xref: /openbmc/linux/arch/powerpc/kernel/pci-common.c (revision e1c355ec)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Contains common pci routines for ALL ppc platform
4  * (based on pci_32.c and pci_64.c)
5  *
6  * Port for PPC64 David Engebretsen, IBM Corp.
7  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
8  *
9  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
10  *   Rework, based on alpha PCI code.
11  *
12  * Common pmac/prep/chrp pci routines. -- Cort
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/string.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/of_address.h>
22 #include <linux/of_pci.h>
23 #include <linux/mm.h>
24 #include <linux/shmem_fs.h>
25 #include <linux/list.h>
26 #include <linux/syscalls.h>
27 #include <linux/irq.h>
28 #include <linux/vmalloc.h>
29 #include <linux/slab.h>
30 #include <linux/vgaarb.h>
31 #include <linux/numa.h>
32 #include <linux/msi.h>
33 
34 #include <asm/processor.h>
35 #include <asm/io.h>
36 #include <asm/prom.h>
37 #include <asm/pci-bridge.h>
38 #include <asm/byteorder.h>
39 #include <asm/machdep.h>
40 #include <asm/ppc-pci.h>
41 #include <asm/eeh.h>
42 
43 #include "../../../drivers/pci/pci.h"
44 
45 /* hose_spinlock protects accesses to the the phb_bitmap. */
46 static DEFINE_SPINLOCK(hose_spinlock);
47 LIST_HEAD(hose_list);
48 
49 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
50 #define MAX_PHBS 0x10000
51 
52 /*
53  * For dynamic PHB numbering: used/free PHBs tracking bitmap.
54  * Accesses to this bitmap should be protected by hose_spinlock.
55  */
56 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
57 
58 /* ISA Memory physical address */
59 resource_size_t isa_mem_base;
60 EXPORT_SYMBOL(isa_mem_base);
61 
62 
63 static const struct dma_map_ops *pci_dma_ops;
64 
65 void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
66 {
67 	pci_dma_ops = dma_ops;
68 }
69 
70 /*
71  * This function should run under locking protection, specifically
72  * hose_spinlock.
73  */
74 static int get_phb_number(struct device_node *dn)
75 {
76 	int ret, phb_id = -1;
77 	u64 prop;
78 
79 	/*
80 	 * Try fixed PHB numbering first, by checking archs and reading
81 	 * the respective device-tree properties. Firstly, try reading
82 	 * standard "linux,pci-domain", then try reading "ibm,opal-phbid"
83 	 * (only present in powernv OPAL environment), then try device-tree
84 	 * alias and as the last try to use lower bits of "reg" property.
85 	 */
86 	ret = of_get_pci_domain_nr(dn);
87 	if (ret >= 0) {
88 		prop = ret;
89 		ret = 0;
90 	}
91 	if (ret)
92 		ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
93 
94 	if (ret) {
95 		ret = of_alias_get_id(dn, "pci");
96 		if (ret >= 0) {
97 			prop = ret;
98 			ret = 0;
99 		}
100 	}
101 	if (ret) {
102 		u32 prop_32;
103 		ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
104 		prop = prop_32;
105 	}
106 
107 	if (!ret)
108 		phb_id = (int)(prop & (MAX_PHBS - 1));
109 
110 	/* We need to be sure to not use the same PHB number twice. */
111 	if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
112 		return phb_id;
113 
114 	/* If everything fails then fallback to dynamic PHB numbering. */
115 	phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
116 	BUG_ON(phb_id >= MAX_PHBS);
117 	set_bit(phb_id, phb_bitmap);
118 
119 	return phb_id;
120 }
121 
122 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
123 {
124 	struct pci_controller *phb;
125 
126 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
127 	if (phb == NULL)
128 		return NULL;
129 	spin_lock(&hose_spinlock);
130 	phb->global_number = get_phb_number(dev);
131 	list_add_tail(&phb->list_node, &hose_list);
132 	spin_unlock(&hose_spinlock);
133 	phb->dn = dev;
134 	phb->is_dynamic = slab_is_available();
135 #ifdef CONFIG_PPC64
136 	if (dev) {
137 		int nid = of_node_to_nid(dev);
138 
139 		if (nid < 0 || !node_online(nid))
140 			nid = NUMA_NO_NODE;
141 
142 		PHB_SET_NODE(phb, nid);
143 	}
144 #endif
145 	return phb;
146 }
147 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
148 
149 void pcibios_free_controller(struct pci_controller *phb)
150 {
151 	spin_lock(&hose_spinlock);
152 
153 	/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
154 	if (phb->global_number < MAX_PHBS)
155 		clear_bit(phb->global_number, phb_bitmap);
156 
157 	list_del(&phb->list_node);
158 	spin_unlock(&hose_spinlock);
159 
160 	if (phb->is_dynamic)
161 		kfree(phb);
162 }
163 EXPORT_SYMBOL_GPL(pcibios_free_controller);
164 
165 /*
166  * This function is used to call pcibios_free_controller()
167  * in a deferred manner: a callback from the PCI subsystem.
168  *
169  * _*DO NOT*_ call pcibios_free_controller() explicitly if
170  * this is used (or it may access an invalid *phb pointer).
171  *
172  * The callback occurs when all references to the root bus
173  * are dropped (e.g., child buses/devices and their users).
174  *
175  * It's called as .release_fn() of 'struct pci_host_bridge'
176  * which is associated with the 'struct pci_controller.bus'
177  * (root bus) - it expects .release_data to hold a pointer
178  * to 'struct pci_controller'.
179  *
180  * In order to use it, register .release_fn()/release_data
181  * like this:
182  *
183  * pci_set_host_bridge_release(bridge,
184  *                             pcibios_free_controller_deferred
185  *                             (void *) phb);
186  *
187  * e.g. in the pcibios_root_bridge_prepare() callback from
188  * pci_create_root_bus().
189  */
190 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
191 {
192 	struct pci_controller *phb = (struct pci_controller *)
193 					 bridge->release_data;
194 
195 	pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
196 
197 	pcibios_free_controller(phb);
198 }
199 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
200 
201 /*
202  * The function is used to return the minimal alignment
203  * for memory or I/O windows of the associated P2P bridge.
204  * By default, 4KiB alignment for I/O windows and 1MiB for
205  * memory windows.
206  */
207 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
208 					 unsigned long type)
209 {
210 	struct pci_controller *phb = pci_bus_to_host(bus);
211 
212 	if (phb->controller_ops.window_alignment)
213 		return phb->controller_ops.window_alignment(bus, type);
214 
215 	/*
216 	 * PCI core will figure out the default
217 	 * alignment: 4KiB for I/O and 1MiB for
218 	 * memory window.
