xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision 05bcf503)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <linux/kprobes.h>
58 #include <linux/kdebug.h>
59 
60 extern unsigned long _get_SP(void);
61 
62 #ifndef CONFIG_SMP
63 struct task_struct *last_task_used_math = NULL;
64 struct task_struct *last_task_used_altivec = NULL;
65 struct task_struct *last_task_used_vsx = NULL;
66 struct task_struct *last_task_used_spe = NULL;
67 #endif
68 
69 /*
70  * Make sure the floating-point register state in the
71  * the thread_struct is up to date for task tsk.
72  */
73 void flush_fp_to_thread(struct task_struct *tsk)
74 {
75 	if (tsk->thread.regs) {
76 		/*
77 		 * We need to disable preemption here because if we didn't,
78 		 * another process could get scheduled after the regs->msr
79 		 * test but before we have finished saving the FP registers
80 		 * to the thread_struct.  That process could take over the
81 		 * FPU, and then when we get scheduled again we would store
82 		 * bogus values for the remaining FP registers.
83 		 */
84 		preempt_disable();
85 		if (tsk->thread.regs->msr & MSR_FP) {
86 #ifdef CONFIG_SMP
87 			/*
88 			 * This should only ever be called for current or
89 			 * for a stopped child process.  Since we save away
90 			 * the FP register state on context switch on SMP,
91 			 * there is something wrong if a stopped child appears
92 			 * to still have its FP state in the CPU registers.
93 			 */
94 			BUG_ON(tsk != current);
95 #endif
96 			giveup_fpu(tsk);
97 		}
98 		preempt_enable();
99 	}
100 }
101 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
102 
103 void enable_kernel_fp(void)
104 {
105 	WARN_ON(preemptible());
106 
107 #ifdef CONFIG_SMP
108 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
109 		giveup_fpu(current);
110 	else
111 		giveup_fpu(NULL);	/* just enables FP for kernel */
112 #else
113 	giveup_fpu(last_task_used_math);
114 #endif /* CONFIG_SMP */
115 }
116 EXPORT_SYMBOL(enable_kernel_fp);
117 
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
120 {
121 	WARN_ON(preemptible());
122 
123 #ifdef CONFIG_SMP
124 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 		giveup_altivec(current);
126 	else
127 		giveup_altivec_notask();
128 #else
129 	giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
131 }
132 EXPORT_SYMBOL(enable_kernel_altivec);
133 
134 /*
135  * Make sure the VMX/Altivec register state in the
136  * the thread_struct is up to date for task tsk.
137  */
138 void flush_altivec_to_thread(struct task_struct *tsk)
139 {
140 	if (tsk->thread.regs) {
141 		preempt_disable();
142 		if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 			BUG_ON(tsk != current);
145 #endif
146 			giveup_altivec(tsk);
147 		}
148 		preempt_enable();
149 	}
150 }
151 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
152 #endif /* CONFIG_ALTIVEC */
153 
154 #ifdef CONFIG_VSX
155 #if 0
156 /* not currently used, but some crazy RAID module might want to later */
157 void enable_kernel_vsx(void)
158 {
159 	WARN_ON(preemptible());
160 
161 #ifdef CONFIG_SMP
162 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
163 		giveup_vsx(current);
164 	else
165 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
166 #else
167 	giveup_vsx(last_task_used_vsx);
168 #endif /* CONFIG_SMP */
169 }
170 EXPORT_SYMBOL(enable_kernel_vsx);
171 #endif
172 
173 void giveup_vsx(struct task_struct *tsk)
174 {
175 	giveup_fpu(tsk);
176 	giveup_altivec(tsk);
177 	__giveup_vsx(tsk);
178 }
179 
180 void flush_vsx_to_thread(struct task_struct *tsk)
181 {
182 	if (tsk->thread.regs) {
183 		preempt_disable();
184 		if (tsk->thread.regs->msr & MSR_VSX) {
185 #ifdef CONFIG_SMP
186 			BUG_ON(tsk != current);
187 #endif
188 			giveup_vsx(tsk);
189 		}
190 		preempt_enable();
191 	}
192 }
193 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
194 #endif /* CONFIG_VSX */
195 
196 #ifdef CONFIG_SPE
197 
198 void enable_kernel_spe(void)
199 {
200 	WARN_ON(preemptible());
201 
202 #ifdef CONFIG_SMP
203 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
204 		giveup_spe(current);
205 	else
206 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
207 #else
208 	giveup_spe(last_task_used_spe);
209 #endif /* __SMP __ */
210 }
211 EXPORT_SYMBOL(enable_kernel_spe);
212 
213 void flush_spe_to_thread(struct task_struct *tsk)
214 {
215 	if (tsk->thread.regs) {
216 		preempt_disable();
217 		if (tsk->thread.regs->msr & MSR_SPE) {
218 #ifdef CONFIG_SMP
219 			BUG_ON(tsk != current);
220 #endif
221 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
222 			giveup_spe(tsk);
223 		}
224 		preempt_enable();
225 	}
226 }
227 #endif /* CONFIG_SPE */
228 
229 #ifndef CONFIG_SMP
230 /*
231  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
232  * and the current task has some state, discard it.
