1 /* 2 * Contains common pci routines for ALL ppc platform 3 * (based on pci_32.c and pci_64.c) 4 * 5 * Port for PPC64 David Engebretsen, IBM Corp. 6 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. 7 * 8 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM 9 * Rework, based on alpha PCI code. 10 * 11 * Common pmac/prep/chrp pci routines. -- Cort 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/pci.h> 21 #include <linux/string.h> 22 #include <linux/init.h> 23 #include <linux/delay.h> 24 #include <linux/export.h> 25 #include <linux/of_address.h> 26 #include <linux/of_pci.h> 27 #include <linux/mm.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/list.h> 30 #include <linux/syscalls.h> 31 #include <linux/irq.h> 32 #include <linux/vmalloc.h> 33 #include <linux/slab.h> 34 #include <linux/vgaarb.h> 35 36 #include <asm/processor.h> 37 #include <asm/io.h> 38 #include <asm/prom.h> 39 #include <asm/pci-bridge.h> 40 #include <asm/byteorder.h> 41 #include <asm/machdep.h> 42 #include <asm/ppc-pci.h> 43 #include <asm/eeh.h> 44 45 #include "../../../drivers/pci/pci.h" 46 47 /* hose_spinlock protects accesses to the the phb_bitmap. */ 48 static DEFINE_SPINLOCK(hose_spinlock); 49 LIST_HEAD(hose_list); 50 51 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ 52 #define MAX_PHBS 0x10000 53 54 /* 55 * For dynamic PHB numbering: used/free PHBs tracking bitmap. 56 * Accesses to this bitmap should be protected by hose_spinlock. 57 */ 58 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); 59 60 /* ISA Memory physical address */ 61 resource_size_t isa_mem_base; 62 EXPORT_SYMBOL(isa_mem_base); 63 64 65 static const struct dma_map_ops *pci_dma_ops = &dma_nommu_ops; 66 67 void set_pci_dma_ops(const struct dma_map_ops *dma_ops) 68 { 69 pci_dma_ops = dma_ops; 70 } 71 72 const struct dma_map_ops *get_pci_dma_ops(void) 73 { 74 return pci_dma_ops; 75 } 76 EXPORT_SYMBOL(get_pci_dma_ops); 77 78 /* 79 * This function should run under locking protection, specifically 80 * hose_spinlock. 81 */ 82 static int get_phb_number(struct device_node *dn) 83 { 84 int ret, phb_id = -1; 85 u32 prop_32; 86 u64 prop; 87 88 /* 89 * Try fixed PHB numbering first, by checking archs and reading 90 * the respective device-tree properties. Firstly, try powernv by 91 * reading "ibm,opal-phbid", only present in OPAL environment. 92 */ 93 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); 94 if (ret) { 95 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); 96 prop = prop_32; 97 } 98 99 if (!ret) 100 phb_id = (int)(prop & (MAX_PHBS - 1)); 101 102 /* We need to be sure to not use the same PHB number twice. */ 103 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) 104 return phb_id; 105 106 /* 107 * If not pseries nor powernv, or if fixed PHB numbering tried to add 108 * the same PHB number twice, then fallback to dynamic PHB numbering. 109 */ 110 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); 111 BUG_ON(phb_id >= MAX_PHBS); 112 set_bit(phb_id, phb_bitmap); 113 114 return phb_id; 115 } 116 117 struct pci_controller *pcibios_alloc_controller(struct device_node *dev) 118 { 119 struct pci_controller *phb; 120 121 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); 122 if (phb == NULL) 123 return NULL; 124 spin_lock(&hose_spinlock); 125 phb->global_number = get_phb_number(dev); 126 list_add_tail(&phb->list_node, &hose_list); 127 spin_unlock(&hose_spinlock); 128 phb->dn = dev; 129 phb->is_dynamic = slab_is_available(); 130 #ifdef CONFIG_PPC64 131 if (dev) { 132 int nid = of_node_to_nid(dev); 133 134 if (nid < 0 || !node_online(nid)) 135 nid = -1; 136 137 PHB_SET_NODE(phb, nid); 138 } 139 #endif 140 return phb; 141 } 142 EXPORT_SYMBOL_GPL(pcibios_alloc_controller); 143 144 void pcibios_free_controller(struct pci_controller *phb) 145 { 146 spin_lock(&hose_spinlock); 147 148 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ 149 if (phb->global_number < MAX_PHBS) 150 clear_bit(phb->global_number, phb_bitmap); 151 152 list_del(&phb->list_node); 153 spin_unlock(&hose_spinlock); 154 155 if (phb->is_dynamic) 156 kfree(phb); 157 } 158 EXPORT_SYMBOL_GPL(pcibios_free_controller); 159 160 /* 161 * This function is used to call pcibios_free_controller() 162 * in a deferred manner: a callback from the PCI subsystem. 163 * 164 * _*DO NOT*_ call pcibios_free_controller() explicitly if 165 * this is used (or it may access an invalid *phb pointer). 166 * 167 * The callback occurs when all references to the root bus 168 * are dropped (e.g., child buses/devices and their users). 169 * 170 * It's called as .release_fn() of 'struct pci_host_bridge' 171 * which is associated with the 'struct pci_controller.bus' 172 * (root bus) - it expects .release_data to hold a pointer 173 * to 'struct pci_controller'. 174 * 175 * In order to use it, register .release_fn()/release_data 176 * like this: 177 * 178 * pci_set_host_bridge_release(bridge, 179 * pcibios_free_controller_deferred 180 * (void *) phb); 181 * 182 * e.g. in the pcibios_root_bridge_prepare() callback from 183 * pci_create_root_bus(). 184 */ 185 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) 186 { 187 struct pci_controller *phb = (struct pci_controller *) 188 bridge->release_data; 189 190 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); 191 192 pcibios_free_controller(phb); 193 } 194 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); 195 196 /* 197 * The function is used to return the minimal alignment 198 * for memory or I/O windows of the associated P2P bridge. 199 * By default, 4KiB alignment for I/O windows and 1MiB for 200 * memory windows. 201 */ 202 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 203 unsigned long type) 204 { 205 struct pci_controller *phb = pci_bus_to_host(bus); 206 207 if (phb->controller_ops.window_alignment) 208 return phb->controller_ops.window_alignment(bus, type); 209 210 /* 211 * PCI core will figure out the default 212 * alignment: 4KiB for I/O and 1MiB for 213 * memory window. 