xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43 
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67 
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70 
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77 
78 extern unsigned long _get_SP(void);
79 
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87 
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90 	/*
91 	 * If we are saving the current thread's registers, and the
92 	 * thread is in a transactional state, set the TIF_RESTORE_TM
93 	 * bit so that we know to restore the registers before
94 	 * returning to userspace.
95 	 */
96 	if (tsk == current && tsk->thread.regs &&
97 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 	    !test_thread_flag(TIF_RESTORE_TM)) {
99 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100 		set_thread_flag(TIF_RESTORE_TM);
101 	}
102 }
103 
104 #else
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107 
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
110 
111 static int __init enable_strict_msr_control(char *str)
112 {
113 	strict_msr_control = true;
114 	pr_info("Enabling strict facility control\n");
115 
116 	return 0;
117 }
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119 
120 /* notrace because it's called by restore_math */
121 unsigned long notrace msr_check_and_set(unsigned long bits)
122 {
123 	unsigned long oldmsr = mfmsr();
124 	unsigned long newmsr;
125 
126 	newmsr = oldmsr | bits;
127 
128 #ifdef CONFIG_VSX
129 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130 		newmsr |= MSR_VSX;
131 #endif
132 
133 	if (oldmsr != newmsr)
134 		mtmsr_isync(newmsr);
135 
136 	return newmsr;
137 }
138 EXPORT_SYMBOL_GPL(msr_check_and_set);
139 
140 /* notrace because it's called by restore_math */
141 void notrace __msr_check_and_clear(unsigned long bits)
142 {
143 	unsigned long oldmsr = mfmsr();
144 	unsigned long newmsr;
145 
146 	newmsr = oldmsr & ~bits;
147 
148 #ifdef CONFIG_VSX
149 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
150 		newmsr &= ~MSR_VSX;
151 #endif
152 
153 	if (oldmsr != newmsr)
154 		mtmsr_isync(newmsr);
155 }
156 EXPORT_SYMBOL(__msr_check_and_clear);
157 
158 #ifdef CONFIG_PPC_FPU
159 static void __giveup_fpu(struct task_struct *tsk)
160 {
161 	unsigned long msr;
162 
163 	save_fpu(tsk);
164 	msr = tsk->thread.regs->msr;
165 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
166 #ifdef CONFIG_VSX
167 	if (cpu_has_feature(CPU_FTR_VSX))
168 		msr &= ~MSR_VSX;
169 #endif
170 	tsk->thread.regs->msr = msr;
171 }
172 
173 void giveup_fpu(struct task_struct *tsk)
174 {
175 	check_if_tm_restore_required(tsk);
176 
177 	msr_check_and_set(MSR_FP);
178 	__giveup_fpu(tsk);
179 	msr_check_and_clear(MSR_FP);
180 }
181 EXPORT_SYMBOL(giveup_fpu);
182 
183 /*
184  * Make sure the floating-point register state in the
185  * the thread_struct is up to date for task tsk.
186  */
187 void flush_fp_to_thread(struct task_struct *tsk)
188 {
189 	if (tsk->thread.regs) {
190 		/*
191 		 * We need to disable preemption here because if we didn't,
192 		 * another process could get scheduled after the regs->msr
193 		 * test but before we have finished saving the FP registers
194 		 * to the thread_struct.  That process could take over the
195 		 * FPU, and then when we get scheduled again we would store
196 		 * bogus values for the remaining FP registers.
197 		 */
198 		preempt_disable();
199 		if (tsk->thread.regs->msr & MSR_FP) {
200 			/*
201 			 * This should only ever be called for current or
202 			 * for a stopped child process.  Since we save away
203 			 * the FP register state on context switch,
204 			 * there is something wrong if a stopped child appears
205 			 * to still have its FP state in the CPU registers.
206 			 */
207 			BUG_ON(tsk != current);
208 			giveup_fpu(tsk);
209 		}
210 		preempt_enable();
211 	}
212 }
213 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
214 
215 void enable_kernel_fp(void)
216 {
217 	unsigned long cpumsr;
218 
219 	WARN_ON(preemptible());
220 
221 	cpumsr = msr_check_and_set(MSR_FP);
222 
223 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
224 		check_if_tm_restore_required(current);
225 		/*
226 		 * If a thread has already been reclaimed then the
227 		 * checkpointed registers are on the CPU but have definitely
228 		 * been saved by the reclaim code. Don't need to and *cannot*
229 		 * giveup as this would save  to the 'live' structure not the
230 		 * checkpointed structure.
231 		 */
232 		if (!MSR_TM_ACTIVE(cpumsr) &&
233 		     MSR_TM_ACTIVE(current->thread.regs->msr))
234 			return;
235 		__giveup_fpu(current);
236 	}
237 }
238 EXPORT_SYMBOL(enable_kernel_fp);
239 #endif /* CONFIG_PPC_FPU */
240 
241 #ifdef CONFIG_ALTIVEC
242 static void __giveup_altivec(struct task_struct *tsk)
243 {
244 	unsigned long msr;
245 
246 	save_altivec(tsk);
247 	msr = tsk->thread.regs->msr;
248 	msr &= ~MSR_VEC;
249 #ifdef CONFIG_VSX
250 	if (cpu_has_feature(CPU_FTR_VSX))
251 		msr &= ~MSR_VSX;
252 #endif
253 	tsk->thread.regs->msr = msr;
254 }
255 
256 void giveup_altivec(struct task_struct *tsk)
257 {
258 	check_if_tm_restore_required(tsk);
259 
260 	msr_check_and_set(MSR_VEC);
261 	__giveup_altivec(tsk);
262 	msr_check_and_clear(MSR_VEC);
263 }
264 EXPORT_SYMBOL(giveup_altivec);
265 
266 void enable_kernel_altivec(void)
267 {
268 	unsigned long cpumsr;
269 
270 	WARN_ON(preemptible());
271 
272 	cpumsr = msr_check_and_set(MSR_VEC);
273 
274 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
275 		check_if_tm_restore_required(current);
276 		/*
277 		 * If a thread has already been reclaimed then the
278 		 * checkpointed registers are on the CPU but have definitely
279 		 * been saved by the reclaim code. Don't need to and *cannot*
280 		 * giveup as this would save  to the 'live' structure not the
281 		 * checkpointed structure.
282 		 */
283 		if (!MSR_TM_ACTIVE(cpumsr) &&
284 		     MSR_TM_ACTIVE(current->thread.regs->msr))
285 			return;
286 		__giveup_altivec(current);
287 	}
288 }
289 EXPORT_SYMBOL(enable_kernel_altivec);
290 
291 /*
292  * Make sure the VMX/Altivec register state in the
293  * the thread_struct is up to date for task tsk.
294  */
295 void flush_altivec_to_thread(struct task_struct *tsk)
296 {
297 	if (tsk->thread.regs) {
298 		preempt_disable();
299 		if (tsk->thread.regs->msr & MSR_VEC) {
300 			BUG_ON(tsk != current);
301 			giveup_altivec(tsk);
302 		}
303 		preempt_enable();
304 	}
305 }
306 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
307 #endif /* CONFIG_ALTIVEC */
308 
309 #ifdef CONFIG_VSX
310 static void __giveup_vsx(struct task_struct *tsk)
311 {
312 	unsigned long msr = tsk->thread.regs->msr;
313 
314 	/*
315 	 * We should never be ssetting MSR_VSX without also setting
316 	 * MSR_FP and MSR_VEC
317 	 */
318 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
319 
320 	/* __giveup_fpu will clear MSR_VSX */
321 	if (msr & MSR_FP)
322 		__giveup_fpu(tsk);
323 	if (msr & MSR_VEC)
324 		__giveup_altivec(tsk);
325 }
326 
327 static void giveup_vsx(struct task_struct *tsk)
328 {
329 	check_if_tm_restore_required(tsk);
330 
331 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
332 	__giveup_vsx(tsk);
333 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
334 }
335 
336 void enable_kernel_vsx(void)
337 {
338 	unsigned long cpumsr;
339 
340 	WARN_ON(preemptible());
341 
342 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
343 
344 	if (current->thread.regs &&
345 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
346 		check_if_tm_restore_required(current);
347 		/*
348 		 * If a thread has already been reclaimed then the
349 		 * checkpointed registers are on the CPU but have definitely
350 		 * been saved by the reclaim code. Don't need to and *cannot*
351 		 * giveup as this would save  to the 'live' structure not the
352 		 * checkpointed structure.