233  */
234 void discard_lazy_cpu_state(void)
235 {
236 	preempt_disable();
237 	if (last_task_used_math == current)
238 		last_task_used_math = NULL;
239 #ifdef CONFIG_ALTIVEC
240 	if (last_task_used_altivec == current)
241 		last_task_used_altivec = NULL;
242 #endif /* CONFIG_ALTIVEC */
243 #ifdef CONFIG_VSX
244 	if (last_task_used_vsx == current)
245 		last_task_used_vsx = NULL;
246 #endif /* CONFIG_VSX */
247 #ifdef CONFIG_SPE
248 	if (last_task_used_spe == current)
249 		last_task_used_spe = NULL;
250 #endif
251 	preempt_enable();
252 }
253 #endif /* CONFIG_SMP */
254 
255 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
256 void do_send_trap(struct pt_regs *regs, unsigned long address,
257 		  unsigned long error_code, int signal_code, int breakpt)
258 {
259 	siginfo_t info;
260 
261 	current->thread.trap_nr = signal_code;
262 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
263 			11, SIGSEGV) == NOTIFY_STOP)
264 		return;
265 
266 	/* Deliver the signal to userspace */
267 	info.si_signo = SIGTRAP;
268 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
269 	info.si_code = signal_code;
270 	info.si_addr = (void __user *)address;
271 	force_sig_info(SIGTRAP, &info, current);
272 }
273 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
274 void do_dabr(struct pt_regs *regs, unsigned long address,
275 		    unsigned long error_code)
276 {
277 	siginfo_t info;
278 
279 	current->thread.trap_nr = TRAP_HWBKPT;
280 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
281 			11, SIGSEGV) == NOTIFY_STOP)
282 		return;
283 
284 	if (debugger_dabr_match(regs))
285 		return;
286 
287 	/* Clear the DABR */
288 	set_dabr(0, 0);
289 
290 	/* Deliver the signal to userspace */
291 	info.si_signo = SIGTRAP;
292 	info.si_errno = 0;
293 	info.si_code = TRAP_HWBKPT;
294 	info.si_addr = (void __user *)address;
295 	force_sig_info(SIGTRAP, &info, current);
296 }
297 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
298 
299 static DEFINE_PER_CPU(unsigned long, current_dabr);
300 
301 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
302 /*
303  * Set the debug registers back to their default "safe" values.
304  */
305 static void set_debug_reg_defaults(struct thread_struct *thread)
306 {
307 	thread->iac1 = thread->iac2 = 0;
308 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
309 	thread->iac3 = thread->iac4 = 0;
310 #endif
311 	thread->dac1 = thread->dac2 = 0;
312 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
313 	thread->dvc1 = thread->dvc2 = 0;
314 #endif
315 	thread->dbcr0 = 0;
316 #ifdef CONFIG_BOOKE
317 	/*
318 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
319 	 */
320 	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
321 			DBCR1_IAC3US | DBCR1_IAC4US;
322 	/*
323 	 * Force Data Address Compare User/Supervisor bits to be User-only
324 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
325 	 */
326 	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
327 #else
328 	thread->dbcr1 = 0;
329 #endif
330 }
331 
332 static void prime_debug_regs(struct thread_struct *thread)
333 {
334 	mtspr(SPRN_IAC1, thread->iac1);
335 	mtspr(SPRN_IAC2, thread->iac2);
336 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
337 	mtspr(SPRN_IAC3, thread->iac3);
338 	mtspr(SPRN_IAC4, thread->iac4);
339 #endif
340 	mtspr(SPRN_DAC1, thread->dac1);
341 	mtspr(SPRN_DAC2, thread->dac2);
342 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
343 	mtspr(SPRN_DVC1, thread->dvc1);
344 	mtspr(SPRN_DVC2, thread->dvc2);
345 #endif
346 	mtspr(SPRN_DBCR0, thread->dbcr0);
347 	mtspr(SPRN_DBCR1, thread->dbcr1);
348 #ifdef CONFIG_BOOKE
349 	mtspr(SPRN_DBCR2, thread->dbcr2);
350 #endif
351 }
352 /*
353  * Unless neither the old or new thread are making use of the
354  * debug registers, set the debug registers from the values
355  * stored in the new thread.