219 	 */
220 	return 1;
221 }
222 
223 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
224 {
225 	struct pci_controller *hose = pci_bus_to_host(bus);
226 
227 	if (hose->controller_ops.setup_bridge)
228 		hose->controller_ops.setup_bridge(bus, type);
229 }
230 
231 void pcibios_reset_secondary_bus(struct pci_dev *dev)
232 {
233 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
234 
235 	if (phb->controller_ops.reset_secondary_bus) {
236 		phb->controller_ops.reset_secondary_bus(dev);
237 		return;
238 	}
239 
240 	pci_reset_secondary_bus(dev);
241 }
242 
243 resource_size_t pcibios_default_alignment(void)
244 {
245 	if (ppc_md.pcibios_default_alignment)
246 		return ppc_md.pcibios_default_alignment();
247 
248 	return 0;
249 }
250 
251 #ifdef CONFIG_PCI_IOV
252 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
253 {
254 	if (ppc_md.pcibios_iov_resource_alignment)
255 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
256 
257 	return pci_iov_resource_size(pdev, resno);
258 }
259 
260 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
261 {
262 	if (ppc_md.pcibios_sriov_enable)
263 		return ppc_md.pcibios_sriov_enable(pdev, num_vfs);
264 
265 	return 0;
266 }
267 
268 int pcibios_sriov_disable(struct pci_dev *pdev)
269 {
270 	if (ppc_md.pcibios_sriov_disable)
271 		return ppc_md.pcibios_sriov_disable(pdev);
272 
273 	return 0;
274 }
275 
276 #endif /* CONFIG_PCI_IOV */
277 
278 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
279 {
280 #ifdef CONFIG_PPC64
281 	return hose->pci_io_size;
282 #else
283 	return resource_size(&hose->io_resource);
284 #endif
285 }
286 
287 int pcibios_vaddr_is_ioport(void __iomem *address)
288 {
289 	int ret = 0;
290 	struct pci_controller *hose;
291 	resource_size_t size;
292 
293 	spin_lock(&hose_spinlock);
294 	list_for_each_entry(hose, &hose_list, list_node) {
295 		size = pcibios_io_size(hose);
296 		if (address >= hose->io_base_virt &&
297 		    address < (hose->io_base_virt + size)) {
298 			ret = 1;
299 			break;
300 		}
301 	}
302 	spin_unlock(&hose_spinlock);
303 	return ret;
304 }
305 
306 unsigned long pci_address_to_pio(phys_addr_t address)
307 {
308 	struct pci_controller *hose;
309 	resource_size_t size;
310 	unsigned long ret = ~0;
311 
312 	spin_lock(&hose_spinlock);
313 	list_for_each_entry(hose, &hose_list, list_node) {
314 		size = pcibios_io_size(hose);
315 		if (address >= hose->io_base_phys &&
316 		    address < (hose->io_base_phys + size)) {
317 			unsigned long base =
318 				(unsigned long)hose->io_base_virt - _IO_BASE;
319 			ret = base + (address - hose->io_base_phys);
320 			break;
321 		}
322 	}
323 	spin_unlock(&hose_spinlock);
324 
325 	return ret;
326 }
327 EXPORT_SYMBOL_GPL(pci_address_to_pio);
328 
329 /*
330  * Return the domain number for this bus.
331  */
332 int pci_domain_nr(struct pci_bus *bus)
333 {
334 	struct pci_controller *hose = pci_bus_to_host(bus);
335 
336 	return hose->global_number;
337 }
338 EXPORT_SYMBOL(pci_domain_nr);
339 
340 /* This routine is meant to be used early during boot, when the
341  * PCI bus numbers have not yet been assigned, and you need to
342  * issue PCI config cycles to an OF device.
343  * It could also be used to "fix" RTAS config cycles if you want
344  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
345  * config cycles.
346  */
347 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
348 {
349 	while(node) {
350 		struct pci_controller *hose, *tmp;
351 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
352 			if (hose->dn == node)
353 				return hose;
354 		node = node->parent;
355 	}
356 	return NULL;
357 }
358 
359 struct pci_controller *pci_find_controller_for_domain(int domain_nr)
360 {
361 	struct pci_controller *hose;
362 
363 	list_for_each_entry(hose, &hose_list, list_node)
364 		if (hose->global_number == domain_nr)
365 			return hose;
366 
367 	return NULL;
368 }
369 
370 struct pci_intx_virq {
371 	int virq;
372 	struct kref kref;
373 	struct list_head list_node;
374 };
375 
376 static LIST_HEAD(intx_list);
377 static DEFINE_MUTEX(intx_mutex);
378 
379 static void ppc_pci_intx_release(struct kref *kref)
380 {
381 	struct pci_intx_virq *vi = container_of(kref, struct pci_intx_virq, kref);
382 
383 	list_del(&vi->list_node);
384 	irq_dispose_mapping(vi->virq);
385 	kfree(vi);
386 }
387 
388 static int ppc_pci_unmap_irq_line(struct notifier_block *nb,
389 			       unsigned long action, void *data)
390 {
391 	struct pci_dev *pdev = to_pci_dev(data);
392 
393 	if (action == BUS_NOTIFY_DEL_DEVICE) {
394 		struct pci_intx_virq *vi;
395 
396 		mutex_lock(&intx_mutex);
397 		list_for_each_entry(vi, &intx_list, list_node) {
398 			if (vi->virq == pdev->irq) {
399 				kref_put(&vi->kref, ppc_pci_intx_release);
400 				break;
401 			}
402 		}
403 		mutex_unlock(&intx_mutex);
404 	}
405 
406 	return NOTIFY_DONE;
407 }
408 
409 static struct notifier_block ppc_pci_unmap_irq_notifier = {
410 	.notifier_call = ppc_pci_unmap_irq_line,
411 };
412 
413 static int ppc_pci_register_irq_notifier(void)
414 {
415 	return bus_register_notifier(&pci_bus_type, &ppc_pci_unmap_irq_notifier);
416 }
417 arch_initcall(ppc_pci_register_irq_notifier);
418 
419 /*
420  * Reads the interrupt pin to determine if interrupt is use by card.
421  * If the interrupt is used, then gets the interrupt line from the
422  * openfirmware and sets it in the pci_dev and pci_config line.
423  */
424 static int pci_read_irq_line(struct pci_dev *pci_dev)
425 {
426 	int virq;
427 	struct pci_intx_virq *vi, *vitmp;
428 
429 	/* Preallocate vi as rewind is complex if this fails after mapping */
430 	vi = kzalloc(sizeof(struct pci_intx_virq), GFP_KERNEL);
431 	if (!vi)
432 		return -1;
433 
434 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
435 
436 	/* Try to get a mapping from the device-tree */
437 	virq = of_irq_parse_and_map_pci(pci_dev, 0, 0);
438 	if (virq <= 0) {
439 		u8 line, pin;
440 
441 		/* If that fails, lets fallback to what is in the config
442 		 * space and map that through the default controller. We
443 		 * also set the type to level low since that's what PCI
444 		 * interrupts are. If your platform does differently, then
445 		 * either provide a proper interrupt tree or don't use this
446 		 * function.