353 		 */
354 		if (!MSR_TM_ACTIVE(cpumsr) &&
355 		     MSR_TM_ACTIVE(current->thread.regs->msr))
356 			return;
357 		__giveup_vsx(current);
358 	}
359 }
360 EXPORT_SYMBOL(enable_kernel_vsx);
361 
362 void flush_vsx_to_thread(struct task_struct *tsk)
363 {
364 	if (tsk->thread.regs) {
365 		preempt_disable();
366 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
367 			BUG_ON(tsk != current);
368 			giveup_vsx(tsk);
369 		}
370 		preempt_enable();
371 	}
372 }
373 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
374 #endif /* CONFIG_VSX */
375 
376 #ifdef CONFIG_SPE
377 void giveup_spe(struct task_struct *tsk)
378 {
379 	check_if_tm_restore_required(tsk);
380 
381 	msr_check_and_set(MSR_SPE);
382 	__giveup_spe(tsk);
383 	msr_check_and_clear(MSR_SPE);
384 }
385 EXPORT_SYMBOL(giveup_spe);
386 
387 void enable_kernel_spe(void)
388 {
389 	WARN_ON(preemptible());
390 
391 	msr_check_and_set(MSR_SPE);
392 
393 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
394 		check_if_tm_restore_required(current);
395 		__giveup_spe(current);
396 	}
397 }
398 EXPORT_SYMBOL(enable_kernel_spe);
399 
400 void flush_spe_to_thread(struct task_struct *tsk)
401 {
402 	if (tsk->thread.regs) {
403 		preempt_disable();
404 		if (tsk->thread.regs->msr & MSR_SPE) {
405 			BUG_ON(tsk != current);
406 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
407 			giveup_spe(tsk);
408 		}
409 		preempt_enable();
410 	}
411 }
412 #endif /* CONFIG_SPE */
413 
414 static unsigned long msr_all_available;
415 
416 static int __init init_msr_all_available(void)
417 {
418 #ifdef CONFIG_PPC_FPU
419 	msr_all_available |= MSR_FP;
420 #endif
421 #ifdef CONFIG_ALTIVEC
422 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
423 		msr_all_available |= MSR_VEC;
424 #endif
425 #ifdef CONFIG_VSX
426 	if (cpu_has_feature(CPU_FTR_VSX))
427 		msr_all_available |= MSR_VSX;
428 #endif
429 #ifdef CONFIG_SPE
430 	if (cpu_has_feature(CPU_FTR_SPE))
431 		msr_all_available |= MSR_SPE;
432 #endif
433 
434 	return 0;
435 }
436 early_initcall(init_msr_all_available);
437 
438 void giveup_all(struct task_struct *tsk)
439 {
440 	unsigned long usermsr;
441 
442 	if (!tsk->thread.regs)
443 		return;
444 
445 	check_if_tm_restore_required(tsk);
446 
447 	usermsr = tsk->thread.regs->msr;
448 
449 	if ((usermsr & msr_all_available) == 0)
450 		return;
451 
452 	msr_check_and_set(msr_all_available);
453 
454 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
455 
456 #ifdef CONFIG_PPC_FPU
457 	if (usermsr & MSR_FP)
458 		__giveup_fpu(tsk);
459 #endif
460 #ifdef CONFIG_ALTIVEC
461 	if (usermsr & MSR_VEC)
462 		__giveup_altivec(tsk);
463 #endif
464 #ifdef CONFIG_SPE
465 	if (usermsr & MSR_SPE)
466 		__giveup_spe(tsk);
467 #endif
468 
469 	msr_check_and_clear(msr_all_available);
470 }
471 EXPORT_SYMBOL(giveup_all);
472 
473 #ifdef CONFIG_PPC_BOOK3S_64
474 #ifdef CONFIG_PPC_FPU
475 static int restore_fp(struct task_struct *tsk)
476 {
477 	if (tsk->thread.load_fp) {
478 		load_fp_state(&current->thread.fp_state);
479 		current->thread.load_fp++;
480 		return 1;
481 	}
482 	return 0;
483 }
484 #else
485 static int restore_fp(struct task_struct *tsk) { return 0; }
486 #endif /* CONFIG_PPC_FPU */
487 
488 #ifdef CONFIG_ALTIVEC
489 #define loadvec(thr) ((thr).load_vec)
490 static int restore_altivec(struct task_struct *tsk)
491 {
492 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
493 		load_vr_state(&tsk->thread.vr_state);
494 		tsk->thread.used_vr = 1;
495 		tsk->thread.load_vec++;
496 
497 		return 1;
498 	}
499 	return 0;
500 }
501 #else
502 #define loadvec(thr) 0
503 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
504 #endif /* CONFIG_ALTIVEC */
505 
506 #ifdef CONFIG_VSX
507 static int restore_vsx(struct task_struct *tsk)
508 {
509 	if (cpu_has_feature(CPU_FTR_VSX)) {
510 		tsk->thread.used_vsr = 1;
511 		return 1;
512 	}
513 
514 	return 0;
515 }
516 #else
517 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
518 #endif /* CONFIG_VSX */
519 
520 /*
521  * The exception exit path calls restore_math() with interrupts hard disabled
522  * but the soft irq state not "reconciled". ftrace code that calls
523  * local_irq_save/restore causes warnings.
524  *
525  * Rather than complicate the exit path, just don't trace restore_math. This
526  * could be done by having ftrace entry code check for this un-reconciled
527  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
528  * temporarily fix it up for the duration of the ftrace call.
529  */
530 void notrace restore_math(struct pt_regs *regs)
531 {
532 	unsigned long msr;
533 
534 	if (!MSR_TM_ACTIVE(regs->msr) &&
535 		!current->thread.load_fp && !loadvec(current->thread))
536 		return;
537 
538 	msr = regs->msr;
539 	msr_check_and_set(msr_all_available);
540 
541 	/*
542 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
543 	 * indicates that the registers are hot
544 	 */
545 	if ((!(msr & MSR_FP)) && restore_fp(current))
546 		msr |= MSR_FP | current->thread.fpexc_mode;
547 
548 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
549 		msr |= MSR_VEC;
550 
551 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
552 			restore_vsx(current)) {
553 		msr |= MSR_VSX;
554 	}
555 
556 	msr_check_and_clear(msr_all_available);
557 
558 	regs->msr = msr;
559 }
560 #endif
561 
562 static void save_all(struct task_struct *tsk)
563 {
564 	unsigned long usermsr;
565 
566 	if (!tsk->thread.regs)
567 		return;
568 
569 	usermsr = tsk->thread.regs->msr;
570 
571 	if ((usermsr & msr_all_available) == 0)
572 		return;
573 
574 	msr_check_and_set(msr_all_available);
575 
576 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
577 
578 	if (usermsr & MSR_FP)
579 		save_fpu(tsk);
580 
581 	if (usermsr & MSR_VEC)
582 		save_altivec(tsk);
583 
584 	if (usermsr & MSR_SPE)
585 		__giveup_spe(tsk);
586 
587 	msr_check_and_clear(msr_all_available);
588 	thread_pkey_regs_save(&tsk->thread);
589 }
590 
591 void flush_all_to_thread(struct task_struct *tsk)
592 {
593 	if (tsk->thread.regs) {
594 		preempt_disable();
595 		BUG_ON(tsk != current);
596 #ifdef CONFIG_SPE
597 		if (tsk->thread.regs->msr & MSR_SPE)
598 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599 #endif
600 		save_all(tsk);
601 
602 		preempt_enable();
603 	}
604 }
605 EXPORT_SYMBOL(flush_all_to_thread);
606 
607 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
608 void do_send_trap(struct pt_regs *regs, unsigned long address,
609 		  unsigned long error_code, int breakpt)
610 {
611 	current->thread.trap_nr = TRAP_HWBKPT;
612 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
613 			11, SIGSEGV) == NOTIFY_STOP)
614 		return;
615 
616 	/* Deliver the signal to userspace */
617 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
618 				    (void __user *)address);
619 }
620 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
621 void do_break (struct pt_regs *regs, unsigned long address,
622 		    unsigned long error_code)
623 {
624 	current->thread.trap_nr = TRAP_HWBKPT;
625 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
626 			11, SIGSEGV) == NOTIFY_STOP)
627 		return;
628 
629 	if (debugger_break_match(regs))
630 		return;
631 
632 	/* Clear the breakpoint */
633 	hw_breakpoint_disable();
634 
635 	/* Deliver the signal to userspace */
636 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
637 }
638 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
639 
640 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
641 
642 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
643 /*
644  * Set the debug registers back to their default "safe" values.
