsk) 338 { 339 check_if_tm_restore_required(tsk); 340 341 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 342 __giveup_vsx(tsk); 343 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 344 } 345 346 static void save_vsx(struct task_struct *tsk) 347 { 348 if (tsk->thread.regs->msr & MSR_FP) 349 save_fpu(tsk); 350 if (tsk->thread.regs->msr & MSR_VEC) 351 save_altivec(tsk); 352 } 353 354 void enable_kernel_vsx(void) 355 { 356 unsigned long cpumsr; 357 358 WARN_ON(preemptible()); 359 360 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 361 362 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { 363 check_if_tm_restore_required(current); 364 /* 365 * If a thread has already been reclaimed then the 366 * checkpointed registers are on the CPU but have definitely 367 * been saved by the reclaim code. Don't need to and *cannot* 368 * giveup as this would save to the 'live' structure not the 369 * checkpointed structure. 370 */ 371 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 372 return; 373 if (current->thread.regs->msr & MSR_FP) 374 __giveup_fpu(current); 375 if (current->thread.regs->msr & MSR_VEC) 376 __giveup_altivec(current); 377 __giveup_vsx(current); 378 } 379 } 380 EXPORT_SYMBOL(enable_kernel_vsx); 381 382 void flush_vsx_to_thread(struct task_struct *tsk) 383 { 384 if (tsk->thread.regs) { 385 preempt_disable(); 386 if (tsk->thread.regs->msr & MSR_VSX) { 387 BUG_ON(tsk != current); 388 giveup_vsx(tsk); 389 } 390 preempt_enable(); 391 } 392 } 393 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 394 395 static int restore_vsx(struct task_struct *tsk) 396 { 397 if (cpu_has_feature(CPU_FTR_VSX)) { 398 tsk->thread.used_vsr = 1; 399 return 1; 400 } 401 402 return 0; 403 } 404 #else 405 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 406 static inline void save_vsx(struct task_struct *tsk) { } 407 #endif /* CONFIG_VSX */ 408 409 #ifdef CONFIG_SPE 410 void giveup_spe(struct task_struct *tsk) 411 { 412 check_if_tm_restore_required(tsk); 413 414 msr_check_and_set(MSR_SPE); 415 __giveup_spe(tsk); 416 msr_check_and_clear(MSR_SPE); 417 } 418 EXPORT_SYMBOL(giveup_spe); 419 420 void enable_kernel_spe(void) 421 { 422 WARN_ON(preemptible()); 423 424 msr_check_and_set(MSR_SPE); 425 426 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 427 check_if_tm_restore_required(current); 428 __giveup_spe(current); 429 } 430 } 431 EXPORT_SYMBOL(enable_kernel_spe); 432 433 void flush_spe_to_thread(struct task_struct *tsk) 434 { 435 if (tsk->thread.regs) { 436 preempt_disable(); 437 if (tsk->thread.regs->msr & MSR_SPE) { 438 BUG_ON(tsk != current); 439 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 440 giveup_spe(tsk); 441 } 442 preempt_enable(); 443 } 444 } 445 #endif /* CONFIG_SPE */ 446 447 static unsigned long msr_all_available; 448 449 static int __init init_msr_all_available(void) 450 { 451 #ifdef CONFIG_PPC_FPU 452 msr_all_available |= MSR_FP; 453 #endif 454 #ifdef CONFIG_ALTIVEC 455 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 456 msr_all_available |= MSR_VEC; 457 #endif 458 #ifdef CONFIG_VSX 459 if (cpu_has_feature(CPU_FTR_VSX)) 460 msr_all_available |= MSR_VSX; 461 #endif 462 #ifdef CONFIG_SPE 463 if (cpu_has_feature(CPU_FTR_SPE)) 464 msr_all_available |= MSR_SPE; 465 #endif 466 467 return 0; 468 } 469 early_initcall(init_msr_all_available); 470 471 void giveup_all(struct task_struct *tsk) 472 { 473 unsigned long usermsr; 474 475 if (!tsk->thread.regs) 476 return; 477 478 usermsr = tsk->thread.regs->msr; 479 480 if ((usermsr & msr_all_available) == 0) 481 return; 482 483 msr_check_and_set(msr_all_available); 484 check_if_tm_restore_required(tsk); 485 486 #ifdef CONFIG_PPC_FPU 487 if (usermsr & MSR_FP) 488 __giveup_fpu(tsk); 489 #endif 490 #ifdef CONFIG_ALTIVEC 491 if (usermsr & MSR_VEC) 492 __giveup_altivec(tsk); 493 #endif 494 #ifdef CONFIG_VSX 495 if (usermsr & MSR_VSX) 496 __giveup_vsx(tsk); 497 #endif 498 #ifdef CONFIG_SPE 499 if (usermsr & MSR_SPE) 500 __giveup_spe(tsk); 501 #endif 502 503 msr_check_and_clear(msr_all_available); 504 } 505 EXPORT_SYMBOL(giveup_all); 506 507 void restore_math(struct pt_regs *regs) 508 { 509 unsigned long msr; 510 511 if (!msr_tm_active(regs->msr) && 512 !current->thread.load_fp && !loadvec(current->thread)) 513 return; 514 515 msr = regs->msr; 516 msr_check_and_set(msr_all_available); 517 518 /* 519 * Only reload if the bit is not set in the user MSR, the bit BEING set 520 * indicates that the registers are hot 521 */ 522 if ((!(msr & MSR_FP)) && restore_fp(current)) 523 msr |= MSR_FP | current->thread.fpexc_mode; 524 525 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 526 msr |= MSR_VEC; 527 528 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 529 restore_vsx(current)) { 530 msr |= MSR_VSX; 531 } 532 533 msr_check_and_clear(msr_all_available); 534 535 regs->msr = msr; 536 } 537 538 void save_all(struct task_struct *tsk) 539 { 540 unsigned long usermsr; 541 542 if (!tsk->thread.regs) 543 return; 544 545 usermsr = tsk->thread.regs->msr; 546 547 if ((usermsr & msr_all_available) == 0) 548 return; 549 550 msr_check_and_set(msr_all_available); 551 552 /* 553 * Saving the way the register space is in hardware, save_vsx boils 554 * down to a save_fpu() and save_altivec() 555 */ 556 if (usermsr & MSR_VSX) { 557 save_vsx(tsk); 558 } else { 559 if (usermsr & MSR_FP) 560 save_fpu(tsk); 561 562 if (usermsr & MSR_VEC) 563 save_altivec(tsk); 564 } 565 566 if (usermsr & MSR_SPE) 567 __giveup_spe(tsk); 568 569 msr_check_and_clear(msr_all_available); 570 } 571 572 void flush_all_to_thread(struct task_struct *tsk) 573 { 574 if (tsk->thread.regs) { 575 preempt_disable(); 576 BUG_ON(tsk != current); 577 save_all(tsk); 578 579 #ifdef CONFIG_SPE 580 if (tsk->thread.regs->msr & MSR_SPE) 581 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 582 #endif 583 584 preempt_enable(); 585 } 586 } 587 EXPORT_SYMBOL(flush_all_to_thread); 588 589 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 590 void do_send_trap(struct pt_regs *regs, unsigned long