447 		 */
448 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
449 			goto error_exit;
450 		if (pin == 0)
451 			goto error_exit;
452 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
453 		    line == 0xff || line == 0) {
454 			goto error_exit;
455 		}
456 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
457 			 line, pin);
458 
459 		virq = irq_create_mapping(NULL, line);
460 		if (virq)
461 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
462 	}
463 
464 	if (!virq) {
465 		pr_debug(" Failed to map !\n");
466 		goto error_exit;
467 	}
468 
469 	pr_debug(" Mapped to linux irq %d\n", virq);
470 
471 	pci_dev->irq = virq;
472 
473 	mutex_lock(&intx_mutex);
474 	list_for_each_entry(vitmp, &intx_list, list_node) {
475 		if (vitmp->virq == virq) {
476 			kref_get(&vitmp->kref);
477 			kfree(vi);
478 			vi = NULL;
479 			break;
480 		}
481 	}
482 	if (vi) {
483 		vi->virq = virq;
484 		kref_init(&vi->kref);
485 		list_add_tail(&vi->list_node, &intx_list);
486 	}
487 	mutex_unlock(&intx_mutex);
488 
489 	return 0;
490 error_exit:
491 	kfree(vi);
492 	return -1;
493 }
494 
495 /*
496  * Platform support for /proc/bus/pci/X/Y mmap()s.
497  *  -- paulus.
498  */
499 int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma)
500 {
501 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
502 	resource_size_t ioaddr = pci_resource_start(pdev, bar);
503 
504 	if (!hose)
505 		return -EINVAL;
506 
507 	/* Convert to an offset within this PCI controller */
508 	ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE;
509 
510 	vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT;
511 	return 0;
512 }
513 
514 /*
515  * This one is used by /dev/mem and fbdev who have no clue about the
516  * PCI device, it tries to find the PCI device first and calls the
517  * above routine
518  */
519 pgprot_t pci_phys_mem_access_prot(struct file *file,
520 				  unsigned long pfn,
521 				  unsigned long size,
522 				  pgprot_t prot)
523 {
524 	struct pci_dev *pdev = NULL;
525 	struct resource *found = NULL;
526 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
527 	int i;
528 
529 	if (page_is_ram(pfn))
530 		return prot;
531 
532 	prot = pgprot_noncached(prot);
533 	for_each_pci_dev(pdev) {
534 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
535 			struct resource *rp = &pdev->resource[i];
536 			int flags = rp->flags;
537 
538 			/* Active and same type? */
539 			if ((flags & IORESOURCE_MEM) == 0)
540 				continue;
541 			/* In the range of this resource? */
542 			if (offset < (rp->start & PAGE_MASK) ||
543 			    offset > rp->end)
544 				continue;
545 			found = rp;
546 			break;
547 		}
548 		if (found)
549 			break;
550 	}
551 	if (found) {
552 		if (found->flags & IORESOURCE_PREFETCH)
553 			prot = pgprot_noncached_wc(prot);
554 		pci_dev_put(pdev);
555 	}
556 
557 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
558 		 (unsigned long long)offset, pgprot_val(prot));
559 
560 	return prot;
561 }
562 
563 /* This provides legacy IO read access on a bus */
564 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
565 {
566 	unsigned long offset;
567 	struct pci_controller *hose = pci_bus_to_host(bus);
568 	struct resource *rp = &hose->io_resource;
569 	void __iomem *addr;
570 
571 	/* Check if port can be supported by that bus. We only check
572 	 * the ranges of the PHB though, not the bus itself as the rules
573 	 * for forwarding legacy cycles down bridges are not our problem
574 	 * here. So if the host bridge supports it, we do it.
575 	 */
576 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
577 	offset += port;
578 
579 	if (!(rp->flags & IORESOURCE_IO))
580 		return -ENXIO;
581 	if (offset < rp->start || (offset + size) > rp->end)
582 		return -ENXIO;
583 	addr = hose->io_base_virt + port;
584 
585 	switch(size) {
586 	case 1:
587 		*((u8 *)val) = in_8(addr);
588 		return 1;
589 	case 2:
590 		if (port & 1)
591 			return -EINVAL;
592 		*((u16 *)val) = in_le16(addr);
593 		return 2;
594 	case 4:
595 		if (port & 3)
596 			return -EINVAL;
597 		*((u32 *)val) = in_le32(addr);
598 		return 4;
599 	}
600 	return -EINVAL;
601 }
602 
603 /* This provides legacy IO write access on a bus */
604 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
605 {
606 	unsigned long offset;
607 	struct pci_controller *hose = pci_bus_to_host(bus);
608 	struct resource *rp = &hose->io_resource;
609 	void __iomem *addr;
610 
611 	/* Check if port can be supported by that bus. We only check
612 	 * the ranges of the PHB though, not the bus itself as the rules
613 	 * for forwarding legacy cycles down bridges are not our problem
614 	 * here. So if the host bridge supports it, we do it.
615 	 */
616 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
617 	offset += port;
618 
619 	if (!(rp->flags & IORESOURCE_IO))
620 		return -ENXIO;
621 	if (offset < rp->start || (offset + size) > rp->end)
622 		return -ENXIO;
623 	addr = hose->io_base_virt + port;
624 
625 	/* WARNING: The generic code is idiotic. It gets passed a pointer
626 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
627 	 * as a u32, which means that we have to correct the location of
628 	 * the data read within those 32 bits for size 1 and 2
629 	 */
630 	switch(size) {
631 	case 1:
632 		out_8(addr, val >> 24);
633 		return 1;
634 	case 2:
635 		if (port & 1)
636 			return -EINVAL;
637 		out_le16(addr, val >> 16);
638 		return 2;
639 	case 4:
640 		if (port & 3)
641 			return -EINVAL;
642 		out_le32(addr, val);
643 		return 4;
644 	}
645 	return -EINVAL;
646 }
647 
648 /* This provides legacy IO or memory mmap access on a bus */
649 int pci_mmap_legacy_page_range(struct pci_bus *bus,
650 			       struct vm_area_struct *vma,
651 			       enum pci_mmap_state mmap_state)
652 {
653 	struct pci_controller *hose = pci_bus_to_host(bus);
654 	resource_size_t offset =
655 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
656 	resource_size_t size = vma->vm_end - vma->vm_start;
657 	struct resource *rp;
658 
659 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
660 		 pci_domain_nr(bus), bus->number,
661 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
662 		 (unsigned long long)offset,
663 		 (unsigned long long)(offset + size - 1));
664 
665 	if (mmap_state == pci_mmap_mem) {
666 		/* Hack alert !