645  */
646 static void set_debug_reg_defaults(struct thread_struct *thread)
647 {
648 	thread->debug.iac1 = thread->debug.iac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
650 	thread->debug.iac3 = thread->debug.iac4 = 0;
651 #endif
652 	thread->debug.dac1 = thread->debug.dac2 = 0;
653 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
654 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
655 #endif
656 	thread->debug.dbcr0 = 0;
657 #ifdef CONFIG_BOOKE
658 	/*
659 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
660 	 */
661 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
662 			DBCR1_IAC3US | DBCR1_IAC4US;
663 	/*
664 	 * Force Data Address Compare User/Supervisor bits to be User-only
665 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
666 	 */
667 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
668 #else
669 	thread->debug.dbcr1 = 0;
670 #endif
671 }
672 
673 static void prime_debug_regs(struct debug_reg *debug)
674 {
675 	/*
676 	 * We could have inherited MSR_DE from userspace, since
677 	 * it doesn't get cleared on exception entry.  Make sure
678 	 * MSR_DE is clear before we enable any debug events.
679 	 */
680 	mtmsr(mfmsr() & ~MSR_DE);
681 
682 	mtspr(SPRN_IAC1, debug->iac1);
683 	mtspr(SPRN_IAC2, debug->iac2);
684 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
685 	mtspr(SPRN_IAC3, debug->iac3);
686 	mtspr(SPRN_IAC4, debug->iac4);
687 #endif
688 	mtspr(SPRN_DAC1, debug->dac1);
689 	mtspr(SPRN_DAC2, debug->dac2);
690 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
691 	mtspr(SPRN_DVC1, debug->dvc1);
692 	mtspr(SPRN_DVC2, debug->dvc2);
693 #endif
694 	mtspr(SPRN_DBCR0, debug->dbcr0);
695 	mtspr(SPRN_DBCR1, debug->dbcr1);
696 #ifdef CONFIG_BOOKE
697 	mtspr(SPRN_DBCR2, debug->dbcr2);
698 #endif
699 }
700 /*
701  * Unless neither the old or new thread are making use of the
702  * debug registers, set the debug registers from the values
703  * stored in the new thread.
704  */
705 void switch_booke_debug_regs(struct debug_reg *new_debug)
706 {
707 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
708 		|| (new_debug->dbcr0 & DBCR0_IDM))
709 			prime_debug_regs(new_debug);
710 }
711 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
712 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
713 #ifndef CONFIG_HAVE_HW_BREAKPOINT
714 static void set_breakpoint(struct arch_hw_breakpoint *brk)
715 {
716 	preempt_disable();
717 	__set_breakpoint(brk);
718 	preempt_enable();
719 }
720 
721 static void set_debug_reg_defaults(struct thread_struct *thread)
722 {
723 	thread->hw_brk.address = 0;
724 	thread->hw_brk.type = 0;
725 	thread->hw_brk.len = 0;
726 	thread->hw_brk.hw_len = 0;
727 	if (ppc_breakpoint_available())
728 		set_breakpoint(&thread->hw_brk);
729 }
730 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
731 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
732 
733 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735 {
736 	mtspr(SPRN_DAC1, dabr);
737 #ifdef CONFIG_PPC_47x
738 	isync();
739 #endif
740 	return 0;
741 }
742 #elif defined(CONFIG_PPC_BOOK3S)
743 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
744 {
745 	mtspr(SPRN_DABR, dabr);
746 	if (cpu_has_feature(CPU_FTR_DABRX))
747 		mtspr(SPRN_DABRX, dabrx);
748 	return 0;
749 }
750 #else
751 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
752 {
753 	return -EINVAL;
754 }
755 #endif
756 
757 static inline int set_dabr(struct arch_hw_breakpoint *brk)
758 {
759 	unsigned long dabr, dabrx;
760 
761 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
762 	dabrx = ((brk->type >> 3) & 0x7);
763 
764 	if (ppc_md.set_dabr)
765 		return ppc_md.set_dabr(dabr, dabrx);
766 
767 	return __set_dabr(dabr, dabrx);
768 }
769 
770 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
771 {
772 	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
773 			       LCTRL1_CRWF_RW;
774 	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
775 	unsigned long start_addr = brk->address & ~HW_BREAKPOINT_ALIGN;
776 	unsigned long end_addr = (brk->address + brk->len - 1) | HW_BREAKPOINT_ALIGN;
777 
778 	if (start_addr == 0)
779 		lctrl2 |= LCTRL2_LW0LA_F;
780 	else if (end_addr == ~0U)
781 		lctrl2 |= LCTRL2_LW0LA_E;
782 	else
783 		lctrl2 |= LCTRL2_LW0LA_EandF;
784 
785 	mtspr(SPRN_LCTRL2, 0);
786 
787 	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
788 		return 0;
789 
790 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
791 		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
792 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
793 		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
794 
795 	mtspr(SPRN_CMPE, start_addr - 1);
796 	mtspr(SPRN_CMPF, end_addr + 1);
797 	mtspr(SPRN_LCTRL1, lctrl1);
798 	mtspr(SPRN_LCTRL2, lctrl2);
799 
800 	return 0;
801 }
802 
803 void __set_breakpoint(struct arch_hw_breakpoint *brk)
804 {
805 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
806 
807 	if (dawr_enabled())
808 		// Power8 or later
809 		set_dawr(brk);
810 	else if (IS_ENABLED(CONFIG_PPC_8xx))
811 		set_breakpoint_8xx(brk);
812 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
813 		// Power7 or earlier
814 		set_dabr(brk);
815 	else
816 		// Shouldn't happen due to higher level checks
817 		WARN_ON_ONCE(1);
818 }
819 
820 /* Check if we have DAWR or DABR hardware */
821 bool ppc_breakpoint_available(void)
822 {
823 	if (dawr_enabled())
824 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
825 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
826 		return false; /* POWER9 with DAWR disabled */
827 	/* DABR: Everything but POWER8 and POWER9 */
828 	return true;
829 }
830 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
831 
832 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
833 			      struct arch_hw_breakpoint *b)
834 {
835 	if (a->address != b->address)
836 		return false;
837 	if (a->type != b->type)
838 		return false;
839 	if (a->len != b->len)
840 		return false;
841 	/* no need to check hw_len. it's calculated from address and len */
842 	return true;
843 }
844 
845 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
846 
847 static inline bool tm_enabled(struct task_struct *tsk)
848 {
849 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
850 }
851 
852 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
853 {
854 	/*
855 	 * Use the current MSR TM suspended bit to track if we have
856 	 * checkpointed state outstanding.
857 	 * On signal delivery, we'd normally reclaim the checkpointed
858 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
859 	 * This will then directly return to userspace without going
860 	 * through __switch_to(). However, if the stack frame is bad,
861 	 * we need to exit this thread which calls __switch_to() which
862 	 * will again attempt to reclaim the already saved tm state.
863 	 * Hence we need to check that we've not already reclaimed
864 	 * this state.
865 	 * We do this using the current MSR, rather tracking it in
866 	 * some specific thread_struct bit, as it has the additional
867 	 * benefit of checking for a potential TM bad thing exception.
868 	 */
869 	if (!MSR_TM_SUSPENDED(mfmsr()))
870 		return;
871 
872 	giveup_all(container_of(thr, struct task_struct, thread));
873 
874 	tm_reclaim(thr, cause);
875 
876 	/*
877 	 * If we are in a transaction and FP is off then we can't have
878 	 * used FP inside that transaction. Hence the checkpointed
879 	 * state is the same as the live state. We need to copy the
880 	 * live state to the checkpointed state so that when the
881 	 * transaction is restored, the checkpointed state is correct
882 	 * and the aborted transaction sees the correct state. We use
883 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
884 	 * determine if it's going to write the checkpointed state or
885 	 * not. So either this will write the checkpointed registers,
886 	 * or reclaim will. Similarly for VMX.
887 	 */
888 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
889 		memcpy(&thr->ckfp_state, &thr->fp_state,
890 		       sizeof(struct thread_fp_state));
891 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
892 		memcpy(&thr->ckvr_state, &thr->vr_state,
893 		       sizeof(struct thread_vr_state));
894 }
895 
896 void tm_reclaim_current(uint8_t cause)
897 {
898 	tm_enable();
899 	tm_reclaim_thread(&current->thread, cause);
900 }
901 
902 static inline void tm_reclaim_task(struct task_struct *tsk)
903 {
904 	/* We have to work out if we're switching from/to a task that's in the
905 	 * middle of a transaction.
