1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Contains common pci routines for ALL ppc platform 4 * (based on pci_32.c and pci_64.c) 5 * 6 * Port for PPC64 David Engebretsen, IBM Corp. 7 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. 8 * 9 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM 10 * Rework, based on alpha PCI code. 11 * 12 * Common pmac/prep/chrp pci routines. -- Cort 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/pci.h> 17 #include <linux/string.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/export.h> 21 #include <linux/of_address.h> 22 #include <linux/of_pci.h> 23 #include <linux/mm.h> 24 #include <linux/shmem_fs.h> 25 #include <linux/list.h> 26 #include <linux/syscalls.h> 27 #include <linux/irq.h> 28 #include <linux/vmalloc.h> 29 #include <linux/slab.h> 30 #include <linux/vgaarb.h> 31 #include <linux/numa.h> 32 #include <linux/msi.h> 33 34 #include <asm/processor.h> 35 #include <asm/io.h> 36 #include <asm/prom.h> 37 #include <asm/pci-bridge.h> 38 #include <asm/byteorder.h> 39 #include <asm/machdep.h> 40 #include <asm/ppc-pci.h> 41 #include <asm/eeh.h> 42 43 #include "../../../drivers/pci/pci.h" 44 45 /* hose_spinlock protects accesses to the the phb_bitmap. */ 46 static DEFINE_SPINLOCK(hose_spinlock); 47 LIST_HEAD(hose_list); 48 49 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ 50 #define MAX_PHBS 0x10000 51 52 /* 53 * For dynamic PHB numbering: used/free PHBs tracking bitmap. 54 * Accesses to this bitmap should be protected by hose_spinlock. 55 */ 56 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); 57 58 /* ISA Memory physical address */ 59 resource_size_t isa_mem_base; 60 EXPORT_SYMBOL(isa_mem_base); 61 62 63 static const struct dma_map_ops *pci_dma_ops; 64 65 void set_pci_dma_ops(const struct dma_map_ops *dma_ops) 66 { 67 pci_dma_ops = dma_ops; 68 } 69 70 /* 71 * This function should run under locking protection, specifically 72 * hose_spinlock. 73 */ 74 static int get_phb_number(struct device_node *dn) 75 { 76 int ret, phb_id = -1; 77 u64 prop; 78 79 /* 80 * Try fixed PHB numbering first, by checking archs and reading 81 * the respective device-tree properties. Firstly, try reading 82 * standard "linux,pci-domain", then try reading "ibm,opal-phbid" 83 * (only present in powernv OPAL environment), then try device-tree 84 * alias and as the last try to use lower bits of "reg" property. 85 */ 86 ret = of_get_pci_domain_nr(dn); 87 if (ret >= 0) { 88 prop = ret; 89 ret = 0; 90 } 91 if (ret) 92 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); 93 94 if (ret) { 95 ret = of_alias_get_id(dn, "pci"); 96 if (ret >= 0) { 97 prop = ret; 98 ret = 0; 99 } 100 } 101 if (ret) { 102 u32 prop_32; 103 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); 104 prop = prop_32; 105 } 106 107 if (!ret) 108 phb_id = (int)(prop & (MAX_PHBS - 1)); 109 110 /* We need to be sure to not use the same PHB number twice. */ 111 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) 112 return phb_id; 113 114 /* If everything fails then fallback to dynamic PHB numbering. */ 115 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); 116 BUG_ON(phb_id >= MAX_PHBS); 117 set_bit(phb_id, phb_bitmap); 118 119 return phb_id; 120 } 121 122 struct pci_controller *pcibios_alloc_controller(struct device_node *dev) 123 { 124 struct pci_controller *phb; 125 126 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); 127 if (phb == NULL) 128 return NULL; 129 spin_lock(&hose_spinlock); 130 phb->global_number = get_phb_number(dev); 131 list_add_tail(&phb->list_node, &hose_list); 132 spin_unlock(&hose_spinlock); 133 phb->dn = dev; 134 phb->is_dynamic = slab_is_available(); 135 #ifdef CONFIG_PPC64 136 if (dev) { 137 int nid = of_node_to_nid(dev); 138 139 if (nid < 0 || !node_online(nid)) 140 nid = NUMA_NO_NODE; 141 142 PHB_SET_NODE(phb, nid); 143 } 144 #endif 145 return phb; 146 } 147 EXPORT_SYMBOL_GPL(pcibios_alloc_controller); 148 149 void pcibios_free_controller(struct pci_controller *phb) 150 { 151 spin_lock(&hose_spinlock); 152 153 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ 154 if (phb->global_number < MAX_PHBS) 155 clear_bit(phb->global_number, phb_bitmap); 156 157 list_del(&phb->list_node); 158 spin_unlock(&hose_spinlock); 159 160 if (phb->is_dynamic) 161 kfree(phb); 162 } 163 EXPORT_SYMBOL_GPL(pcibios_free_controller); 164 165 /* 166 * This function is used to call pcibios_free_controller() 167 * in a deferred manner: a callback from the PCI subsystem. 168 * 169 * _*DO NOT*_ call pcibios_free_controller() explicitly if 170 * this is used (or it may access an invalid *phb pointer). 171 * 172 * The callback occurs when all references to the root bus 173 * are dropped (e.g., child buses/devices and their users). 174 * 175 * It's called as .release_fn() of 'struct pci_host_bridge' 176 * which is associated with the 'struct pci_controller.bus' 177 * (root bus) - it expects .release_data to hold a pointer 178 * to 'struct pci_controller'. 179 * 180 * In order to use it, register .release_fn()/release_data 181 * like this: 182 * 183 * pci_set_host_bridge_release(bridge, 184 * pcibios_free_controller_deferred 185 * (void *) phb); 186 * 187 * e.g. in the pcibios_root_bridge_prepare() callback from 188 * pci_create_root_bus(). 189 */ 190 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) 191 { 192 struct pci_controller *phb = (struct pci_controller *) 193 bridge->release_data; 194 195 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); 196 197 pcibios_free_controller(phb); 198 } 199 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); 200 201 /* 202 * The function is used to return the minimal alignment 203 * for memory or I/O windows of the associated P2P bridge. 204 * By default, 4KiB alignment for I/O windows and 1MiB for 205 * memory windows. 206 */ 207 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 208 unsigned long type) 209 { 210 struct pci_controller *phb = pci_bus_to_host(bus); 211 212 if (phb->controller_ops.window_alignment) 213 return phb->controller_ops.window_alignment(bus, type); 214 215 /* 216 * PCI core will figure out the default 217 * alignment: 4KiB for I/O and 1MiB for 218 * memory window. 