1 /* 2 * Contains common pci routines for ALL ppc platform 3 * (based on pci_32.c and pci_64.c) 4 * 5 * Port for PPC64 David Engebretsen, IBM Corp. 6 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. 7 * 8 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM 9 * Rework, based on alpha PCI code. 10 * 11 * Common pmac/prep/chrp pci routines. -- Cort 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/pci.h> 21 #include <linux/string.h> 22 #include <linux/init.h> 23 #include <linux/delay.h> 24 #include <linux/export.h> 25 #include <linux/of_address.h> 26 #include <linux/of_pci.h> 27 #include <linux/mm.h> 28 #include <linux/list.h> 29 #include <linux/syscalls.h> 30 #include <linux/irq.h> 31 #include <linux/vmalloc.h> 32 #include <linux/slab.h> 33 #include <linux/vgaarb.h> 34 35 #include <asm/processor.h> 36 #include <asm/io.h> 37 #include <asm/prom.h> 38 #include <asm/pci-bridge.h> 39 #include <asm/byteorder.h> 40 #include <asm/machdep.h> 41 #include <asm/ppc-pci.h> 42 #include <asm/eeh.h> 43 44 /* hose_spinlock protects accesses to the the phb_bitmap. */ 45 static DEFINE_SPINLOCK(hose_spinlock); 46 LIST_HEAD(hose_list); 47 48 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ 49 #define MAX_PHBS 0x10000 50 51 /* 52 * For dynamic PHB numbering: used/free PHBs tracking bitmap. 53 * Accesses to this bitmap should be protected by hose_spinlock. 54 */ 55 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); 56 57 /* ISA Memory physical address */ 58 resource_size_t isa_mem_base; 59 60 61 static struct dma_map_ops *pci_dma_ops = &dma_direct_ops; 62 63 void set_pci_dma_ops(struct dma_map_ops *dma_ops) 64 { 65 pci_dma_ops = dma_ops; 66 } 67 68 struct dma_map_ops *get_pci_dma_ops(void) 69 { 70 return pci_dma_ops; 71 } 72 EXPORT_SYMBOL(get_pci_dma_ops); 73 74 /* 75 * This function should run under locking protection, specifically 76 * hose_spinlock. 77 */ 78 static int get_phb_number(struct device_node *dn) 79 { 80 int ret, phb_id = -1; 81 u32 prop_32; 82 u64 prop; 83 84 /* 85 * Try fixed PHB numbering first, by checking archs and reading 86 * the respective device-tree properties. Firstly, try powernv by 87 * reading "ibm,opal-phbid", only present in OPAL environment. 88 */ 89 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); 90 if (ret) { 91 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); 92 prop = prop_32; 93 } 94 95 if (!ret) 96 phb_id = (int)(prop & (MAX_PHBS - 1)); 97 98 /* We need to be sure to not use the same PHB number twice. */ 99 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) 100 return phb_id; 101 102 /* 103 * If not pseries nor powernv, or if fixed PHB numbering tried to add 104 * the same PHB number twice, then fallback to dynamic PHB numbering. 105 */ 106 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); 107 BUG_ON(phb_id >= MAX_PHBS); 108 set_bit(phb_id, phb_bitmap); 109 110 return phb_id; 111 } 112 113 struct pci_controller *pcibios_alloc_controller(struct device_node *dev) 114 { 115 struct pci_controller *phb; 116 117 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); 118 if (phb == NULL) 119 return NULL; 120 spin_lock(&hose_spinlock); 121 phb->global_number = get_phb_number(dev); 122 list_add_tail(&phb->list_node, &hose_list); 123 spin_unlock(&hose_spinlock); 124 phb->dn = dev; 125 phb->is_dynamic = slab_is_available(); 126 #ifdef CONFIG_PPC64 127 if (dev) { 128 int nid = of_node_to_nid(dev); 129 130 if (nid < 0 || !node_online(nid)) 131 nid = -1; 132 133 PHB_SET_NODE(phb, nid); 134 } 135 #endif 136 return phb; 137 } 138 EXPORT_SYMBOL_GPL(pcibios_alloc_controller); 139 140 void pcibios_free_controller(struct pci_controller *phb) 141 { 142 spin_lock(&hose_spinlock); 143 144 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ 145 if (phb->global_number < MAX_PHBS) 146 clear_bit(phb->global_number, phb_bitmap); 147 148 list_del(&phb->list_node); 149 spin_unlock(&hose_spinlock); 150 151 if (phb->is_dynamic) 152 kfree(phb); 153 } 154 EXPORT_SYMBOL_GPL(pcibios_free_controller); 155 156 /* 157 * This function is used to call pcibios_free_controller() 158 * in a deferred manner: a callback from the PCI subsystem. 