address, 591 unsigned long error_code, int signal_code, int breakpt) 592 { 593 siginfo_t info; 594 595 current->thread.trap_nr = signal_code; 596 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 597 11, SIGSEGV) == NOTIFY_STOP) 598 return; 599 600 /* Deliver the signal to userspace */ 601 info.si_signo = SIGTRAP; 602 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 603 info.si_code = signal_code; 604 info.si_addr = (void __user *)address; 605 force_sig_info(SIGTRAP, &info, current); 606 } 607 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 608 void do_break (struct pt_regs *regs, unsigned long address, 609 unsigned long error_code) 610 { 611 siginfo_t info; 612 613 current->thread.trap_nr = TRAP_HWBKPT; 614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 615 11, SIGSEGV) == NOTIFY_STOP) 616 return; 617 618 if (debugger_break_match(regs)) 619 return; 620 621 /* Clear the breakpoint */ 622 hw_breakpoint_disable(); 623 624 /* Deliver the signal to userspace */ 625 info.si_signo = SIGTRAP; 626 info.si_errno = 0; 627 info.si_code = TRAP_HWBKPT; 628 info.si_addr = (void __user *)address; 629 force_sig_info(SIGTRAP, &info, current); 630 } 631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 632 633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 634 635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 636 /* 637 * Set the debug registers back to their default "safe" values. 638 */ 639 static void set_debug_reg_defaults(struct thread_struct *thread) 640 { 641 thread->debug.iac1 = thread->debug.iac2 = 0; 642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 643 thread->debug.iac3 = thread->debug.iac4 = 0; 644 #endif 645 thread->debug.dac1 = thread->debug.dac2 = 0; 646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 647 thread->debug.dvc1 = thread->debug.dvc2 = 0; 648 #endif 649 thread->debug.dbcr0 = 0; 650 #ifdef CONFIG_BOOKE 651 /* 652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 653 */ 654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 655 DBCR1_IAC3US | DBCR1_IAC4US; 656 /* 657 * Force Data Address Compare User/Supervisor bits to be User-only 658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 659 */ 660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 661 #else 662 thread->debug.dbcr1 = 0; 663 #endif 664 } 665 666 static void prime_debug_regs(struct debug_reg *debug) 667 { 668 /* 669 * We could have inherited MSR_DE from userspace, since 670 * it doesn't get cleared on exception entry. Make sure 671 * MSR_DE is clear before we enable any debug events. 672 */ 673 mtmsr(mfmsr() & ~MSR_DE); 674 675 mtspr(SPRN_IAC1, debug->iac1); 676 mtspr(SPRN_IAC2, debug->iac2); 677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 678 mtspr(SPRN_IAC3, debug->iac3); 679 mtspr(SPRN_IAC4, debug->iac4); 680 #endif 681 mtspr(SPRN_DAC1, debug->dac1); 682 mtspr(SPRN_DAC2, debug->dac2); 683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 684 mtspr(SPRN_DVC1, debug->dvc1); 685 mtspr(SPRN_DVC2, debug->dvc2); 686 #endif 687 mtspr(SPRN_DBCR0, debug->dbcr0); 688 mtspr(SPRN_DBCR1, debug->dbcr1); 689 #ifdef CONFIG_BOOKE 690 mtspr(SPRN_DBCR2, debug->dbcr2); 691 #endif 692 } 693 /* 694 * Unless neither the old or new thread are making use of the 695 * debug registers, set the debug registers from the values 696 * stored in the new thread. 697 */ 698 void switch_booke_debug_regs(struct debug_reg *new_debug) 699 { 700 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 701 || (new_debug->dbcr0 & DBCR0_IDM)) 702 prime_debug_regs(new_debug); 703 } 704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 706 #ifndef CONFIG_HAVE_HW_BREAKPOINT 707 static void set_debug_reg_defaults(struct thread_struct *thread) 708 { 709 thread->hw_brk.address = 0; 710 thread->hw_brk.type = 0; 711 set_breakpoint(&thread->hw_brk); 712 } 713 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 714 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 715 716 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 717 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 718 { 719 mtspr(SPRN_DAC1, dabr); 720 #ifdef CONFIG_PPC_47x 721 isync(); 722 #endif 723 return 0; 724 } 725 #elif defined(CONFIG_PPC_BOOK3S) 726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 727 { 728 mtspr(SPRN_DABR, dabr); 729 if (cpu_has_feature(CPU_FTR_DABRX)) 730 mtspr(SPRN_DABRX, dabrx); 731 return 0; 732 } 733 #elif defined(CONFIG_PPC_8xx) 734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 735 { 736 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 737 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 738 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 739 740 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 741 lctrl1 |= 0xa0000; 742 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 743 lctrl1 |= 0xf0000; 744 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 745 lctrl2 = 0; 746 747 mtspr(SPRN_LCTRL2, 0); 748 mtspr(SPRN_CMPE, addr); 749 mtspr(SPRN_CMPF, addr + 4); 750 mtspr(SPRN_LCTRL1, lctrl1); 751 mtspr(SPRN_LCTRL2, lctrl2); 752 753 return 0; 754 } 755 #else 756 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 757 { 758 return -EINVAL; 759 } 760 #endif 761 762 static inline int set_dabr(struct arch_hw_breakpoint *brk) 763 { 764 unsigned long dabr, dabrx; 765 766 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 767 dabrx = ((brk->type >> 3) & 0x7); 768 769 if (ppc_md.set_dabr) 770 return ppc_md.set_dabr(dabr, dabrx); 771 772 return __set_dabr(dabr, dabrx); 773 } 774 775 static inline int set_dawr(struct arch_hw_breakpoint *brk) 776 { 777 unsigned long dawr, dawrx, mrd; 778 779 dawr = brk->address; 780 781 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 782 << (63 - 58); //* read/write bits */ 783 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 784 << (63 - 59); //* translate */ 785 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 786 >> 3; //* PRIM bits */ 787 /* dawr length is stored in field MDR bits 48:53. Matches range in 788 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 789 0b111111=64DW. 790 brk->len is in bytes. 