667 		 *
668 		 * Because X is lame and can fail starting if it gets an error trying
669 		 * to mmap legacy_mem (instead of just moving on without legacy memory
670 		 * access) we fake it here by giving it anonymous memory, effectively
671 		 * behaving just like /dev/zero
672 		 */
673 		if ((offset + size) > hose->isa_mem_size) {
674 			printk(KERN_DEBUG
675 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
676 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
677 			if (vma->vm_flags & VM_SHARED)
678 				return shmem_zero_setup(vma);
679 			return 0;
680 		}
681 		offset += hose->isa_mem_phys;
682 	} else {
683 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
684 		unsigned long roffset = offset + io_offset;
685 		rp = &hose->io_resource;
686 		if (!(rp->flags & IORESOURCE_IO))
687 			return -ENXIO;
688 		if (roffset < rp->start || (roffset + size) > rp->end)
689 			return -ENXIO;
690 		offset += hose->io_base_phys;
691 	}
692 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
693 
694 	vma->vm_pgoff = offset >> PAGE_SHIFT;
695 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
696 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
697 			       vma->vm_end - vma->vm_start,
698 			       vma->vm_page_prot);
699 }
700 
701 void pci_resource_to_user(const struct pci_dev *dev, int bar,
702 			  const struct resource *rsrc,
703 			  resource_size_t *start, resource_size_t *end)
704 {
705 	struct pci_bus_region region;
706 
707 	if (rsrc->flags & IORESOURCE_IO) {
708 		pcibios_resource_to_bus(dev->bus, &region,
709 					(struct resource *) rsrc);
710 		*start = region.start;
711 		*end = region.end;
712 		return;
713 	}
714 
715 	/* We pass a CPU physical address to userland for MMIO instead of a
716 	 * BAR value because X is lame and expects to be able to use that
717 	 * to pass to /dev/mem!
718 	 *
719 	 * That means we may have 64-bit values where some apps only expect
720 	 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
721 	 */
722 	*start = rsrc->start;
723 	*end = rsrc->end;
724 }
725 
726 /**
727  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
728  * @hose: newly allocated pci_controller to be setup
729  * @dev: device node of the host bridge
730  * @primary: set if primary bus (32 bits only, soon to be deprecated)
731  *
732  * This function will parse the "ranges" property of a PCI host bridge device
733  * node and setup the resource mapping of a pci controller based on its
734  * content.
735  *
736  * Life would be boring if it wasn't for a few issues that we have to deal
737  * with here:
738  *
739  *   - We can only cope with one IO space range and up to 3 Memory space
740  *     ranges. However, some machines (thanks Apple !) tend to split their
741  *     space into lots of small contiguous ranges. So we have to coalesce.
742  *
743  *   - Some busses have IO space not starting at 0, which causes trouble with
744  *     the way we do our IO resource renumbering. The code somewhat deals with
745  *     it for 64 bits but I would expect problems on 32 bits.
746  *
747  *   - Some 32 bits platforms such as 4xx can have physical space larger than
748  *     32 bits so we need to use 64 bits values for the parsing
749  */
750 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
751 				  struct device_node *dev, int primary)
752 {
753 	int memno = 0;
754 	struct resource *res;
755 	struct of_pci_range range;
756 	struct of_pci_range_parser parser;
757 
758 	printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
759 	       dev, primary ? "(primary)" : "");
760 
761 	/* Check for ranges property */
762 	if (of_pci_range_parser_init(&parser, dev))
763 		return;
764 
765 	/* Parse it */
766 	for_each_of_pci_range(&parser, &range) {
767 		/* If we failed translation or got a zero-sized region
768 		 * (some FW try to feed us with non sensical zero sized regions
769 		 * such as power3 which look like some kind of attempt at exposing
770 		 * the VGA memory hole)
771 		 */
772 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
773 			continue;
774 
775 		/* Act based on address space type */
776 		res = NULL;
777 		switch (range.flags & IORESOURCE_TYPE_BITS) {
778 		case IORESOURCE_IO:
779 			printk(KERN_INFO
780 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
781 			       range.cpu_addr, range.cpu_addr + range.size - 1,
782 			       range.pci_addr);
783 
784 			/* We support only one IO range */
785 			if (hose->pci_io_size) {
786 				printk(KERN_INFO
787 				       " \\--> Skipped (too many) !\n");
788 				continue;
789 			}
790 #ifdef CONFIG_PPC32
791 			/* On 32 bits, limit I/O space to 16MB */
792 			if (range.size > 0x01000000)
793 				range.size = 0x01000000;
794 
795 			/* 32 bits needs to map IOs here */
796 			hose->io_base_virt = ioremap(range.cpu_addr,
797 						range.size);
798 
799 			/* Expect trouble if pci_addr is not 0 */
800 			if (primary)
801 				isa_io_base =
802 					(unsigned long)hose->io_base_virt;
803 #endif /* CONFIG_PPC32 */
804 			/* pci_io_size and io_base_phys always represent IO
805 			 * space starting at 0 so we factor in pci_addr
806 			 */
807 			hose->pci_io_size = range.pci_addr + range.size;
808 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
809 
810 			/* Build resource */
811 			res = &hose->io_resource;
812 			range.cpu_addr = range.pci_addr;
813 			break;
814 		case IORESOURCE_MEM:
815 			printk(KERN_INFO
816 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
817 			       range.cpu_addr, range.cpu_addr + range.size - 1,
818 			       range.pci_addr,
819 			       (range.flags & IORESOURCE_PREFETCH) ?
820 			       "Prefetch" : "");
821 
822 			/* We support only 3 memory ranges */
823 			if (memno >= 3) {
824 				printk(KERN_INFO
825 				       " \\--> Skipped (too many) !\n");
826 				continue;
827 			}
828 			/* Handles ISA memory hole space here */
829 			if (range.pci_addr == 0) {
830 				if (primary || isa_mem_base == 0)
831 					isa_mem_base = range.cpu_addr;
832 				hose->isa_mem_phys = range.cpu_addr;
833 				hose->isa_mem_size = range.size;
834 			}
835 
836 			/* Build resource */
837 			hose->mem_offset[memno] = range.cpu_addr -
838 							range.pci_addr;
839 			res = &hose->mem_resources[memno++];
840 			break;
841 		}
842 		if (res != NULL) {
843 			res->name = dev->full_name;
844 			res->flags = range.flags;
845 			res->start = range.cpu_addr;
846 			res->end = range.cpu_addr + range.size - 1;
847 			res->parent = res->child = res->sibling = NULL;
848 		}
849 	}
850 }
851 
852 /* Decide whether to display the domain number in /proc */
853 int pci_proc_domain(struct pci_bus *bus)
854 {
855 	struct pci_controller *hose = pci_bus_to_host(bus);
856 
857 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
858 		return 0;
859 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
860 		return hose->global_number != 0;
861 	return 1;
862 }
863 
864 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
865 {
866 	if (ppc_md.pcibios_root_bridge_prepare)
867 		return ppc_md.pcibios_root_bridge_prepare(bridge);
868 
869 	return 0;
870 }
871 
872 /* This header fixup will do the resource fixup for all devices as they are
873  * probed, but not for bridge ranges
874  */
875 static void pcibios_fixup_resources(struct pci_dev *dev)