214 */ 215 return 1; 216 } 217 218 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) 219 { 220 struct pci_controller *hose = pci_bus_to_host(bus); 221 222 if (hose->controller_ops.setup_bridge) 223 hose->controller_ops.setup_bridge(bus, type); 224 } 225 226 void pcibios_reset_secondary_bus(struct pci_dev *dev) 227 { 228 struct pci_controller *phb = pci_bus_to_host(dev->bus); 229 230 if (phb->controller_ops.reset_secondary_bus) { 231 phb->controller_ops.reset_secondary_bus(dev); 232 return; 233 } 234 235 pci_reset_secondary_bus(dev); 236 } 237 238 resource_size_t pcibios_default_alignment(void) 239 { 240 if (ppc_md.pcibios_default_alignment) 241 return ppc_md.pcibios_default_alignment(); 242 243 return 0; 244 } 245 246 #ifdef CONFIG_PCI_IOV 247 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) 248 { 249 if (ppc_md.pcibios_iov_resource_alignment) 250 return ppc_md.pcibios_iov_resource_alignment(pdev, resno); 251 252 return pci_iov_resource_size(pdev, resno); 253 } 254 255 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 256 { 257 if (ppc_md.pcibios_sriov_enable) 258 return ppc_md.pcibios_sriov_enable(pdev, num_vfs); 259 260 return 0; 261 } 262 263 int pcibios_sriov_disable(struct pci_dev *pdev) 264 { 265 if (ppc_md.pcibios_sriov_disable) 266 return ppc_md.pcibios_sriov_disable(pdev); 267 268 return 0; 269 } 270 271 #endif /* CONFIG_PCI_IOV */ 272 273 void pcibios_bus_add_device(struct pci_dev *pdev) 274 { 275 if (ppc_md.pcibios_bus_add_device) 276 ppc_md.pcibios_bus_add_device(pdev); 277 } 278 279 static resource_size_t pcibios_io_size(const struct pci_controller *hose) 280 { 281 #ifdef CONFIG_PPC64 282 return hose->pci_io_size; 283 #else 284 return resource_size(&hose->io_resource); 285 #endif 286 } 287 288 int pcibios_vaddr_is_ioport(void __iomem *address) 289 { 290 int ret = 0; 291 struct pci_controller *hose; 292 resource_size_t size; 293 294 spin_lock(&hose_spinlock); 295 list_for_each_entry(hose, &hose_list, list_node) { 296 size = pcibios_io_size(hose); 297 if (address >= hose->io_base_virt && 298 address < (hose->io_base_virt + size)) { 299 ret = 1; 300 break; 301 } 302 } 303 spin_unlock(&hose_spinlock); 304 return ret; 305 } 306 307 unsigned long pci_address_to_pio(phys_addr_t address) 308 { 309 struct pci_controller *hose; 310 resource_size_t size; 311 unsigned long ret = ~0; 312 313 spin_lock(&hose_spinlock); 314 list_for_each_entry(hose, &hose_list, list_node) { 315 size = pcibios_io_size(hose); 316 if (address >= hose->io_base_phys && 317 address < (hose->io_base_phys + size)) { 318 unsigned long base = 319 (unsigned long)hose->io_base_virt - _IO_BASE; 320 ret = base + (address - hose->io_base_phys); 321 break; 322 } 323 } 324 spin_unlock(&hose_spinlock); 325 326 return ret; 327 } 328 EXPORT_SYMBOL_GPL(pci_address_to_pio); 329 330 /* 331 * Return the domain number for this bus. 332 */ 333 int pci_domain_nr(struct pci_bus *bus) 334 { 335 struct pci_controller *hose = pci_bus_to_host(bus); 336 337 return hose->global_number; 338 } 339 EXPORT_SYMBOL(pci_domain_nr); 340 341 /* This routine is meant to be used early during boot, when the 342 * PCI bus numbers have not yet been assigned, and you need to 343 * issue PCI config cycles to an OF device. 344 * It could also be used to "fix" RTAS config cycles if you want 345 * to set pci_assign_all_buses to 1 and still use RTAS for PCI 346 * config cycles. 347 */ 348 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) 349 { 350 while(node) { 351 struct pci_controller *hose, *tmp; 352 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 353 if (hose->dn == node) 354 return hose; 355 node = node->parent; 356 } 357 return NULL; 358 } 359 360 /* 361 * Reads the interrupt pin to determine if interrupt is use by card. 362 * If the interrupt is used, then gets the interrupt line from the 363 * openfirmware and sets it in the pci_dev and pci_config line. 364 */ 365 static int pci_read_irq_line(struct pci_dev *pci_dev) 366 { 367 int virq; 368 369 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); 370 371 /* Try to get a mapping from the device-tree */ 372 virq = of_irq_parse_and_map_pci(pci_dev, 0, 0); 373 if (virq <= 0) { 374 u8 line, pin; 375 376 /* If that fails, lets fallback to what is in the config 377 * space and map that through the default controller. We 378 * also set the type to level low since that's what PCI 379 * interrupts are. If your platform does differently, then 380 * either provide a proper interrupt tree or don't use this 381 * function. 382 */ 383 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) 384 return -1; 385 if (pin == 0) 386 return -1; 387 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || 388 line == 0xff || line == 0) { 389 return -1; 390 } 391 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", 392 line, pin); 393 394 virq = irq_create_mapping(NULL, line); 395 if (virq) 396 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); 397 } 398 399 if (!virq) { 400 pr_debug(" Failed to map !\n"); 401 return -1; 402 } 403 404 pr_debug(" Mapped to linux irq %d\n", virq); 405 406 pci_dev->irq = virq; 407 408 return 0; 409 } 410 411 /* 412 * Platform support for /proc/bus/pci/X/Y mmap()s. 413 * -- paulus. 414 */ 415 int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma) 416 { 417 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 418 resource_size_t ioaddr = pci_resource_start(pdev, bar); 419 420 if (!hose) 421 return -EINVAL; 422 423 /* Convert to an offset within this PCI controller */ 424 ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE; 425 426 vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT; 427 return 0; 428 } 429 430 /* 431 * This one is used by /dev/mem and fbdev who have no clue about the 432 * PCI device, it tries to find the PCI device first and calls the 433 * above routine 434 */ 435 pgprot_t pci_phys_mem_access_prot(struct file *file, 436 unsigned long pfn, 437 unsigned long size, 438 pgprot_t prot) 439 { 440 struct pci_dev *pdev = NULL; 441 struct resource *found = NULL; 442 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; 443 int i; 444 445 if (page_is_ram(pfn)) 446 return prot; 447 448 prot = pgprot_noncached(prot); 449 for_each_pci_dev(pdev) { 450 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 451 struct resource *rp = &pdev->resource[i]; 452 int flags = rp->flags; 453 454 /* Active and same type? */ 455 if ((flags & IORESOURCE_MEM) == 0) 456 continue; 457 /* In the range of this resource? */ 458 if (offset < (rp->start & PAGE_MASK) || 459 offset > rp->end) 460 continue; 461 found = rp; 462 break; 463 } 464 if (found) 465 break; 466 } 467 if (found) { 468 if (found->flags & IORESOURCE_PREFETCH) 469 prot = pgprot_noncached_wc(prot); 470 pci_dev_put(pdev); 471 } 472 473 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", 474 (unsigned long long)offset, pgprot_val(prot)); 475 476 return prot; 477 } 478 479 /* This provides legacy IO read access on a bus */ 480 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) 481 { 482 unsigned long offset; 483 struct pci_controller *hose = pci_bus_to_host(bus); 484 struct resource *rp = &hose->io_resource; 485 void __iomem *addr; 486 487 /* Check if port can be supported by that bus. We only check 488 * the ranges of the PHB though, not the bus itself as the rules 489 * for forwarding legacy cycles down bridges are not our problem 490 * here. So if the host bridge supports it, we do it. 491 */ 492 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 493 offset += port; 494 495 if (!