791 This aligns up to double word size, shifts and does the bias. 792 */ 793 mrd = ((brk->len + 7) >> 3) - 1; 794 dawrx |= (mrd & 0x3f) << (63 - 53); 795 796 if (ppc_md.set_dawr) 797 return ppc_md.set_dawr(dawr, dawrx); 798 mtspr(SPRN_DAWR, dawr); 799 mtspr(SPRN_DAWRX, dawrx); 800 return 0; 801 } 802 803 void __set_breakpoint(struct arch_hw_breakpoint *brk) 804 { 805 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 806 807 if (cpu_has_feature(CPU_FTR_DAWR)) 808 set_dawr(brk); 809 else 810 set_dabr(brk); 811 } 812 813 void set_breakpoint(struct arch_hw_breakpoint *brk) 814 { 815 preempt_disable(); 816 __set_breakpoint(brk); 817 preempt_enable(); 818 } 819 820 #ifdef CONFIG_PPC64 821 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 822 #endif 823 824 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 825 struct arch_hw_breakpoint *b) 826 { 827 if (a->address != b->address) 828 return false; 829 if (a->type != b->type) 830 return false; 831 if (a->len != b->len) 832 return false; 833 return true; 834 } 835 836 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 837 838 static inline bool tm_enabled(struct task_struct *tsk) 839 { 840 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 841 } 842 843 static void tm_reclaim_thread(struct thread_struct *thr, 844 struct thread_info *ti, uint8_t cause) 845 { 846 /* 847 * Use the current MSR TM suspended bit to track if we have 848 * checkpointed state outstanding. 849 * On signal delivery, we'd normally reclaim the checkpointed 850 * state to obtain stack pointer (see:get_tm_stackpointer()). 851 * This will then directly return to userspace without going 852 * through __switch_to(). However, if the stack frame is bad, 853 * we need to exit this thread which calls __switch_to() which 854 * will again attempt to reclaim the already saved tm state. 855 * Hence we need to check that we've not already reclaimed 856 * this state. 857 * We do this using the current MSR, rather tracking it in 858 * some specific thread_struct bit, as it has the additional 859 * benefit of checking for a potential TM bad thing exception. 860 */ 861 if (!MSR_TM_SUSPENDED(mfmsr())) 862 return; 863 864 giveup_all(container_of(thr, struct task_struct, thread)); 865 866 tm_reclaim(thr, thr->ckpt_regs.msr, cause); 867 } 868 869 void tm_reclaim_current(uint8_t cause) 870 { 871 tm_enable(); 872 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 873 } 874 875 static inline void tm_reclaim_task(struct task_struct *tsk) 876 { 877 /* We have to work out if we're switching from/to a task that's in the 878 * middle of a transaction. 879 * 880 * In switching we need to maintain a 2nd register state as 881 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 882 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 883 * ckvr_state 884 * 885 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 886 */ 887 struct thread_struct *thr = &tsk->thread; 888 889 if (!thr->regs) 890 return; 891 892 if (!MSR_TM_ACTIVE(thr->regs->msr)) 893 goto out_and_saveregs; 894 895 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 896 "ccr=%lx, msr=%lx, trap=%lx)\n", 897 tsk->pid, thr->regs->nip, 898 thr->regs->ccr, thr->regs->msr, 899 thr->regs->trap); 900 901 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 902 903 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 904 tsk->pid); 905 906 out_and_saveregs: 907 /* Always save the regs here, even if a transaction's not active. 908 * This context-switches a thread's TM info SPRs. We do it here to 909 * be consistent with the restore path (in recheckpoint) which 910 * cannot happen later in _switch(). 911 */ 912 tm_save_sprs(thr); 913 } 914 915 extern void __tm_recheckpoint(struct thread_struct *thread, 916 unsigned long orig_msr); 917 918 void tm_recheckpoint(struct thread_struct *thread, 919 unsigned long orig_msr) 920 { 921 unsigned long flags; 922 923 if (!(thread->regs->msr & MSR_TM)) 924 return; 925 926 /* We really can't be interrupted here as the TEXASR registers can't 927 * change and later in the trecheckpoint code, we have a userspace R1. 928 * So let's hard disable over this region. 929 */ 930 local_irq_save(flags); 931 hard_irq_disable(); 932 933 /* The TM SPRs are restored here, so that TEXASR.FS can be set 934 * before the trecheckpoint and no explosion occurs. 935 */ 936 tm_restore_sprs(thread); 937 938 __tm_recheckpoint(thread, orig_msr); 939 940 local_irq_restore(flags); 941 } 942 943 static inline void tm_recheckpoint_new_task(struct task_struct *new) 944 { 945 unsigned long msr; 946 947 if (!cpu_has_feature(CPU_FTR_TM)) 948 return; 949 950 /* Recheckpoint the registers of the thread we're about to switch to. 951 * 952 * If the task was using FP, we non-lazily reload both the original and 953 * the speculative FP register states. This is because the kernel 954 * doesn't see if/when a TM rollback occurs, so if we take an FP 955 * unavailable later, we are unable to determine which set of FP regs 956 * need to be restored. 957 */ 958 if (!tm_enabled(new)) 959 return; 960 961 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 962 tm_restore_sprs(&new->thread); 963 return; 964 } 965 msr = new->thread.ckpt_regs.msr; 966 /* Recheckpoint to restore original checkpointed register state. */ 967 TM_DEBUG("*** tm_recheckpoint of pid %d " 968 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 969 new->pid, new->thread.regs->msr, msr); 970 971 tm_recheckpoint(&new->thread, msr); 972 973 /* 974 * The checkpointed state has been restored but the live state has 975 * not, ensure all the math functionality is turned off to trigger 976 * restore_math() to reload. 