356  */
357 static void switch_booke_debug_regs(struct thread_struct *new_thread)
358 {
359 	if ((current->thread.dbcr0 & DBCR0_IDM)
360 		|| (new_thread->dbcr0 & DBCR0_IDM))
361 			prime_debug_regs(new_thread);
362 }
363 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
364 #ifndef CONFIG_HAVE_HW_BREAKPOINT
365 static void set_debug_reg_defaults(struct thread_struct *thread)
366 {
367 	if (thread->dabr) {
368 		thread->dabr = 0;
369 		thread->dabrx = 0;
370 		set_dabr(0, 0);
371 	}
372 }
373 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
374 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
375 
376 int set_dabr(unsigned long dabr, unsigned long dabrx)
377 {
378 	__get_cpu_var(current_dabr) = dabr;
379 
380 	if (ppc_md.set_dabr)
381 		return ppc_md.set_dabr(dabr, dabrx);
382 
383 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
384 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
385 	mtspr(SPRN_DAC1, dabr);
386 #ifdef CONFIG_PPC_47x
387 	isync();
388 #endif
389 #elif defined(CONFIG_PPC_BOOK3S)
390 	mtspr(SPRN_DABR, dabr);
391 	mtspr(SPRN_DABRX, dabrx);
392 #endif
393 	return 0;
394 }
395 
396 #ifdef CONFIG_PPC64
397 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
398 #endif
399 
400 struct task_struct *__switch_to(struct task_struct *prev,
401 	struct task_struct *new)
402 {
403 	struct thread_struct *new_thread, *old_thread;
404 	unsigned long flags;
405 	struct task_struct *last;
406 #ifdef CONFIG_PPC_BOOK3S_64
407 	struct ppc64_tlb_batch *batch;
408 #endif
409 
410 #ifdef CONFIG_SMP
411 	/* avoid complexity of lazy save/restore of fpu
412 	 * by just saving it every time we switch out if
413 	 * this task used the fpu during the last quantum.
414 	 *
415 	 * If it tries to use the fpu again, it'll trap and
416 	 * reload its fp regs.  So we don't have to do a restore
417 	 * every switch, just a save.
418 	 *  -- Cort
419 	 */
420 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
421 		giveup_fpu(prev);
422 #ifdef CONFIG_ALTIVEC
423 	/*
424 	 * If the previous thread used altivec in the last quantum
425 	 * (thus changing altivec regs) then save them.
426 	 * We used to check the VRSAVE register but not all apps
427 	 * set it, so we don't rely on it now (and in fact we need
428 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
429 	 *
430 	 * On SMP we always save/restore altivec regs just to avoid the
431 	 * complexity of changing processors.
432 	 *  -- Cort
433 	 */
434 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
435 		giveup_altivec(prev);
436 #endif /* CONFIG_ALTIVEC */
437 #ifdef CONFIG_VSX
438 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
439 		/* VMX and FPU registers are already save here */
440 		__giveup_vsx(prev);
441 #endif /* CONFIG_VSX */
442 #ifdef CONFIG_SPE
443 	/*
444 	 * If the previous thread used spe in the last quantum
445 	 * (thus changing spe regs) then save them.
446 	 *
447 	 * On SMP we always save/restore spe regs just to avoid the
448 	 * complexity of changing processors.
449 	 */
450 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
451 		giveup_spe(prev);
452 #endif /* CONFIG_SPE */
453 
454 #else  /* CONFIG_SMP */
455 #ifdef CONFIG_ALTIVEC
456 	/* Avoid the trap.  On smp this this never happens since
457 	 * we don't set last_task_used_altivec -- Cort
458 	 */
459 	if (new->thread.regs && last_task_used_altivec == new)
460 		new->thread.regs->msr |= MSR_VEC;
461 #endif /* CONFIG_ALTIVEC */
462 #ifdef CONFIG_VSX
463 	if (new->thread.regs && last_task_used_vsx == new)
464 		new->thread.regs->msr |= MSR_VSX;
465 #endif /* CONFIG_VSX */
466 #ifdef CONFIG_SPE
467 	/* Avoid the trap.  On smp this this never happens since
468 	 * we don't set last_task_used_spe
469 	 */
470 	if (new->thread.regs && last_task_used_spe == new)
471 		new->thread.regs->msr |= MSR_SPE;
472 #endif /* CONFIG_SPE */
473 
474 #endif /* CONFIG_SMP */
475 
476 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
477 	switch_booke_debug_regs(&new->thread);
478 #else
479 /*
480  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
481  * schedule DABR
482  */
483 #ifndef CONFIG_HAVE_HW_BREAKPOINT
484 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
485 		set_dabr(new->thread.dabr, new->thread.dabrx);
486 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
487 #endif
488 
489 
490 	new_thread = &new->thread;
491 	old_thread = &current->thread;
492 
493 #ifdef CONFIG_PPC64
494 	/*
495 	 * Collect processor utilization data per process
496 	 */
497 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
498 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
499 		long unsigned start_tb, current_tb;
500 		start_tb = old_thread->start_tb;
501 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
502 		old_thread->accum_tb += (current_tb - start_tb);
503 		new_thread->start_tb = current_tb;
504 	}
505 #endif /* CONFIG_PPC64 */
506 
507 #ifdef CONFIG_PPC_BOOK3S_64
508 	batch = &__get_cpu_var(ppc64_tlb_batch);
509 	if (batch->active) {
510 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
511 		if (batch->index)
512 			__flush_tlb_pending(batch);
513 		batch->active = 0;
514 	}
515 #endif /* CONFIG_PPC_BOOK3S_64 */
516 
517 	local_irq_save(flags);
518 
519 	/*
520 	 * We can't take a PMU exception inside _switch() since there is a
521 	 * window where the kernel stack SLB and the kernel stack are out
522 	 * of sync. Hard disable here.