906 	 *
907 	 * In switching we need to maintain a 2nd register state as
908 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
909 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
910 	 * ckvr_state
911 	 *
912 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
913 	 */
914 	struct thread_struct *thr = &tsk->thread;
915 
916 	if (!thr->regs)
917 		return;
918 
919 	if (!MSR_TM_ACTIVE(thr->regs->msr))
920 		goto out_and_saveregs;
921 
922 	WARN_ON(tm_suspend_disabled);
923 
924 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
925 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
926 		 tsk->pid, thr->regs->nip,
927 		 thr->regs->ccr, thr->regs->msr,
928 		 thr->regs->trap);
929 
930 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
931 
932 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
933 		 tsk->pid);
934 
935 out_and_saveregs:
936 	/* Always save the regs here, even if a transaction's not active.
937 	 * This context-switches a thread's TM info SPRs.  We do it here to
938 	 * be consistent with the restore path (in recheckpoint) which
939 	 * cannot happen later in _switch().
940 	 */
941 	tm_save_sprs(thr);
942 }
943 
944 extern void __tm_recheckpoint(struct thread_struct *thread);
945 
946 void tm_recheckpoint(struct thread_struct *thread)
947 {
948 	unsigned long flags;
949 
950 	if (!(thread->regs->msr & MSR_TM))
951 		return;
952 
953 	/* We really can't be interrupted here as the TEXASR registers can't
954 	 * change and later in the trecheckpoint code, we have a userspace R1.
955 	 * So let's hard disable over this region.
956 	 */
957 	local_irq_save(flags);
958 	hard_irq_disable();
959 
960 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
961 	 * before the trecheckpoint and no explosion occurs.
962 	 */
963 	tm_restore_sprs(thread);
964 
965 	__tm_recheckpoint(thread);
966 
967 	local_irq_restore(flags);
968 }
969 
970 static inline void tm_recheckpoint_new_task(struct task_struct *new)
971 {
972 	if (!cpu_has_feature(CPU_FTR_TM))
973 		return;
974 
975 	/* Recheckpoint the registers of the thread we're about to switch to.
976 	 *
977 	 * If the task was using FP, we non-lazily reload both the original and
978 	 * the speculative FP register states.  This is because the kernel
979 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
980 	 * unavailable later, we are unable to determine which set of FP regs
981 	 * need to be restored.
982 	 */
983 	if (!tm_enabled(new))
984 		return;
985 
986 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
987 		tm_restore_sprs(&new->thread);
988 		return;
989 	}
990 	/* Recheckpoint to restore original checkpointed register state. */
991 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
992 		 new->pid, new->thread.regs->msr);
993 
994 	tm_recheckpoint(&new->thread);
995 
996 	/*
997 	 * The checkpointed state has been restored but the live state has
998 	 * not, ensure all the math functionality is turned off to trigger
999 	 * restore_math() to reload.
1000 	 */
1001 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1002 
1003 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1004 		 "(kernel msr 0x%lx)\n",
1005 		 new->pid, mfmsr());
1006 }
1007 
1008 static inline void __switch_to_tm(struct task_struct *prev,
1009 		struct task_struct *new)
1010 {
1011 	if (cpu_has_feature(CPU_FTR_TM)) {
1012 		if (tm_enabled(prev) || tm_enabled(new))
1013 			tm_enable();
1014 
1015 		if (tm_enabled(prev)) {
1016 			prev->thread.load_tm++;
1017 			tm_reclaim_task(prev);
1018 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1019 				prev->thread.regs->msr &= ~MSR_TM;
1020 		}
1021 
1022 		tm_recheckpoint_new_task(new);
1023 	}
1024 }
1025 
1026 /*
1027  * This is called if we are on the way out to userspace and the
1028  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1029  * FP and/or vector state and does so if necessary.
1030  * If userspace is inside a transaction (whether active or
1031  * suspended) and FP/VMX/VSX instructions have ever been enabled
1032  * inside that transaction, then we have to keep them enabled
1033  * and keep the FP/VMX/VSX state loaded while ever the transaction
1034  * continues.  The reason is that if we didn't, and subsequently
1035  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1036  * we don't know whether it's the same transaction, and thus we
1037  * don't know which of the checkpointed state and the transactional
1038  * state to use.
1039  */
1040 void restore_tm_state(struct pt_regs *regs)
1041 {
1042 	unsigned long msr_diff;
1043 
1044 	/*
1045 	 * This is the only moment we should clear TIF_RESTORE_TM as
1046 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1047 	 * again, anything else could lead to an incorrect ckpt_msr being
1048 	 * saved and therefore incorrect signal contexts.
1049 	 */
1050 	clear_thread_flag(TIF_RESTORE_TM);
1051 	if (!MSR_TM_ACTIVE(regs->msr))
1052 		return;
1053 
1054 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1055 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1056 
1057 	/* Ensure that restore_math() will restore */
1058 	if (msr_diff & MSR_FP)
1059 		current->thread.load_fp = 1;
1060 #ifdef CONFIG_ALTIVEC
1061 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1062 		current->thread.load_vec = 1;
1063 #endif
1064 	restore_math(regs);
1065 
1066 	regs->msr |= msr_diff;
1067 }
1068 
1069 #else
1070 #define tm_recheckpoint_new_task(new)
1071 #define __switch_to_tm(prev, new)
1072 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1073 
1074 static inline void save_sprs(struct thread_struct *t)
1075 {
1076 #ifdef CONFIG_ALTIVEC
1077 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1078 		t->vrsave = mfspr(SPRN_VRSAVE);
1079 #endif
1080 #ifdef CONFIG_PPC_BOOK3S_64
1081 	if (cpu_has_feature(CPU_FTR_DSCR))
1082 		t->dscr = mfspr(SPRN_DSCR);
1083 
1084 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1085 		t->bescr = mfspr(SPRN_BESCR);
1086 		t->ebbhr = mfspr(SPRN_EBBHR);
1087 		t->ebbrr = mfspr(SPRN_EBBRR);
1088 
1089 		t->fscr = mfspr(SPRN_FSCR);
1090 
1091 		/*
1092 		 * Note that the TAR is not available for use in the kernel.
1093 		 * (To provide this, the TAR should be backed up/restored on
1094 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1095 		 * this should be in pt_regs anyway (for debug).)
1096 		 */
1097 		t->tar = mfspr(SPRN_TAR);
1098 	}
1099 #endif
1100 
1101 	thread_pkey_regs_save(t);
1102 }
1103 
1104 static inline void restore_sprs(struct thread_struct *old_thread,
1105 				struct thread_struct *new_thread)
1106 {
1107 #ifdef CONFIG_ALTIVEC
1108 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1109 	    old_thread->vrsave != new_thread->vrsave)
1110 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1111 #endif
1112 #ifdef CONFIG_PPC_BOOK3S_64
1113 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1114 		u64 dscr = get_paca()->dscr_default;
1115 		if (new_thread->dscr_inherit)
1116 			dscr = new_thread->dscr;
1117 
1118 		if (old_thread->dscr != dscr)
1119 			mtspr(SPRN_DSCR, dscr);
1120 	}
1121 
1122 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1123 		if (old_thread->bescr != new_thread->bescr)
1124 			mtspr(SPRN_BESCR, new_thread->bescr);
1125 		if (old_thread->ebbhr != new_thread->ebbhr)
1126 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1127 		if (old_thread->ebbrr != new_thread->ebbrr)
1128 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1129 
1130 		if (old_thread->fscr != new_thread->fscr)
1131 			mtspr(SPRN_FSCR, new_thread->fscr);
1132 
1133 		if (old_thread->tar != new_thread->tar)
1134 			mtspr(SPRN_TAR, new_thread->tar);
1135 	}
1136 
1137 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1138 	    old_thread->tidr != new_thread->tidr)
1139 		mtspr(SPRN_TIDR, new_thread->tidr);
1140 #endif
1141 
1142 	thread_pkey_regs_restore(new_thread, old_thread);
1143 }
1144 
1145 struct task_struct *__switch_to(struct task_struct *prev,
1146 	struct task_struct *new)
1147 {
1148 	struct thread_struct *new_thread, *old_thread;
1149 	struct task_struct *last;
1150 #ifdef CONFIG_PPC_BOOK3S_64
1151 	struct ppc64_tlb_batch *batch;
1152 #endif
1153 
1154 	new_thread = &new->thread;
1155 	old_thread = &current->thread;
1156 
1157 	WARN_ON(!irqs_disabled());
1158 
1159 #ifdef CONFIG_PPC_BOOK3S_64
1160 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1161 	if (batch->active) {
1162 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1163 		if (batch->index)
1164 			__flush_tlb_pending(batch);
1165 		batch->active = 0;
1166 	}
1167 #endif /* CONFIG_PPC_BOOK3S_64 */
1168 
1169 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1170 	switch_booke_debug_regs(&new->thread.debug);
1171 #else
1172 /*
1173  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1174  * schedule DABR
1175  */
1176 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1177 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1178 		__set_breakpoint(&new->thread.hw_brk);
1179 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1180 #endif
1181 
1182 	/*
1183 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1184 	 * change a number of them.