977 */ 978 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 979 980 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 981 "(kernel msr 0x%lx)\n", 982 new->pid, mfmsr()); 983 } 984 985 static inline void __switch_to_tm(struct task_struct *prev, 986 struct task_struct *new) 987 { 988 if (cpu_has_feature(CPU_FTR_TM)) { 989 if (tm_enabled(prev) || tm_enabled(new)) 990 tm_enable(); 991 992 if (tm_enabled(prev)) { 993 prev->thread.load_tm++; 994 tm_reclaim_task(prev); 995 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 996 prev->thread.regs->msr &= ~MSR_TM; 997 } 998 999 tm_recheckpoint_new_task(new); 1000 } 1001 } 1002 1003 /* 1004 * This is called if we are on the way out to userspace and the 1005 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1006 * FP and/or vector state and does so if necessary. 1007 * If userspace is inside a transaction (whether active or 1008 * suspended) and FP/VMX/VSX instructions have ever been enabled 1009 * inside that transaction, then we have to keep them enabled 1010 * and keep the FP/VMX/VSX state loaded while ever the transaction 1011 * continues. The reason is that if we didn't, and subsequently 1012 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1013 * we don't know whether it's the same transaction, and thus we 1014 * don't know which of the checkpointed state and the transactional 1015 * state to use. 1016 */ 1017 void restore_tm_state(struct pt_regs *regs) 1018 { 1019 unsigned long msr_diff; 1020 1021 /* 1022 * This is the only moment we should clear TIF_RESTORE_TM as 1023 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1024 * again, anything else could lead to an incorrect ckpt_msr being 1025 * saved and therefore incorrect signal contexts. 1026 */ 1027 clear_thread_flag(TIF_RESTORE_TM); 1028 if (!MSR_TM_ACTIVE(regs->msr)) 1029 return; 1030 1031 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1032 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1033 1034 /* Ensure that restore_math() will restore */ 1035 if (msr_diff & MSR_FP) 1036 current->thread.load_fp = 1; 1037 #ifdef CONFIG_ALTIVEC 1038 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1039 current->thread.load_vec = 1; 1040 #endif 1041 restore_math(regs); 1042 1043 regs->msr |= msr_diff; 1044 } 1045 1046 #else 1047 #define tm_recheckpoint_new_task(new) 1048 #define __switch_to_tm(prev, new) 1049 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1050 1051 static inline void save_sprs(struct thread_struct *t) 1052 { 1053 #ifdef CONFIG_ALTIVEC 1054 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1055 t->vrsave = mfspr(SPRN_VRSAVE); 1056 #endif 1057 #ifdef CONFIG_PPC_BOOK3S_64 1058 if (cpu_has_feature(CPU_FTR_DSCR)) 1059 t->dscr = mfspr(SPRN_DSCR); 1060 1061 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1062 t->bescr = mfspr(SPRN_BESCR); 1063 t->ebbhr = mfspr(SPRN_EBBHR); 1064 t->ebbrr = mfspr(SPRN_EBBRR); 1065 1066 t->fscr = mfspr(SPRN_FSCR); 1067 1068 /* 1069 * Note that the TAR is not available for use in the kernel. 1070 * (To provide this, the TAR should be backed up/restored on 1071 * exception entry/exit instead, and be in pt_regs. FIXME, 1072 * this should be in pt_regs anyway (for debug).) 1073 */ 1074 t->tar = mfspr(SPRN_TAR); 1075 } 1076 #endif 1077 } 1078 1079 static inline void restore_sprs(struct thread_struct *old_thread, 1080 struct thread_struct *new_thread) 1081 { 1082 #ifdef CONFIG_ALTIVEC 1083 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1084 old_thread->vrsave != new_thread->vrsave) 1085 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1086 #endif 1087 #ifdef CONFIG_PPC_BOOK3S_64 1088 if (cpu_has_feature(CPU_FTR_DSCR)) { 1089 u64 dscr = get_paca()->dscr_default; 1090 if (new_thread->dscr_inherit) 1091 dscr = new_thread->dscr; 1092 1093 if (old_thread->dscr != dscr) 1094 mtspr(SPRN_DSCR, dscr); 1095 } 1096 1097 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1098 if (old_thread->bescr != new_thread->bescr) 1099 mtspr(SPRN_BESCR, new_thread->bescr); 1100 if (old_thread->ebbhr != new_thread->ebbhr) 1101 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1102 if (old_thread->ebbrr != new_thread->ebbrr) 1103 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1104 1105 if (old_thread->fscr != new_thread->fscr) 1106 mtspr(SPRN_FSCR, new_thread->fscr); 1107 1108 if (old_thread->tar != new_thread->tar) 1109 mtspr(SPRN_TAR, new_thread->tar); 1110 } 1111 #endif 1112 } 1113 1114 struct task_struct *__switch_to(struct task_struct *prev, 1115 struct task_struct *new) 1116 { 1117 struct thread_struct *new_thread, *old_thread; 1118 struct task_struct *last; 1119 #ifdef CONFIG_PPC_BOOK3S_64 1120 struct ppc64_tlb_batch *batch; 1121 #endif 1122 1123 new_thread = &new->thread; 1124 old_thread = ¤t->thread; 1125 1126 WARN_ON(!irqs_disabled()); 1127 1128 #ifdef CONFIG_PPC64 1129 /* 1130 * Collect processor utilization data per process 1131 */ 1132 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1133 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1134 long unsigned start_tb, current_tb; 1135 start_tb = old_thread->start_tb; 1136 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1137 old_thread->accum_tb += (current_tb - start_tb); 1138 new_thread->start_tb = current_tb; 1139 } 1140 #endif /* CONFIG_PPC64 */ 1141 1142 #ifdef CONFIG_PPC_STD_MMU_64 1143 batch = this_cpu_ptr(&ppc64_tlb_batch); 1144 if (batch->active) { 1145 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1146 if (batch->index) 1147 __flush_tlb_pending(batch); 1148 batch->active = 0; 1149 } 1150 #endif /* CONFIG_PPC_STD_MMU_64 */ 1151 1152 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1153 switch_booke_debug_regs(&new->thread.debug); 1154 #else 1155 /* 1156 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1157 * schedule DABR 1158 */ 1159 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1160 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1161 __set_breakpoint(&new->thread.hw_brk); 1162 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1163 #endif 1164 1165 /* 1166 * We need to save SPRs before treclaim/trecheckpoint as these will 1167 * change a number of them. 1168 */ 1169 save_sprs(&prev->thread); 1170 1171 /* Save FPU, Altivec, VSX and SPE state */ 1172 giveup_all(prev); 1173 1174 __switch_to_tm(prev, new); 1175 1176 /* 1177 * We can't take a PMU exception inside _switch() since there is a 1178 * window where the kernel stack SLB and the kernel stack are out 1179 * of sync. Hard disable here. 1180 */ 1181 hard_irq_disable(); 1182 1183 /* 1184 * Call restore_sprs() before calling _switch(). If we move it after 1185 * _switch() then we miss out on calling it for new tasks. The reason 1186 * for this is we manually create a stack frame for new tasks that 1187 * directly returns through ret_from_fork() or 1188 * ret_from_kernel_thread(). See copy_thread() for details. 