(rp->flags & IORESOURCE_IO)) 496 return -ENXIO; 497 if (offset < rp->start || (offset + size) > rp->end) 498 return -ENXIO; 499 addr = hose->io_base_virt + port; 500 501 switch(size) { 502 case 1: 503 *((u8 *)val) = in_8(addr); 504 return 1; 505 case 2: 506 if (port & 1) 507 return -EINVAL; 508 *((u16 *)val) = in_le16(addr); 509 return 2; 510 case 4: 511 if (port & 3) 512 return -EINVAL; 513 *((u32 *)val) = in_le32(addr); 514 return 4; 515 } 516 return -EINVAL; 517 } 518 519 /* This provides legacy IO write access on a bus */ 520 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) 521 { 522 unsigned long offset; 523 struct pci_controller *hose = pci_bus_to_host(bus); 524 struct resource *rp = &hose->io_resource; 525 void __iomem *addr; 526 527 /* Check if port can be supported by that bus. We only check 528 * the ranges of the PHB though, not the bus itself as the rules 529 * for forwarding legacy cycles down bridges are not our problem 530 * here. So if the host bridge supports it, we do it. 531 */ 532 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 533 offset += port; 534 535 if (!(rp->flags & IORESOURCE_IO)) 536 return -ENXIO; 537 if (offset < rp->start || (offset + size) > rp->end) 538 return -ENXIO; 539 addr = hose->io_base_virt + port; 540 541 /* WARNING: The generic code is idiotic. It gets passed a pointer 542 * to what can be a 1, 2 or 4 byte quantity and always reads that 543 * as a u32, which means that we have to correct the location of 544 * the data read within those 32 bits for size 1 and 2 545 */ 546 switch(size) { 547 case 1: 548 out_8(addr, val >> 24); 549 return 1; 550 case 2: 551 if (port & 1) 552 return -EINVAL; 553 out_le16(addr, val >> 16); 554 return 2; 555 case 4: 556 if (port & 3) 557 return -EINVAL; 558 out_le32(addr, val); 559 return 4; 560 } 561 return -EINVAL; 562 } 563 564 /* This provides legacy IO or memory mmap access on a bus */ 565 int pci_mmap_legacy_page_range(struct pci_bus *bus, 566 struct vm_area_struct *vma, 567 enum pci_mmap_state mmap_state) 568 { 569 struct pci_controller *hose = pci_bus_to_host(bus); 570 resource_size_t offset = 571 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 572 resource_size_t size = vma->vm_end - vma->vm_start; 573 struct resource *rp; 574 575 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", 576 pci_domain_nr(bus), bus->number, 577 mmap_state == pci_mmap_mem ? "MEM" : "IO", 578 (unsigned long long)offset, 579 (unsigned long long)(offset + size - 1)); 580 581 if (mmap_state == pci_mmap_mem) { 582 /* Hack alert ! 583 * 584 * Because X is lame and can fail starting if it gets an error trying 585 * to mmap legacy_mem (instead of just moving on without legacy memory 586 * access) we fake it here by giving it anonymous memory, effectively 587 * behaving just like /dev/zero 588 */ 589 if ((offset + size) > hose->isa_mem_size) { 590 printk(KERN_DEBUG 591 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", 592 current->comm, current->pid, pci_domain_nr(bus), bus->number); 593 if (vma->vm_flags & VM_SHARED) 594 return shmem_zero_setup(vma); 595 return 0; 596 } 597 offset += hose->isa_mem_phys; 598 } else { 599 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 600 unsigned long roffset = offset + io_offset; 601 rp = &hose->io_resource; 602 if (!(rp->flags & IORESOURCE_IO)) 603 return -ENXIO; 604 if (roffset < rp->start || (roffset + size) > rp->end) 605 return -ENXIO; 606 offset += hose->io_base_phys; 607 } 608 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); 609 610 vma->vm_pgoff = offset >> PAGE_SHIFT; 611 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 612 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 613 vma->vm_end - vma->vm_start, 614 vma->vm_page_prot); 615 } 616 617 void pci_resource_to_user(const struct pci_dev *dev, int bar, 618 const struct resource *rsrc, 619 resource_size_t *start, resource_size_t *end) 620 { 621 struct pci_bus_region region; 622 623 if (rsrc->flags & IORESOURCE_IO) { 624 pcibios_resource_to_bus(dev->bus, ®ion, 625 (struct resource *) rsrc); 626 *start = region.start; 627 *end = region.end; 628 return; 629 } 630 631 /* We pass a CPU physical address to userland for MMIO instead of a 632 * BAR value because X is lame and expects to be able to use that 633 * to pass to /dev/mem! 634 * 635 * That means we may have 64-bit values where some apps only expect 636 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). 637 */ 638 *start = rsrc->start; 639 *end = rsrc->end; 640 } 641 642 /** 643 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree 644 * @hose: newly allocated pci_controller to be setup 645 * @dev: device node of the host bridge 646 * @primary: set if primary bus (32 bits only, soon to be deprecated) 647 * 648 * This function will parse the "ranges" property of a PCI host bridge device 649 * node and setup the resource mapping of a pci controller based on its 650 * content. 651 * 652 * Life would be boring if it wasn't for a few issues that we have to deal 653 * with here: 654 * 655 * - We can only cope with one IO space range and up to 3 Memory space 656 * ranges. However, some machines (thanks Apple !) tend to split their 657 * space into lots of small contiguous ranges. So we have to coalesce. 