219 */ 220 return 1; 221 } 222 223 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) 224 { 225 struct pci_controller *hose = pci_bus_to_host(bus); 226 227 if (hose->controller_ops.setup_bridge) 228 hose->controller_ops.setup_bridge(bus, type); 229 } 230 231 void pcibios_reset_secondary_bus(struct pci_dev *dev) 232 { 233 struct pci_controller *phb = pci_bus_to_host(dev->bus); 234 235 if (phb->controller_ops.reset_secondary_bus) { 236 phb->controller_ops.reset_secondary_bus(dev); 237 return; 238 } 239 240 pci_reset_secondary_bus(dev); 241 } 242 243 resource_size_t pcibios_default_alignment(void) 244 { 245 if (ppc_md.pcibios_default_alignment) 246 return ppc_md.pcibios_default_alignment(); 247 248 return 0; 249 } 250 251 #ifdef CONFIG_PCI_IOV 252 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) 253 { 254 if (ppc_md.pcibios_iov_resource_alignment) 255 return ppc_md.pcibios_iov_resource_alignment(pdev, resno); 256 257 return pci_iov_resource_size(pdev, resno); 258 } 259 260 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 261 { 262 if (ppc_md.pcibios_sriov_enable) 263 return ppc_md.pcibios_sriov_enable(pdev, num_vfs); 264 265 return 0; 266 } 267 268 int pcibios_sriov_disable(struct pci_dev *pdev) 269 { 270 if (ppc_md.pcibios_sriov_disable) 271 return ppc_md.pcibios_sriov_disable(pdev); 272 273 return 0; 274 } 275 276 #endif /* CONFIG_PCI_IOV */ 277 278 static resource_size_t pcibios_io_size(const struct pci_controller *hose) 279 { 280 #ifdef CONFIG_PPC64 281 return hose->pci_io_size; 282 #else 283 return resource_size(&hose->io_resource); 284 #endif 285 } 286 287 int pcibios_vaddr_is_ioport(void __iomem *address) 288 { 289 int ret = 0; 290 struct pci_controller *hose; 291 resource_size_t size; 292 293 spin_lock(&hose_spinlock); 294 list_for_each_entry(hose, &hose_list, list_node) { 295 size = pcibios_io_size(hose); 296 if (address >= hose->io_base_virt && 297 address < (hose->io_base_virt + size)) { 298 ret = 1; 299 break; 300 } 301 } 302 spin_unlock(&hose_spinlock); 303 return ret; 304 } 305 306 unsigned long pci_address_to_pio(phys_addr_t address) 307 { 308 struct pci_controller *hose; 309 resource_size_t size; 310 unsigned long ret = ~0; 311 312 spin_lock(&hose_spinlock); 313 list_for_each_entry(hose, &hose_list, list_node) { 314 size = pcibios_io_size(hose); 315 if (address >= hose->io_base_phys && 316 address < (hose->io_base_phys + size)) { 317 unsigned long base = 318 (unsigned long)hose->io_base_virt - _IO_BASE; 319 ret = base + (address - hose->io_base_phys); 320 break; 321 } 322 } 323 spin_unlock(&hose_spinlock); 324 325 return ret; 326 } 327 EXPORT_SYMBOL_GPL(pci_address_to_pio); 328 329 /* 330 * Return the domain number for this bus. 331 */ 332 int pci_domain_nr(struct pci_bus *bus) 333 { 334 struct pci_controller *hose = pci_bus_to_host(bus); 335 336 return hose->global_number; 337 } 338 EXPORT_SYMBOL(pci_domain_nr); 339 340 /* This routine is meant to be used early during boot, when the 341 * PCI bus numbers have not yet been assigned, and you need to 342 * issue PCI config cycles to an OF device. 343 * It could also be used to "fix" RTAS config cycles if you want 344 * to set pci_assign_all_buses to 1 and still use RTAS for PCI 345 * config cycles. 346 */ 347 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) 348 { 349 while(node) { 350 struct pci_controller *hose, *tmp; 351 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 352 if (hose->dn == node) 353 return hose; 354 node = node->parent; 355 } 356 return NULL; 357 } 358 359 struct pci_controller *pci_find_controller_for_domain(int domain_nr) 360 { 361 struct pci_controller *hose; 362 363 list_for_each_entry(hose, &hose_list, list_node) 364 if (hose->global_number == domain_nr) 365 return hose; 366 367 return NULL; 368 } 369 370 struct pci_intx_virq { 371 int virq; 372 struct kref kref; 373 struct list_head list_node; 374 }; 375 376 static LIST_HEAD(intx_list); 377 static DEFINE_MUTEX(intx_mutex); 378 379 static void ppc_pci_intx_release(struct kref *kref) 380 { 381 struct pci_intx_virq *vi = container_of(kref, struct pci_intx_virq, kref); 382 383 list_del(&vi->list_node); 384 irq_dispose_mapping(vi->virq); 385 kfree(vi); 386 } 387 388 static int ppc_pci_unmap_irq_line(struct notifier_block *nb, 389 unsigned long action, void *data) 390 { 391 struct pci_dev *pdev = to_pci_dev(data); 392 393 if (action == BUS_NOTIFY_DEL_DEVICE) { 394 struct pci_intx_virq *vi; 395 396 mutex_lock(&intx_mutex); 397 list_for_each_entry(vi, &intx_list, list_node) { 398 if (vi->virq == pdev->irq) { 399 kref_put(&vi->kref, ppc_pci_intx_release); 400 break; 401 } 402 } 403 mutex_unlock(&intx_mutex); 404 } 405 406 return NOTIFY_DONE; 407 } 408 409 static struct notifier_block ppc_pci_unmap_irq_notifier = { 410 .notifier_call = ppc_pci_unmap_irq_line, 411 }; 412 413 static int ppc_pci_register_irq_notifier(void) 414 { 415 return bus_register_notifier(&pci_bus_type, &ppc_pci_unmap_irq_notifier); 416 } 417 arch_initcall(ppc_pci_register_irq_notifier); 418 419 /* 420 * Reads the interrupt pin to determine if interrupt is use by card. 421 * If the interrupt is used, then gets the interrupt line from the 422 * openfirmware and sets it in the pci_dev and pci_config line. 423 */ 424 static int pci_read_irq_line(struct pci_dev *pci_dev) 425 { 426 int virq; 427 struct pci_intx_virq *vi, *vitmp; 428 429 /* Preallocate vi as rewind is complex if this fails after mapping */ 430 vi = kzalloc(sizeof(struct pci_intx_virq), GFP_KERNEL); 431 if (!vi) 432 return -1; 433 434 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); 435 436 /* Try to get a mapping from the device-tree */ 437 virq = of_irq_parse_and_map_pci(pci_dev, 0, 0); 438 if (virq <= 0) { 439 u8 line, pin; 440 441 /* If that fails, lets fallback to what is in the config 442 * space and map that through the default controller. We 443 * also set the type to level low since that's what PCI 444 * interrupts are. If your platform does differently, then 445 * either provide a proper interrupt tree or don't use this 446 * function. 447 */ 448 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) 449 goto error_exit; 450 if (pin == 0) 451 goto error_exit; 452 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || 453 line == 0xff || line == 0) { 454 goto error_exit; 455 } 456 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", 457 line, pin); 458 459 virq = irq_create_mapping(NULL, line); 460 if (virq) 461 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); 462 } 463 464 if (!virq) { 465 pr_debug(" Failed to map !