xref: /openbmc/linux/arch/powerpc/kernel/pci_dn.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pci_dn.c
4  *
5  * Copyright (C) 2001 Todd Inglett, IBM Corporation
6  *
7  * PCI manipulation via device_nodes.
8  */
9 #include <linux/kernel.h>
10 #include <linux/pci.h>
11 #include <linux/string.h>
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/gfp.h>
15 
16 #include <asm/io.h>
17 #include <asm/prom.h>
18 #include <asm/pci-bridge.h>
19 #include <asm/ppc-pci.h>
20 #include <asm/firmware.h>
21 #include <asm/eeh.h>
22 
23 /*
24  * The function is used to find the firmware data of one
25  * specific PCI device, which is attached to the indicated
26  * PCI bus. For VFs, their firmware data is linked to that
27  * one of PF's bridge. For other devices, their firmware
28  * data is linked to that of their bridge.
29  */
30 static struct pci_dn *pci_bus_to_pdn(struct pci_bus *bus)
31 {
32 	struct pci_bus *pbus;
33 	struct device_node *dn;
34 	struct pci_dn *pdn;
35 
36 	/*
37 	 * We probably have virtual bus which doesn't
38 	 * have associated bridge.
39 	 */
40 	pbus = bus;
41 	while (pbus) {
42 		if (pci_is_root_bus(pbus) || pbus->self)
43 			break;
44 
45 		pbus = pbus->parent;
46 	}
47 
48 	/*
49 	 * Except virtual bus, all PCI buses should
50 	 * have device nodes.
51 	 */
52 	dn = pci_bus_to_OF_node(pbus);
53 	pdn = dn ? PCI_DN(dn) : NULL;
54 
55 	return pdn;
56 }
57 
58 struct pci_dn *pci_get_pdn_by_devfn(struct pci_bus *bus,
59 				    int devfn)
60 {
61 	struct device_node *dn = NULL;
62 	struct pci_dn *parent, *pdn;
63 	struct pci_dev *pdev = NULL;
64 
65 	/* Fast path: fetch from PCI device */
66 	list_for_each_entry(pdev, &bus->devices, bus_list) {
67 		if (pdev->devfn == devfn) {
68 			if (pdev->dev.archdata.pci_data)
69 				return pdev->dev.archdata.pci_data;
70 
71 			dn = pci_device_to_OF_node(pdev);
72 			break;
73 		}
74 	}
75 
76 	/* Fast path: fetch from device node */
77 	pdn = dn ? PCI_DN(dn) : NULL;
78 	if (pdn)
79 		return pdn;
80 
81 	/* Slow path: fetch from firmware data hierarchy */
82 	parent = pci_bus_to_pdn(bus);
83 	if (!parent)
84 		return NULL;
85 
86 	list_for_each_entry(pdn, &parent->child_list, list) {
87 		if (pdn->busno == bus->number &&
88                     pdn->devfn == devfn)
89                         return pdn;
90         }
91 
92 	return NULL;
93 }
94 
95 struct pci_dn *pci_get_pdn(struct pci_dev *pdev)
96 {
97 	struct device_node *dn;
98 	struct pci_dn *parent, *pdn;
99 
100 	/* Search device directly */
101 	if (pdev->dev.archdata.pci_data)
102 		return pdev->dev.archdata.pci_data;
103 
104 	/* Check device node */
105 	dn = pci_device_to_OF_node(pdev);
106 	pdn = dn ? PCI_DN(dn) : NULL;
107 	if (pdn)
108 		return pdn;
109 
110 	/*
111 	 * VFs don't have device nodes. We hook their
112 	 * firmware data to PF's bridge.