658 * 659 * - Some busses have IO space not starting at 0, which causes trouble with 660 * the way we do our IO resource renumbering. The code somewhat deals with 661 * it for 64 bits but I would expect problems on 32 bits. 662 * 663 * - Some 32 bits platforms such as 4xx can have physical space larger than 664 * 32 bits so we need to use 64 bits values for the parsing 665 */ 666 void pci_process_bridge_OF_ranges(struct pci_controller *hose, 667 struct device_node *dev, int primary) 668 { 669 int memno = 0; 670 struct resource *res; 671 struct of_pci_range range; 672 struct of_pci_range_parser parser; 673 674 printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n", 675 dev, primary ? "(primary)" : ""); 676 677 /* Check for ranges property */ 678 if (of_pci_range_parser_init(&parser, dev)) 679 return; 680 681 /* Parse it */ 682 for_each_of_pci_range(&parser, &range) { 683 /* If we failed translation or got a zero-sized region 684 * (some FW try to feed us with non sensical zero sized regions 685 * such as power3 which look like some kind of attempt at exposing 686 * the VGA memory hole) 687 */ 688 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 689 continue; 690 691 /* Act based on address space type */ 692 res = NULL; 693 switch (range.flags & IORESOURCE_TYPE_BITS) { 694 case IORESOURCE_IO: 695 printk(KERN_INFO 696 " IO 0x%016llx..0x%016llx -> 0x%016llx\n", 697 range.cpu_addr, range.cpu_addr + range.size - 1, 698 range.pci_addr); 699 700 /* We support only one IO range */ 701 if (hose->pci_io_size) { 702 printk(KERN_INFO 703 " \\--> Skipped (too many) !\n"); 704 continue; 705 } 706 #ifdef CONFIG_PPC32 707 /* On 32 bits, limit I/O space to 16MB */ 708 if (range.size > 0x01000000) 709 range.size = 0x01000000; 710 711 /* 32 bits needs to map IOs here */ 712 hose->io_base_virt = ioremap(range.cpu_addr, 713 range.size); 714 715 /* Expect trouble if pci_addr is not 0 */ 716 if (primary) 717 isa_io_base = 718 (unsigned long)hose->io_base_virt; 719 #endif /* CONFIG_PPC32 */ 720 /* pci_io_size and io_base_phys always represent IO 721 * space starting at 0 so we factor in pci_addr 722 */ 723 hose->pci_io_size = range.pci_addr + range.size; 724 hose->io_base_phys = range.cpu_addr - range.pci_addr; 725 726 /* Build resource */ 727 res = &hose->io_resource; 728 range.cpu_addr = range.pci_addr; 729 break; 730 case IORESOURCE_MEM: 731 printk(KERN_INFO 732 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", 733 range.cpu_addr, range.cpu_addr + range.size - 1, 734 range.pci_addr, 735 (range.pci_space & 0x40000000) ? 736 "Prefetch" : ""); 737 738 /* We support only 3 memory ranges */ 739 if (memno >= 3) { 740 printk(KERN_INFO 741 " \\--> Skipped (too many) !\n"); 742 continue; 743 } 744 /* Handles ISA memory hole space here */ 745 if (range.pci_addr == 0) { 746 if (primary || isa_mem_base == 0) 747 isa_mem_base = range.cpu_addr; 748 hose->isa_mem_phys = range.cpu_addr; 749 hose->isa_mem_size = range.size; 750 } 751 752 /* Build resource */ 753 hose->mem_offset[memno] = range.cpu_addr - 754 range.pci_addr; 755 res = &hose->mem_resources[memno++]; 756 break; 757 } 758 if (res != NULL) { 759 res->name = dev->full_name; 760 res->flags = range.flags; 761 res->start = range.cpu_addr; 762 res->end = range.cpu_addr + range.size - 1; 763 res->parent = res->child = res->sibling = NULL; 764 } 765 } 766 } 767 768 /* Decide whether to display the domain number in /proc */ 769 int pci_proc_domain(struct pci_bus *bus) 770 { 771 struct pci_controller *hose = pci_bus_to_host(bus); 772 773 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) 774 return 0; 775 if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) 776 return hose->global_number != 0; 777 return 1; 778 } 779 780 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 781 { 782 if (ppc_md.pcibios_root_bridge_prepare) 783 return ppc_md.pcibios_root_bridge_prepare(bridge); 784 785 return 0; 786 } 787 788 /* This header fixup will do the resource fixup for all devices as they are 789 * probed, but not for bridge ranges 790 */ 791 static void pcibios_fixup_resources(struct pci_dev *dev) 792 { 793 struct pci_controller *hose = pci_bus_to_host(dev->bus); 794 int i; 795 796 if (!hose) { 797 printk(KERN_ERR "No host bridge for PCI dev %s !\n", 798 pci_name(dev)); 799 return; 800 } 801 802 if (dev->is_virtfn) 803 return; 804 805 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 806 struct resource *res = dev->resource + i; 807 struct pci_bus_region reg; 808 if (!res->flags) 809 continue; 810 811 /* If we're going to re-assign everything, we mark all resources 812 * as unset (and 0-base them). In addition, we mark BARs starting 813 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set 814 * since in that case, we don't want to re-assign anything 815 */ 816 pcibios_resource_to_bus(dev->bus, ®, res); 817 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || 818 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { 819 /* Only print message if not re-assigning */ 820 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) 821 pr_debug("PCI:%s Resource %d %pR is unassigned\n", 822 pci_name(dev), i, res); 823 res->end -= res->start; 824 res->start = 0; 825 res->flags |= IORESOURCE_UNSET; 826 continue; 827 } 828 829 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); 830 } 831 832 /* Call machine specific resource fixup */ 833 if (ppc_md.pcibios_fixup_resources) 834 ppc_md.pcibios_fixup_resources(dev); 835 } 836 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); 837 838 /* This function tries to figure out if a bridge resource has been initialized 839 * by the firmware or not. It doesn't have to be absolutely bullet proof, but 840 * things go more smoothly when it gets it right. It should covers cases such 841 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges 842 */ 843 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, 844 struct resource *res) 845 { 846 struct pci_controller *hose = pci_bus_to_host(bus); 847 struct pci_dev *dev = bus->self; 848 resource_size_t offset; 849 struct pci_bus_region region; 850 u16 command; 851 int i; 852 853 /* We don't do anything if PCI_PROBE_ONLY is set */ 854 if (pci_has_flag(PCI_PROBE_ONLY)) 855 return 0; 856 857 /* Job is a bit different between memory and IO */ 858 if (res->flags & IORESOURCE_MEM) { 859 pcibios_resource_to_bus(dev->bus, ®ion, res); 860 861 /* If