159 * 160 * _*DO NOT*_ call pcibios_free_controller() explicitly if 161 * this is used (or it may access an invalid *phb pointer). 162 * 163 * The callback occurs when all references to the root bus 164 * are dropped (e.g., child buses/devices and their users). 165 * 166 * It's called as .release_fn() of 'struct pci_host_bridge' 167 * which is associated with the 'struct pci_controller.bus' 168 * (root bus) - it expects .release_data to hold a pointer 169 * to 'struct pci_controller'. 170 * 171 * In order to use it, register .release_fn()/release_data 172 * like this: 173 * 174 * pci_set_host_bridge_release(bridge, 175 * pcibios_free_controller_deferred 176 * (void *) phb); 177 * 178 * e.g. in the pcibios_root_bridge_prepare() callback from 179 * pci_create_root_bus(). 180 */ 181 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) 182 { 183 struct pci_controller *phb = (struct pci_controller *) 184 bridge->release_data; 185 186 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); 187 188 pcibios_free_controller(phb); 189 } 190 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); 191 192 /* 193 * The function is used to return the minimal alignment 194 * for memory or I/O windows of the associated P2P bridge. 195 * By default, 4KiB alignment for I/O windows and 1MiB for 196 * memory windows. 197 */ 198 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 199 unsigned long type) 200 { 201 struct pci_controller *phb = pci_bus_to_host(bus); 202 203 if (phb->controller_ops.window_alignment) 204 return phb->controller_ops.window_alignment(bus, type); 205 206 /* 207 * PCI core will figure out the default 208 * alignment: 4KiB for I/O and 1MiB for 209 * memory window. 210 */ 211 return 1; 212 } 213 214 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) 215 { 216 struct pci_controller *hose = pci_bus_to_host(bus); 217 218 if (hose->controller_ops.setup_bridge) 219 hose->controller_ops.setup_bridge(bus, type); 220 } 221 222 void pcibios_reset_secondary_bus(struct pci_dev *dev) 223 { 224 struct pci_controller *phb = pci_bus_to_host(dev->bus); 225 226 if (phb->controller_ops.reset_secondary_bus) { 227 phb->controller_ops.reset_secondary_bus(dev); 228 return; 229 } 230 231 pci_reset_secondary_bus(dev); 232 } 233 234 #ifdef CONFIG_PCI_IOV 235 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) 236 { 237 if (ppc_md.pcibios_iov_resource_alignment) 238 return ppc_md.pcibios_iov_resource_alignment(pdev, resno); 239 240 return pci_iov_resource_size(pdev, resno); 241 } 242 #endif /* CONFIG_PCI_IOV */ 243 244 static resource_size_t pcibios_io_size(const struct pci_controller *hose) 245 { 246 #ifdef CONFIG_PPC64 247 return hose->pci_io_size; 248 #else 249 return resource_size(&hose->io_resource); 250 #endif 251 } 252 253 int pcibios_vaddr_is_ioport(void __iomem *address) 254 { 255 int ret = 0; 256 struct pci_controller *hose; 257 resource_size_t size; 258 259 spin_lock(&hose_spinlock); 260 list_for_each_entry(hose, &hose_list, list_node) { 261 size = pcibios_io_size(hose); 262 if (address >= hose->io_base_virt && 263 address < (hose->io_base_virt + size)) { 264 ret = 1; 265 break; 266 } 267 } 268 spin_unlock(&hose_spinlock); 269 return ret; 270 } 271 272 unsigned long pci_address_to_pio(phys_addr_t