113 	 */
114 	parent = pci_bus_to_pdn(pdev->bus);
115 	if (!parent)
116 		return NULL;
117 
118 	list_for_each_entry(pdn, &parent->child_list, list) {
119 		if (pdn->busno == pdev->bus->number &&
120 		    pdn->devfn == pdev->devfn)
121 			return pdn;
122 	}
123 
124 	return NULL;
125 }
126 
127 #ifdef CONFIG_PCI_IOV
128 static struct pci_dn *add_one_dev_pci_data(struct pci_dn *parent,
129 					   int vf_index,
130 					   int busno, int devfn)
131 {
132 	struct pci_dn *pdn;
133 
134 	/* Except PHB, we always have the parent */
135 	if (!parent)
136 		return NULL;
137 
138 	pdn = kzalloc(sizeof(*pdn), GFP_KERNEL);
139 	if (!pdn)
140 		return NULL;
141 
142 	pdn->phb = parent->phb;
143 	pdn->parent = parent;
144 	pdn->busno = busno;
145 	pdn->devfn = devfn;
146 	pdn->vf_index = vf_index;
147 	pdn->pe_number = IODA_INVALID_PE;
148 	INIT_LIST_HEAD(&pdn->child_list);
149 	INIT_LIST_HEAD(&pdn->list);
150 	list_add_tail(&pdn->list, &parent->child_list);
151 
152 	return pdn;
153 }
154 #endif
155 
156 struct pci_dn *add_dev_pci_data(struct pci_dev *pdev)
157 {
158 #ifdef CONFIG_PCI_IOV
159 	struct pci_dn *parent, *pdn;
160 	int i;
161 
162 	/* Only support IOV for now */
163 	if (!pdev->is_physfn)
164 		return pci_get_pdn(pdev);
165 
166 	/* Check if VFs have been populated */
167 	pdn = pci_get_pdn(pdev);
168 	if (!pdn || (pdn->flags & PCI_DN_FLAG_IOV_VF))
169 		return NULL;
170 
171 	pdn->flags |= PCI_DN_FLAG_IOV_VF;
172 	parent = pci_bus_to_pdn(pdev->bus);
173 	if (!parent)
174 		return NULL;
175 
176 	for (i = 0; i < pci_sriov_get_totalvfs(pdev); i++) {
177 		struct eeh_dev *edev __maybe_unused;
178 
179 		pdn = add_one_dev_pci_data(parent, i,
180 					   pci_iov_virtfn_bus(pdev, i),
181 					   pci_iov_virtfn_devfn(pdev, i));
182 		if (!pdn) {
183 			dev_warn(&pdev->dev, "%s: Cannot create firmware data for VF#%d\n",
184 				 __func__, i);
185 			return NULL;
186 		}
187 
188 #ifdef CONFIG_EEH
189 		/* Create the EEH device for the VF */
190 		edev = eeh_dev_init(pdn);
191 		BUG_ON(!edev);
192 		edev->physfn = pdev;
193 #endif /* CONFIG_EEH */
194 	}
195 #endif /* CONFIG_PCI_IOV */
196 
197 	return pci_get_pdn(pdev);
198 }
199 
200 void remove_dev_pci_data(struct pci_dev *pdev)
201 {
202 #ifdef CONFIG_PCI_IOV
203 	struct pci_dn *parent;
204 	struct pci_dn *pdn, *tmp;
205 	int i;
206 
207 	/*
208 	 * VF and VF PE are created/released dynamically, so we need to
209 	 * bind/unbind them.  Otherwise the VF and VF PE would be mismatched
210 	 * when re-enabling SR-IOV.
211 	 */
212 	if (pdev->is_virtfn) {
213 		pdn = pci_get_pdn(pdev);
214 		pdn->pe_number = IODA_INVALID_PE;
215 		return;
216 	}
217 
218 	/* Only support IOV PF for now */
219 	if (!pdev->is_physfn)
220 		return;
221 
222 	/* Check if VFs have been populated */
223 	pdn = pci_get_pdn(pdev);
224 	if (!pdn || !(pdn->flags & PCI_DN_FLAG_IOV_VF))
225 		return;
226 
227 	pdn->flags &= ~PCI_DN_FLAG_IOV_VF;
228 	parent = pci_bus_to_pdn(pdev->bus);
229 	if (!parent)
230 		return;
231 
232 	/*
233 	 * We might introduce flag to pci_dn in future
234 	 * so that we can release VF's firmware data in
235 	 * a batch mode.