\n"); 466 goto error_exit; 467 } 468 469 pr_debug(" Mapped to linux irq %d\n", virq); 470 471 pci_dev->irq = virq; 472 473 mutex_lock(&intx_mutex); 474 list_for_each_entry(vitmp, &intx_list, list_node) { 475 if (vitmp->virq == virq) { 476 kref_get(&vitmp->kref); 477 kfree(vi); 478 vi = NULL; 479 break; 480 } 481 } 482 if (vi) { 483 vi->virq = virq; 484 kref_init(&vi->kref); 485 list_add_tail(&vi->list_node, &intx_list); 486 } 487 mutex_unlock(&intx_mutex); 488 489 return 0; 490 error_exit: 491 kfree(vi); 492 return -1; 493 } 494 495 /* 496 * Platform support for /proc/bus/pci/X/Y mmap()s. 497 * -- paulus. 498 */ 499 int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma) 500 { 501 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 502 resource_size_t ioaddr = pci_resource_start(pdev, bar); 503 504 if (!hose) 505 return -EINVAL; 506 507 /* Convert to an offset within this PCI controller */ 508 ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE; 509 510 vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT; 511 return 0; 512 } 513 514 /* 515 * This one is used by /dev/mem and fbdev who have no clue about the 516 * PCI device, it tries to find the PCI device first and calls the 517 * above routine 518 */ 519 pgprot_t pci_phys_mem_access_prot(struct file *file, 520 unsigned long pfn, 521 unsigned long size, 522 pgprot_t prot) 523 { 524 struct pci_dev *pdev = NULL; 525 struct resource *found = NULL; 526 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; 527 int i; 528 529 if (page_is_ram(pfn)) 530 return prot; 531 532 prot = pgprot_noncached(prot); 533 for_each_pci_dev(pdev) { 534 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 535 struct resource *rp = &pdev->resource[i]; 536 int flags = rp->flags; 537 538 /* Active and same type? */ 539 if ((flags & IORESOURCE_MEM) == 0) 540 continue; 541 /* In the range of this resource? */ 542 if (offset < (rp->start & PAGE_MASK) || 543 offset > rp->end) 544 continue; 545 found = rp; 546 break; 547 } 548 if (found) 549 break; 550 } 551 if (found) { 552 if (found->flags & IORESOURCE_PREFETCH) 553 prot = pgprot_noncached_wc(prot); 554 pci_dev_put(pdev); 555 } 556 557 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", 558 (unsigned long long)offset, pgprot_val(prot)); 559 560 return prot; 561 } 562 563 /* This provides legacy IO read access on a bus */ 564 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) 565 { 566 unsigned long offset; 567 struct pci_controller *hose = pci_bus_to_host(bus); 568 struct resource *rp = &hose->io_resource; 569 void __iomem *addr; 570 571 /* Check if port can be supported by that bus. We only check 572 * the ranges of the PHB though, not the bus itself as the rules 573 * for forwarding legacy cycles down bridges are not our problem 574 * here. So if the host bridge supports it, we do it. 575 */ 576 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 577 offset += port; 578 579 if (!(rp->flags & IORESOURCE_IO)) 580 return -ENXIO; 581 if (offset < rp->start || (offset + size) > rp->end) 582 return -ENXIO; 583 addr = hose->io_base_virt + port; 584 585 switch(size) { 586 case 1: 587 *((u8 *)val) = in_8(addr); 588 return 1; 589 case 2: 590 if (port & 1) 591 return -EINVAL; 592 *((u16 *)val) = in_le16(addr); 593 return 2; 594 case 4: 595 if (port & 3) 596 return -EINVAL; 597 *((u32 *)val) = in_le32(addr); 598 return 4; 599 } 600 return -EINVAL; 601 } 602 603 /* This provides legacy IO write access on a bus */ 604 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) 605 { 606 unsigned long offset; 607 struct pci_controller *hose = pci_bus_to_host(bus); 608 struct resource *rp = &hose->io_resource; 609 void __iomem *addr; 610 611 /* Check if port can be supported by that bus. We only check 612 * the ranges of the PHB though, not the bus itself as the rules 613 * for forwarding legacy cycles down bridges are not our problem 614 * here. So if the host bridge supports it, we do it. 615 */ 616 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 617 offset += port; 618 619 if (!(rp->flags & IORESOURCE_IO)) 620 return -ENXIO; 621 if (offset < rp->start || (offset + size) > rp->end) 622 return -ENXIO; 623 addr = hose->io_base_virt + port; 624 625 /* WARNING: The generic code is idiotic. It gets passed a pointer 626 * to what can be a 1, 2 or 4 byte quantity and always reads that 627 * as a u32, which means that we have to correct the location of 628 * the data read within those 32 bits for size 1 and 2 629 */ 630 switch(size) { 631 case 1: 632 out_8(addr, val >> 24); 633 return 1; 634 case 2: 635 if (port & 1) 636 return -EINVAL; 637 out_le16(addr, val >> 16); 638 return 2; 639 case 4: 640 if (port & 3) 641 return -EINVAL; 642 out_le32(addr, val); 643 return 4; 644 } 645 return -EINVAL; 646 } 647 648 /* This provides legacy IO or memory mmap access on a bus */ 649 int pci_mmap_legacy_page_range(struct pci_bus *bus, 650 struct vm_area_struct *vma, 651 enum pci_mmap_state mmap_state) 652 { 653 struct pci_controller *hose = pci_bus_to_host(bus); 654 resource_size_t offset = 655 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 656 resource_size_t size = vma->vm_end - vma->vm_start; 657 struct resource *rp; 658 659 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", 660 pci_domain_nr(bus), bus->number, 661 mmap_state == pci_mmap_mem ? "MEM" : "IO", 662 (unsigned long long)offset, 663 (unsigned long long)(offset + size - 1)); 664 665 if (mmap_state == pci_mmap_mem) { 666 /* Hack alert ! 667 * 668 * Because X is lame and can fail starting if it gets an error trying 669 * to mmap legacy_mem (instead of just moving on without legacy memory 670 * access) we fake it here by giving it anonymous memory, effectively 671 * behaving just like /dev/zero 672 */ 673 if ((offset + size) > hose->isa_mem_size) { 674 printk(KERN_DEBUG 675 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", 676 current->comm, current->pid, pci_domain_nr(bus), bus->number); 677 if (vma->vm_flags & VM_SHARED) 678 return shmem_zero_setup(vma); 679 return 0; 680 } 681 offset += hose->isa_mem_phys; 682 } else { 683 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 684 unsigned long roffset = offset + io_offset; 685 rp = &hose->io_resource; 686 if (!