523 	 */
524 	hard_irq_disable();
525 	last = _switch(old_thread, new_thread);
526 
527 #ifdef CONFIG_PPC_BOOK3S_64
528 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
529 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
530 		batch = &__get_cpu_var(ppc64_tlb_batch);
531 		batch->active = 1;
532 	}
533 #endif /* CONFIG_PPC_BOOK3S_64 */
534 
535 	local_irq_restore(flags);
536 
537 	return last;
538 }
539 
540 static int instructions_to_print = 16;
541 
542 static void show_instructions(struct pt_regs *regs)
543 {
544 	int i;
545 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
546 			sizeof(int));
547 
548 	printk("Instruction dump:");
549 
550 	for (i = 0; i < instructions_to_print; i++) {
551 		int instr;
552 
553 		if (!(i % 8))
554 			printk("\n");
555 
556 #if !defined(CONFIG_BOOKE)
557 		/* If executing with the IMMU off, adjust pc rather
558 		 * than print XXXXXXXX.
559 		 */
560 		if (!(regs->msr & MSR_IR))
561 			pc = (unsigned long)phys_to_virt(pc);
562 #endif
563 
564 		/* We use __get_user here *only* to avoid an OOPS on a
565 		 * bad address because the pc *should* only be a
566 		 * kernel address.
567 		 */
568 		if (!__kernel_text_address(pc) ||
569 		     __get_user(instr, (unsigned int __user *)pc)) {
570 			printk(KERN_CONT "XXXXXXXX ");
571 		} else {
572 			if (regs->nip == pc)
573 				printk(KERN_CONT "<%08x> ", instr);
574 			else
575 				printk(KERN_CONT "%08x ", instr);
576 		}
577 
578 		pc += sizeof(int);
579 	}
580 
581 	printk("\n");
582 }
583 
584 static struct regbit {
585 	unsigned long bit;
586 	const char *name;
587 } msr_bits[] = {
588 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
589 	{MSR_SF,	"SF"},
590 	{MSR_HV,	"HV"},
591 #endif
592 	{MSR_VEC,	"VEC"},
593 	{MSR_VSX,	"VSX"},
594 #ifdef CONFIG_BOOKE
595 	{MSR_CE,	"CE"},
596 #endif
597 	{MSR_EE,	"EE"},
598 	{MSR_PR,	"PR"},
599 	{MSR_FP,	"FP"},
600 	{MSR_ME,	"ME"},
601 #ifdef CONFIG_BOOKE
602 	{MSR_DE,	"DE"},
603 #else
604 	{MSR_SE,	"SE"},
605 	{MSR_BE,	"BE"},
606 #endif
607 	{MSR_IR,	"IR"},
608 	{MSR_DR,	"DR"},
609 	{MSR_PMM,	"PMM"},
610 #ifndef CONFIG_BOOKE
611 	{MSR_RI,	"RI"},
612 	{MSR_LE,	"LE"},
613 #endif
614 	{0,		NULL}
615 };
616 
617 static void printbits(unsigned long val, struct regbit *bits)
618 {
619 	const char *sep = "";
620 
621 	printk("<");
622 	for (; bits->bit; ++bits)
623 		if (val & bits->bit) {
624 			printk("%s%s", sep, bits->name);
625 			sep = ",";
626 		}
627 	printk(">");
628 }
629 
630 #ifdef CONFIG_PPC64
631 #define REG		"%016lx"
632 #define REGS_PER_LINE	4
633 #define LAST_VOLATILE	13
634 #else
635 #define REG		"%08lx"
636 #define REGS_PER_LINE	8
637 #define LAST_VOLATILE	12
638 #endif
639 
640 void show_regs(struct pt_regs * regs)
641 {
642 	int i, trap;
643 
644 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
645 	       regs->nip, regs->link, regs->ctr);
646 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
647 	       regs, regs->trap, print_tainted(), init_utsname()->release);
648 	printk("MSR: "REG" ", regs->msr);
649 	printbits(regs->msr, msr_bits);
650 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
651 #ifdef CONFIG_PPC64
652 	printk("SOFTE: %ld\n", regs->softe);
653 #endif
654 	trap = TRAP(regs);
655 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
656 		printk("CFAR: "REG"\n", regs->orig_gpr3);
657 	if (trap == 0x300 || trap == 0x600)
658 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
659 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
660 #else
661 		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
662 #endif
663 	printk("TASK = %p[%d] '%s' THREAD: %p",
664 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
665 
666 #ifdef CONFIG_SMP
667 	printk(" CPU: %d", raw_smp_processor_id());
668 #endif /* CONFIG_SMP */
669 
670 	for (i = 0;  i < 32;  i++) {
671 		if ((i % REGS_PER_LINE) == 0)
672 			printk("\nGPR%02d: ", i);
673 		printk(REG " ", regs->gpr[i]);
674 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
675 			break;
676 	}
677 	printk("\n");
678 #ifdef CONFIG_KALLSYMS
679 	/*
680 	 * Lookup NIP late so we have the best change of getting the
681 	 * above info out without failing
682 	 */
683 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
684 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
685 #endif
686 	show_stack(current, (unsigned long *) regs->gpr[1]);
687 	if (!user_mode(regs))
688 		show_instructions(regs);
689 }
690 
691 void exit_thread(void)
692 {
693 	discard_lazy_cpu_state();
694 }
695 
696 void flush_thread(void)
697 {
698 	discard_lazy_cpu_state();
699 
700 #ifdef CONFIG_HAVE_HW_BREAKPOINT
701 	flush_ptrace_hw_breakpoint(current);
702 #else /* CONFIG_HAVE_HW_BREAKPOINT */
703 	set_debug_reg_defaults(&current->thread);
704 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
705 }
706 
707 void
708 release_thread(struct task_struct *t)
709 {
710 }
711 
712 /*
713  * this gets called so that we can store coprocessor state into memory and
714  * copy the current task into the new thread.