876 {
877 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
878 	int i;
879 
880 	if (!hose) {
881 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
882 		       pci_name(dev));
883 		return;
884 	}
885 
886 	if (dev->is_virtfn)
887 		return;
888 
889 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
890 		struct resource *res = dev->resource + i;
891 		struct pci_bus_region reg;
892 		if (!res->flags)
893 			continue;
894 
895 		/* If we're going to re-assign everything, we mark all resources
896 		 * as unset (and 0-base them). In addition, we mark BARs starting
897 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
898 		 * since in that case, we don't want to re-assign anything
899 		 */
900 		pcibios_resource_to_bus(dev->bus, &reg, res);
901 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
902 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
903 			/* Only print message if not re-assigning */
904 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
905 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
906 					 pci_name(dev), i, res);
907 			res->end -= res->start;
908 			res->start = 0;
909 			res->flags |= IORESOURCE_UNSET;
910 			continue;
911 		}
912 
913 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
914 	}
915 
916 	/* Call machine specific resource fixup */
917 	if (ppc_md.pcibios_fixup_resources)
918 		ppc_md.pcibios_fixup_resources(dev);
919 }
920 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
921 
922 /* This function tries to figure out if a bridge resource has been initialized
923  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
924  * things go more smoothly when it gets it right. It should covers cases such
925  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
926  */
927 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
928 						 struct resource *res)
929 {
930 	struct pci_controller *hose = pci_bus_to_host(bus);
931 	struct pci_dev *dev = bus->self;
932 	resource_size_t offset;
933 	struct pci_bus_region region;
934 	u16 command;
935 	int i;
936 
937 	/* We don't do anything if PCI_PROBE_ONLY is set */
938 	if (pci_has_flag(PCI_PROBE_ONLY))
939 		return 0;
940 
941 	/* Job is a bit different between memory and IO */
942 	if (res->flags & IORESOURCE_MEM) {
943 		pcibios_resource_to_bus(dev->bus, &region, res);
944 
945 		/* If the BAR is non-0 then it's probably been initialized */
946 		if (region.start != 0)
947 			return 0;
948 
949 		/* The BAR is 0, let's check if memory decoding is enabled on
950 		 * the bridge. If not, we consider it unassigned
951 		 */
952 		pci_read_config_word(dev, PCI_COMMAND, &command);
953 		if ((command & PCI_COMMAND_MEMORY) == 0)
954 			return 1;
955 
956 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
957 		 * resources covers that starting address (0 then it's good enough for
958 		 * us for memory space)
959 		 */
960 		for (i = 0; i < 3; i++) {
961 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
962 			    hose->mem_resources[i].start == hose->mem_offset[i])
963 				return 0;
964 		}
965 
966 		/* Well, it starts at 0 and we know it will collide so we may as
967 		 * well consider it as unassigned. That covers the Apple case.
968 		 */
969 		return 1;
970 	} else {
971 		/* If the BAR is non-0, then we consider it assigned */
972 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
973 		if (((res->start - offset) & 0xfffffffful) != 0)
974 			return 0;
975 
976 		/* Here, we are a bit different than memory as typically IO space
977 		 * starting at low addresses -is- valid. What we do instead if that
978 		 * we consider as unassigned anything that doesn't have IO enabled
979 		 * in the PCI command register, and that's it.
980 		 */
981 		pci_read_config_word(dev, PCI_COMMAND, &command);
982 		if (command & PCI_COMMAND_IO)
983 			return 0;
984 
985 		/* It's starting at 0 and IO is disabled in the bridge, consider
986 		 * it unassigned
987 		 */
988 		return 1;
989 	}
990 }
991 
992 /* Fixup resources of a PCI<->PCI bridge */
993 static void pcibios_fixup_bridge(struct pci_bus *bus)
994 {
995 	struct resource *res;
996 	int i;
997 
998 	struct pci_dev *dev = bus->self;
999 
1000 	pci_bus_for_each_resource(bus, res, i) {
1001 		if (!res || !res->flags)
1002 			continue;
1003 		if (i >= 3 && bus->self->transparent)
1004 			continue;
1005 
1006 		/* If we're going to reassign everything, we can
1007 		 * shrink the P2P resource to have size as being
1008 		 * of 0 in order to save space.
1009 		 */
1010 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1011 			res->flags |= IORESOURCE_UNSET;
1012 			res->start = 0;
1013 			res->end = -1;
1014 			continue;
1015 		}
1016 
1017 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
1018 
1019 		/* Try to detect uninitialized P2P bridge resources,
1020 		 * and clear them out so they get re-assigned later
1021 		 */
1022 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
1023 			res->flags = 0;
1024 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
1025 		}
1026 	}
1027 }
1028 
1029 void pcibios_setup_bus_self(struct pci_bus *bus)
1030 {
1031 	struct pci_controller *phb;
1032 
1033 	/* Fix up the bus resources for P2P bridges */
1034 	if (bus->self != NULL)
1035 		pcibios_fixup_bridge(bus);
1036 
1037 	/* Platform specific bus fixups. This is currently only used
1038 	 * by fsl_pci and I'm hoping to get rid of it at some point
1039 	 */
1040 	if (ppc_md.pcibios_fixup_bus)
1041 		ppc_md.pcibios_fixup_bus(bus);
1042 
1043 	/* Setup bus DMA mappings */
1044 	phb = pci_bus_to_host(bus);
1045 	if (phb->controller_ops.dma_bus_setup)
1046 		phb->controller_ops.dma_bus_setup(bus);
1047 }
1048 
1049 void pcibios_bus_add_device(struct pci_dev *dev)
1050 {
1051 	struct pci_controller *phb;
1052 	/* Fixup NUMA node as it may not be setup yet by the generic
1053 	 * code and is needed by the DMA init
1054 	 */
1055 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1056 
1057 	/* Hook up default DMA ops */
1058 	set_dma_ops(&dev->dev, pci_dma_ops);
1059 	dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET;
1060 
1061 	/* Additional platform DMA/iommu setup */
1062 	phb = pci_bus_to_host(dev->bus);
1063 	if (phb->controller_ops.dma_dev_setup)
1064 		phb->controller_ops.dma_dev_setup(dev);
1065 
1066 	/* Read default IRQs and fixup if necessary */
1067 	pci_read_irq_line(dev);
1068 	if (ppc_md.pci_irq_fixup)
1069 		ppc_md.pci_irq_fixup(dev);
1070 
1071 	if (ppc_md.pcibios_bus_add_device)
1072 		ppc_md.pcibios_bus_add_device(dev);
1073 }
1074 
1075 int pcibios_add_device(struct pci_dev *dev)
1076 {
1077 	struct irq_domain *d;
1078 
1079 #ifdef CONFIG_PCI_IOV
1080 	if (ppc_md.pcibios_fixup_sriov)
1081 		ppc_md.pcibios_fixup_sriov(dev);
1082 #endif /* CONFIG_PCI_IOV */
1083 
1084 	d = dev_get_msi_domain(&dev->bus->dev);
1085 	if (d)
1086 		dev_set_msi_domain(&dev->dev, d);
1087 	return 0;
1088 }
1089 
1090 void pcibios_set_master(struct pci_dev *dev)
1091 {
1092 	/* No special bus mastering setup handling */
1093 }
1094 
1095 void pcibios_fixup_bus(struct pci_bus *bus)
1096 {
1097 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1098 	 * bases. This is -not- called when generating the PCI tree from
1099 	 * the OF device-tree.