(rp->flags & IORESOURCE_IO)) 687 return -ENXIO; 688 if (roffset < rp->start || (roffset + size) > rp->end) 689 return -ENXIO; 690 offset += hose->io_base_phys; 691 } 692 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); 693 694 vma->vm_pgoff = offset >> PAGE_SHIFT; 695 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 696 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 697 vma->vm_end - vma->vm_start, 698 vma->vm_page_prot); 699 } 700 701 void pci_resource_to_user(const struct pci_dev *dev, int bar, 702 const struct resource *rsrc, 703 resource_size_t *start, resource_size_t *end) 704 { 705 struct pci_bus_region region; 706 707 if (rsrc->flags & IORESOURCE_IO) { 708 pcibios_resource_to_bus(dev->bus, ®ion, 709 (struct resource *) rsrc); 710 *start = region.start; 711 *end = region.end; 712 return; 713 } 714 715 /* We pass a CPU physical address to userland for MMIO instead of a 716 * BAR value because X is lame and expects to be able to use that 717 * to pass to /dev/mem! 718 * 719 * That means we may have 64-bit values where some apps only expect 720 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). 721 */ 722 *start = rsrc->start; 723 *end = rsrc->end; 724 } 725 726 /** 727 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree 728 * @hose: newly allocated pci_controller to be setup 729 * @dev: device node of the host bridge 730 * @primary: set if primary bus (32 bits only, soon to be deprecated) 731 * 732 * This function will parse the "ranges" property of a PCI host bridge device 733 * node and setup the resource mapping of a pci controller based on its 734 * content. 735 * 736 * Life would be boring if it wasn't for a few issues that we have to deal 737 * with here: 738 * 739 * - We can only cope with one IO space range and up to 3 Memory space 740 * ranges. However, some machines (thanks Apple !) tend to split their 741 * space into lots of small contiguous ranges. So we have to coalesce. 742 * 743 * - Some busses have IO space not starting at 0, which causes trouble with 744 * the way we do our IO resource renumbering. The code somewhat deals with 745 * it for 64 bits but I would expect problems on 32 bits. 746 * 747 * - Some 32 bits platforms such as 4xx can have physical space larger than 748 * 32 bits so we need to use 64 bits values for the parsing 749 */ 750 void pci_process_bridge_OF_ranges(struct pci_controller *hose, 751 struct device_node *dev, int primary) 752 { 753 int memno = 0; 754 struct resource *res; 755 struct of_pci_range range; 756 struct of_pci_range_parser parser; 757 758 printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n", 759 dev, primary ? "(primary)" : ""); 760 761 /* Check for ranges property */ 762 if (of_pci_range_parser_init(&parser, dev)) 763 return; 764 765 /* Parse it */ 766 for_each_of_pci_range(&parser, &range) { 767 /* If we failed translation or got a zero-sized region 768 * (some FW try to feed us with non sensical zero sized regions 769 * such as power3 which look like some kind of attempt at exposing 770 * the VGA memory hole) 771 */ 772 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 773 continue; 774 775 /* Act based on address space type */ 776 res = NULL; 777 switch (range.flags & IORESOURCE_TYPE_BITS) { 778 case IORESOURCE_IO: 779 printk(KERN_INFO 780 " IO 0x%016llx..0x%016llx -> 0x%016llx\n", 781 range.cpu_addr, range.cpu_addr + range.size - 1, 782 range.pci_addr); 783 784 /* We support only one IO range */ 785 if (hose->pci_io_size) { 786 printk(KERN_INFO 787 " \\--> Skipped (too many) !\n"); 788 continue; 789 } 790 #ifdef CONFIG_PPC32 791 /* On 32 bits, limit I/O space to 16MB */ 792 if (range.size > 0x01000000) 793 range.size = 0x01000000; 794 795 /* 32 bits needs to map IOs here */ 796 hose->io_base_virt = ioremap(range.cpu_addr, 797 range.size); 798 799 /* Expect trouble if pci_addr is not 0 */ 800 if (primary) 801 isa_io_base = 802 (unsigned long)hose->io_base_virt; 803 #endif /* CONFIG_PPC32 */ 804 /* pci_io_size and io_base_phys always represent IO 805 * space starting at 0 so we factor in pci_addr 806 */ 807 hose->pci_io_size = range.pci_addr + range.size; 808 hose->io_base_phys = range.cpu_addr - range.pci_addr; 809 810 /* Build resource */ 811 res = &hose->io_resource; 812 range.cpu_addr = range.pci_addr; 813 break; 814 case IORESOURCE_MEM: 815 printk(KERN_INFO 816 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", 817 range.cpu_addr, range.cpu_addr + range.size - 1, 818 range.pci_addr, 819 (range.flags & IORESOURCE_PREFETCH) ? 820 "Prefetch" : ""); 821 822 /* We support only 3 memory ranges */ 823 if (memno >= 3) { 824 printk(KERN_INFO 825 " \\--> Skipped (too many) !\n"); 826 continue; 827 } 828 /* Handles ISA memory hole space here */ 829 if (range.pci_addr == 0) { 830 if (primary || isa_mem_base == 0) 831 isa_mem_base = range.cpu_addr; 832 hose->isa_mem_phys = range.cpu_addr; 833 hose->isa_mem_size = range.size; 834 } 835 836 /* Build resource */ 837 hose->mem_offset[memno] = range.cpu_addr - 838 range.pci_addr; 839 res = &hose->mem_resources[memno++]; 840 break; 841 } 842 if (res != NULL) { 843 res->name = dev->full_name; 844 res->flags = range.flags; 845 res->start = range.cpu_addr; 846 res->end = range.cpu_addr + range.size - 1; 847 res->parent = res->child = res->sibling = NULL; 848 } 849 } 850 } 851 852 /* Decide whether to display the domain number in /proc */ 853 int pci_proc_domain(struct pci_bus *bus) 854 { 855 struct pci_controller *hose = pci_bus_to_host(bus); 856 857 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) 858 return 0; 859 if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) 860 return hose->global_number != 0; 861 return 1; 862 } 863 864 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 865 { 866 if (ppc_md.pcibios_root_bridge_prepare) 867 return ppc_md.pcibios_root_bridge_prepare(bridge); 868 869 return 0; 870 } 871 872 /* This header fixup will do the resource fixup for all devices as they are 873 * probed, but not for bridge ranges 874 */ 875 static void pcibios_fixup_resources(struct pci_dev *dev) 876 { 877 struct pci_controller *hose = pci_bus_to_host(dev->bus); 878 int i; 879 880 if (!hose) { 881 printk(KERN_ERR "No host bridge for PCI dev %s !