1185 	 */
1186 	save_sprs(&prev->thread);
1187 
1188 	/* Save FPU, Altivec, VSX and SPE state */
1189 	giveup_all(prev);
1190 
1191 	__switch_to_tm(prev, new);
1192 
1193 	if (!radix_enabled()) {
1194 		/*
1195 		 * We can't take a PMU exception inside _switch() since there
1196 		 * is a window where the kernel stack SLB and the kernel stack
1197 		 * are out of sync. Hard disable here.
1198 		 */
1199 		hard_irq_disable();
1200 	}
1201 
1202 	/*
1203 	 * Call restore_sprs() before calling _switch(). If we move it after
1204 	 * _switch() then we miss out on calling it for new tasks. The reason
1205 	 * for this is we manually create a stack frame for new tasks that
1206 	 * directly returns through ret_from_fork() or
1207 	 * ret_from_kernel_thread(). See copy_thread() for details.
1208 	 */
1209 	restore_sprs(old_thread, new_thread);
1210 
1211 	last = _switch(old_thread, new_thread);
1212 
1213 #ifdef CONFIG_PPC_BOOK3S_64
1214 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1215 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1216 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1217 		batch->active = 1;
1218 	}
1219 
1220 	if (current->thread.regs) {
1221 		restore_math(current->thread.regs);
1222 
1223 		/*
1224 		 * The copy-paste buffer can only store into foreign real
1225 		 * addresses, so unprivileged processes can not see the
1226 		 * data or use it in any way unless they have foreign real
1227 		 * mappings. If the new process has the foreign real address
1228 		 * mappings, we must issue a cp_abort to clear any state and
1229 		 * prevent snooping, corruption or a covert channel.
1230 		 */
1231 		if (current->thread.used_vas)
1232 			asm volatile(PPC_CP_ABORT);
1233 	}
1234 #endif /* CONFIG_PPC_BOOK3S_64 */
1235 
1236 	return last;
1237 }
1238 
1239 #define NR_INSN_TO_PRINT	16
1240 
1241 static void show_instructions(struct pt_regs *regs)
1242 {
1243 	int i;
1244 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1245 
1246 	printk("Instruction dump:");
1247 
1248 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1249 		int instr;
1250 
1251 		if (!(i % 8))
1252 			pr_cont("\n");
1253 
1254 #if !defined(CONFIG_BOOKE)
1255 		/* If executing with the IMMU off, adjust pc rather
1256 		 * than print XXXXXXXX.
1257 		 */
1258 		if (!(regs->msr & MSR_IR))
1259 			pc = (unsigned long)phys_to_virt(pc);
1260 #endif
1261 
1262 		if (!__kernel_text_address(pc) ||
1263 		    probe_kernel_address((const void *)pc, instr)) {
1264 			pr_cont("XXXXXXXX ");
1265 		} else {
1266 			if (regs->nip == pc)
1267 				pr_cont("<%08x> ", instr);
1268 			else
1269 				pr_cont("%08x ", instr);
1270 		}
1271 
1272 		pc += sizeof(int);
1273 	}
1274 
1275 	pr_cont("\n");
1276 }
1277 
1278 void show_user_instructions(struct pt_regs *regs)
1279 {
1280 	unsigned long pc;
1281 	int n = NR_INSN_TO_PRINT;
1282 	struct seq_buf s;
1283 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1284 
1285 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1286 
1287 	seq_buf_init(&s, buf, sizeof(buf));
1288 
1289 	while (n) {
1290 		int i;
1291 
1292 		seq_buf_clear(&s);
1293 
1294 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1295 			int instr;
1296 
1297 			if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) {
1298 				seq_buf_printf(&s, "XXXXXXXX ");
1299 				continue;
1300 			}
1301 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1302 		}
1303 
1304 		if (!seq_buf_has_overflowed(&s))
1305 			pr_info("%s[%d]: code: %s\n", current->comm,
1306 				current->pid, s.buffer);
1307 	}
1308 }
1309 
1310 struct regbit {
1311 	unsigned long bit;
1312 	const char *name;
1313 };
1314 
1315 static struct regbit msr_bits[] = {
1316 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1317 	{MSR_SF,	"SF"},
1318 	{MSR_HV,	"HV"},
1319 #endif
1320 	{MSR_VEC,	"VEC"},
1321 	{MSR_VSX,	"VSX"},
1322 #ifdef CONFIG_BOOKE
1323 	{MSR_CE,	"CE"},
1324 #endif
1325 	{MSR_EE,	"EE"},
1326 	{MSR_PR,	"PR"},
1327 	{MSR_FP,	"FP"},
1328 	{MSR_ME,	"ME"},
1329 #ifdef CONFIG_BOOKE
1330 	{MSR_DE,	"DE"},
1331 #else
1332 	{MSR_SE,	"SE"},
1333 	{MSR_BE,	"BE"},
1334 #endif
1335 	{MSR_IR,	"IR"},
1336 	{MSR_DR,	"DR"},
1337 	{MSR_PMM,	"PMM"},
1338 #ifndef CONFIG_BOOKE
1339 	{MSR_RI,	"RI"},
1340 	{MSR_LE,	"LE"},
1341 #endif
1342 	{0,		NULL}
1343 };
1344 
1345 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1346 {
1347 	const char *s = "";
1348 
1349 	for (; bits->bit; ++bits)
1350 		if (val & bits->bit) {
1351 			pr_cont("%s%s", s, bits->name);
1352 			s = sep;
1353 		}
1354 }
1355 
1356 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1357 static struct regbit msr_tm_bits[] = {
1358 	{MSR_TS_T,	"T"},
1359 	{MSR_TS_S,	"S"},
1360 	{MSR_TM,	"E"},
1361 	{0,		NULL}
1362 };
1363 
1364 static void print_tm_bits(unsigned long val)
1365 {
1366 /*
1367  * This only prints something if at least one of the TM bit is set.