1189 */ 1190 restore_sprs(old_thread, new_thread); 1191 1192 last = _switch(old_thread, new_thread); 1193 1194 #ifdef CONFIG_PPC_STD_MMU_64 1195 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1196 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1197 batch = this_cpu_ptr(&ppc64_tlb_batch); 1198 batch->active = 1; 1199 } 1200 1201 if (current_thread_info()->task->thread.regs) 1202 restore_math(current_thread_info()->task->thread.regs); 1203 #endif /* CONFIG_PPC_STD_MMU_64 */ 1204 1205 return last; 1206 } 1207 1208 static int instructions_to_print = 16; 1209 1210 static void show_instructions(struct pt_regs *regs) 1211 { 1212 int i; 1213 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1214 sizeof(int)); 1215 1216 printk("Instruction dump:"); 1217 1218 for (i = 0; i < instructions_to_print; i++) { 1219 int instr; 1220 1221 if (!(i % 8)) 1222 pr_cont("\n"); 1223 1224 #if !defined(CONFIG_BOOKE) 1225 /* If executing with the IMMU off, adjust pc rather 1226 * than print XXXXXXXX. 1227 */ 1228 if (!(regs->msr & MSR_IR)) 1229 pc = (unsigned long)phys_to_virt(pc); 1230 #endif 1231 1232 if (!__kernel_text_address(pc) || 1233 probe_kernel_address((unsigned int __user *)pc, instr)) { 1234 pr_cont("XXXXXXXX "); 1235 } else { 1236 if (regs->nip == pc) 1237 pr_cont("<%08x> ", instr); 1238 else 1239 pr_cont("%08x ", instr); 1240 } 1241 1242 pc += sizeof(int); 1243 } 1244 1245 pr_cont("\n"); 1246 } 1247 1248 struct regbit { 1249 unsigned long bit; 1250 const char *name; 1251 }; 1252 1253 static struct regbit msr_bits[] = { 1254 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1255 {MSR_SF, "SF"}, 1256 {MSR_HV, "HV"}, 1257 #endif 1258 {MSR_VEC, "VEC"}, 1259 {MSR_VSX, "VSX"}, 1260 #ifdef CONFIG_BOOKE 1261 {MSR_CE, "CE"}, 1262 #endif 1263 {MSR_EE, "EE"}, 1264 {MSR_PR, "PR"}, 1265 {MSR_FP, "FP"}, 1266 {MSR_ME, "ME"}, 1267 #ifdef CONFIG_BOOKE 1268 {MSR_DE, "DE"}, 1269 #else 1270 {MSR_SE, "SE"}, 1271 {MSR_BE, "BE"}, 1272 #endif 1273 {MSR_IR, "IR"}, 1274 {MSR_DR, "DR"}, 1275 {MSR_PMM, "PMM"}, 1276 #ifndef CONFIG_BOOKE 1277 {MSR_RI, "RI"}, 1278 {MSR_LE, "LE"}, 1279 #endif 1280 {0, NULL} 1281 }; 1282 1283 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1284 { 1285 const char *s = ""; 1286 1287 for (; bits->bit; ++bits) 1288 if (val & bits->bit) { 1289 pr_cont("%s%s", s, bits->name); 1290 s = sep; 1291 } 1292 } 1293 1294 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1295 static struct regbit msr_tm_bits[] = { 1296 {MSR_TS_T, "T"}, 1297 {MSR_TS_S, "S"}, 1298 {MSR_TM, "E"}, 1299 {0, NULL} 1300 }; 1301 1302 static void print_tm_bits(unsigned long val) 1303 { 1304 /* 1305 * This only prints something if at least one of the TM bit is set. 1306 * Inside the TM[], the output means: 1307 * E: Enabled (bit 32) 1308 * S: Suspended (bit 33) 1309 * T: Transactional (bit 34) 1310 */ 1311 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1312 pr_cont(",TM["); 1313 print_bits(val, msr_tm_bits, ""); 1314 pr_cont("]"); 1315 } 1316 } 1317 #else 1318 static void print_tm_bits(unsigned long val) {} 1319 #endif 1320 1321 static void print_msr_bits(unsigned long val) 1322 { 1323 pr_cont("<"); 1324 print_bits(val, msr_bits, ","); 1325 print_tm_bits(val); 1326 pr_cont(">"); 1327 } 1328 1329 #ifdef CONFIG_PPC64 1330 #define REG "%016lx" 1331 #define REGS_PER_LINE 4 1332 #define LAST_VOLATILE 13 1333 #else 1334 #define REG "%08lx" 1335 #define REGS_PER_LINE 8 1336 #define LAST_VOLATILE 12 1337 #endif 1338 1339 void show_regs(struct pt_regs * regs) 1340 { 1341 int i, trap; 1342 1343 show_regs_print_info(KERN_DEFAULT); 1344 1345 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1346 regs->nip, regs->link, regs->ctr); 1347 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1348 regs, regs->trap, print_tainted(), init_utsname()->release); 1349 printk("MSR: "REG" ", regs->msr); 1350 print_msr_bits(regs->msr); 1351 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1352 trap = TRAP(regs); 1353 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1354 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1355 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1356 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1357 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1358 #else 1359 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1360 #endif 1361 #ifdef CONFIG_PPC64 1362 pr_cont("SOFTE: %ld ", regs->softe); 1363 #endif 1364 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1365 if (MSR_TM_ACTIVE(regs->msr)) 1366 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1367 #endif 1368 1369 for (i = 0; i < 32; i++) { 1370 if ((i % REGS_PER_LINE) == 0) 1371 pr_cont("\nGPR%02d: ", i); 1372 pr_cont(REG " ", regs->gpr[i]); 1373 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1374 break; 1375 } 1376 pr_cont("\n"); 1377 #ifdef CONFIG_KALLSYMS 1378 /* 1379 * Lookup NIP late so we have the best change of getting the 1380 * above info out without failing 1381 */ 1382 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1383 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1384 #endif 1385 show_stack(current, (unsigned long *) regs->gpr[1]); 1386 if (!user_mode(regs)) 1387 show_instructions(regs); 1388 } 1389 1390 void flush_thread(void) 1391 { 1392 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1393 flush_ptrace_hw_breakpoint(current); 1394 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1395 set_debug_reg_defaults(¤t->thread); 1396 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1397 } 1398 1399 void 1400 release_thread(struct task_struct *t) 1401 { 1402 } 1403 1404 /* 1405 * this gets called so that we can store coprocessor state into memory and 1406 * copy the current task into the new thread. 