\n", 882 pci_name(dev)); 883 return; 884 } 885 886 if (dev->is_virtfn) 887 return; 888 889 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 890 struct resource *res = dev->resource + i; 891 struct pci_bus_region reg; 892 if (!res->flags) 893 continue; 894 895 /* If we're going to re-assign everything, we mark all resources 896 * as unset (and 0-base them). In addition, we mark BARs starting 897 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set 898 * since in that case, we don't want to re-assign anything 899 */ 900 pcibios_resource_to_bus(dev->bus, ®, res); 901 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || 902 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { 903 /* Only print message if not re-assigning */ 904 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) 905 pr_debug("PCI:%s Resource %d %pR is unassigned\n", 906 pci_name(dev), i, res); 907 res->end -= res->start; 908 res->start = 0; 909 res->flags |= IORESOURCE_UNSET; 910 continue; 911 } 912 913 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); 914 } 915 916 /* Call machine specific resource fixup */ 917 if (ppc_md.pcibios_fixup_resources) 918 ppc_md.pcibios_fixup_resources(dev); 919 } 920 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); 921 922 /* This function tries to figure out if a bridge resource has been initialized 923 * by the firmware or not. It doesn't have to be absolutely bullet proof, but 924 * things go more smoothly when it gets it right. It should covers cases such 925 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges 926 */ 927 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, 928 struct resource *res) 929 { 930 struct pci_controller *hose = pci_bus_to_host(bus); 931 struct pci_dev *dev = bus->self; 932 resource_size_t offset; 933 struct pci_bus_region region; 934 u16 command; 935 int i; 936 937 /* We don't do anything if PCI_PROBE_ONLY is set */ 938 if (pci_has_flag(PCI_PROBE_ONLY)) 939 return 0; 940 941 /* Job is a bit different between memory and IO */ 942 if (res->flags & IORESOURCE_MEM) { 943 pcibios_resource_to_bus(dev->bus, ®ion, res); 944 945 /* If the BAR is non-0 then it's probably been initialized */ 946 if (region.start != 0) 947 return 0; 948 949 /* The BAR is 0, let's check if memory decoding is enabled on 950 * the bridge. If not, we consider it unassigned 951 */ 952 pci_read_config_word(dev, PCI_COMMAND, &command); 953 if ((command & PCI_COMMAND_MEMORY) == 0) 954 return 1; 955 956 /* Memory decoding is enabled and the BAR is 0. If any of the bridge 957 * resources covers that starting address (0 then it's good enough for 958 * us for memory space) 959 */ 960 for (i = 0; i < 3; i++) { 961 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && 962 hose->mem_resources[i].start == hose->mem_offset[i]) 963 return 0; 964 } 965 966 /* Well, it starts at 0 and we know it will collide so we may as 967 * well consider it as unassigned. That covers the Apple case. 968 */ 969 return 1; 970 } else { 971 /* If the BAR is non-0, then we consider it assigned */ 972 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 973 if (((res->start - offset) & 0xfffffffful) != 0) 974 return 0; 975 976 /* Here, we are a bit different than memory as typically IO space 977 * starting at low addresses -is- valid. What we do instead if that 978 * we consider as unassigned anything that doesn't have IO enabled 979 * in the PCI command register, and that's it. 980 */ 981 pci_read_config_word(dev, PCI_COMMAND, &command); 982 if (command & PCI_COMMAND_IO) 983 return 0; 984 985 /* It's starting at 0 and IO is disabled in the bridge, consider 986 * it unassigned 987 */ 988 return 1; 989 } 990 } 991 992 /* Fixup resources of a PCI<->PCI bridge */ 993 static void pcibios_fixup_bridge(struct pci_bus *bus) 994 { 995 struct resource *res; 996 int i; 997 998 struct pci_dev *dev = bus->self; 999 1000 pci_bus_for_each_resource(bus, res, i) { 1001 if (!res || !res->flags) 1002 continue; 1003 if (i >= 3 && bus->self->transparent) 1004 continue; 1005 1006 /* If we're going to reassign everything, we can 1007 * shrink the P2P resource to have size as being 1008 * of 0 in order to save space. 1009 */ 1010 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1011 res->flags |= IORESOURCE_UNSET; 1012 res->start = 0; 1013 res->end = -1; 1014 continue; 1015 } 1016 1017 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); 1018 1019 /* Try to detect uninitialized P2P bridge resources, 1020 * and clear them out so they get re-assigned later 1021 */ 1022 if (pcibios_uninitialized_bridge_resource(bus, res)) { 1023 res->flags = 0; 1024 pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); 1025 } 1026 } 1027 } 1028 1029 void pcibios_setup_bus_self(struct pci_bus *bus) 1030 { 1031 struct pci_controller *phb; 1032 1033 /* Fix up the bus resources for P2P bridges */ 1034 if (bus->self != NULL) 1035 pcibios_fixup_bridge(bus); 1036 1037 /* Platform specific bus fixups. This is currently only used 1038 * by fsl_pci and I'm hoping to get rid of it at some point 1039 */ 1040 if (ppc_md.pcibios_fixup_bus) 1041 ppc_md.pcibios_fixup_bus(bus); 1042 1043 /* Setup bus DMA mappings */ 1044 phb = pci_bus_to_host(bus); 1045 if (phb->controller_ops.dma_bus_setup) 1046 phb->controller_ops.dma_bus_setup(bus); 1047 } 1048 1049 void pcibios_bus_add_device(struct pci_dev *dev) 1050 { 1051 struct pci_controller *phb; 1052 /* Fixup NUMA node as it may not be setup yet by the generic 1053 * code and is needed by the DMA init 1054 */ 1055 set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); 1056 1057 /* Hook up default DMA ops */ 1058 set_dma_ops(&dev->dev, pci_dma_ops); 1059 dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET; 1060 1061 /* Additional platform DMA/iommu setup */ 1062 phb = pci_bus_to_host(dev->bus); 1063 if (phb->controller_ops.dma_dev_setup) 1064 phb->controller_ops.dma_dev_setup(dev); 1065 1066 /* Read default IRQs and fixup if necessary */ 1067 pci_read_irq_line(dev); 1068 if (ppc_md.pci_irq_fixup) 1069 ppc_md.pci_irq_fixup(dev); 1070 1071 if (ppc_md.pcibios_bus_add_device) 1072 ppc_md.pcibios_bus_add_device(dev); 1073 } 1074 1075 int pcibios_add_device(struct pci_dev *dev) 1076 { 1077 struct irq_domain *d; 1078 1079 #ifdef CONFIG_PCI_IOV 1080 if (ppc_md.pcibios_fixup_sriov) 1081 ppc_md.pcibios_fixup_sriov(dev); 1082 #endif /* CONFIG_PCI_IOV */ 1083 1084 d = dev_get_msi_domain(&dev->bus->dev); 1085 if (d) 1086 dev_set_msi_domain(&dev->dev, d); 1087 return 0; 1088 } 1089 1090 void pcibios_set_master(struct pci_dev *dev) 1091 { 1092 /* No special bus mastering setup handling */ 1093 } 1094 1095 void pcibios_fixup_bus(struct pci_bus *bus) 1096 { 1097 /* When called from the generic PCI probe, read PCI<->PCI bridge 1098 * bases. This is -not- called when generating the PCI tree from 1099 * the OF device-tree. 1100 */ 1101 pci_read_bridge_bases(bus); 1102 1103 /* Now fixup the bus bus */ 1104 pcibios_setup_bus_self(bus); 1105 } 1106 EXPORT_SYMBOL(pcibios_fixup_bus); 1107 1108 static int skip_isa_ioresource_align(struct pci_dev *dev) 1109 { 1110 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && 1111 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) 1112 return 1; 1113 return 0; 1114 } 1115 1116 /* 1117 * We need to avoid collisions with `mirrored' VGA ports 1118 * and other strange ISA hardware, so we always want the 1119 * addresses to be allocated in the 0x000-0x0ff region 1120 * modulo 0x400. 