1368  * Inside the TM[], the output means:
1369  *   E: Enabled		(bit 32)
1370  *   S: Suspended	(bit 33)
1371  *   T: Transactional	(bit 34)
1372  */
1373 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1374 		pr_cont(",TM[");
1375 		print_bits(val, msr_tm_bits, "");
1376 		pr_cont("]");
1377 	}
1378 }
1379 #else
1380 static void print_tm_bits(unsigned long val) {}
1381 #endif
1382 
1383 static void print_msr_bits(unsigned long val)
1384 {
1385 	pr_cont("<");
1386 	print_bits(val, msr_bits, ",");
1387 	print_tm_bits(val);
1388 	pr_cont(">");
1389 }
1390 
1391 #ifdef CONFIG_PPC64
1392 #define REG		"%016lx"
1393 #define REGS_PER_LINE	4
1394 #define LAST_VOLATILE	13
1395 #else
1396 #define REG		"%08lx"
1397 #define REGS_PER_LINE	8
1398 #define LAST_VOLATILE	12
1399 #endif
1400 
1401 void show_regs(struct pt_regs * regs)
1402 {
1403 	int i, trap;
1404 
1405 	show_regs_print_info(KERN_DEFAULT);
1406 
1407 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1408 	       regs->nip, regs->link, regs->ctr);
1409 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1410 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1411 	printk("MSR:  "REG" ", regs->msr);
1412 	print_msr_bits(regs->msr);
1413 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1414 	trap = TRAP(regs);
1415 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1416 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1417 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1418 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1419 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1420 #else
1421 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1422 #endif
1423 #ifdef CONFIG_PPC64
1424 	pr_cont("IRQMASK: %lx ", regs->softe);
1425 #endif
1426 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1427 	if (MSR_TM_ACTIVE(regs->msr))
1428 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1429 #endif
1430 
1431 	for (i = 0;  i < 32;  i++) {
1432 		if ((i % REGS_PER_LINE) == 0)
1433 			pr_cont("\nGPR%02d: ", i);
1434 		pr_cont(REG " ", regs->gpr[i]);
1435 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1436 			break;
1437 	}
1438 	pr_cont("\n");
1439 #ifdef CONFIG_KALLSYMS
1440 	/*
1441 	 * Lookup NIP late so we have the best change of getting the
1442 	 * above info out without failing
1443 	 */
1444 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1445 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1446 #endif
1447 	show_stack(current, (unsigned long *) regs->gpr[1]);
1448 	if (!user_mode(regs))
1449 		show_instructions(regs);
1450 }
1451 
1452 void flush_thread(void)
1453 {
1454 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1455 	flush_ptrace_hw_breakpoint(current);
1456 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1457 	set_debug_reg_defaults(&current->thread);
1458 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1459 }
1460 
1461 #ifdef CONFIG_PPC_BOOK3S_64
1462 void arch_setup_new_exec(void)
1463 {
1464 	if (radix_enabled())
1465 		return;
1466 	hash__setup_new_exec();
1467 }
1468 #endif
1469 
1470 int set_thread_uses_vas(void)
1471 {
1472 #ifdef CONFIG_PPC_BOOK3S_64
1473 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1474 		return -EINVAL;
1475 
1476 	current->thread.used_vas = 1;
1477 
1478 	/*
1479 	 * Even a process that has no foreign real address mapping can use
1480 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1481 	 * to clear any pending COPY and prevent a covert channel.
1482 	 *
1483 	 * __switch_to() will issue CP_ABORT on future context switches.
1484 	 */
1485 	asm volatile(PPC_CP_ABORT);
1486 
1487 #endif /* CONFIG_PPC_BOOK3S_64 */
1488 	return 0;
1489 }
1490 
1491 #ifdef CONFIG_PPC64
1492 /**
1493  * Assign a TIDR (thread ID) for task @t and set it in the thread
1494  * structure. For now, we only support setting TIDR for 'current' task.
1495  *
1496  * Since the TID value is a truncated form of it PID, it is possible
1497  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1498  * that 2 threads share the same TID and are waiting, one of the following
1499  * cases will happen:
1500  *
1501  * 1. The correct thread is running, the wrong thread is not
1502  * In this situation, the correct thread is woken and proceeds to pass it's
1503  * condition check.
1504  *
1505  * 2. Neither threads are running
1506  * In this situation, neither thread will be woken. When scheduled, the waiting
1507  * threads will execute either a wait, which will return immediately, followed
1508  * by a condition check, which will pass for the correct thread and fail
1509  * for the wrong thread, or they will execute the condition check immediately.
1510  *
1511  * 3. The wrong thread is running, the correct thread is not
1512  * The wrong thread will be woken, but will fail it's condition check and
1513  * re-execute wait. The correct thread, when scheduled, will execute either
1514  * it's condition check (which will pass), or wait, which returns immediately
1515  * when called the first time after the thread is scheduled, followed by it's
1516  * condition check (which will pass).
1517  *
1518  * 4. Both threads are running
1519  * Both threads will be woken. The wrong thread will fail it's condition check
1520  * and execute another wait, while the correct thread will pass it's condition
1521  * check.
1522  *
1523  * @t: the task to set the thread ID for
1524  */
1525 int set_thread_tidr(struct task_struct *t)
1526 {
1527 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1528 		return -EINVAL;
1529 
1530 	if (t != current)
1531 		return -EINVAL;
1532 
1533 	if (t->thread.tidr)
1534 		return 0;
1535 
1536 	t->thread.tidr = (u16)task_pid_nr(t);
1537 	mtspr(SPRN_TIDR, t->thread.tidr);
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(set_thread_tidr);
1542 
1543 #endif /* CONFIG_PPC64 */
1544 
1545 void
1546 release_thread(struct task_struct *t)
1547 {
1548 }
1549 
1550 /*
1551  * this gets called so that we can store coprocessor state into memory and
1552  * copy the current task into the new thread.
1553  */
1554 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1555 {
1556 	flush_all_to_thread(src);
1557 	/*
1558 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1559 	 * flush but it removes the checkpointed state from the current CPU and
1560 	 * transitions the CPU out of TM mode.  Hence we need to call
1561 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1562 	 * checkpointed state back and the TM mode.
1563 	 *
1564 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1565 	 * dst is only important for __switch_to()
1566 	 */
1567 	__switch_to_tm(src, src);
1568 
1569 	*dst = *src;
1570 
1571 	clear_task_ebb(dst);
1572 
1573 	return 0;
1574 }
1575 
1576 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1577 {
1578 #ifdef CONFIG_PPC_BOOK3S_64
1579 	unsigned long sp_vsid;
1580 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1581 
1582 	if (radix_enabled())
1583 		return;
1584 
1585 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1586 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1587 			<< SLB_VSID_SHIFT_1T;
1588 	else
1589 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1590 			<< SLB_VSID_SHIFT;
1591 	sp_vsid |= SLB_VSID_KERNEL | llp;
1592 	p->thread.ksp_vsid = sp_vsid;
1593 #endif
1594 }
1595 
1596 /*
1597  * Copy a thread..
1598  */
1599 
1600 /*
1601  * Copy architecture-specific thread state
1602  */
1603 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1604 		unsigned long kthread_arg, struct task_struct *p,
1605 		unsigned long tls)
1606 {
1607 	struct pt_regs *childregs, *kregs;
1608 	extern void ret_from_fork(void);
1609 	extern void ret_from_kernel_thread(void);
1610 	void (*f)(void);
1611 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1612 	struct thread_info *ti = task_thread_info(p);
1613 
1614 	klp_init_thread_info(p);
1615 
1616 	/* Copy registers */
1617 	sp -= sizeof(struct pt_regs);
1618 	childregs = (struct pt_regs *) sp;
1619 	if (unlikely(p->flags & PF_KTHREAD)) {
1620 		/* kernel thread */
1621 		memset(childregs, 0, sizeof(struct pt_regs));
1622 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1623 		/* function */
1624 		if (usp)
1625 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1626 #ifdef CONFIG_PPC64
1627 		clear_tsk_thread_flag(p, TIF_32BIT);
1628 		childregs->softe = IRQS_ENABLED;
1629 #endif
1630 		childregs->gpr[15] = kthread_arg;
1631 		p->thread.regs = NULL;	/* no user register state */
1632 		ti->flags |= _TIF_RESTOREALL;
1633 		f = ret_from_kernel_thread;
1634 	} else {
1635 		/* user thread */
1636 		struct pt_regs *regs = current_pt_regs();
1637 		CHECK_FULL_REGS(regs);
1638 		*childregs = *regs;
1639 		if (usp)
1640 			childregs->gpr[1] = usp;
1641 		p->thread.regs = childregs;
1642 		childregs->gpr[3] = 0;  /* Result from fork() */
1643 		if (clone_flags & CLONE_SETTLS) {
1644 			if (!is_32bit_task())
1645 				childregs->gpr[13] = tls;
1646 			else
1647 				childregs->gpr[2] = tls;
1648 		}
1649 
1650 		f = ret_from_fork;
1651 	}
1652 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1653 	sp -= STACK_FRAME_OVERHEAD;
1654 
1655 	/*
1656 	 * The way this works is that at some point in the future
1657 	 * some task will call _switch to switch to the new task.
1658 	 * That will pop off the stack frame created below and start
1659 	 * the new task running at ret_from_fork.  The new task will
1660 	 * do some house keeping and then return from the fork or clone
1661 	 * system call, using the stack frame created above.