address) 273 { 274 struct pci_controller *hose; 275 resource_size_t size; 276 unsigned long ret = ~0; 277 278 spin_lock(&hose_spinlock); 279 list_for_each_entry(hose, &hose_list, list_node) { 280 size = pcibios_io_size(hose); 281 if (address >= hose->io_base_phys && 282 address < (hose->io_base_phys + size)) { 283 unsigned long base = 284 (unsigned long)hose->io_base_virt - _IO_BASE; 285 ret = base + (address - hose->io_base_phys); 286 break; 287 } 288 } 289 spin_unlock(&hose_spinlock); 290 291 return ret; 292 } 293 EXPORT_SYMBOL_GPL(pci_address_to_pio); 294 295 /* 296 * Return the domain number for this bus. 297 */ 298 int pci_domain_nr(struct pci_bus *bus) 299 { 300 struct pci_controller *hose = pci_bus_to_host(bus); 301 302 return hose->global_number; 303 } 304 EXPORT_SYMBOL(pci_domain_nr); 305 306 /* This routine is meant to be used early during boot, when the 307 * PCI bus numbers have not yet been assigned, and you need to 308 * issue PCI config cycles to an OF device. 309 * It could also be used to "fix" RTAS config cycles if you want 310 * to set pci_assign_all_buses to 1 and still use RTAS for PCI 311 * config cycles. 312 */ 313 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) 314 { 315 while(node) { 316 struct pci_controller *hose, *tmp; 317 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 318 if (hose->dn == node) 319 return hose; 320 node = node->parent; 321 } 322 return NULL; 323 } 324 325 /* 326 * Reads the interrupt pin to determine if interrupt is use by card. 327 * If the interrupt is used, then gets the interrupt line from the 328 * openfirmware and sets it in the pci_dev and pci_config line. 329 */ 330 static int pci_read_irq_line(struct pci_dev *pci_dev) 331 { 332 struct of_phandle_args oirq; 333 unsigned int virq; 334 335 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); 336 337 #ifdef DEBUG 338 memset(&oirq, 0xff, sizeof(oirq)); 339 #endif 340 /* Try to get a mapping from the device-tree */ 341 if (of_irq_parse_pci(pci_dev, &oirq)) { 342 u8 line, pin; 343 344 /* If that fails, lets fallback to what is in the config 345 * space and map that through the default controller. We 346 * also set the type to level low since that's what PCI 347 * interrupts are. If your platform does differently, then 348 * either provide a proper interrupt tree or don't use this 349 * function. 350 */ 351 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) 352 return -1; 353 if (pin == 0) 354 return -1; 355 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || 356 line == 0xff || line == 0) { 357 return -1; 358 } 359 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", 360 line, pin); 361 362 virq = irq_create_mapping(NULL, line); 363 if (virq != NO_IRQ) 364 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); 365 } else { 366 pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n", 367 oirq.args_count, oirq.args[0], oirq.args[1], 368 of_node_full_name(oirq.np)); 369 370 virq = irq_create_of_mapping(&oirq); 371 } 372 if(virq == NO_IRQ) { 373 pr_debug(" Failed to map !\n"); 374 return -1; 375 } 376 377 pr_debug(" Mapped to linux irq %d\n", virq); 378 379 pci_dev->irq = virq; 380 381 return 0; 382 } 383 384 /* 385 * Platform support for /proc/bus/pci/X/Y mmap()s, 386 * modelled on the sparc64 implementation by Dave Miller. 387 * -- paulus. 388 */ 389 390 /* 391 * Adjust vm_pgoff of VMA such that it is the physical page offset 392 * corresponding to the 32-bit pci bus offset for DEV requested by the user. 393 * 394 * Basically, the user finds the base address for his device which he wishes 395 * to mmap. They read the 32-bit value from the config space base register, 396 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the 397 * offset parameter of mmap on /proc/bus/pci/XXX for that device. 