1100 	 */
1101 	pci_read_bridge_bases(bus);
1102 
1103 	/* Now fixup the bus bus */
1104 	pcibios_setup_bus_self(bus);
1105 }
1106 EXPORT_SYMBOL(pcibios_fixup_bus);
1107 
1108 static int skip_isa_ioresource_align(struct pci_dev *dev)
1109 {
1110 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1111 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1112 		return 1;
1113 	return 0;
1114 }
1115 
1116 /*
1117  * We need to avoid collisions with `mirrored' VGA ports
1118  * and other strange ISA hardware, so we always want the
1119  * addresses to be allocated in the 0x000-0x0ff region
1120  * modulo 0x400.
1121  *
1122  * Why? Because some silly external IO cards only decode
1123  * the low 10 bits of the IO address. The 0x00-0xff region
1124  * is reserved for motherboard devices that decode all 16
1125  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1126  * but we want to try to avoid allocating at 0x2900-0x2bff
1127  * which might have be mirrored at 0x0100-0x03ff..
1128  */
1129 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1130 				resource_size_t size, resource_size_t align)
1131 {
1132 	struct pci_dev *dev = data;
1133 	resource_size_t start = res->start;
1134 
1135 	if (res->flags & IORESOURCE_IO) {
1136 		if (skip_isa_ioresource_align(dev))
1137 			return start;
1138 		if (start & 0x300)
1139 			start = (start + 0x3ff) & ~0x3ff;
1140 	}
1141 
1142 	return start;
1143 }
1144 EXPORT_SYMBOL(pcibios_align_resource);
1145 
1146 /*
1147  * Reparent resource children of pr that conflict with res
1148  * under res, and make res replace those children.
1149  */
1150 static int reparent_resources(struct resource *parent,
1151 				     struct resource *res)
1152 {
1153 	struct resource *p, **pp;
1154 	struct resource **firstpp = NULL;
1155 
1156 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1157 		if (p->end < res->start)
1158 			continue;
1159 		if (res->end < p->start)
1160 			break;
1161 		if (p->start < res->start || p->end > res->end)
1162 			return -1;	/* not completely contained */
1163 		if (firstpp == NULL)
1164 			firstpp = pp;
1165 	}
1166 	if (firstpp == NULL)
1167 		return -1;	/* didn't find any conflicting entries? */
1168 	res->parent = parent;
1169 	res->child = *firstpp;
1170 	res->sibling = *pp;
1171 	*firstpp = res;
1172 	*pp = NULL;
1173 	for (p = res->child; p != NULL; p = p->sibling) {
1174 		p->parent = res;
1175 		pr_debug("PCI: Reparented %s %pR under %s\n",
1176 			 p->name, p, res->name);
1177 	}
1178 	return 0;
1179 }
1180 
1181 /*
1182  *  Handle resources of PCI devices.  If the world were perfect, we could
1183  *  just allocate all the resource regions and do nothing more.  It isn't.
1184  *  On the other hand, we cannot just re-allocate all devices, as it would
1185  *  require us to know lots of host bridge internals.  So we attempt to
1186  *  keep as much of the original configuration as possible, but tweak it
1187  *  when it's found to be wrong.
1188  *
1189  *  Known BIOS problems we have to work around:
1190  *	- I/O or memory regions not configured
1191  *	- regions configured, but not enabled in the command register
1192  *	- bogus I/O addresses above 64K used
1193  *	- expansion ROMs left enabled (this may sound harmless, but given
1194  *	  the fact the PCI specs explicitly allow address decoders to be
1195  *	  shared between expansion ROMs and other resource regions, it's
1196  *	  at least dangerous)
1197  *
1198  *  Our solution:
1199  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1200  *	    This gives us fixed barriers on where we can allocate.
1201  *	(2) Allocate resources for all enabled devices.  If there is
1202  *	    a collision, just mark the resource as unallocated. Also
1203  *	    disable expansion ROMs during this step.
1204  *	(3) Try to allocate resources for disabled devices.  If the
1205  *	    resources were assigned correctly, everything goes well,
1206  *	    if they weren't, they won't disturb allocation of other
1207  *	    resources.
1208  *	(4) Assign new addresses to resources which were either
1209  *	    not configured at all or misconfigured.  If explicitly
1210  *	    requested by the user, configure expansion ROM address
1211  *	    as well.
1212  */
1213 
1214 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1215 {
1216 	struct pci_bus *b;
1217 	int i;
1218 	struct resource *res, *pr;
1219 
1220 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1221 		 pci_domain_nr(bus), bus->number);
1222 
1223 	pci_bus_for_each_resource(bus, res, i) {
1224 		if (!res || !res->flags || res->start > res->end || res->parent)
1225 			continue;
1226 
1227 		/* If the resource was left unset at this point, we clear it */
1228 		if (res->flags & IORESOURCE_UNSET)
1229 			goto clear_resource;
1230 
1231 		if (bus->parent == NULL)
1232 			pr = (res->flags & IORESOURCE_IO) ?
1233 				&ioport_resource : &iomem_resource;
1234 		else {
1235 			pr = pci_find_parent_resource(bus->self, res);
1236 			if (pr == res) {
1237 				/* this happens when the generic PCI
1238 				 * code (wrongly) decides that this
1239 				 * bridge is transparent  -- paulus
1240 				 */
1241 				continue;
1242 			}
1243 		}
1244 
1245 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1246 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1247 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1248 
1249 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1250 			struct pci_dev *dev = bus->self;
1251 
1252 			if (request_resource(pr, res) == 0)
1253 				continue;
1254 			/*
1255 			 * Must be a conflict with an existing entry.
1256 			 * Move that entry (or entries) under the
1257 			 * bridge resource and try again.
1258 			 */
1259 			if (reparent_resources(pr, res) == 0)
1260 				continue;
1261 
1262 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1263 			    pci_claim_bridge_resource(dev,
1264 						i + PCI_BRIDGE_RESOURCES) == 0)
1265 				continue;
1266 		}
1267 		pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n",
1268 			i, bus->number);
1269 	clear_resource:
1270 		/* The resource might be figured out when doing
1271 		 * reassignment based on the resources required
1272 		 * by the downstream PCI devices. Here we set
1273 		 * the size of the resource to be 0 in order to
1274 		 * save more space.