1407 */ 1408 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1409 { 1410 flush_all_to_thread(src); 1411 /* 1412 * Flush TM state out so we can copy it. __switch_to_tm() does this 1413 * flush but it removes the checkpointed state from the current CPU and 1414 * transitions the CPU out of TM mode. Hence we need to call 1415 * tm_recheckpoint_new_task() (on the same task) to restore the 1416 * checkpointed state back and the TM mode. 1417 * 1418 * Can't pass dst because it isn't ready. Doesn't matter, passing 1419 * dst is only important for __switch_to() 1420 */ 1421 __switch_to_tm(src, src); 1422 1423 *dst = *src; 1424 1425 clear_task_ebb(dst); 1426 1427 return 0; 1428 } 1429 1430 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1431 { 1432 #ifdef CONFIG_PPC_STD_MMU_64 1433 unsigned long sp_vsid; 1434 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1435 1436 if (radix_enabled()) 1437 return; 1438 1439 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1440 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1441 << SLB_VSID_SHIFT_1T; 1442 else 1443 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1444 << SLB_VSID_SHIFT; 1445 sp_vsid |= SLB_VSID_KERNEL | llp; 1446 p->thread.ksp_vsid = sp_vsid; 1447 #endif 1448 } 1449 1450 /* 1451 * Copy a thread.. 1452 */ 1453 1454 /* 1455 * Copy architecture-specific thread state 1456 */ 1457 int copy_thread(unsigned long clone_flags, unsigned long usp, 1458 unsigned long kthread_arg, struct task_struct *p) 1459 { 1460 struct pt_regs *childregs, *kregs; 1461 extern void ret_from_fork(void); 1462 extern void ret_from_kernel_thread(void); 1463 void (*f)(void); 1464 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1465 struct thread_info *ti = task_thread_info(p); 1466 1467 klp_init_thread_info(ti); 1468 1469 /* Copy registers */ 1470 sp -= sizeof(struct pt_regs); 1471 childregs = (struct pt_regs *) sp; 1472 if (unlikely(p->flags & PF_KTHREAD)) { 1473 /* kernel thread */ 1474 memset(childregs, 0, sizeof(struct pt_regs)); 1475 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1476 /* function */ 1477 if (usp) 1478 childregs->gpr[14] = ppc_function_entry((void *)usp); 1479 #ifdef CONFIG_PPC64 1480 clear_tsk_thread_flag(p, TIF_32BIT); 1481 childregs->softe = 1; 1482 #endif 1483 childregs->gpr[15] = kthread_arg; 1484 p->thread.regs = NULL; /* no user register state */ 1485 ti->flags |= _TIF_RESTOREALL; 1486 f = ret_from_kernel_thread; 1487 } else { 1488 /* user thread */ 1489 struct pt_regs *regs = current_pt_regs(); 1490 CHECK_FULL_REGS(regs); 1491 *childregs = *regs; 1492 if (usp) 1493 childregs->gpr[1] = usp; 1494 p->thread.regs = childregs; 1495 childregs->gpr[3] = 0; /* Result from fork() */ 1496 if (clone_flags & CLONE_SETTLS) { 1497 #ifdef CONFIG_PPC64 1498 if (!is_32bit_task()) 1499 childregs->gpr[13] = childregs->gpr[6]; 1500 else 1501 #endif 1502 childregs->gpr[2] = childregs->gpr[6]; 1503 } 1504 1505 f = ret_from_fork; 1506 } 1507 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1508 sp -= STACK_FRAME_OVERHEAD; 1509 1510 /* 1511 * The way this works is that at some point in the future 1512 * some task will call _switch to switch to the new task. 1513 * That will pop off the stack frame created below and start 1514 * the new task running at ret_from_fork. The new task will 1515 * do some house keeping and then return from the fork or clone 1516 * system call, using the stack frame created above. 1517 */ 1518 ((unsigned long *)sp)[0] = 0; 1519 sp -= sizeof(struct pt_regs); 1520 kregs = (struct pt_regs *) sp; 1521 sp -= STACK_FRAME_OVERHEAD; 1522 p->thread.ksp = sp; 1523 #ifdef CONFIG_PPC32 1524 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1525 _ALIGN_UP(sizeof(struct thread_info), 16); 1526 #endif 1527 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1528 p->thread.ptrace_bps[0] = NULL; 1529 #endif 1530 1531 p->thread.fp_save_area = NULL; 1532 #ifdef CONFIG_ALTIVEC 1533 p->thread.vr_save_area = NULL; 1534 #endif 1535 1536 setup_ksp_vsid(p, sp); 1537 1538 #ifdef CONFIG_PPC64 1539 if (cpu_has_feature(CPU_FTR_DSCR)) { 1540 p->thread.dscr_inherit = current->thread.dscr_inherit; 1541 p->thread.dscr = mfspr(SPRN_DSCR); 1542 } 1543 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1544 p->thread.ppr = INIT_PPR; 1545 #endif 1546 kregs->nip = ppc_function_entry(f); 1547 return 0; 1548 } 1549 1550 /* 1551 * Set up a thread for executing a new program 1552 */ 1553 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1554 { 1555 #ifdef CONFIG_PPC64 1556 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1557 #endif 1558 1559 /* 1560 * If we exec out of a kernel thread then thread.regs will not be 1561 * set. Do it now. 1562 */ 1563 if (!current->thread.regs) { 1564 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1565 current->thread.regs = regs - 1; 1566 } 1567 1568 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1569 /* 1570 * Clear any transactional state, we're exec()ing. The cause is 1571 * not important as there will never be a recheckpoint so it's not 1572 * user visible. 1573 */ 1574 if (MSR_TM_SUSPENDED(mfmsr())) 1575 tm_reclaim_current(0); 1576 #endif 1577 1578 memset(regs->gpr, 0, sizeof(regs->gpr)); 1579 regs->ctr = 0; 1580 regs->link = 0; 1581 regs->xer = 0; 1582 regs->ccr = 0; 1583 regs->gpr[1] = sp; 1584 1585 /* 1586 * We have just cleared all the nonvolatile GPRs, so make 1587 * FULL_REGS(regs) return true. This is necessary to allow 1588 * ptrace to examine the thread immediately after exec. 1589 */ 1590 regs->trap &= ~1UL; 1591 1592 #ifdef CONFIG_PPC32 1593 regs->mq = 0; 1594 regs->nip = start; 1595 regs->msr = MSR_USER; 1596 #else 1597 if (!is_32bit_task()) { 1598 unsigned long entry; 1599 1600 if (is_elf2_task()) { 1601 /* Look ma, no function descriptors! */ 1602 entry = start; 1603 1604 /* 1605 * Ulrich says: 1606 * The latest iteration of the ABI requires that when 1607 * calling a function (at its global entry point), 1608 * the caller must ensure r12 holds the entry point 1609 * address (so that the function can quickly 1610 * establish addressability). 