398 * 399 * Returns negative error code on failure, zero on success. 400 */ 401 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, 402 resource_size_t *offset, 403 enum pci_mmap_state mmap_state) 404 { 405 struct pci_controller *hose = pci_bus_to_host(dev->bus); 406 unsigned long io_offset = 0; 407 int i, res_bit; 408 409 if (hose == NULL) 410 return NULL; /* should never happen */ 411 412 /* If memory, add on the PCI bridge address offset */ 413 if (mmap_state == pci_mmap_mem) { 414 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ 415 *offset += hose->pci_mem_offset; 416 #endif 417 res_bit = IORESOURCE_MEM; 418 } else { 419 io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 420 *offset += io_offset; 421 res_bit = IORESOURCE_IO; 422 } 423 424 /* 425 * Check that the offset requested corresponds to one of the 426 * resources of the device. 427 */ 428 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 429 struct resource *rp = &dev->resource[i]; 430 int flags = rp->flags; 431 432 /* treat ROM as memory (should be already) */ 433 if (i == PCI_ROM_RESOURCE) 434 flags |= IORESOURCE_MEM; 435 436 /* Active and same type? */ 437 if ((flags & res_bit) == 0) 438 continue; 439 440 /* In the range of this resource? */ 441 if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) 442 continue; 443 444 /* found it! construct the final physical address */ 445 if (mmap_state == pci_mmap_io) 446 *offset += hose->io_base_phys - io_offset; 447 return rp; 448 } 449 450 return NULL; 451 } 452 453 /* 454 * This one is used by /dev/mem and fbdev who have no clue about the 455 * PCI device, it tries to find the PCI device first and calls the 456 * above routine 457 */ 458 pgprot_t pci_phys_mem_access_prot(struct file *file, 459 unsigned long pfn, 460 unsigned long size, 461 pgprot_t prot) 462 { 463 struct pci_dev *pdev = NULL; 464 struct resource *found = NULL; 465 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; 466 int i; 467 468 if (page_is_ram(pfn)) 469 return prot; 470 471 prot = pgprot_noncached(prot); 472 for_each_pci_dev(pdev) { 473 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 474 struct resource *rp = &pdev->resource[i]; 475 int flags = rp->flags; 476 477 /* Active and same type? */ 478 if ((flags & IORESOURCE_MEM) == 0) 479 continue; 480 /* In the range of this resource? */ 481 if (offset < (rp->start & PAGE_MASK) || 482 offset > rp->end) 483 continue; 484 found = rp; 485 break; 486 } 487 if (found) 488 break; 489 } 490 if (found) { 491 if (found->flags & IORESOURCE_PREFETCH) 492 prot = pgprot_noncached_wc(prot); 493 pci_dev_put(pdev); 494 } 495 496 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", 497 (unsigned long long)offset, pgprot_val(prot)); 498 499 return prot; 500 } 501 502 503 /* 504 * Perform the actual remap of the pages for a PCI device mapping, as 505 * appropriate for this architecture. The region in the process to map 506 * is described by vm_start and vm_end members of VMA, the base physical 507 * address is found in vm_pgoff. 508 * The pci device structure is provided so that architectures may make mapping 509 * decisions on a per-device or per-bus basis. 510 * 511 * Returns a negative error code on failure, zero on success. 