1121 * 1122 * Why? Because some silly external IO cards only decode 1123 * the low 10 bits of the IO address. The 0x00-0xff region 1124 * is reserved for motherboard devices that decode all 16 1125 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, 1126 * but we want to try to avoid allocating at 0x2900-0x2bff 1127 * which might have be mirrored at 0x0100-0x03ff.. 1128 */ 1129 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 1130 resource_size_t size, resource_size_t align) 1131 { 1132 struct pci_dev *dev = data; 1133 resource_size_t start = res->start; 1134 1135 if (res->flags & IORESOURCE_IO) { 1136 if (skip_isa_ioresource_align(dev)) 1137 return start; 1138 if (start & 0x300) 1139 start = (start + 0x3ff) & ~0x3ff; 1140 } 1141 1142 return start; 1143 } 1144 EXPORT_SYMBOL(pcibios_align_resource); 1145 1146 /* 1147 * Reparent resource children of pr that conflict with res 1148 * under res, and make res replace those children. 1149 */ 1150 static int reparent_resources(struct resource *parent, 1151 struct resource *res) 1152 { 1153 struct resource *p, **pp; 1154 struct resource **firstpp = NULL; 1155 1156 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { 1157 if (p->end < res->start) 1158 continue; 1159 if (res->end < p->start) 1160 break; 1161 if (p->start < res->start || p->end > res->end) 1162 return -1; /* not completely contained */ 1163 if (firstpp == NULL) 1164 firstpp = pp; 1165 } 1166 if (firstpp == NULL) 1167 return -1; /* didn't find any conflicting entries? */ 1168 res->parent = parent; 1169 res->child = *firstpp; 1170 res->sibling = *pp; 1171 *firstpp = res; 1172 *pp = NULL; 1173 for (p = res->child; p != NULL; p = p->sibling) { 1174 p->parent = res; 1175 pr_debug("PCI: Reparented %s %pR under %s\n", 1176 p->name, p, res->name); 1177 } 1178 return 0; 1179 } 1180 1181 /* 1182 * Handle resources of PCI devices. If the world were perfect, we could 1183 * just allocate all the resource regions and do nothing more. It isn't. 1184 * On the other hand, we cannot just re-allocate all devices, as it would 1185 * require us to know lots of host bridge internals. So we attempt to 1186 * keep as much of the original configuration as possible, but tweak it 1187 * when it's found to be wrong. 1188 * 1189 * Known BIOS problems we have to work around: 1190 * - I/O or memory regions not configured 1191 * - regions configured, but not enabled in the command register 1192 * - bogus I/O addresses above 64K used 1193 * - expansion ROMs left enabled (this may sound harmless, but given 1194 * the fact the PCI specs explicitly allow address decoders to be 1195 * shared between expansion ROMs and other resource regions, it's 1196 * at least dangerous) 1197 * 1198 * Our solution: 1199 * (1) Allocate resources for all buses behind PCI-to-PCI bridges. 1200 * This gives us fixed barriers on where we can allocate. 1201 * (2) Allocate resources for all enabled devices. If there is 1202 * a collision, just mark the resource as unallocated. Also 1203 * disable expansion ROMs during this step. 1204 * (3) Try to allocate resources for disabled devices. If the 1205 * resources were assigned correctly, everything goes well, 1206 * if they weren't, they won't disturb allocation of other 1207 * resources. 1208 * (4) Assign new addresses to resources which were either 1209 * not configured at all or misconfigured. If explicitly 1210 * requested by the user, configure expansion ROM address 1211 * as well. 1212 */ 1213 1214 static void pcibios_allocate_bus_resources(struct pci_bus *bus) 1215 { 1216 struct pci_bus *b; 1217 int i; 1218 struct resource *res, *pr; 1219 1220 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", 1221 pci_domain_nr(bus), bus->number); 1222 1223 pci_bus_for_each_resource(bus, res, i) { 1224 if (!res || !res->flags || res->start > res->end || res->parent) 1225 continue; 1226 1227 /* If the resource was left unset at this point, we clear it */ 1228 if (res->flags & IORESOURCE_UNSET) 1229 goto clear_resource; 1230 1231 if (bus->parent == NULL) 1232 pr = (res->flags & IORESOURCE_IO) ? 1233 &ioport_resource : &iomem_resource; 1234 else { 1235 pr = pci_find_parent_resource(bus->self, res); 1236 if (pr == res) { 1237 /* this happens when the generic PCI 1238 * code (wrongly) decides that this 1239 * bridge is transparent -- paulus 1240 */ 1241 continue; 1242 } 1243 } 1244 1245 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", 1246 bus->self ? pci_name(bus->self) : "PHB", bus->number, 1247 i, res, pr, (pr && pr->name) ? pr->name : "nil"); 1248 1249 if (pr && !(pr->flags & IORESOURCE_UNSET)) { 1250 struct pci_dev *dev = bus->self; 1251 1252 if (request_resource(pr, res) == 0) 1253 continue; 1254 /* 1255 * Must be a conflict with an existing entry. 1256 * Move that entry (or entries) under the 1257 * bridge resource and try again. 1258 */ 1259 if (reparent_resources(pr, res) == 0) 1260 continue; 1261 1262 if (dev && i < PCI_BRIDGE_RESOURCE_NUM && 1263 pci_claim_bridge_resource(dev, 1264 i + PCI_BRIDGE_RESOURCES) == 0) 1265 continue; 1266 } 1267 pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n", 1268 i, bus->number); 1269 clear_resource: 1270 /* The resource might be figured out when doing 1271 * reassignment based on the resources required 1272 * by the downstream PCI devices. Here we set 1273 * the size of the resource to be 0 in order to 1274 * save more space. 