715  */
716 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
717 {
718 	flush_fp_to_thread(src);
719 	flush_altivec_to_thread(src);
720 	flush_vsx_to_thread(src);
721 	flush_spe_to_thread(src);
722 #ifdef CONFIG_HAVE_HW_BREAKPOINT
723 	flush_ptrace_hw_breakpoint(src);
724 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
725 
726 	*dst = *src;
727 	return 0;
728 }
729 
730 /*
731  * Copy a thread..
732  */
733 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
734 
735 int copy_thread(unsigned long clone_flags, unsigned long usp,
736 		unsigned long arg, struct task_struct *p,
737 		struct pt_regs *regs)
738 {
739 	struct pt_regs *childregs, *kregs;
740 	extern void ret_from_fork(void);
741 	extern void ret_from_kernel_thread(void);
742 	void (*f)(void);
743 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
744 
745 	/* Copy registers */
746 	sp -= sizeof(struct pt_regs);
747 	childregs = (struct pt_regs *) sp;
748 	if (!regs) {
749 		/* for kernel thread, set `current' and stackptr in new task */
750 		memset(childregs, 0, sizeof(struct pt_regs));
751 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
752 #ifdef CONFIG_PPC64
753 		childregs->gpr[14] = *(unsigned long *)usp;
754 		childregs->gpr[2] = ((unsigned long *)usp)[1],
755 		clear_tsk_thread_flag(p, TIF_32BIT);
756 #else
757 		childregs->gpr[14] = usp;	/* function */
758 		childregs->gpr[2] = (unsigned long) p;
759 #endif
760 		childregs->gpr[15] = arg;
761 		p->thread.regs = NULL;	/* no user register state */
762 		f = ret_from_kernel_thread;
763 	} else {
764 		CHECK_FULL_REGS(regs);
765 		*childregs = *regs;
766 		childregs->gpr[1] = usp;
767 		p->thread.regs = childregs;
768 		childregs->gpr[3] = 0;  /* Result from fork() */
769 		if (clone_flags & CLONE_SETTLS) {
770 #ifdef CONFIG_PPC64
771 			if (!is_32bit_task())
772 				childregs->gpr[13] = childregs->gpr[6];
773 			else
774 #endif
775 				childregs->gpr[2] = childregs->gpr[6];
776 		}
777 
778 		f = ret_from_fork;
779 	}
780 	sp -= STACK_FRAME_OVERHEAD;
781 
782 	/*
783 	 * The way this works is that at some point in the future
784 	 * some task will call _switch to switch to the new task.
785 	 * That will pop off the stack frame created below and start
786 	 * the new task running at ret_from_fork.  The new task will
787 	 * do some house keeping and then return from the fork or clone
788 	 * system call, using the stack frame created above.
789 	 */
790 	sp -= sizeof(struct pt_regs);
791 	kregs = (struct pt_regs *) sp;
792 	sp -= STACK_FRAME_OVERHEAD;
793 	p->thread.ksp = sp;
794 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
795 				_ALIGN_UP(sizeof(struct thread_info), 16);
796 
797 #ifdef CONFIG_PPC_STD_MMU_64
798 	if (mmu_has_feature(MMU_FTR_SLB)) {
799 		unsigned long sp_vsid;
800 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
801 
802 		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
803 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
804 				<< SLB_VSID_SHIFT_1T;
805 		else
806 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
807 				<< SLB_VSID_SHIFT;
808 		sp_vsid |= SLB_VSID_KERNEL | llp;
809 		p->thread.ksp_vsid = sp_vsid;
810 	}
811 #endif /* CONFIG_PPC_STD_MMU_64 */
812 #ifdef CONFIG_PPC64
813 	if (cpu_has_feature(CPU_FTR_DSCR)) {
814 		p->thread.dscr_inherit = current->thread.dscr_inherit;
815 		p->thread.dscr = current->thread.dscr;
816 	}
817 #endif
818 	/*
819 	 * The PPC64 ABI makes use of a TOC to contain function
820 	 * pointers.  The function (ret_from_except) is actually a pointer
821 	 * to the TOC entry.  The first entry is a pointer to the actual
822 	 * function.