512 */ 513 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, 514 enum pci_mmap_state mmap_state, int write_combine) 515 { 516 resource_size_t offset = 517 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 518 struct resource *rp; 519 int ret; 520 521 rp = __pci_mmap_make_offset(dev, &offset, mmap_state); 522 if (rp == NULL) 523 return -EINVAL; 524 525 vma->vm_pgoff = offset >> PAGE_SHIFT; 526 if (write_combine) 527 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 528 else 529 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 530 531 ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 532 vma->vm_end - vma->vm_start, vma->vm_page_prot); 533 534 return ret; 535 } 536 537 /* This provides legacy IO read access on a bus */ 538 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) 539 { 540 unsigned long offset; 541 struct pci_controller *hose = pci_bus_to_host(bus); 542 struct resource *rp = &hose->io_resource; 543 void __iomem *addr; 544 545 /* Check if port can be supported by that bus. We only check 546 * the ranges of the PHB though, not the bus itself as the rules 547 * for forwarding legacy cycles down bridges are not our problem 548 * here. So if the host bridge supports it, we do it. 549 */ 550 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 551 offset += port; 552 553 if (!(rp->flags & IORESOURCE_IO)) 554 return -ENXIO; 555 if (offset < rp->start || (offset + size) > rp->end) 556 return -ENXIO; 557 addr = hose->io_base_virt + port; 558 559 switch(size) { 560 case 1: 561 *((u8 *)val) = in_8(addr); 562 return 1; 563 case 2: 564 if (port & 1) 565 return -EINVAL; 566 *((u16 *)val) = in_le16(addr); 567 return 2; 568 case 4: 569 if (port & 3) 570 return -EINVAL; 571 *((u32 *)val) = in_le32(addr); 572 return 4; 573 } 574 return -EINVAL; 575 } 576 577 /* This provides legacy IO write access on a bus */ 578 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) 579 { 580 unsigned long offset; 581 struct pci_controller *hose = pci_bus_to_host(bus); 582 struct resource *rp = &hose->io_resource; 583 void __iomem *addr; 584 585 /* Check if port can be supported by that bus. We only check 586 * the ranges of the PHB though, not the bus itself as the rules 587 * for forwarding legacy cycles down bridges are not our problem 588 * here. So if the host bridge supports it, we do it. 589 */ 590 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 591 offset += port; 592 593 if (!(rp->flags & IORESOURCE_IO)) 594 return -ENXIO; 595 if (offset < rp->start || (offset + size) > rp->end) 596 return -ENXIO; 597 addr = hose->io_base_virt + port; 598 599 /* WARNING: The generic code is idiotic. It gets passed a pointer 600 * to what can be a 1, 2 or 4 byte quantity and always reads that 601 * as a u32, which means that we have to correct the location of 602 * the data read within those 32 bits for size 1 and 2 603 */ 604 switch(size) { 605 case 1: 606 out_8(addr, val >> 24); 607 return 1; 608 case 2: 609 if (port & 1) 610 return -EINVAL; 611 out_le16(addr, val >> 16); 612 return 2; 613 case 4: 614 if (port & 3) 615 return -EINVAL; 616 out_le32(addr, val); 617 return 4; 618 } 619 return -EINVAL; 620 } 621 622 /* This provides legacy IO or memory mmap access on a bus */ 623 int pci_mmap_legacy_page_range(struct pci_bus *bus, 624 struct vm_area_struct *vma, 625 enum pci_mmap_state mmap_state) 626 { 627 struct pci_controller *hose = pci_bus_to_host(bus); 628 resource_size_t offset = 629 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 630 resource_size_t size = vma->vm_end - vma->vm_start; 631 struct resource *rp; 632 633 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", 634 pci_domain_nr(bus), bus->number, 635 mmap_state == pci_mmap_mem ? "MEM" : "IO", 636 (unsigned long long)offset, 637 (unsigned long long)(offset + size - 1)); 638 639 if (mmap_state == pci_mmap_mem) { 640 /* Hack alert ! 