the BAR is non-0 then it's probably been initialized */ 862 if (region.start != 0) 863 return 0; 864 865 /* The BAR is 0, let's check if memory decoding is enabled on 866 * the bridge. If not, we consider it unassigned 867 */ 868 pci_read_config_word(dev, PCI_COMMAND, &command); 869 if ((command & PCI_COMMAND_MEMORY) == 0) 870 return 1; 871 872 /* Memory decoding is enabled and the BAR is 0. If any of the bridge 873 * resources covers that starting address (0 then it's good enough for 874 * us for memory space) 875 */ 876 for (i = 0; i < 3; i++) { 877 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && 878 hose->mem_resources[i].start == hose->mem_offset[i]) 879 return 0; 880 } 881 882 /* Well, it starts at 0 and we know it will collide so we may as 883 * well consider it as unassigned. That covers the Apple case. 884 */ 885 return 1; 886 } else { 887 /* If the BAR is non-0, then we consider it assigned */ 888 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 889 if (((res->start - offset) & 0xfffffffful) != 0) 890 return 0; 891 892 /* Here, we are a bit different than memory as typically IO space 893 * starting at low addresses -is- valid. What we do instead if that 894 * we consider as unassigned anything that doesn't have IO enabled 895 * in the PCI command register, and that's it. 896 */ 897 pci_read_config_word(dev, PCI_COMMAND, &command); 898 if (command & PCI_COMMAND_IO) 899 return 0; 900 901 /* It's starting at 0 and IO is disabled in the bridge, consider 902 * it unassigned 903 */ 904 return 1; 905 } 906 } 907 908 /* Fixup resources of a PCI<->PCI bridge */ 909 static void pcibios_fixup_bridge(struct pci_bus *bus) 910 { 911 struct resource *res; 912 int i; 913 914 struct pci_dev *dev = bus->self; 915 916 pci_bus_for_each_resource(bus, res, i) { 917 if (!res || !res->flags) 918 continue; 919 if (i >= 3 && bus->self->transparent) 920 continue; 921 922 /* If we're going to reassign everything, we can 923 * shrink the P2P resource to have size as being 924 * of 0 in order to save space. 925 */ 926 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 927 res->flags |= IORESOURCE_UNSET; 928 res->start = 0; 929 res->end = -1; 930 continue; 931 } 932 933 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); 934 935 /* Try to detect uninitialized P2P bridge resources, 936 * and clear them out so they get re-assigned later 937 */ 938 if (pcibios_uninitialized_bridge_resource(bus, res)) { 939 res->flags = 0; 940 pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); 941 } 942 } 943 } 944 945 void pcibios_setup_bus_self(struct pci_bus *bus) 946 { 947 struct pci_controller *phb; 948 949 /* Fix up the bus resources for P2P bridges */ 950 if (bus->self != NULL) 951 pcibios_fixup_bridge(bus); 952 953 /* Platform specific bus fixups. This is currently only used 954 * by fsl_pci and I'm hoping to get rid of it at some point 955 */ 956 if (ppc_md.pcibios_fixup_bus) 957 ppc_md.pcibios_fixup_bus(bus); 958 959 /* Setup bus DMA mappings */ 960 phb = pci_bus_to_host(bus); 961 if (phb->controller_ops.dma_bus_setup) 962 phb->controller_ops.dma_bus_setup(bus); 963 } 964 965 static void pcibios_setup_device(struct pci_dev *dev) 966 { 967 struct pci_controller *phb; 968 /* Fixup NUMA node as it may not be setup yet by the generic 969 * code and is needed by the DMA init 970 */ 971 set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); 972 973 /* Hook up default DMA ops */ 974 set_dma_ops(&dev->dev, pci_dma_ops); 975 set_dma_offset(&dev->dev, PCI_DRAM_OFFSET); 976 977 /* Additional platform DMA/iommu setup */ 978 phb = pci_bus_to_host(dev->bus); 979 if (phb->controller_ops.dma_dev_setup) 980 phb->controller_ops.dma_dev_setup(dev); 981 982 /* Read default IRQs and fixup if necessary */ 983 pci_read_irq_line(dev); 984 if (ppc_md.pci_irq_fixup) 985 ppc_md.pci_irq_fixup(dev); 986 } 987 988 int pcibios_add_device(struct pci_dev *dev) 989 { 990 /* 991 * We can only call pcibios_setup_device() after bus setup is complete, 992 * since some of the platform specific DMA setup code depends on it. 993 */ 994 if (dev->bus->is_added) 995 pcibios_setup_device(dev); 996 997 #ifdef CONFIG_PCI_IOV 998 if (ppc_md.pcibios_fixup_sriov) 999 ppc_md.pcibios_fixup_sriov(dev); 1000 #endif /* CONFIG_PCI_IOV */ 1001 1002 return 0; 1003 } 1004 1005 void pcibios_setup_bus_devices(struct pci_bus *bus) 1006 { 1007 struct pci_dev *dev; 1008 1009 pr_debug("PCI: Fixup bus devices %d (%s)\n", 1010 bus->number, bus->self ? pci_name(bus->self) : "PHB"); 1011 1012 list_for_each_entry(dev, &bus->devices, bus_list) { 1013 /* Cardbus can call us to add new devices to a bus, so ignore 1014 * those who are already fully discovered 1015 */ 1016 if (pci_dev_is_added(dev)) 1017 continue; 1018 1019 pcibios_setup_device(dev); 1020 } 1021 } 1022 1023 void pcibios_set_master(struct pci_dev *dev) 1024 { 1025 /* No special bus mastering setup handling */ 1026 } 1027 1028 void pcibios_fixup_bus(struct pci_bus *bus) 1029 { 1030 /* When called from the generic PCI probe, read PCI<->PCI bridge 1031 * bases. This is -not- called when generating the PCI tree from 1032 * the OF device-tree. 1033 */ 1034 pci_read_bridge_bases(bus); 1035 1036 /* Now fixup the bus bus */ 1037 pcibios_setup_bus_self(bus); 1038 1039 /* Now fixup devices on that bus */ 1040 pcibios_setup_bus_devices(bus); 1041 } 1042 EXPORT_SYMBOL(pcibios_fixup_bus); 1043 1044 void pci_fixup_cardbus(struct pci_bus *bus) 1045 { 1046 /* Now fixup devices on that bus */ 1047 pcibios_setup_bus_devices(bus); 1048 } 1049 1050 1051 static int skip_isa_ioresource_align(struct pci_dev *dev) 1052 { 1053 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && 1054 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) 1055 return 1; 1056 return 0; 1057 } 1058 1059 /* 1060 * We need to avoid collisions with `mirrored' VGA ports 1061 * and other strange ISA hardware, so we always want the 1062 * addresses to be allocated in the 0x000-0x0ff region 1063 * modulo 0x400. 