1611 */ 1612 regs->gpr[12] = start; 1613 /* Make sure that's restored on entry to userspace. */ 1614 set_thread_flag(TIF_RESTOREALL); 1615 } else { 1616 unsigned long toc; 1617 1618 /* start is a relocated pointer to the function 1619 * descriptor for the elf _start routine. The first 1620 * entry in the function descriptor is the entry 1621 * address of _start and the second entry is the TOC 1622 * value we need to use. 1623 */ 1624 __get_user(entry, (unsigned long __user *)start); 1625 __get_user(toc, (unsigned long __user *)start+1); 1626 1627 /* Check whether the e_entry function descriptor entries 1628 * need to be relocated before we can use them. 1629 */ 1630 if (load_addr != 0) { 1631 entry += load_addr; 1632 toc += load_addr; 1633 } 1634 regs->gpr[2] = toc; 1635 } 1636 regs->nip = entry; 1637 regs->msr = MSR_USER64; 1638 } else { 1639 regs->nip = start; 1640 regs->gpr[2] = 0; 1641 regs->msr = MSR_USER32; 1642 } 1643 #endif 1644 #ifdef CONFIG_VSX 1645 current->thread.used_vsr = 0; 1646 #endif 1647 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1648 current->thread.fp_save_area = NULL; 1649 #ifdef CONFIG_ALTIVEC 1650 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1651 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1652 current->thread.vr_save_area = NULL; 1653 current->thread.vrsave = 0; 1654 current->thread.used_vr = 0; 1655 #endif /* CONFIG_ALTIVEC */ 1656 #ifdef CONFIG_SPE 1657 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1658 current->thread.acc = 0; 1659 current->thread.spefscr = 0; 1660 current->thread.used_spe = 0; 1661 #endif /* CONFIG_SPE */ 1662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1663 current->thread.tm_tfhar = 0; 1664 current->thread.tm_texasr = 0; 1665 current->thread.tm_tfiar = 0; 1666 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1667 } 1668 EXPORT_SYMBOL(start_thread); 1669 1670 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1671 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1672 1673 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1674 { 1675 struct pt_regs *regs = tsk->thread.regs; 1676 1677 /* This is a bit hairy. If we are an SPE enabled processor 1678 * (have embedded fp) we store the IEEE exception enable flags in 1679 * fpexc_mode. fpexc_mode is also used for setting FP exception 1680 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1681 if (val & PR_FP_EXC_SW_ENABLE) { 1682 #ifdef CONFIG_SPE 1683 if (cpu_has_feature(CPU_FTR_SPE)) { 1684 /* 1685 * When the sticky exception bits are set 1686 * directly by userspace, it must call prctl 1687 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1688 * in the existing prctl settings) or 1689 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1690 * the bits being set). <fenv.h> functions 1691 * saving and restoring the whole 1692 * floating-point environment need to do so 1693 * anyway to restore the prctl settings from 1694 * the saved environment. 1695 */ 1696 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1697 tsk->thread.fpexc_mode = val & 1698 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1699 return 0; 1700 } else { 1701 return -EINVAL; 1702 } 1703 #else 1704 return -EINVAL; 1705 #endif 1706 } 1707 1708 /* on a CONFIG_SPE this does not hurt us. The bits that 1709 * __pack_fe01 use do not overlap with bits used for 1710 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1711 * on CONFIG_SPE implementations are reserved so writing to 1712 * them does not change anything */ 1713 if (val > PR_FP_EXC_PRECISE) 1714 return -EINVAL; 1715 tsk->thread.fpexc_mode = __pack_fe01(val); 1716 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1717 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1718 | tsk->thread.fpexc_mode; 1719 return 0; 1720 } 1721 1722 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1723 { 1724 unsigned int val; 1725 1726 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1727 #ifdef CONFIG_SPE 1728 if (cpu_has_feature(CPU_FTR_SPE)) { 1729 /* 1730 * When the sticky exception bits are set 1731 * directly by userspace, it must call prctl 1732 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1733 * in the existing prctl settings) or 1734 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1735 * the bits being set). <fenv.h> functions 1736 * saving and restoring the whole 1737 * floating-point environment need to do so 1738 * anyway to restore the prctl settings from 1739 * the saved environment. 1740 */ 1741 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1742 val = tsk->thread.fpexc_mode; 1743 } else 1744 return -EINVAL; 1745 #else 1746 return -EINVAL; 1747 #endif 1748 else 1749 val = __unpack_fe01(tsk->thread.fpexc_mode); 1750 return put_user(val, (unsigned int __user *) adr); 1751 } 1752 1753 int set_endian(struct task_struct *tsk, unsigned int val) 1754 { 1755 struct pt_regs *regs = tsk->thread.regs; 1756 1757 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1758 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1759 return -EINVAL; 1760 1761 if (regs == NULL) 1762 return -EINVAL; 1763 1764 if (val == PR_ENDIAN_BIG) 1765 regs->msr &= ~MSR_LE; 1766 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1767 regs->msr |= MSR_LE; 1768 else 1769 return -EINVAL; 1770 1771 return 0; 1772 } 1773 1774 int get_endian(struct task_struct *tsk, unsigned long adr) 1775 { 1776 struct pt_regs *regs = tsk->thread.regs; 1777 unsigned int val; 1778 1779 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1780 !cpu_has_feature(CPU_FTR_REAL_LE)) 1781 return -EINVAL; 1782 1783 if (regs == NULL) 1784 return -EINVAL; 1785 1786 if (regs->msr & MSR_LE) { 1787 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1788 val = PR_ENDIAN_LITTLE; 1789 else 1790 val = PR_ENDIAN_PPC_LITTLE; 1791 } else 1792 val = PR_ENDIAN_BIG; 1793 1794 return put_user(val, (unsigned int __user *)adr); 1795 } 1796 1797 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1798 { 1799 tsk->thread.align_ctl = val; 1800 return 0; 1801 } 1802 1803 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1804 { 1805 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1806 } 1807 1808 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1809 unsigned long nbytes) 1810 { 1811 unsigned long stack_page; 1812 unsigned long cpu = task_cpu(p); 1813 1814 /* 1815 * Avoid crashing if the stack has overflowed and corrupted 1816 * task_cpu(p), which is in the thread_info struct. 