1275 		 */
1276 		res->start = 0;
1277 		res->end = -1;
1278 		res->flags = 0;
1279 	}
1280 
1281 	list_for_each_entry(b, &bus->children, node)
1282 		pcibios_allocate_bus_resources(b);
1283 }
1284 
1285 static inline void alloc_resource(struct pci_dev *dev, int idx)
1286 {
1287 	struct resource *pr, *r = &dev->resource[idx];
1288 
1289 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1290 		 pci_name(dev), idx, r);
1291 
1292 	pr = pci_find_parent_resource(dev, r);
1293 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1294 	    request_resource(pr, r) < 0) {
1295 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1296 		       " of device %s, will remap\n", idx, pci_name(dev));
1297 		if (pr)
1298 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1299 		/* We'll assign a new address later */
1300 		r->flags |= IORESOURCE_UNSET;
1301 		r->end -= r->start;
1302 		r->start = 0;
1303 	}
1304 }
1305 
1306 static void __init pcibios_allocate_resources(int pass)
1307 {
1308 	struct pci_dev *dev = NULL;
1309 	int idx, disabled;
1310 	u16 command;
1311 	struct resource *r;
1312 
1313 	for_each_pci_dev(dev) {
1314 		pci_read_config_word(dev, PCI_COMMAND, &command);
1315 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1316 			r = &dev->resource[idx];
1317 			if (r->parent)		/* Already allocated */
1318 				continue;
1319 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1320 				continue;	/* Not assigned at all */
1321 			/* We only allocate ROMs on pass 1 just in case they
1322 			 * have been screwed up by firmware
1323 			 */
1324 			if (idx == PCI_ROM_RESOURCE )
1325 				disabled = 1;
1326 			if (r->flags & IORESOURCE_IO)
1327 				disabled = !(command & PCI_COMMAND_IO);
1328 			else
1329 				disabled = !(command & PCI_COMMAND_MEMORY);
1330 			if (pass == disabled)
1331 				alloc_resource(dev, idx);
1332 		}
1333 		if (pass)
1334 			continue;
1335 		r = &dev->resource[PCI_ROM_RESOURCE];
1336 		if (r->flags) {
1337 			/* Turn the ROM off, leave the resource region,
1338 			 * but keep it unregistered.
1339 			 */
1340 			u32 reg;
1341 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1342 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1343 				pr_debug("PCI: Switching off ROM of %s\n",
1344 					 pci_name(dev));
1345 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1346 				pci_write_config_dword(dev, dev->rom_base_reg,
1347 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1348 			}
1349 		}
1350 	}
1351 }
1352 
1353 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1354 {
1355 	struct pci_controller *hose = pci_bus_to_host(bus);
1356 	resource_size_t	offset;
1357 	struct resource *res, *pres;
1358 	int i;
1359 
1360 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1361 
1362 	/* Check for IO */
1363 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1364 		goto no_io;
1365 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1366 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1367 	BUG_ON(res == NULL);
1368 	res->name = "Legacy IO";
1369 	res->flags = IORESOURCE_IO;
1370 	res->start = offset;
1371 	res->end = (offset + 0xfff) & 0xfffffffful;
1372 	pr_debug("Candidate legacy IO: %pR\n", res);
1373 	if (request_resource(&hose->io_resource, res)) {
1374 		printk(KERN_DEBUG
1375 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1376 		       pci_domain_nr(bus), bus->number, res);
1377 		kfree(res);
1378 	}
1379 
1380  no_io:
1381 	/* Check for memory */
1382 	for (i = 0; i < 3; i++) {
1383 		pres = &hose->mem_resources[i];
1384 		offset = hose->mem_offset[i];
1385 		if (!(pres->flags & IORESOURCE_MEM))
1386 			continue;
1387 		pr_debug("hose mem res: %pR\n", pres);
1388 		if ((pres->start - offset) <= 0xa0000 &&
1389 		    (pres->end - offset) >= 0xbffff)
1390 			break;
1391 	}
1392 	if (i >= 3)
1393 		return;
1394 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1395 	BUG_ON(res == NULL);
1396 	res->name = "Legacy VGA memory";
1397 	res->flags = IORESOURCE_MEM;
1398 	res->start = 0xa0000 + offset;
1399 	res->end = 0xbffff + offset;
1400 	pr_debug("Candidate VGA memory: %pR\n", res);
1401 	if (request_resource(pres, res)) {
1402 		printk(KERN_DEBUG
1403 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1404 		       pci_domain_nr(bus), bus->number, res);
1405 		kfree(res);
1406 	}
1407 }
1408 
1409 void __init pcibios_resource_survey(void)
1410 {
1411 	struct pci_bus *b;
1412 
1413 	/* Allocate and assign resources */
1414 	list_for_each_entry(b, &pci_root_buses, node)
1415 		pcibios_allocate_bus_resources(b);
1416 	if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1417 		pcibios_allocate_resources(0);
1418 		pcibios_allocate_resources(1);
1419 	}
1420 
1421 	/* Before we start assigning unassigned resource, we try to reserve
1422 	 * the low IO area and the VGA memory area if they intersect the
1423 	 * bus available resources to avoid allocating things on top of them
1424 	 */
1425 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1426 		list_for_each_entry(b, &pci_root_buses, node)
1427 			pcibios_reserve_legacy_regions(b);
1428 	}
1429 
1430 	/* Now, if the platform didn't decide to blindly trust the firmware,
1431 	 * we proceed to assigning things that were left unassigned
1432 	 */
1433 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1434 		pr_debug("PCI: Assigning unassigned resources...\n");
1435 		pci_assign_unassigned_resources();
1436 	}
1437 }
1438 
1439 /* This is used by the PCI hotplug driver to allocate resource
1440  * of newly plugged busses. We can try to consolidate with the
1441  * rest of the code later, for now, keep it as-is as our main
1442  * resource allocation function doesn't deal with sub-trees yet.
1443  */
1444 void pcibios_claim_one_bus(struct pci_bus *bus)
1445 {
1446 	struct pci_dev *dev;
1447 	struct pci_bus *child_bus;
1448 
1449 	list_for_each_entry(dev, &bus->devices, bus_list) {
1450 		int i;
1451 
1452 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1453 			struct resource *r = &dev->resource[i];
1454 
1455 			if (r->parent || !r->start || !r->flags)
1456 				continue;
1457 
1458 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1459 				 pci_name(dev), i, r);
1460 
1461 			if (pci_claim_resource(dev, i) == 0)
1462 				continue;
1463 
1464 			pci_claim_bridge_resource(dev, i);
1465 		}
1466 	}
1467 
1468 	list_for_each_entry(child_bus, &bus->children, node)
1469 		pcibios_claim_one_bus(child_bus);
1470 }
1471 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1472 
1473 
1474 /* pcibios_finish_adding_to_bus
1475  *
1476  * This is to be called by the hotplug code after devices have been
1477  * added to a bus, this include calling it for a PHB that is just
1478  * being added
1479  */
1480 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1481 {
1482 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1483 		 pci_domain_nr(bus), bus->number);
1484 
1485 	/* Allocate bus and devices resources */
1486 	pcibios_allocate_bus_resources(bus);
1487 	pcibios_claim_one_bus(bus);
1488 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1489 		if (bus->self)
1490 			pci_assign_unassigned_bridge_resources(bus->self);
1491 		else
1492 			pci_assign_unassigned_bus_resources(bus);
1493 	}
1494 
1495 	/* Add new devices to global lists.  Register in proc, sysfs. */
1496 	pci_bus_add_devices(bus);
1497 }
1498 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1499 
1500 int pcibios_enable_device(struct pci_dev *dev, int mask)
1501 {
1502 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1503 
1504 	if (phb->controller_ops.enable_device_hook)
1505 		if (!phb->controller_ops.enable_device_hook(dev))
1506 			return -EINVAL;
1507 
1508 	return pci_enable_resources(dev, mask);
1509 }
1510 
1511 void pcibios_disable_device(struct pci_dev *dev)
1512 {
1513 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1514 
1515 	if (phb->controller_ops.disable_device)
1516 		phb->controller_ops.disable_device(dev);
1517 }
1518 
1519 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1520 {
1521 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1522 }
1523 
1524 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1525 					struct list_head *resources)
1526 {
1527 	struct resource *res;
1528 	resource_size_t offset;
1529 	int i;
1530 
1531 	/* Hookup PHB IO resource */
1532 	res = &hose->io_resource;
1533 
1534 	if (!res->flags) {
1535 		pr_debug("PCI: I/O resource not set for host"
1536 			 " bridge %pOF (domain %d)\n",
1537 			 hose->dn, hose->global_number);
1538 	} else {
1539 		offset = pcibios_io_space_offset(hose);
1540 
1541 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1542 			 res, (unsigned long long)offset);
1543 		pci_add_resource_offset(resources, res, offset);
1544 	}
1545 
1546 	/* Hookup PHB Memory resources */
1547 	for (i = 0; i < 3; ++i) {
1548 		res = &hose->mem_resources[i];
1549 		if (!res->flags)
1550 			continue;
1551 
1552 		offset = hose->mem_offset[i];
1553 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1554 			 res, (unsigned long long)offset);
1555 
1556 		pci_add_resource_offset(resources, res, offset);
1557 	}
1558 }
1559 
1560 /*
1561  * Null PCI config access functions, for the case when we can't
1562  * find a hose.