641 * 642 * Because X is lame and can fail starting if it gets an error trying 643 * to mmap legacy_mem (instead of just moving on without legacy memory 644 * access) we fake it here by giving it anonymous memory, effectively 645 * behaving just like /dev/zero 646 */ 647 if ((offset + size) > hose->isa_mem_size) { 648 printk(KERN_DEBUG 649 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", 650 current->comm, current->pid, pci_domain_nr(bus), bus->number); 651 if (vma->vm_flags & VM_SHARED) 652 return shmem_zero_setup(vma); 653 return 0; 654 } 655 offset += hose->isa_mem_phys; 656 } else { 657 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 658 unsigned long roffset = offset + io_offset; 659 rp = &hose->io_resource; 660 if (!(rp->flags & IORESOURCE_IO)) 661 return -ENXIO; 662 if (roffset < rp->start || (roffset + size) > rp->end) 663 return -ENXIO; 664 offset += hose->io_base_phys; 665 } 666 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); 667 668 vma->vm_pgoff = offset >> PAGE_SHIFT; 669 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 670 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 671 vma->vm_end - vma->vm_start, 672 vma->vm_page_prot); 673 } 674 675 void pci_resource_to_user(const struct pci_dev *dev, int bar, 676 const struct resource *rsrc, 677 resource_size_t *start, resource_size_t *end) 678 { 679 struct pci_bus_region region; 680 681 if (rsrc->flags & IORESOURCE_IO) { 682 pcibios_resource_to_bus(dev->bus, ®ion, 683 (struct resource *) rsrc); 684 *start = region.start; 685 *end = region.end; 686 return; 687 } 688 689 /* We pass a CPU physical address to userland for MMIO instead of a 690 * BAR value because X is lame and expects to be able to use that 691 * to pass to /dev/mem! 692 * 693 * That means we may have 64-bit values where some apps only expect 694 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). 695 */ 696 *start = rsrc->start; 697 *end = rsrc->end; 698 } 699 700 /** 701 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree 702 * @hose: newly allocated pci_controller to be setup 703 * @dev: device node of the host bridge 704 * @primary: set if primary bus (32 bits only, soon to be deprecated) 705 * 706 * This function will parse the "ranges" property of a PCI host bridge device 707 * node and setup the resource mapping of a pci controller based on its 708 * content. 709 * 710 * Life would be boring if it wasn't for a few issues that we have to deal 711 * with here: 712 * 713 * - We can only cope with one IO space range and up to 3 Memory space 714 * ranges. However, some machines (thanks Apple !) tend to split their 715 * space into lots of small contiguous ranges. So we have to coalesce. 716 * 717 * - Some busses have IO space not starting at 0, which causes trouble with 718 * the way we do our IO resource renumbering. The code somewhat deals with 719 * it for 64 bits but I would expect problems on 32 bits. 720 * 721 * - Some 32 bits platforms such as 4xx can have physical space larger than 722 * 32 bits so we need to use 64 bits values for the parsing 723 */ 724 void pci_process_bridge_OF_ranges(struct pci_controller *hose, 725 struct device_node *dev, int primary) 726 { 727 int memno = 0; 728 struct resource *res; 729 struct of_pci_range range; 730 struct of_pci_range_parser parser; 731 732 printk(KERN_INFO "PCI host bridge %s %s ranges:\n", 733 dev->full_name, primary ? "(primary)" : ""); 734 735 /* Check for ranges property */ 736 if (of_pci_range_parser_init(&parser, dev)) 737 return; 738 739 /* Parse it */ 740 for_each_of_pci_range(&parser, &range) { 741 /* If we failed translation or got a zero-sized region 742 * (some FW try to feed us with non sensical zero sized regions 743 * such as power3 which look like some kind of attempt at exposing 744 * the VGA memory hole) 745 */ 746 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 747 continue; 748 749 /* Act based on address space type */ 750 res = NULL; 751 switch (range.flags & IORESOURCE_TYPE_BITS) { 752 case IORESOURCE_IO: 753 printk(KERN_INFO 754 " IO 0x%016llx..0x%016llx -> 0x%016llx\n", 755 range.cpu_addr, range.cpu_addr + range.size - 1, 756 range.pci_addr); 757 758 /* We support only one IO range */ 759 if (hose->pci_io_size) { 760 printk(KERN_INFO 761 " \\--> Skipped (too many) !