236 	 */
237 	for (i = 0; i < pci_sriov_get_totalvfs(pdev); i++) {
238 		struct eeh_dev *edev __maybe_unused;
239 
240 		list_for_each_entry_safe(pdn, tmp,
241 			&parent->child_list, list) {
242 			if (pdn->busno != pci_iov_virtfn_bus(pdev, i) ||
243 			    pdn->devfn != pci_iov_virtfn_devfn(pdev, i))
244 				continue;
245 
246 #ifdef CONFIG_EEH
247 			/* Release EEH device for the VF */
248 			edev = pdn_to_eeh_dev(pdn);
249 			if (edev) {
250 				pdn->edev = NULL;
251 				kfree(edev);
252 			}
253 #endif /* CONFIG_EEH */
254 
255 			if (!list_empty(&pdn->list))
256 				list_del(&pdn->list);
257 
258 			kfree(pdn);
259 		}
260 	}
261 #endif /* CONFIG_PCI_IOV */
262 }
263 
264 struct pci_dn *pci_add_device_node_info(struct pci_controller *hose,
265 					struct device_node *dn)
266 {
267 	const __be32 *type = of_get_property(dn, "ibm,pci-config-space-type", NULL);
268 	const __be32 *regs;
269 	struct device_node *parent;
270 	struct pci_dn *pdn;
271 #ifdef CONFIG_EEH
272 	struct eeh_dev *edev;
273 #endif
274 
275 	pdn = kzalloc(sizeof(*pdn), GFP_KERNEL);
276 	if (pdn == NULL)
277 		return NULL;
278 	dn->data = pdn;
279 	pdn->phb = hose;
280 	pdn->pe_number = IODA_INVALID_PE;
281 	regs = of_get_property(dn, "reg", NULL);
282 	if (regs) {
283 		u32 addr = of_read_number(regs, 1);
284 
285 		/* First register entry is addr (00BBSS00)  */
286 		pdn->busno = (addr >> 16) & 0xff;
287 		pdn->devfn = (addr >> 8) & 0xff;
288 	}
289 
290 	/* vendor/device IDs and class code */
291 	regs = of_get_property(dn, "vendor-id", NULL);
292 	pdn->vendor_id = regs ? of_read_number(regs, 1) : 0;
293 	regs = of_get_property(dn, "device-id", NULL);
294 	pdn->device_id = regs ? of_read_number(regs, 1) : 0;
295 	regs = of_get_property(dn, "class-code", NULL);
296 	pdn->class_code = regs ? of_read_number(regs, 1) : 0;
297 
298 	/* Extended config space */
299 	pdn->pci_ext_config_space = (type && of_read_number(type, 1) == 1);
300 
301 	/* Create EEH device */
302 #ifdef CONFIG_EEH
303 	edev = eeh_dev_init(pdn);
304 	if (!edev) {
305 		kfree(pdn);
306 		return NULL;
307 	}
308 #endif
309 
310 	/* Attach to parent node */
311 	INIT_LIST_HEAD(&pdn->child_list);
312 	INIT_LIST_HEAD(&pdn->list);
313 	parent = of_get_parent(dn);
314 	pdn->parent = parent ? PCI_DN(parent) : NULL;
315 	if (pdn->parent)
316 		list_add_tail(&pdn->list, &pdn->parent->child_list);
317 
318 	return pdn;
319 }
320 EXPORT_SYMBOL_GPL(pci_add_device_node_info);
321 
322 void pci_remove_device_node_info(struct device_node *dn)
323 {
324 	struct pci_dn *pdn = dn ? PCI_DN(dn) : NULL;
325 	struct device_node *parent;
326 #ifdef CONFIG_EEH
327 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
328 
329 	if (edev)
330 		edev->pdn = NULL;
331 #endif
332 
333 	if (!pdn)
334 		return;
335 
336 	WARN_ON(!list_empty(&pdn->child_list));
337 	list_del(&pdn->list);
338 
339 	parent = of_get_parent(dn);
340 	if (parent)
341 		of_node_put(parent);
342 
343 	dn->data = NULL;
344 	kfree(pdn);
345 }
346 EXPORT_SYMBOL_GPL(pci_remove_device_node_info);
347 
348 /*
349  * Traverse a device tree stopping each PCI device in the tree.
350  * This is done depth first.  As each node is processed, a "pre"
351  * function is called and the children are processed recursively.
352  *
353  * The "pre" func returns a value.  If non-zero is returned from
354  * the "pre" func, the traversal stops and this value is returned.
355  * This return value is useful when using traverse as a method of
356  * finding a device.
357  *
358  * NOTE: we do not run the func for devices that do not appear to
359  * be PCI except for the start node which we assume (this is good
360  * because the start node is often a phb which may be missing PCI
361  * properties).
362  * We use the class-code as an indicator. If we run into
363  * one of these nodes we also assume its siblings are non-pci for
364  * performance.