1064 * 1065 * Why? Because some silly external IO cards only decode 1066 * the low 10 bits of the IO address. The 0x00-0xff region 1067 * is reserved for motherboard devices that decode all 16 1068 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, 1069 * but we want to try to avoid allocating at 0x2900-0x2bff 1070 * which might have be mirrored at 0x0100-0x03ff.. 1071 */ 1072 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 1073 resource_size_t size, resource_size_t align) 1074 { 1075 struct pci_dev *dev = data; 1076 resource_size_t start = res->start; 1077 1078 if (res->flags & IORESOURCE_IO) { 1079 if (skip_isa_ioresource_align(dev)) 1080 return start; 1081 if (start & 0x300) 1082 start = (start + 0x3ff) & ~0x3ff; 1083 } 1084 1085 return start; 1086 } 1087 EXPORT_SYMBOL(pcibios_align_resource); 1088 1089 /* 1090 * Reparent resource children of pr that conflict with res 1091 * under res, and make res replace those children. 1092 */ 1093 static int reparent_resources(struct resource *parent, 1094 struct resource *res) 1095 { 1096 struct resource *p, **pp; 1097 struct resource **firstpp = NULL; 1098 1099 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { 1100 if (p->end < res->start) 1101 continue; 1102 if (res->end < p->start) 1103 break; 1104 if (p->start < res->start || p->end > res->end) 1105 return -1; /* not completely contained */ 1106 if (firstpp == NULL) 1107 firstpp = pp; 1108 } 1109 if (firstpp == NULL) 1110 return -1; /* didn't find any conflicting entries? */ 1111 res->parent = parent; 1112 res->child = *firstpp; 1113 res->sibling = *pp; 1114 *firstpp = res; 1115 *pp = NULL; 1116 for (p = res->child; p != NULL; p = p->sibling) { 1117 p->parent = res; 1118 pr_debug("PCI: Reparented %s %pR under %s\n", 1119 p->name, p, res->name); 1120 } 1121 return 0; 1122 } 1123 1124 /* 1125 * Handle resources of PCI devices. If the world were perfect, we could 1126 * just allocate all the resource regions and do nothing more. It isn't. 1127 * On the other hand, we cannot just re-allocate all devices, as it would 1128 * require us to know lots of host bridge internals. So we attempt to 1129 * keep as much of the original configuration as possible, but tweak it 1130 * when it's found to be wrong. 1131 * 1132 * Known BIOS problems we have to work around: 1133 * - I/O or memory regions not configured 1134 * - regions configured, but not enabled in the command register 1135 * - bogus I/O addresses above 64K used 1136 * - expansion ROMs left enabled (this may sound harmless, but given 1137 * the fact the PCI specs explicitly allow address decoders to be 1138 * shared between expansion ROMs and other resource regions, it's 1139 * at least dangerous) 1140 * 1141 * Our solution: 1142 * (1) Allocate resources for all buses behind PCI-to-PCI bridges. 1143 * This gives us fixed barriers on where we can allocate. 1144 * (2) Allocate resources for all enabled devices. If there is 1145 * a collision, just mark the resource as unallocated. Also 1146 * disable expansion ROMs during this step. 1147 * (3) Try to allocate resources for disabled devices. If the 1148 * resources were assigned correctly, everything goes well, 1149 * if they weren't, they won't disturb allocation of other 1150 * resources. 1151 * (4) Assign new addresses to resources which were either 1152 * not configured at all or misconfigured. If explicitly 1153 * requested by the user, configure expansion ROM address 1154 * as well. 1155 */ 1156 1157 static void pcibios_allocate_bus_resources(struct pci_bus *bus) 1158 { 1159 struct pci_bus *b; 1160 int i; 1161 struct resource *res, *pr; 1162 1163 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", 1164 pci_domain_nr(bus), bus->number); 1165 1166 pci_bus_for_each_resource(bus, res, i) { 1167 if (!res || !res->flags || res->start > res->end || res->parent) 1168 continue; 1169 1170 /* If the resource was left unset at this point, we clear it */ 1171 if (res->flags & IORESOURCE_UNSET) 1172 goto clear_resource; 1173 1174 if (bus->parent == NULL) 1175 pr = (res->flags & IORESOURCE_IO) ? 1176 &ioport_resource : &iomem_resource; 1177 else { 1178 pr = pci_find_parent_resource(bus->self, res); 1179 if (pr == res) { 1180 /* this happens when the generic PCI 1181 * code (wrongly) decides that this 1182 * bridge is transparent -- paulus 1183 */ 1184 continue; 1185 } 1186 } 1187 1188 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", 1189 bus->self ? pci_name(bus->self) : "PHB", bus->number, 1190 i, res, pr, (pr && pr->name) ? pr->name : "nil"); 1191 1192 if (pr && !(pr->flags & IORESOURCE_UNSET)) { 1193 struct pci_dev *dev = bus->self; 1194 1195 if (request_resource(pr, res) == 0) 1196 continue; 1197 /* 1198 * Must be a conflict with an existing entry. 1199 * Move that entry (or entries) under the 1200 * bridge resource and try again. 1201 */ 1202 if (reparent_resources(pr, res) == 0) 1203 continue; 1204 1205 if (dev && i < PCI_BRIDGE_RESOURCE_NUM && 1206 pci_claim_bridge_resource(dev, 1207 i + PCI_BRIDGE_RESOURCES) == 0) 1208 continue; 1209 } 1210 pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n", 1211 i, bus->number); 1212 clear_resource: 1213 /* The resource might be figured out when doing 1214 * reassignment based on the resources required 1215 * by the downstream PCI devices. Here we set 1216 * the size of the resource to be 0 in order to 1217 * save more space. 1218 */ 1219 res->start = 0; 1220 res->end = -1; 1221 res->flags = 0; 1222 } 1223 1224 list_for_each_entry(b, &bus->children, node) 1225 pcibios_allocate_bus_resources(b); 1226 } 1227 1228 static inline void alloc_resource(struct pci_dev *dev, int idx) 1229 { 1230 struct resource *pr, *r = &dev->resource[idx]; 1231 1232 pr_debug("PCI: Allocating %s: Resource %d: %pR\n", 1233 pci_name(dev), idx, r); 1234 1235 pr = pci_find_parent_resource(dev, r); 1236 if (!pr || (pr->flags & IORESOURCE_UNSET) || 1237 request_resource(pr, r) < 0) { 1238 printk(KERN_WARNING "PCI: Cannot allocate resource region %d" 1239 " of device %s, will remap\n", idx, pci_name(dev)); 1240 if (pr) 1241 pr_debug("PCI: parent is %p: %pR\n", pr, pr); 1242 /* We'll assign a new address later */ 1243 r->flags |= IORESOURCE_UNSET; 1244 r->end -= r->start; 1245 r->start = 0; 1246 } 1247 } 1248 1249 static void __init pcibios_allocate_resources(int pass) 1250 { 1251 struct pci_dev *dev = NULL; 1252 int idx, disabled; 1253 u16 command; 1254 struct resource *r; 1255 1256 for_each_pci_dev(dev) { 1257 pci_read_config_word(dev, PCI_COMMAND, &command); 1258 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { 1259 r = &dev->resource[idx]; 1260 if (r->parent) /* Already allocated */ 1261 continue; 1262 if (!r->flags || (r->flags & IORESOURCE_UNSET)) 1263 continue; /* Not assigned at all */ 1264 /* We only allocate ROMs on pass 1 just in case they 1265 * have been screwed up by firmware 1266 */ 1267 if (idx == PCI_ROM_RESOURCE ) 1268 disabled = 1; 1269 if (r->flags & IORESOURCE_IO) 1270 disabled = !