1817 */ 1818 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1819 stack_page = (unsigned long) hardirq_ctx[cpu]; 1820 if (sp >= stack_page + sizeof(struct thread_struct) 1821 && sp <= stack_page + THREAD_SIZE - nbytes) 1822 return 1; 1823 1824 stack_page = (unsigned long) softirq_ctx[cpu]; 1825 if (sp >= stack_page + sizeof(struct thread_struct) 1826 && sp <= stack_page + THREAD_SIZE - nbytes) 1827 return 1; 1828 } 1829 return 0; 1830 } 1831 1832 int validate_sp(unsigned long sp, struct task_struct *p, 1833 unsigned long nbytes) 1834 { 1835 unsigned long stack_page = (unsigned long)task_stack_page(p); 1836 1837 if (sp >= stack_page + sizeof(struct thread_struct) 1838 && sp <= stack_page + THREAD_SIZE - nbytes) 1839 return 1; 1840 1841 return valid_irq_stack(sp, p, nbytes); 1842 } 1843 1844 EXPORT_SYMBOL(validate_sp); 1845 1846 unsigned long get_wchan(struct task_struct *p) 1847 { 1848 unsigned long ip, sp; 1849 int count = 0; 1850 1851 if (!p || p == current || p->state == TASK_RUNNING) 1852 return 0; 1853 1854 sp = p->thread.ksp; 1855 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1856 return 0; 1857 1858 do { 1859 sp = *(unsigned long *)sp; 1860 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1861 return 0; 1862 if (count > 0) { 1863 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1864 if (!in_sched_functions(ip)) 1865 return ip; 1866 } 1867 } while (count++ < 16); 1868 return 0; 1869 } 1870 1871 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1872 1873 void show_stack(struct task_struct *tsk, unsigned long *stack) 1874 { 1875 unsigned long sp, ip, lr, newsp; 1876 int count = 0; 1877 int firstframe = 1; 1878 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1879 int curr_frame = current->curr_ret_stack; 1880 extern void return_to_handler(void); 1881 unsigned long rth = (unsigned long)return_to_handler; 1882 #endif 1883 1884 sp = (unsigned long) stack; 1885 if (tsk == NULL) 1886 tsk = current; 1887 if (sp == 0) { 1888 if (tsk == current) 1889 sp = current_stack_pointer(); 1890 else 1891 sp = tsk->thread.ksp; 1892 } 1893 1894 lr = 0; 1895 printk("Call Trace:\n"); 1896 do { 1897 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1898 return; 1899 1900 stack = (unsigned long *) sp; 1901 newsp = stack[0]; 1902 ip = stack[STACK_FRAME_LR_SAVE]; 1903 if (!firstframe || ip != lr) { 1904 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1905 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1906 if ((ip == rth) && curr_frame >= 0) { 1907 pr_cont(" (%pS)", 1908 (void *)current->ret_stack[curr_frame].ret); 1909 curr_frame--; 1910 } 1911 #endif 1912 if (firstframe) 1913 pr_cont(" (unreliable)"); 1914 pr_cont("\n"); 1915 } 1916 firstframe = 0; 1917 1918 /* 1919 * See if this is an exception frame. 1920 * We look for the "regshere" marker in the current frame. 1921 */ 1922 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1923 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1924 struct pt_regs *regs = (struct pt_regs *) 1925 (sp + STACK_FRAME_OVERHEAD); 1926 lr = regs->link; 1927 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1928 regs->trap, (void *)regs->nip, (void *)lr); 1929 firstframe = 1; 1930 } 1931 1932 sp = newsp; 1933 } while (count++ < kstack_depth_to_print); 1934 } 1935 1936 #ifdef CONFIG_PPC64 1937 /* Called with hard IRQs off */ 1938 void notrace __ppc64_runlatch_on(void) 1939 { 1940 struct thread_info *ti = current_thread_info(); 1941 unsigned long ctrl; 1942 1943 ctrl = mfspr(SPRN_CTRLF); 1944 ctrl |= CTRL_RUNLATCH; 1945 mtspr(SPRN_CTRLT, ctrl); 1946 1947 ti->local_flags |= _TLF_RUNLATCH; 1948 } 1949 1950 /* Called with hard IRQs off */ 1951 void notrace __ppc64_runlatch_off(void) 1952 { 1953 struct thread_info *ti = current_thread_info(); 1954 unsigned long ctrl; 1955 1956 ti->local_flags &= ~_TLF_RUNLATCH; 1957 1958 ctrl = mfspr(SPRN_CTRLF); 1959 ctrl &= ~CTRL_RUNLATCH; 1960 mtspr(SPRN_CTRLT, ctrl); 1961 } 1962 #endif /* CONFIG_PPC64 */ 1963 1964 unsigned long arch_align_stack(unsigned long sp) 1965 { 1966 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1967 sp -= get_random_int() & ~PAGE_MASK; 1968 return sp & ~0xf; 1969 } 1970 1971 static inline unsigned long brk_rnd(void) 1972 { 1973 unsigned long rnd = 0; 1974 1975 /* 8MB for 32bit, 1GB for 64bit */ 1976 if (is_32bit_task()) 1977 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 1978 else 1979 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 1980 1981 return rnd << PAGE_SHIFT; 1982 } 1983 1984 unsigned long arch_randomize_brk(struct mm_struct *mm) 1985 { 1986 unsigned long base = mm->brk; 1987 unsigned long ret; 1988 1989 #ifdef CONFIG_PPC_STD_MMU_64 1990 /* 1991 * If we are using 1TB segments and we are allowed to randomise 1992 * the heap, we can put it above 1TB so it is backed by a 1TB 1993 * segment. Otherwise the heap will be in the bottom 1TB 1994 * which always uses 256MB segments and this may result in a 1995 * performance penalty. We don't need to worry about radix. For 1996 * radix, mmu_highuser_ssize remains unchanged from 256MB. 1997 */ 1998 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1999 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2000 #endif 2001 2002 ret = PAGE_ALIGN(base + brk_rnd()); 2003 2004 if (ret < mm->brk) 2005 return mm->brk; 2006 2007 return ret; 2008 } 2009 2010