823 	 */
824 #ifdef CONFIG_PPC64
825 	kregs->nip = *((unsigned long *)f);
826 #else
827 	kregs->nip = (unsigned long)f;
828 #endif
829 	return 0;
830 }
831 
832 /*
833  * Set up a thread for executing a new program
834  */
835 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
836 {
837 #ifdef CONFIG_PPC64
838 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
839 #endif
840 
841 	/*
842 	 * If we exec out of a kernel thread then thread.regs will not be
843 	 * set.  Do it now.
844 	 */
845 	if (!current->thread.regs) {
846 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
847 		current->thread.regs = regs - 1;
848 	}
849 
850 	memset(regs->gpr, 0, sizeof(regs->gpr));
851 	regs->ctr = 0;
852 	regs->link = 0;
853 	regs->xer = 0;
854 	regs->ccr = 0;
855 	regs->gpr[1] = sp;
856 
857 	/*
858 	 * We have just cleared all the nonvolatile GPRs, so make
859 	 * FULL_REGS(regs) return true.  This is necessary to allow
860 	 * ptrace to examine the thread immediately after exec.
861 	 */
862 	regs->trap &= ~1UL;
863 
864 #ifdef CONFIG_PPC32
865 	regs->mq = 0;
866 	regs->nip = start;
867 	regs->msr = MSR_USER;
868 #else
869 	if (!is_32bit_task()) {
870 		unsigned long entry, toc;
871 
872 		/* start is a relocated pointer to the function descriptor for
873 		 * the elf _start routine.  The first entry in the function
874 		 * descriptor is the entry address of _start and the second
875 		 * entry is the TOC value we need to use.
876 		 */
877 		__get_user(entry, (unsigned long __user *)start);
878 		__get_user(toc, (unsigned long __user *)start+1);
879 
880 		/* Check whether the e_entry function descriptor entries
881 		 * need to be relocated before we can use them.
882 		 */
883 		if (load_addr != 0) {
884 			entry += load_addr;
885 			toc   += load_addr;
886 		}
887 		regs->nip = entry;
888 		regs->gpr[2] = toc;
889 		regs->msr = MSR_USER64;
890 	} else {
891 		regs->nip = start;
892 		regs->gpr[2] = 0;
893 		regs->msr = MSR_USER32;
894 	}
895 #endif
896 
897 	discard_lazy_cpu_state();
898 #ifdef CONFIG_VSX
899 	current->thread.used_vsr = 0;
900 #endif
901 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
902 	current->thread.fpscr.val = 0;
903 #ifdef CONFIG_ALTIVEC
904 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
905 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
906 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
907 	current->thread.vrsave = 0;
908 	current->thread.used_vr = 0;
909 #endif /* CONFIG_ALTIVEC */
910 #ifdef CONFIG_SPE
911 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
912 	current->thread.acc = 0;
913 	current->thread.spefscr = 0;
914 	current->thread.used_spe = 0;
915 #endif /* CONFIG_SPE */
916 }
917 
918 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
919 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
920 
921 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
922 {
923 	struct pt_regs *regs = tsk->thread.regs;
924 
925 	/* This is a bit hairy.  If we are an SPE enabled  processor
926 	 * (have embedded fp) we store the IEEE exception enable flags in
927 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
928 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
929 	if (val & PR_FP_EXC_SW_ENABLE) {
930 #ifdef CONFIG_SPE
931 		if (cpu_has_feature(CPU_FTR_SPE)) {
932 			tsk->thread.fpexc_mode = val &
933 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
934 			return 0;
935 		} else {
936 			return -EINVAL;
937 		}
938 #else
939 		return -EINVAL;
940 #endif
941 	}
942 
943 	/* on a CONFIG_SPE this does not hurt us.  The bits that
944 	 * __pack_fe01 use do not overlap with bits used for
945 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
946 	 * on CONFIG_SPE implementations are reserved so writing to
947 	 * them does not change anything */
948 	if (val > PR_FP_EXC_PRECISE)
949 		return -EINVAL;
950 	tsk->thread.fpexc_mode = __pack_fe01(val);
951 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
952 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
953 			| tsk->thread.fpexc_mode;
954 	return 0;
955 }
956 
957 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
958 {
959 	unsigned int val;
960 
961 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
962 #ifdef CONFIG_SPE
963 		if (cpu_has_feature(CPU_FTR_SPE))
964 			val = tsk->thread.fpexc_mode;
965 		else
966 			return -EINVAL;
967 #else
968 		return -EINVAL;
969 #endif
970 	else
971 		val = __unpack_fe01(tsk->thread.fpexc_mode);
972 	return put_user(val, (unsigned int __user *) adr);
973 }
974 
975 int set_endian(struct task_struct *tsk, unsigned int val)