(command & PCI_COMMAND_IO); 1271 else 1272 disabled = !(command & PCI_COMMAND_MEMORY); 1273 if (pass == disabled) 1274 alloc_resource(dev, idx); 1275 } 1276 if (pass) 1277 continue; 1278 r = &dev->resource[PCI_ROM_RESOURCE]; 1279 if (r->flags) { 1280 /* Turn the ROM off, leave the resource region, 1281 * but keep it unregistered. 1282 */ 1283 u32 reg; 1284 pci_read_config_dword(dev, dev->rom_base_reg, ®); 1285 if (reg & PCI_ROM_ADDRESS_ENABLE) { 1286 pr_debug("PCI: Switching off ROM of %s\n", 1287 pci_name(dev)); 1288 r->flags &= ~IORESOURCE_ROM_ENABLE; 1289 pci_write_config_dword(dev, dev->rom_base_reg, 1290 reg & ~PCI_ROM_ADDRESS_ENABLE); 1291 } 1292 } 1293 } 1294 } 1295 1296 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) 1297 { 1298 struct pci_controller *hose = pci_bus_to_host(bus); 1299 resource_size_t offset; 1300 struct resource *res, *pres; 1301 int i; 1302 1303 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); 1304 1305 /* Check for IO */ 1306 if (!(hose->io_resource.flags & IORESOURCE_IO)) 1307 goto no_io; 1308 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 1309 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1310 BUG_ON(res == NULL); 1311 res->name = "Legacy IO"; 1312 res->flags = IORESOURCE_IO; 1313 res->start = offset; 1314 res->end = (offset + 0xfff) & 0xfffffffful; 1315 pr_debug("Candidate legacy IO: %pR\n", res); 1316 if (request_resource(&hose->io_resource, res)) { 1317 printk(KERN_DEBUG 1318 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", 1319 pci_domain_nr(bus), bus->number, res); 1320 kfree(res); 1321 } 1322 1323 no_io: 1324 /* Check for memory */ 1325 for (i = 0; i < 3; i++) { 1326 pres = &hose->mem_resources[i]; 1327 offset = hose->mem_offset[i]; 1328 if (!(pres->flags & IORESOURCE_MEM)) 1329 continue; 1330 pr_debug("hose mem res: %pR\n", pres); 1331 if ((pres->start - offset) <= 0xa0000 && 1332 (pres->end - offset) >= 0xbffff) 1333 break; 1334 } 1335 if (i >= 3) 1336 return; 1337 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1338 BUG_ON(res == NULL); 1339 res->name = "Legacy VGA memory"; 1340 res->flags = IORESOURCE_MEM; 1341 res->start = 0xa0000 + offset; 1342 res->end = 0xbffff + offset; 1343 pr_debug("Candidate VGA memory: %pR\n", res); 1344 if (request_resource(pres, res)) { 1345 printk(KERN_DEBUG 1346 "PCI %04x:%02x Cannot reserve VGA memory %pR\n", 1347 pci_domain_nr(bus), bus->number, res); 1348 kfree(res); 1349 } 1350 } 1351 1352 void __init pcibios_resource_survey(void) 1353 { 1354 struct pci_bus *b; 1355 1356 /* Allocate and assign resources */ 1357 list_for_each_entry(b, &pci_root_buses, node) 1358 pcibios_allocate_bus_resources(b); 1359 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1360 pcibios_allocate_resources(0); 1361 pcibios_allocate_resources(1); 1362 } 1363 1364 /* Before we start assigning unassigned resource, we try to reserve 1365 * the low IO area and the VGA memory area if they intersect the 1366 * bus available resources to avoid allocating things on top of them 1367 */ 1368 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1369 list_for_each_entry(b, &pci_root_buses, node) 1370 pcibios_reserve_legacy_regions(b); 1371 } 1372 1373 /* Now, if the platform didn't decide to blindly trust the firmware, 1374 * we proceed to assigning things that were left unassigned 1375 */ 1376 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1377 pr_debug("PCI: Assigning unassigned resources...\n"); 1378 pci_assign_unassigned_resources(); 1379 } 1380 1381 /* Call machine dependent fixup */ 1382 if (ppc_md.pcibios_fixup) 1383 ppc_md.pcibios_fixup(); 1384 } 1385 1386 /* This is used by the PCI hotplug driver to allocate resource 1387 * of newly plugged busses. We can try to consolidate with the 1388 * rest of the code later, for now, keep it as-is as our main 1389 * resource allocation function doesn't deal with sub-trees yet. 1390 */ 1391 void pcibios_claim_one_bus(struct pci_bus *bus) 1392 { 1393 struct pci_dev *dev; 1394 struct pci_bus *child_bus; 1395 1396 list_for_each_entry(dev, &bus->devices, bus_list) { 1397 int i; 1398 1399 for (i = 0; i < PCI_NUM_RESOURCES; i++) { 1400 struct resource *r = &dev->resource[i]; 1401 1402 if (r->parent || !r->start || !r->flags) 1403 continue; 1404 1405 pr_debug("PCI: Claiming %s: Resource %d: %pR\n", 1406 pci_name(dev), i, r); 1407 1408 if (pci_claim_resource(dev, i) == 0) 1409 continue; 1410 1411 pci_claim_bridge_resource(dev, i); 1412 } 1413 } 1414 1415 list_for_each_entry(child_bus, &bus->children, node) 1416 pcibios_claim_one_bus(child_bus); 1417 } 1418 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); 1419 1420 1421 /* pcibios_finish_adding_to_bus 1422 * 1423 * This is to be called by the hotplug code after devices have been 1424 * added to a bus, this include calling it for a PHB that is just 1425 * being added 1426 */ 1427 void pcibios_finish_adding_to_bus(struct pci_bus *bus) 1428 { 1429 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", 1430 pci_domain_nr(bus), bus->number); 1431 1432 /* Allocate bus and devices resources */ 1433 pcibios_allocate_bus_resources(bus); 1434 pcibios_claim_one_bus(bus); 1435 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1436 if (bus->self) 1437 pci_assign_unassigned_bridge_resources(bus->self); 1438 else 1439 pci_assign_unassigned_bus_resources(bus); 1440 } 1441 1442 /* Fixup EEH */ 1443 eeh_add_device_tree_late(bus); 1444 1445 /* Add new devices to global lists. Register in proc, sysfs. */ 1446 pci_bus_add_devices(bus); 1447 1448 /* sysfs files should only be added after devices are added */ 1449 eeh_add_sysfs_files(bus); 1450 } 1451 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); 1452 1453 int pcibios_enable_device(struct pci_dev *dev, int mask) 1454 { 1455 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1456 1457 if (phb->controller_ops.enable_device_hook) 1458 if (!phb->controller_ops.enable_device_hook(dev)) 