1275 */ 1276 res->start = 0; 1277 res->end = -1; 1278 res->flags = 0; 1279 } 1280 1281 list_for_each_entry(b, &bus->children, node) 1282 pcibios_allocate_bus_resources(b); 1283 } 1284 1285 static inline void alloc_resource(struct pci_dev *dev, int idx) 1286 { 1287 struct resource *pr, *r = &dev->resource[idx]; 1288 1289 pr_debug("PCI: Allocating %s: Resource %d: %pR\n", 1290 pci_name(dev), idx, r); 1291 1292 pr = pci_find_parent_resource(dev, r); 1293 if (!pr || (pr->flags & IORESOURCE_UNSET) || 1294 request_resource(pr, r) < 0) { 1295 printk(KERN_WARNING "PCI: Cannot allocate resource region %d" 1296 " of device %s, will remap\n", idx, pci_name(dev)); 1297 if (pr) 1298 pr_debug("PCI: parent is %p: %pR\n", pr, pr); 1299 /* We'll assign a new address later */ 1300 r->flags |= IORESOURCE_UNSET; 1301 r->end -= r->start; 1302 r->start = 0; 1303 } 1304 } 1305 1306 static void __init pcibios_allocate_resources(int pass) 1307 { 1308 struct pci_dev *dev = NULL; 1309 int idx, disabled; 1310 u16 command; 1311 struct resource *r; 1312 1313 for_each_pci_dev(dev) { 1314 pci_read_config_word(dev, PCI_COMMAND, &command); 1315 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { 1316 r = &dev->resource[idx]; 1317 if (r->parent) /* Already allocated */ 1318 continue; 1319 if (!r->flags || (r->flags & IORESOURCE_UNSET)) 1320 continue; /* Not assigned at all */ 1321 /* We only allocate ROMs on pass 1 just in case they 1322 * have been screwed up by firmware 1323 */ 1324 if (idx == PCI_ROM_RESOURCE ) 1325 disabled = 1; 1326 if (r->flags & IORESOURCE_IO) 1327 disabled = !(command & PCI_COMMAND_IO); 1328 else 1329 disabled = !(command & PCI_COMMAND_MEMORY); 1330 if (pass == disabled) 1331 alloc_resource(dev, idx); 1332 } 1333 if (pass) 1334 continue; 1335 r = &dev->resource[PCI_ROM_RESOURCE]; 1336 if (r->flags) { 1337 /* Turn the ROM off, leave the resource region, 1338 * but keep it unregistered. 1339 */ 1340 u32 reg; 1341 pci_read_config_dword(dev, dev->rom_base_reg, ®); 1342 if (reg & PCI_ROM_ADDRESS_ENABLE) { 1343 pr_debug("PCI: Switching off ROM of %s\n", 1344 pci_name(dev)); 1345 r->flags &= ~IORESOURCE_ROM_ENABLE; 1346 pci_write_config_dword(dev, dev->rom_base_reg, 1347 reg & ~PCI_ROM_ADDRESS_ENABLE); 1348 } 1349 } 1350 } 1351 } 1352 1353 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) 1354 { 1355 struct pci_controller *hose = pci_bus_to_host(bus); 1356 resource_size_t offset; 1357 struct resource *res, *pres; 1358 int i; 1359 1360 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); 1361 1362 /* Check for IO */ 1363 if (!(hose->io_resource.flags & IORESOURCE_IO)) 1364 goto no_io; 1365 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 1366 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1367 BUG_ON(res == NULL); 1368 res->name = "Legacy IO"; 1369 res->flags = IORESOURCE_IO; 1370 res->start = offset; 1371 res->end = (offset + 0xfff) & 0xfffffffful; 1372 pr_debug("Candidate legacy IO: %pR\n", res); 1373 if (request_resource(&hose->io_resource, res)) { 1374 printk(KERN_DEBUG 1375 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", 1376 pci_domain_nr(bus), bus->number, res); 1377 kfree(res); 1378 } 1379 1380 no_io: 1381 /* Check for memory */ 1382 for (i = 0; i < 3; i++) { 1383 pres = &hose->mem_resources[i]; 1384 offset = hose->mem_offset[i]; 1385 if (!(pres->flags & IORESOURCE_MEM)) 1386 continue; 1387 pr_debug("hose mem res: %pR\n", pres); 1388 if ((pres->start - offset) <= 0xa0000 && 1389 (pres->end - offset) >= 0xbffff) 1390 break; 1391 } 1392 if (i >= 3) 1393 return; 1394 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1395 BUG_ON(res == NULL); 1396 res->name = "Legacy VGA memory"; 1397 res->flags = IORESOURCE_MEM; 1398 res->start = 0xa0000 + offset; 1399 res->end = 0xbffff + offset; 1400 pr_debug("Candidate VGA memory: %pR\n", res); 1401 if (request_resource(pres, res)) { 1402 printk(KERN_DEBUG 1403 "PCI %04x:%02x Cannot reserve VGA memory %pR\n", 1404 pci_domain_nr(bus), bus->number, res); 1405 kfree(res); 1406 } 1407 } 1408 1409 void __init pcibios_resource_survey(void) 1410 { 1411 struct pci_bus *b; 1412 1413 /* Allocate and assign resources */ 1414 list_for_each_entry(b, &pci_root_buses, node) 1415 pcibios_allocate_bus_resources(b); 1416 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1417 pcibios_allocate_resources(0); 1418 pcibios_allocate_resources(1); 1419 } 1420 1421 /* Before we start assigning unassigned resource, we try to reserve 1422 * the low IO area and the VGA memory area if they intersect the 1423 * bus available resources to avoid allocating things on top of them 1424 */ 1425 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1426 list_for_each_entry(b, &pci_root_buses, node) 1427 pcibios_reserve_legacy_regions(b); 1428 } 1429 1430 /* Now, if the platform didn't decide to blindly trust the firmware, 1431 * we proceed to assigning things that were left unassigned 1432 */ 1433 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1434 pr_debug("PCI: Assigning unassigned resources...\n"); 1435 pci_assign_unassigned_resources(); 1436 } 1437 } 1438 1439 /* This is used by the PCI hotplug driver to allocate resource 1440 * of newly plugged busses. We can try to consolidate with the 1441 * rest of the code later, for now, keep it as-is as our main 1442 * resource allocation function doesn't deal with sub-trees yet. 1443 */ 1444 void pcibios_claim_one_bus(struct pci_bus *bus) 1445 { 1446 struct pci_dev *dev; 1447 struct pci_bus *child_bus; 1448 1449 list_for_each_entry(dev, &bus->devices, bus_list) { 1450 int i; 1451 1452 for (i = 0; i < PCI_NUM_RESOURCES; i++) { 1453 struct resource *r = &dev->resource[i]; 1454 1455 if (r->parent || !r->start || !r->flags) 1456 continue; 1457 1458 pr_debug("PCI: Claiming %s: Resource %d: %pR\n", 1459 pci_name(dev), i, r); 1460 1461 if (pci_claim_resource(dev, i) == 0) 1462 continue; 1463 1464 pci_claim_bridge_resource(dev, i); 1465 } 1466 } 1467 1468 list_for_each_entry(child_bus, &bus->children, node) 1469 pcibios_claim_one_bus(child_bus); 1470 } 1471 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); 1472 1473 1474 /* pcibios_finish_adding_to_bus 1475 * 1476 * This is to be called by the hotplug code after devices have been 1477 * added to a bus, this include calling it for a PHB that is just 1478 * being added 1479 */ 1480 void pcibios_finish_adding_to_bus(struct pci_bus *bus) 1481 { 1482 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", 1483 pci_domain_nr(bus), bus->number); 1484 1485 /* Allocate bus and devices resources */ 1486 pcibios_allocate_bus_resources(bus); 1487 pcibios_claim_one_bus(bus); 1488 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1489 if (bus->self) 1490 pci_assign_unassigned_bridge_resources(bus->self); 1491 else 1492 pci_assign_unassigned_bus_resources(bus); 1493 } 1494 1495 /* Add new devices to global lists. Register in proc, sysfs. */ 1496 pci_bus_add_devices(bus); 1497 } 1498 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); 1499 1500 int pcibios_enable_device(struct pci_dev *dev, int mask) 1501 { 1502 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1503 1504 if (phb->controller_ops.enable_device_hook) 1505 if (!phb->controller_ops.enable_device_hook(dev)) 