976 {
977 	struct pt_regs *regs = tsk->thread.regs;
978 
979 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
980 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
981 		return -EINVAL;
982 
983 	if (regs == NULL)
984 		return -EINVAL;
985 
986 	if (val == PR_ENDIAN_BIG)
987 		regs->msr &= ~MSR_LE;
988 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
989 		regs->msr |= MSR_LE;
990 	else
991 		return -EINVAL;
992 
993 	return 0;
994 }
995 
996 int get_endian(struct task_struct *tsk, unsigned long adr)
997 {
998 	struct pt_regs *regs = tsk->thread.regs;
999 	unsigned int val;
1000 
1001 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1002 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1003 		return -EINVAL;
1004 
1005 	if (regs == NULL)
1006 		return -EINVAL;
1007 
1008 	if (regs->msr & MSR_LE) {
1009 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1010 			val = PR_ENDIAN_LITTLE;
1011 		else
1012 			val = PR_ENDIAN_PPC_LITTLE;
1013 	} else
1014 		val = PR_ENDIAN_BIG;
1015 
1016 	return put_user(val, (unsigned int __user *)adr);
1017 }
1018 
1019 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1020 {
1021 	tsk->thread.align_ctl = val;
1022 	return 0;
1023 }
1024 
1025 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1026 {
1027 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1028 }
1029 
1030 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1031 
1032 int sys_clone(unsigned long clone_flags, unsigned long usp,
1033 	      int __user *parent_tidp, void __user *child_threadptr,
1034 	      int __user *child_tidp, int p6,
1035 	      struct pt_regs *regs)
1036 {
1037 	CHECK_FULL_REGS(regs);
1038 	if (usp == 0)
1039 		usp = regs->gpr[1];	/* stack pointer for child */
1040 #ifdef CONFIG_PPC64
1041 	if (is_32bit_task()) {
1042 		parent_tidp = TRUNC_PTR(parent_tidp);
1043 		child_tidp = TRUNC_PTR(child_tidp);
1044 	}
1045 #endif
1046  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1047 }
1048 
1049 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1050 	     unsigned long p4, unsigned long p5, unsigned long p6,
1051 	     struct pt_regs *regs)
1052 {
1053 	CHECK_FULL_REGS(regs);
1054 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1055 }
1056 
1057 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1058 	      unsigned long p4, unsigned long p5, unsigned long p6,
1059 	      struct pt_regs *regs)
1060 {
1061 	CHECK_FULL_REGS(regs);
1062 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1063 			regs, 0, NULL, NULL);
1064 }
1065 
1066 void __ret_from_kernel_execve(struct pt_regs *normal)
1067 __noreturn;
1068 
1069 void ret_from_kernel_execve(struct pt_regs *normal)
1070 {
1071 	set_thread_flag(TIF_RESTOREALL);
1072 	__ret_from_kernel_execve(normal);
1073 }
1074 
1075 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1076 				  unsigned long nbytes)
1077 {
1078 	unsigned long stack_page;
1079 	unsigned long cpu = task_cpu(p);
1080 
1081 	/*
1082 	 * Avoid crashing if the stack has overflowed and corrupted
1083 	 * task_cpu(p), which is in the thread_info struct.
1084 	 */
1085 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1086 		stack_page = (unsigned long) hardirq_ctx[cpu];
1087 		if (sp >= stack_page + sizeof(struct thread_struct)
1088 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1089 			return 1;
1090 
1091 		stack_page = (unsigned long) softirq_ctx[cpu];
1092 		if (sp >= stack_page + sizeof(struct thread_struct)
1093 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1094 			return 1;
1095 	}
1096 	return 0;
1097 }
1098 
1099 int validate_sp(unsigned long sp, struct task_struct *p,
1100 		       unsigned long nbytes)
1101 {
1102 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1103 
1104 	if (sp >= stack_page + sizeof(struct thread_struct)
1105 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1106 		return 1;
1107 
1108 	return valid_irq_stack(sp, p, nbytes);
1109 }
1110 
1111 EXPORT_SYMBOL(validate_sp);
1112 
1113 unsigned long get_wchan(struct task_struct *p)
1114 {
1115 	unsigned long ip, sp;
1116 	int count = 0;
1117 
1118 	if (!p || p == current || p->state == TASK_RUNNING)
1119 		return 0;
1120 
1121 	sp = p->thread.ksp;
1122 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1123 		return 0;
1124 
1125 	do {
1126 		sp = *(unsigned long *)sp;
1127 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1128 			return 0;
1129 		if (count > 0) {
1130 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1131 			if (!in_sched_functions(ip))
1132 				return ip;
1133 		}