1459 return -EINVAL; 1460 1461 return pci_enable_resources(dev, mask); 1462 } 1463 1464 void pcibios_disable_device(struct pci_dev *dev) 1465 { 1466 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1467 1468 if (phb->controller_ops.disable_device) 1469 phb->controller_ops.disable_device(dev); 1470 } 1471 1472 resource_size_t pcibios_io_space_offset(struct pci_controller *hose) 1473 { 1474 return (unsigned long) hose->io_base_virt - _IO_BASE; 1475 } 1476 1477 static void pcibios_setup_phb_resources(struct pci_controller *hose, 1478 struct list_head *resources) 1479 { 1480 struct resource *res; 1481 resource_size_t offset; 1482 int i; 1483 1484 /* Hookup PHB IO resource */ 1485 res = &hose->io_resource; 1486 1487 if (!res->flags) { 1488 pr_debug("PCI: I/O resource not set for host" 1489 " bridge %pOF (domain %d)\n", 1490 hose->dn, hose->global_number); 1491 } else { 1492 offset = pcibios_io_space_offset(hose); 1493 1494 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", 1495 res, (unsigned long long)offset); 1496 pci_add_resource_offset(resources, res, offset); 1497 } 1498 1499 /* Hookup PHB Memory resources */ 1500 for (i = 0; i < 3; ++i) { 1501 res = &hose->mem_resources[i]; 1502 if (!res->flags) 1503 continue; 1504 1505 offset = hose->mem_offset[i]; 1506 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, 1507 res, (unsigned long long)offset); 1508 1509 pci_add_resource_offset(resources, res, offset); 1510 } 1511 } 1512 1513 /* 1514 * Null PCI config access functions, for the case when we can't 1515 * find a hose. 1516 */ 1517 #define NULL_PCI_OP(rw, size, type) \ 1518 static int \ 1519 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ 1520 { \ 1521 return PCIBIOS_DEVICE_NOT_FOUND; \ 1522 } 1523 1524 static int 1525 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, 1526 int len, u32 *val) 1527 { 1528 return PCIBIOS_DEVICE_NOT_FOUND; 1529 } 1530 1531 static int 1532 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, 1533 int len, u32 val) 1534 { 1535 return PCIBIOS_DEVICE_NOT_FOUND; 1536 } 1537 1538 static struct pci_ops null_pci_ops = 1539 { 1540 .read = null_read_config, 1541 .write = null_write_config, 1542 }; 1543 1544 /* 1545 * These functions are used early on before PCI scanning is done 1546 * and all of the pci_dev and pci_bus structures have been created. 1547 */ 1548 static struct pci_bus * 1549 fake_pci_bus(struct pci_controller *hose, int busnr) 1550 { 1551 static struct pci_bus bus; 1552 1553 if (hose == NULL) { 1554 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); 1555 } 1556 bus.number = busnr; 1557 bus.sysdata = hose; 1558 bus.ops = hose? hose->ops: &null_pci_ops; 1559 return &bus; 1560 } 1561 1562 #define EARLY_PCI_OP(rw, size, type) \ 1563 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ 1564 int devfn, int offset, type value) \ 1565 { \ 1566 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ 1567 devfn, offset, value); \ 1568 } 1569 1570 EARLY_PCI_OP(read, byte, u8 *) 1571 EARLY_PCI_OP(read, word, u16 *) 1572 EARLY_PCI_OP(read, dword, u32 *) 1573 EARLY_PCI_OP(write, byte, u8) 1574 EARLY_PCI_OP(write, word, u16) 1575 EARLY_PCI_OP(write, dword, u32) 1576 1577 int early_find_capability(struct pci_controller *hose, int bus, int devfn, 1578 int cap) 1579 { 1580 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); 1581 } 1582 1583 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) 1584 { 1585 struct pci_controller *hose = bus->sysdata; 1586 1587 return of_node_get(hose->dn); 1588 } 1589 1590 /** 1591 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus 1592 * @hose: Pointer to the PCI host controller instance structure 1593 */ 1594 void pcibios_scan_phb(struct pci_controller *hose) 1595 { 1596 LIST_HEAD(resources); 1597 struct pci_bus *bus; 1598 struct device_node *node = hose->dn; 1599 int mode; 1600 1601 pr_debug("PCI: Scanning PHB %pOF\n", node); 1602 1603 /* Get some IO space for the new PHB */ 1604 pcibios_setup_phb_io_space(hose); 1605 1606 /* Wire up PHB bus resources */ 1607 pcibios_setup_phb_resources(hose, &resources); 1608 1609 hose->busn.start = hose->first_busno; 1610 hose->busn.end = hose->last_busno; 1611 hose->busn.flags = IORESOURCE_BUS; 1612 pci_add_resource(&resources, &hose->busn); 1613 1614 /* Create an empty bus for the toplevel */ 1615 bus = pci_create_root_bus(hose->parent, hose->first_busno, 1616 hose->ops, hose, &resources); 1617 if (bus == NULL) { 1618 pr_err("Failed to create bus for PCI domain %04x\n", 1619 hose->global_number); 1620 pci_free_resource_list(&resources); 1621 return; 1622 } 1623 hose->bus = bus; 1624 1625 /* Get probe mode and perform scan */ 1626 mode = PCI_PROBE_NORMAL; 1627 if (node && hose->controller_ops.probe_mode) 1628 mode = hose->controller_ops.probe_mode(bus); 1629 pr_debug(" probe mode: %d\n", mode); 1630 if (mode == PCI_PROBE_DEVTREE) 1631 of_scan_bus(node, bus); 1632 1633 if (mode == PCI_PROBE_NORMAL) { 1634 pci_bus_update_busn_res_end(bus, 255); 1635 hose->last_busno = pci_scan_child_bus(bus); 1636 pci_bus_update_busn_res_end(bus, hose->last_busno); 1637 } 1638 1639 /* Platform gets a chance to do some global fixups before 1640 * we proceed to resource allocation 1641 */ 1642 if (ppc_md.pcibios_fixup_phb) 1643 ppc_md.pcibios_fixup_phb(hose); 1644 1645 /* Configure PCI Express settings */ 1646 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { 1647 struct pci_bus *child; 1648 list_for_each_entry(child, &bus->children, node) 1649 pcie_bus_configure_settings(child); 1650 } 1651 } 1652 EXPORT_SYMBOL_GPL(pcibios_scan_phb); 1653 1654 static void fixup_hide_host_resource_fsl(struct pci_dev *dev) 1655 { 1656 int i, class = dev->class >> 8; 1657 /* When configured as agent, programing interface = 1 */ 1658 int prog_if = dev->class & 0xf; 1659 1660 if ((class == PCI_CLASS_PROCESSOR_POWERPC || 1661 class == PCI_CLASS_BRIDGE_OTHER) && 1662 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && 1663 (prog_if == 0) && 1664 (dev->bus->parent == NULL)) { 1665 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1666 dev->resource[i].start = 0; 1667 dev->resource[i].end = 0; 1668 dev->resource[i].flags = 0; 1669 } 1670 } 1671 } 1672 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1673 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1674