1662 	 */
1663 	((unsigned long *)sp)[0] = 0;
1664 	sp -= sizeof(struct pt_regs);
1665 	kregs = (struct pt_regs *) sp;
1666 	sp -= STACK_FRAME_OVERHEAD;
1667 	p->thread.ksp = sp;
1668 #ifdef CONFIG_PPC32
1669 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1670 #endif
1671 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1672 	p->thread.ptrace_bps[0] = NULL;
1673 #endif
1674 
1675 	p->thread.fp_save_area = NULL;
1676 #ifdef CONFIG_ALTIVEC
1677 	p->thread.vr_save_area = NULL;
1678 #endif
1679 
1680 	setup_ksp_vsid(p, sp);
1681 
1682 #ifdef CONFIG_PPC64
1683 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1684 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1685 		p->thread.dscr = mfspr(SPRN_DSCR);
1686 	}
1687 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1688 		childregs->ppr = DEFAULT_PPR;
1689 
1690 	p->thread.tidr = 0;
1691 #endif
1692 	kregs->nip = ppc_function_entry(f);
1693 	return 0;
1694 }
1695 
1696 void preload_new_slb_context(unsigned long start, unsigned long sp);
1697 
1698 /*
1699  * Set up a thread for executing a new program
1700  */
1701 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1702 {
1703 #ifdef CONFIG_PPC64
1704 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1705 
1706 #ifdef CONFIG_PPC_BOOK3S_64
1707 	if (!radix_enabled())
1708 		preload_new_slb_context(start, sp);
1709 #endif
1710 #endif
1711 
1712 	/*
1713 	 * If we exec out of a kernel thread then thread.regs will not be
1714 	 * set.  Do it now.
1715 	 */
1716 	if (!current->thread.regs) {
1717 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1718 		current->thread.regs = regs - 1;
1719 	}
1720 
1721 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1722 	/*
1723 	 * Clear any transactional state, we're exec()ing. The cause is
1724 	 * not important as there will never be a recheckpoint so it's not
1725 	 * user visible.
1726 	 */
1727 	if (MSR_TM_SUSPENDED(mfmsr()))
1728 		tm_reclaim_current(0);
1729 #endif
1730 
1731 	memset(regs->gpr, 0, sizeof(regs->gpr));
1732 	regs->ctr = 0;
1733 	regs->link = 0;
1734 	regs->xer = 0;
1735 	regs->ccr = 0;
1736 	regs->gpr[1] = sp;
1737 
1738 	/*
1739 	 * We have just cleared all the nonvolatile GPRs, so make
1740 	 * FULL_REGS(regs) return true.  This is necessary to allow
1741 	 * ptrace to examine the thread immediately after exec.
1742 	 */
1743 	regs->trap &= ~1UL;
1744 
1745 #ifdef CONFIG_PPC32
1746 	regs->mq = 0;
1747 	regs->nip = start;
1748 	regs->msr = MSR_USER;
1749 #else
1750 	if (!is_32bit_task()) {
1751 		unsigned long entry;
1752 
1753 		if (is_elf2_task()) {
1754 			/* Look ma, no function descriptors! */
1755 			entry = start;
1756 
1757 			/*
1758 			 * Ulrich says:
1759 			 *   The latest iteration of the ABI requires that when
1760 			 *   calling a function (at its global entry point),
1761 			 *   the caller must ensure r12 holds the entry point
1762 			 *   address (so that the function can quickly
1763 			 *   establish addressability).
1764 			 */
1765 			regs->gpr[12] = start;
1766 			/* Make sure that's restored on entry to userspace. */
1767 			set_thread_flag(TIF_RESTOREALL);
1768 		} else {
1769 			unsigned long toc;
1770 
1771 			/* start is a relocated pointer to the function
1772 			 * descriptor for the elf _start routine.  The first
1773 			 * entry in the function descriptor is the entry
1774 			 * address of _start and the second entry is the TOC
1775 			 * value we need to use.
1776 			 */
1777 			__get_user(entry, (unsigned long __user *)start);
1778 			__get_user(toc, (unsigned long __user *)start+1);
1779 
1780 			/* Check whether the e_entry function descriptor entries
1781 			 * need to be relocated before we can use them.
1782 			 */
1783 			if (load_addr != 0) {
1784 				entry += load_addr;
1785 				toc   += load_addr;
1786 			}
1787 			regs->gpr[2] = toc;
1788 		}
1789 		regs->nip = entry;
1790 		regs->msr = MSR_USER64;
1791 	} else {
1792 		regs->nip = start;
1793 		regs->gpr[2] = 0;
1794 		regs->msr = MSR_USER32;
1795 	}
1796 #endif
1797 #ifdef CONFIG_VSX
1798 	current->thread.used_vsr = 0;
1799 #endif
1800 	current->thread.load_slb = 0;
1801 	current->thread.load_fp = 0;
1802 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1803 	current->thread.fp_save_area = NULL;
1804 #ifdef CONFIG_ALTIVEC
1805 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1806 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1807 	current->thread.vr_save_area = NULL;
1808 	current->thread.vrsave = 0;
1809 	current->thread.used_vr = 0;
1810 	current->thread.load_vec = 0;
1811 #endif /* CONFIG_ALTIVEC */
1812 #ifdef CONFIG_SPE
1813 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1814 	current->thread.acc = 0;
1815 	current->thread.spefscr = 0;
1816 	current->thread.used_spe = 0;
1817 #endif /* CONFIG_SPE */
1818 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1819 	current->thread.tm_tfhar = 0;
1820 	current->thread.tm_texasr = 0;
1821 	current->thread.tm_tfiar = 0;
1822 	current->thread.load_tm = 0;
1823 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1824 
1825 	thread_pkey_regs_init(&current->thread);
1826 }
1827 EXPORT_SYMBOL(start_thread);
1828 
1829 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1830 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1831 
1832 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1833 {
1834 	struct pt_regs *regs = tsk->thread.regs;
1835 
1836 	/* This is a bit hairy.  If we are an SPE enabled  processor
1837 	 * (have embedded fp) we store the IEEE exception enable flags in
1838 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1839 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1840 	if (val & PR_FP_EXC_SW_ENABLE) {
1841 #ifdef CONFIG_SPE
1842 		if (cpu_has_feature(CPU_FTR_SPE)) {
1843 			/*
1844 			 * When the sticky exception bits are set
1845 			 * directly by userspace, it must call prctl
1846 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1847 			 * in the existing prctl settings) or
1848 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1849 			 * the bits being set).  <fenv.h> functions
1850 			 * saving and restoring the whole
1851 			 * floating-point environment need to do so
1852 			 * anyway to restore the prctl settings from
1853 			 * the saved environment.
1854 			 */
1855 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1856 			tsk->thread.fpexc_mode = val &
1857 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1858 			return 0;
1859 		} else {
1860 			return -EINVAL;
1861 		}
1862 #else
1863 		return -EINVAL;
1864 #endif
1865 	}
1866 
1867 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1868 	 * __pack_fe01 use do not overlap with bits used for
1869 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1870 	 * on CONFIG_SPE implementations are reserved so writing to
1871 	 * them does not change anything */
1872 	if (val > PR_FP_EXC_PRECISE)
1873 		return -EINVAL;
1874 	tsk->thread.fpexc_mode = __pack_fe01(val);
1875 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1876 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1877 			| tsk->thread.fpexc_mode;
1878 	return 0;
1879 }
1880 
1881 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1882 {
1883 	unsigned int val;
1884 
1885 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1886 #ifdef CONFIG_SPE
1887 		if (cpu_has_feature(CPU_FTR_SPE)) {
1888 			/*
1889 			 * When the sticky exception bits are set
1890 			 * directly by userspace, it must call prctl
1891 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1892 			 * in the existing prctl settings) or
1893 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1894 			 * the bits being set).  <fenv.h> functions
1895 			 * saving and restoring the whole
1896 			 * floating-point environment need to do so
1897 			 * anyway to restore the prctl settings from
1898 			 * the saved environment.