1134 	} while (count++ < 16);
1135 	return 0;
1136 }
1137 
1138 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1139 
1140 void show_stack(struct task_struct *tsk, unsigned long *stack)
1141 {
1142 	unsigned long sp, ip, lr, newsp;
1143 	int count = 0;
1144 	int firstframe = 1;
1145 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1146 	int curr_frame = current->curr_ret_stack;
1147 	extern void return_to_handler(void);
1148 	unsigned long rth = (unsigned long)return_to_handler;
1149 	unsigned long mrth = -1;
1150 #ifdef CONFIG_PPC64
1151 	extern void mod_return_to_handler(void);
1152 	rth = *(unsigned long *)rth;
1153 	mrth = (unsigned long)mod_return_to_handler;
1154 	mrth = *(unsigned long *)mrth;
1155 #endif
1156 #endif
1157 
1158 	sp = (unsigned long) stack;
1159 	if (tsk == NULL)
1160 		tsk = current;
1161 	if (sp == 0) {
1162 		if (tsk == current)
1163 			asm("mr %0,1" : "=r" (sp));
1164 		else
1165 			sp = tsk->thread.ksp;
1166 	}
1167 
1168 	lr = 0;
1169 	printk("Call Trace:\n");
1170 	do {
1171 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1172 			return;
1173 
1174 		stack = (unsigned long *) sp;
1175 		newsp = stack[0];
1176 		ip = stack[STACK_FRAME_LR_SAVE];
1177 		if (!firstframe || ip != lr) {
1178 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1179 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1180 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1181 				printk(" (%pS)",
1182 				       (void *)current->ret_stack[curr_frame].ret);
1183 				curr_frame--;
1184 			}
1185 #endif
1186 			if (firstframe)
1187 				printk(" (unreliable)");
1188 			printk("\n");
1189 		}
1190 		firstframe = 0;
1191 
1192 		/*
1193 		 * See if this is an exception frame.
1194 		 * We look for the "regshere" marker in the current frame.
1195 		 */
1196 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1197 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1198 			struct pt_regs *regs = (struct pt_regs *)
1199 				(sp + STACK_FRAME_OVERHEAD);
1200 			lr = regs->link;
1201 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1202 			       regs->trap, (void *)regs->nip, (void *)lr);
1203 			firstframe = 1;
1204 		}
1205 
1206 		sp = newsp;
1207 	} while (count++ < kstack_depth_to_print);
1208 }
1209 
1210 void dump_stack(void)
1211 {
1212 	show_stack(current, NULL);
1213 }
1214 EXPORT_SYMBOL(dump_stack);
1215 
1216 #ifdef CONFIG_PPC64
1217 /* Called with hard IRQs off */
1218 void __ppc64_runlatch_on(void)
1219 {
1220 	struct thread_info *ti = current_thread_info();
1221 	unsigned long ctrl;
1222 
1223 	ctrl = mfspr(SPRN_CTRLF);
1224 	ctrl |= CTRL_RUNLATCH;
1225 	mtspr(SPRN_CTRLT, ctrl);
1226 
1227 	ti->local_flags |= _TLF_RUNLATCH;
1228 }
1229 
1230 /* Called with hard IRQs off */
1231 void __ppc64_runlatch_off(void)
1232 {
1233 	struct thread_info *ti = current_thread_info();
1234 	unsigned long ctrl;
1235 
1236 	ti->local_flags &= ~_TLF_RUNLATCH;
1237 
1238 	ctrl = mfspr(SPRN_CTRLF);
1239 	ctrl &= ~CTRL_RUNLATCH;
1240 	mtspr(SPRN_CTRLT, ctrl);
1241 }
1242 #endif /* CONFIG_PPC64 */
1243 
1244 unsigned long arch_align_stack(unsigned long sp)
1245 {
1246 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1247 		sp -= get_random_int() & ~PAGE_MASK;
1248 	return sp & ~0xf;
1249 }
1250 
1251 static inline unsigned long brk_rnd(void)
1252 {
1253         unsigned long rnd = 0;
1254 
1255 	/* 8MB for 32bit, 1GB for 64bit */
1256 	if (is_32bit_task())
1257 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1258 	else
1259 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1260 
1261 	return rnd << PAGE_SHIFT;
1262 }
1263 
1264 unsigned long arch_randomize_brk(struct mm_struct *mm)
1265 {
1266 	unsigned long base = mm->brk;
1267 	unsigned long ret;
1268 
1269 #ifdef CONFIG_PPC_STD_MMU_64
1270 	/*
1271 	 * If we are using 1TB segments and we are allowed to randomise
1272 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1273 	 * segment. Otherwise the heap will be in the bottom 1TB
1274 	 * which always uses 256MB segments and this may result in a
1275 	 * performance penalty.
1276 	 */
1277 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1278 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1279 #endif
1280 
1281 	ret = PAGE_ALIGN(base + brk_rnd());
1282 
1283 	if (ret < mm->brk)
1284 		return mm->brk;
1285 
1286 	return ret;
1287 }
1288 
1289 unsigned long randomize_et_dyn(unsigned long base)
1290 {
1291 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1292 
1293 	if (ret < base)
1294 		return base;
1295 
1296 	return ret;
1297 }
1298