1563  */
1564 #define NULL_PCI_OP(rw, size, type)					\
1565 static int								\
1566 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1567 {									\
1568 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1569 }
1570 
1571 static int
1572 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1573 		 int len, u32 *val)
1574 {
1575 	return PCIBIOS_DEVICE_NOT_FOUND;
1576 }
1577 
1578 static int
1579 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1580 		  int len, u32 val)
1581 {
1582 	return PCIBIOS_DEVICE_NOT_FOUND;
1583 }
1584 
1585 static struct pci_ops null_pci_ops =
1586 {
1587 	.read = null_read_config,
1588 	.write = null_write_config,
1589 };
1590 
1591 /*
1592  * These functions are used early on before PCI scanning is done
1593  * and all of the pci_dev and pci_bus structures have been created.
1594  */
1595 static struct pci_bus *
1596 fake_pci_bus(struct pci_controller *hose, int busnr)
1597 {
1598 	static struct pci_bus bus;
1599 
1600 	if (hose == NULL) {
1601 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1602 	}
1603 	bus.number = busnr;
1604 	bus.sysdata = hose;
1605 	bus.ops = hose? hose->ops: &null_pci_ops;
1606 	return &bus;
1607 }
1608 
1609 #define EARLY_PCI_OP(rw, size, type)					\
1610 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1611 			       int devfn, int offset, type value)	\
1612 {									\
1613 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1614 					    devfn, offset, value);	\
1615 }
1616 
1617 EARLY_PCI_OP(read, byte, u8 *)
1618 EARLY_PCI_OP(read, word, u16 *)
1619 EARLY_PCI_OP(read, dword, u32 *)
1620 EARLY_PCI_OP(write, byte, u8)
1621 EARLY_PCI_OP(write, word, u16)
1622 EARLY_PCI_OP(write, dword, u32)
1623 
1624 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1625 			  int cap)
1626 {
1627 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1628 }
1629 
1630 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1631 {
1632 	struct pci_controller *hose = bus->sysdata;
1633 
1634 	return of_node_get(hose->dn);
1635 }
1636 
1637 /**
1638  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1639  * @hose: Pointer to the PCI host controller instance structure
1640  */
1641 void pcibios_scan_phb(struct pci_controller *hose)
1642 {
1643 	LIST_HEAD(resources);
1644 	struct pci_bus *bus;
1645 	struct device_node *node = hose->dn;
1646 	int mode;
1647 
1648 	pr_debug("PCI: Scanning PHB %pOF\n", node);
1649 
1650 	/* Get some IO space for the new PHB */
1651 	pcibios_setup_phb_io_space(hose);
1652 
1653 	/* Wire up PHB bus resources */
1654 	pcibios_setup_phb_resources(hose, &resources);
1655 
1656 	hose->busn.start = hose->first_busno;
1657 	hose->busn.end	 = hose->last_busno;
1658 	hose->busn.flags = IORESOURCE_BUS;
1659 	pci_add_resource(&resources, &hose->busn);
1660 
1661 	/* Create an empty bus for the toplevel */
1662 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1663 				  hose->ops, hose, &resources);
1664 	if (bus == NULL) {
1665 		pr_err("Failed to create bus for PCI domain %04x\n",
1666 			hose->global_number);
1667 		pci_free_resource_list(&resources);
1668 		return;
1669 	}
1670 	hose->bus = bus;
1671 
1672 	/* Get probe mode and perform scan */
1673 	mode = PCI_PROBE_NORMAL;
1674 	if (node && hose->controller_ops.probe_mode)
1675 		mode = hose->controller_ops.probe_mode(bus);
1676 	pr_debug("    probe mode: %d\n", mode);
1677 	if (mode == PCI_PROBE_DEVTREE)
1678 		of_scan_bus(node, bus);
1679 
1680 	if (mode == PCI_PROBE_NORMAL) {
1681 		pci_bus_update_busn_res_end(bus, 255);
1682 		hose->last_busno = pci_scan_child_bus(bus);
1683 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1684 	}
1685 
1686 	/* Platform gets a chance to do some global fixups before
1687 	 * we proceed to resource allocation
1688 	 */
1689 	if (ppc_md.pcibios_fixup_phb)
1690 		ppc_md.pcibios_fixup_phb(hose);
1691 
1692 	/* Configure PCI Express settings */
1693 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1694 		struct pci_bus *child;
1695 		list_for_each_entry(child, &bus->children, node)
1696 			pcie_bus_configure_settings(child);
1697 	}
1698 }
1699 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1700 
1701 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1702 {
1703 	int i, class = dev->class >> 8;
1704 	/* When configured as agent, programing interface = 1 */
1705 	int prog_if = dev->class & 0xf;
1706 
1707 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1708 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1709 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1710 		(prog_if == 0) &&
1711 		(dev->bus->parent == NULL)) {
1712 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1713 			dev->resource[i].start = 0;
1714 			dev->resource[i].end = 0;
1715 			dev->resource[i].flags = 0;
1716 		}
1717 	}
1718 }
1719 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1720 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1721 
1722 
1723 static int __init discover_phbs(void)
1724 {
1725 	if (ppc_md.discover_phbs)
1726 		ppc_md.discover_phbs();
1727 
1728 	return 0;
1729 }
1730 core_initcall(discover_phbs);
1731