1899 			 */
1900 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1901 			val = tsk->thread.fpexc_mode;
1902 		} else
1903 			return -EINVAL;
1904 #else
1905 		return -EINVAL;
1906 #endif
1907 	else
1908 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1909 	return put_user(val, (unsigned int __user *) adr);
1910 }
1911 
1912 int set_endian(struct task_struct *tsk, unsigned int val)
1913 {
1914 	struct pt_regs *regs = tsk->thread.regs;
1915 
1916 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1917 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1918 		return -EINVAL;
1919 
1920 	if (regs == NULL)
1921 		return -EINVAL;
1922 
1923 	if (val == PR_ENDIAN_BIG)
1924 		regs->msr &= ~MSR_LE;
1925 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1926 		regs->msr |= MSR_LE;
1927 	else
1928 		return -EINVAL;
1929 
1930 	return 0;
1931 }
1932 
1933 int get_endian(struct task_struct *tsk, unsigned long adr)
1934 {
1935 	struct pt_regs *regs = tsk->thread.regs;
1936 	unsigned int val;
1937 
1938 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1939 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1940 		return -EINVAL;
1941 
1942 	if (regs == NULL)
1943 		return -EINVAL;
1944 
1945 	if (regs->msr & MSR_LE) {
1946 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1947 			val = PR_ENDIAN_LITTLE;
1948 		else
1949 			val = PR_ENDIAN_PPC_LITTLE;
1950 	} else
1951 		val = PR_ENDIAN_BIG;
1952 
1953 	return put_user(val, (unsigned int __user *)adr);
1954 }
1955 
1956 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1957 {
1958 	tsk->thread.align_ctl = val;
1959 	return 0;
1960 }
1961 
1962 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1963 {
1964 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1965 }
1966 
1967 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1968 				  unsigned long nbytes)
1969 {
1970 	unsigned long stack_page;
1971 	unsigned long cpu = task_cpu(p);
1972 
1973 	stack_page = (unsigned long)hardirq_ctx[cpu];
1974 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1975 		return 1;
1976 
1977 	stack_page = (unsigned long)softirq_ctx[cpu];
1978 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1979 		return 1;
1980 
1981 	return 0;
1982 }
1983 
1984 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
1985 					unsigned long nbytes)
1986 {
1987 #ifdef CONFIG_PPC64
1988 	unsigned long stack_page;
1989 	unsigned long cpu = task_cpu(p);
1990 
1991 	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
1992 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1993 		return 1;
1994 
1995 # ifdef CONFIG_PPC_BOOK3S_64
1996 	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
1997 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1998 		return 1;
1999 
2000 	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2001 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2002 		return 1;
2003 # endif
2004 #endif
2005 
2006 	return 0;
2007 }
2008 
2009 
2010 int validate_sp(unsigned long sp, struct task_struct *p,
2011 		       unsigned long nbytes)
2012 {
2013 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2014 
2015 	if (sp < THREAD_SIZE)
2016 		return 0;
2017 
2018 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2019 		return 1;
2020 
2021 	if (valid_irq_stack(sp, p, nbytes))
2022 		return 1;
2023 
2024 	return valid_emergency_stack(sp, p, nbytes);
2025 }
2026 
2027 EXPORT_SYMBOL(validate_sp);
2028 
2029 static unsigned long __get_wchan(struct task_struct *p)
2030 {
2031 	unsigned long ip, sp;
2032 	int count = 0;
2033 
2034 	if (!p || p == current || p->state == TASK_RUNNING)
2035 		return 0;
2036 
2037 	sp = p->thread.ksp;
2038 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2039 		return 0;
2040 
2041 	do {
2042 		sp = *(unsigned long *)sp;
2043 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2044 		    p->state == TASK_RUNNING)
2045 			return 0;
2046 		if (count > 0) {
2047 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2048 			if (!in_sched_functions(ip))
2049 				return ip;
2050 		}
2051 	} while (count++ < 16);
2052 	return 0;
2053 }
2054 
2055 unsigned long get_wchan(struct task_struct *p)
2056 {
2057 	unsigned long ret;
2058 
2059 	if (!try_get_task_stack(p))
2060 		return 0;
2061 
2062 	ret = __get_wchan(p);
2063 
2064 	put_task_stack(p);
2065 
2066 	return ret;
2067 }
2068 
2069 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2070 
2071 void show_stack(struct task_struct *tsk, unsigned long *stack)
2072 {
2073 	unsigned long sp, ip, lr, newsp;
2074 	int count = 0;
2075 	int firstframe = 1;
2076 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2077 	unsigned long ret_addr;
2078 	int ftrace_idx = 0;
2079 #endif
2080 
2081 	if (tsk == NULL)
2082 		tsk = current;
2083 
2084 	if (!try_get_task_stack(tsk))
2085 		return;
2086 
2087 	sp = (unsigned long) stack;
2088 	if (sp == 0) {
2089 		if (tsk == current)
2090 			sp = current_stack_frame();
2091 		else
2092 			sp = tsk->thread.ksp;
2093 	}
2094 
2095 	lr = 0;
2096 	printk("Call Trace:\n");
2097 	do {
2098 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2099 			break;
2100 
2101 		stack = (unsigned long *) sp;
2102 		newsp = stack[0];
2103 		ip = stack[STACK_FRAME_LR_SAVE];
2104 		if (!firstframe || ip != lr) {
2105 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2106 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2107 			ret_addr = ftrace_graph_ret_addr(current,
2108 						&ftrace_idx, ip, stack);
2109 			if (ret_addr != ip)
2110 				pr_cont(" (%pS)", (void *)ret_addr);
2111 #endif
2112 			if (firstframe)
2113 				pr_cont(" (unreliable)");
2114 			pr_cont("\n");
2115 		}
2116 		firstframe = 0;
2117 
2118 		/*
2119 		 * See if this is an exception frame.
2120 		 * We look for the "regshere" marker in the current frame.
2121 		 */
2122 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2123 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2124 			struct pt_regs *regs = (struct pt_regs *)
2125 				(sp + STACK_FRAME_OVERHEAD);
2126 			lr = regs->link;
2127 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2128 			       regs->trap, (void *)regs->nip, (void *)lr);
2129 			firstframe = 1;
2130 		}
2131 
2132 		sp = newsp;
2133 	} while (count++ < kstack_depth_to_print);
2134 
2135 	put_task_stack(tsk);
2136 }
2137 
2138 #ifdef CONFIG_PPC64
2139 /* Called with hard IRQs off */
2140 void notrace __ppc64_runlatch_on(void)
2141 {
2142 	struct thread_info *ti = current_thread_info();
2143 
2144 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2145 		/*
2146 		 * Least significant bit (RUN) is the only writable bit of
2147 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2148 		 * earliest ISA where this is the case, but it's convenient.
2149 		 */
2150 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2151 	} else {
2152 		unsigned long ctrl;
2153 
2154 		/*
2155 		 * Some architectures (e.g., Cell) have writable fields other
2156 		 * than RUN, so do the read-modify-write.
2157 		 */
2158 		ctrl = mfspr(SPRN_CTRLF);
2159 		ctrl |= CTRL_RUNLATCH;
2160 		mtspr(SPRN_CTRLT, ctrl);
2161 	}
2162 
2163 	ti->local_flags |= _TLF_RUNLATCH;
2164 }
2165 
2166 /* Called with hard IRQs off */
2167 void notrace __ppc64_runlatch_off(void)
2168 {
2169 	struct thread_info *ti = current_thread_info();
2170 
2171 	ti->local_flags &= ~_TLF_RUNLATCH;
2172 
2173 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2174 		mtspr(SPRN_CTRLT, 0);
2175 	} else {
2176 		unsigned long ctrl;
2177 
2178 		ctrl = mfspr(SPRN_CTRLF);
2179 		ctrl &= ~CTRL_RUNLATCH;
2180 		mtspr(SPRN_CTRLT, ctrl);
2181 	}
2182 }
2183 #endif /* CONFIG_PPC64 */
2184 
2185 unsigned long arch_align_stack(unsigned long sp)
2186 {
2187 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2188 		sp -= get_random_int() & ~PAGE_MASK;
2189 	return sp & ~0xf;
2190 }
2191 
2192 static inline unsigned long brk_rnd(void)
2193 {
2194         unsigned long rnd = 0;
2195 
2196 	/* 8MB for 32bit, 1GB for 64bit */
2197 	if (is_32bit_task())
2198 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2199 	else
2200 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2201 
2202 	return rnd << PAGE_SHIFT;
2203 }
2204 
2205 unsigned long arch_randomize_brk(struct mm_struct *mm)
2206 {
2207 	unsigned long base = mm->brk;
2208 	unsigned long ret;
2209 
2210 #ifdef CONFIG_PPC_BOOK3S_64
2211 	/*
2212 	 * If we are using 1TB segments and we are allowed to randomise
2213 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2214 	 * segment. Otherwise the heap will be in the bottom 1TB
2215 	 * which always uses 256MB segments and this may result in a
2216 	 * performance penalty. We don't need to worry about radix. For
2217 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2218 	 */
2219 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2220 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2221 #endif
2222 
2223 	ret = PAGE_ALIGN(base + brk_rnd());
2224 
2225 	if (ret < mm->brk)
2226 		return mm->brk;
2227 
2228 	return ret;
2229 }
2230 
2231