365  */
366 void *pci_traverse_device_nodes(struct device_node *start,
367 				void *(*fn)(struct device_node *, void *),
368 				void *data)
369 {
370 	struct device_node *dn, *nextdn;
371 	void *ret;
372 
373 	/* We started with a phb, iterate all childs */
374 	for (dn = start->child; dn; dn = nextdn) {
375 		const __be32 *classp;
376 		u32 class = 0;
377 
378 		nextdn = NULL;
379 		classp = of_get_property(dn, "class-code", NULL);
380 		if (classp)
381 			class = of_read_number(classp, 1);
382 
383 		if (fn) {
384 			ret = fn(dn, data);
385 			if (ret)
386 				return ret;
387 		}
388 
389 		/* If we are a PCI bridge, go down */
390 		if (dn->child && ((class >> 8) == PCI_CLASS_BRIDGE_PCI ||
391 				  (class >> 8) == PCI_CLASS_BRIDGE_CARDBUS))
392 			/* Depth first...do children */
393 			nextdn = dn->child;
394 		else if (dn->sibling)
395 			/* ok, try next sibling instead. */
396 			nextdn = dn->sibling;
397 		if (!nextdn) {
398 			/* Walk up to next valid sibling. */
399 			do {
400 				dn = dn->parent;
401 				if (dn == start)
402 					return NULL;
403 			} while (dn->sibling == NULL);
404 			nextdn = dn->sibling;
405 		}
406 	}
407 	return NULL;
408 }
409 EXPORT_SYMBOL_GPL(pci_traverse_device_nodes);
410 
411 static struct pci_dn *pci_dn_next_one(struct pci_dn *root,
412 				      struct pci_dn *pdn)
413 {
414 	struct list_head *next = pdn->child_list.next;
415 
416 	if (next != &pdn->child_list)
417 		return list_entry(next, struct pci_dn, list);
418 
419 	while (1) {
420 		if (pdn == root)
421 			return NULL;
422 
423 		next = pdn->list.next;
424 		if (next != &pdn->parent->child_list)
425 			break;
426 
427 		pdn = pdn->parent;
428 	}
429 
430 	return list_entry(next, struct pci_dn, list);
431 }
432 
433 void *traverse_pci_dn(struct pci_dn *root,
434 		      void *(*fn)(struct pci_dn *, void *),
435 		      void *data)
436 {
437 	struct pci_dn *pdn = root;
438 	void *ret;
439 
440 	/* Only scan the child nodes */
441 	for (pdn = pci_dn_next_one(root, pdn); pdn;
442 	     pdn = pci_dn_next_one(root, pdn)) {
443 		ret = fn(pdn, data);
444 		if (ret)
445 			return ret;
446 	}
447 
448 	return NULL;
449 }
450 
451 static void *add_pdn(struct device_node *dn, void *data)
452 {
453 	struct pci_controller *hose = data;
454 	struct pci_dn *pdn;
455 
456 	pdn = pci_add_device_node_info(hose, dn);
457 	if (!pdn)
458 		return ERR_PTR(-ENOMEM);
459 
460 	return NULL;
461 }
462 
463 /**
464  * pci_devs_phb_init_dynamic - setup pci devices under this PHB
465  * phb: pci-to-host bridge (top-level bridge connecting to cpu)
466  *
467  * This routine is called both during boot, (before the memory
468  * subsystem is set up, before kmalloc is valid) and during the
469  * dynamic lpar operation of adding a PHB to a running system.
470  */
471 void pci_devs_phb_init_dynamic(struct pci_controller *phb)
472 {
473 	struct device_node *dn = phb->dn;
474 	struct pci_dn *pdn;
475 
476 	/* PHB nodes themselves must not match */
477 	pdn = pci_add_device_node_info(phb, dn);
478 	if (pdn) {
479 		pdn->devfn = pdn->busno = -1;
480 		pdn->vendor_id = pdn->device_id = pdn->class_code = 0;
481 		pdn->phb = phb;
482 		phb->pci_data = pdn;
483 	}
484 
485 	/* Update dn->phb ptrs for new phb and children devices */
486 	pci_traverse_device_nodes(dn, add_pdn, phb);
487 }
488 
489 /**
490  * pci_devs_phb_init - Initialize phbs and pci devs under them.
491  *
492  * This routine walks over all phb's (pci-host bridges) on the
493  * system, and sets up assorted pci-related structures
494  * (including pci info in the device node structs) for each
495  * pci device found underneath.  This routine runs once,
496  * early in the boot sequence.
497  */
498 static int __init pci_devs_phb_init(void)
499 {
500 	struct pci_controller *phb, *tmp;
501 
502 	/* This must be done first so the device nodes have valid pci info! */
503 	list_for_each_entry_safe(phb, tmp, &hose_list, list_node)
504 		pci_devs_phb_init_dynamic(phb);
505 
506 	return 0;
507 }
508 
509 core_initcall(pci_devs_phb_init);
510 
511 static void pci_dev_pdn_setup(struct pci_dev *pdev)
512 {
513 	struct pci_dn *pdn;
514 
515 	if (pdev->dev.archdata.pci_data)
516 		return;
517 
518 	/* Setup the fast path */
519 	pdn = pci_get_pdn(pdev);
520 	pdev->dev.archdata.pci_data = pdn;
521 }
522 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pci_dev_pdn_setup);
523