1506 return -EINVAL; 1507 1508 return pci_enable_resources(dev, mask); 1509 } 1510 1511 void pcibios_disable_device(struct pci_dev *dev) 1512 { 1513 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1514 1515 if (phb->controller_ops.disable_device) 1516 phb->controller_ops.disable_device(dev); 1517 } 1518 1519 resource_size_t pcibios_io_space_offset(struct pci_controller *hose) 1520 { 1521 return (unsigned long) hose->io_base_virt - _IO_BASE; 1522 } 1523 1524 static void pcibios_setup_phb_resources(struct pci_controller *hose, 1525 struct list_head *resources) 1526 { 1527 struct resource *res; 1528 resource_size_t offset; 1529 int i; 1530 1531 /* Hookup PHB IO resource */ 1532 res = &hose->io_resource; 1533 1534 if (!res->flags) { 1535 pr_debug("PCI: I/O resource not set for host" 1536 " bridge %pOF (domain %d)\n", 1537 hose->dn, hose->global_number); 1538 } else { 1539 offset = pcibios_io_space_offset(hose); 1540 1541 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", 1542 res, (unsigned long long)offset); 1543 pci_add_resource_offset(resources, res, offset); 1544 } 1545 1546 /* Hookup PHB Memory resources */ 1547 for (i = 0; i < 3; ++i) { 1548 res = &hose->mem_resources[i]; 1549 if (!res->flags) 1550 continue; 1551 1552 offset = hose->mem_offset[i]; 1553 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, 1554 res, (unsigned long long)offset); 1555 1556 pci_add_resource_offset(resources, res, offset); 1557 } 1558 } 1559 1560 /* 1561 * Null PCI config access functions, for the case when we can't 1562 * find a hose. 1563 */ 1564 #define NULL_PCI_OP(rw, size, type) \ 1565 static int \ 1566 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ 1567 { \ 1568 return PCIBIOS_DEVICE_NOT_FOUND; \ 1569 } 1570 1571 static int 1572 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, 1573 int len, u32 *val) 1574 { 1575 return PCIBIOS_DEVICE_NOT_FOUND; 1576 } 1577 1578 static int 1579 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, 1580 int len, u32 val) 1581 { 1582 return PCIBIOS_DEVICE_NOT_FOUND; 1583 } 1584 1585 static struct pci_ops null_pci_ops = 1586 { 1587 .read = null_read_config, 1588 .write = null_write_config, 1589 }; 1590 1591 /* 1592 * These functions are used early on before PCI scanning is done 1593 * and all of the pci_dev and pci_bus structures have been created. 1594 */ 1595 static struct pci_bus * 1596 fake_pci_bus(struct pci_controller *hose, int busnr) 1597 { 1598 static struct pci_bus bus; 1599 1600 if (hose == NULL) { 1601 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); 1602 } 1603 bus.number = busnr; 1604 bus.sysdata = hose; 1605 bus.ops = hose? hose->ops: &null_pci_ops; 1606 return &bus; 1607 } 1608 1609 #define EARLY_PCI_OP(rw, size, type) \ 1610 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ 1611 int devfn, int offset, type value) \ 1612 { \ 1613 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ 1614 devfn, offset, value); \ 1615 } 1616 1617 EARLY_PCI_OP(read, byte, u8 *) 1618 EARLY_PCI_OP(read, word, u16 *) 1619 EARLY_PCI_OP(read, dword, u32 *) 1620 EARLY_PCI_OP(write, byte, u8) 1621 EARLY_PCI_OP(write, word, u16) 1622 EARLY_PCI_OP(write, dword, u32) 1623 1624 int early_find_capability(struct pci_controller *hose, int bus, int devfn, 1625 int cap) 1626 { 1627 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); 1628 } 1629 1630 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) 1631 { 1632 struct pci_controller *hose = bus->sysdata; 1633 1634 return of_node_get(hose->dn); 1635 } 1636 1637 /** 1638 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus 1639 * @hose: Pointer to the PCI host controller instance structure 1640 */ 1641 void pcibios_scan_phb(struct pci_controller *hose) 1642 { 1643 LIST_HEAD(resources); 1644 struct pci_bus *bus; 1645 struct device_node *node = hose->dn; 1646 int mode; 1647 1648 pr_debug("PCI: Scanning PHB %pOF\n", node); 1649 1650 /* Get some IO space for the new PHB */ 1651 pcibios_setup_phb_io_space(hose); 1652 1653 /* Wire up PHB bus resources */ 1654 pcibios_setup_phb_resources(hose, &resources); 1655 1656 hose->busn.start = hose->first_busno; 1657 hose->busn.end = hose->last_busno; 1658 hose->busn.flags = IORESOURCE_BUS; 1659 pci_add_resource(&resources, &hose->busn); 1660 1661 /* Create an empty bus for the toplevel */ 1662 bus = pci_create_root_bus(hose->parent, hose->first_busno, 1663 hose->ops, hose, &resources); 1664 if (bus == NULL) { 1665 pr_err("Failed to create bus for PCI domain %04x\n", 1666 hose->global_number); 1667 pci_free_resource_list(&resources); 1668 return; 1669 } 1670 hose->bus = bus; 1671 1672 /* Get probe mode and perform scan */ 1673 mode = PCI_PROBE_NORMAL; 1674 if (node && hose->controller_ops.probe_mode) 1675 mode = hose->controller_ops.probe_mode(bus); 1676 pr_debug(" probe mode: %d\n", mode); 1677 if (mode == PCI_PROBE_DEVTREE) 1678 of_scan_bus(node, bus); 1679 1680 if (mode == PCI_PROBE_NORMAL) { 1681 pci_bus_update_busn_res_end(bus, 255); 1682 hose->last_busno = pci_scan_child_bus(bus); 1683 pci_bus_update_busn_res_end(bus, hose->last_busno); 1684 } 1685 1686 /* Platform gets a chance to do some global fixups before 1687 * we proceed to resource allocation 1688 */ 1689 if (ppc_md.pcibios_fixup_phb) 1690 ppc_md.pcibios_fixup_phb(hose); 1691 1692 /* Configure PCI Express settings */ 1693 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { 1694 struct pci_bus *child; 1695 list_for_each_entry(child, &bus->children, node) 1696 pcie_bus_configure_settings(child); 1697 } 1698 } 1699 EXPORT_SYMBOL_GPL(pcibios_scan_phb); 1700 1701 static void fixup_hide_host_resource_fsl(struct pci_dev *dev) 1702 { 1703 int i, class = dev->class >> 8; 1704 /* When configured as agent, programing interface = 1 */ 1705 int prog_if = dev->class & 0xf; 1706 1707 if ((class == PCI_CLASS_PROCESSOR_POWERPC || 1708 class == PCI_CLASS_BRIDGE_OTHER) && 1709 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && 1710 (prog_if == 0) && 1711 (dev->bus->parent == NULL)) { 1712 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1713 dev->resource[i].start = 0; 1714 dev->resource[i].end = 0; 1715 dev->resource[i].flags = 0; 1716 } 1717 } 1718 } 1719 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1720 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1721 1722 1723 static int __init discover_phbs(void) 1724 { 1725 if (ppc_md.discover_phbs) 1726 ppc_md.discover_phbs(); 1727 1728 return 0; 1729 } 1730 core_initcall(discover_phbs); 1731