\n"); 762 continue; 763 } 764 #ifdef CONFIG_PPC32 765 /* On 32 bits, limit I/O space to 16MB */ 766 if (range.size > 0x01000000) 767 range.size = 0x01000000; 768 769 /* 32 bits needs to map IOs here */ 770 hose->io_base_virt = ioremap(range.cpu_addr, 771 range.size); 772 773 /* Expect trouble if pci_addr is not 0 */ 774 if (primary) 775 isa_io_base = 776 (unsigned long)hose->io_base_virt; 777 #endif /* CONFIG_PPC32 */ 778 /* pci_io_size and io_base_phys always represent IO 779 * space starting at 0 so we factor in pci_addr 780 */ 781 hose->pci_io_size = range.pci_addr + range.size; 782 hose->io_base_phys = range.cpu_addr - range.pci_addr; 783 784 /* Build resource */ 785 res = &hose->io_resource; 786 range.cpu_addr = range.pci_addr; 787 break; 788 case IORESOURCE_MEM: 789 printk(KERN_INFO 790 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", 791 range.cpu_addr, range.cpu_addr + range.size - 1, 792 range.pci_addr, 793 (range.pci_space & 0x40000000) ? 794 "Prefetch" : ""); 795 796 /* We support only 3 memory ranges */ 797 if (memno >= 3) { 798 printk(KERN_INFO 799 " \\--> Skipped (too many) !\n"); 800 continue; 801 } 802 /* Handles ISA memory hole space here */ 803 if (range.pci_addr == 0) { 804 if (primary || isa_mem_base == 0) 805 isa_mem_base = range.cpu_addr; 806 hose->isa_mem_phys = range.cpu_addr; 807 hose->isa_mem_size = range.size; 808 } 809 810 /* Build resource */ 811 hose->mem_offset[memno] = range.cpu_addr - 812 range.pci_addr; 813 res = &hose->mem_resources[memno++]; 814 break; 815 } 816 if (res != NULL) { 817 res->name = dev->full_name; 818 res->flags = range.flags; 819 res->start = range.cpu_addr; 820 res->end = range.cpu_addr + range.size - 1; 821 res->parent = res->child = res->sibling = NULL; 822 } 823 } 824 } 825 826 /* Decide whether to display the domain number in /proc */ 827 int pci_proc_domain(struct pci_bus *bus) 828 { 829 struct pci_controller *hose = pci_bus_to_host(bus); 830 831 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) 832 return 0; 833 if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) 834 return hose->global_number != 0; 835 return 1; 836 } 837 838 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 839 { 840 if (ppc_md.pcibios_root_bridge_prepare) 841 return ppc_md.pcibios_root_bridge_prepare(bridge); 842 843 return 0; 844 } 845 846 /* This header fixup will do the resource fixup for all devices as they are 847 * probed, but not for bridge ranges 848 */ 849 static void pcibios_fixup_resources(struct pci_dev *dev) 850 { 851 struct pci_controller *hose = pci_bus_to_host(dev->bus); 852 int i; 853 854 if (!hose) { 855 printk(KERN_ERR "No host bridge for PCI dev %s !\n", 856 pci_name(dev)); 857 return; 858 } 859 860 if (dev->is_virtfn) 861 return; 862 863 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 864 struct resource *res = dev->resource + i; 865 struct pci_bus_region reg; 866 if (!res->flags) 867 continue; 868 869 /* If we're going to re-assign everything, we mark all resources 870 * as unset (and 0-base them). In addition, we mark BARs starting 871 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set 872 * since in that case, we don't want to re-assign anything 873 */ 874 pcibios_resource_to_bus(dev->bus, ®, res); 875 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || 876 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { 877 /* Only print message if not re-assigning */ 878 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) 879 pr_debug("PCI:%s Resource %d %pR is unassigned\n", 880 pci_name(dev), i, res); 881 res->end -= res->start; 882 res->start = 0; 883 res->flags |= IORESOURCE_UNSET; 884 continue; 885 } 886 887 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); 888 } 889 890 /* Call machine specific resource fixup */ 891 if (ppc_md.pcibios_fixup_resources) 892 ppc_md.pcibios_fixup_resources(dev); 893 } 894 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); 895 896 /* This function tries to figure out if a bridge resource has been initialized 897 * by the firmware or not. It doesn't have to be absolutely bullet proof, but 898 * things go more smoothly when it gets it right. It should covers cases such 899 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges 900 */ 901 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, 902 struct resource *res) 903 { 904 struct pci_controller *hose = pci_bus_to_host(bus); 905 struct pci_dev *dev = bus->self; 906 resource_size_t offset; 907 struct pci_bus_region region; 908 u16 command; 909 int i; 910 911 /* We don't do anything if PCI_PROBE_ONLY is set */ 912 if (pci_has_flag(PCI_PROBE_ONLY)) 913 return 0; 914 915 /* Job is a bit different between memory and IO */ 916 if (res->flags & IORESOURCE_MEM) { 917 pcibios_resource_to_bus(dev->bus, ®ion, res); 918 919 /* If the BAR is non-0 then it's probably been initialized */ 920 if (region.start != 0) 921 return 0; 922 923 /* The BAR is 0, let's check if memory decoding is enabled on 924 * the bridge. If not, we consider it unassigned 925 */ 926 pci_read_config_word(dev, PCI_COMMAND, &command); 927 if ((command & PCI_COMMAND_MEMORY) == 0) 928 return 1; 929 930 /* Memory decoding is enabled and the BAR is 0. If any of the bridge 931 * resources covers that starting address (0 then it's good enough for 932 * us for memory space) 933 */ 934 for (i = 0; i < 3; i++) { 935 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && 936 hose->mem_resources[i].start == hose->mem_offset[i]) 937 return 0; 938 } 939 940 /* Well, it starts at 0 and we know it will collide so we may as 941 * well consider it as unassigned. That covers the Apple case. 942 */ 943 return 1; 944 } else { 945 /* If the BAR is non-0, then we consider it assigned */ 946 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 947 if (((res->start - offset) & 0xfffffffful) != 0) 948 return 0; 949 950 /* Here, we are a bit different than memory as typically IO space 951 * starting at low addresses -is- valid. What we do instead if that 952 * we consider as unassigned anything that doesn't have IO enabled 953 * in the PCI command register, and that's it. 954 */ 955 pci_read_config_word(dev, PCI_COMMAND, &command); 956 if (command & PCI_COMMAND_IO) 957 return 0; 958 959 /* It's starting at 0 and IO is disabled in the bridge, consider 960 * it unassigned 961 */ 962 return 1; 963 } 964 } 965 966 /* Fixup resources of a PCI<->PCI bridge */ 967 static void pcibios_fixup_bridge(struct pci_bus *bus) 968 { 969 struct resource *res; 970 int i; 971 972 struct pci_dev *dev = bus->self; 973 974 pci_bus_for_each_resource(bus, res, i) { 975 if (!res || !res->flags) 976 continue; 977 if (i >= 3 && bus->self->transparent) 978 continue; 979 980 /* If we're going to reassign everything, we can 981 * shrink the P2P resource to have size as being 982 * of 0 in order to save space. 983 */ 984 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 985 res->flags |= IORESOURCE_UNSET; 986 res->start = 0; 987 res->end = -1; 988 continue; 989 } 990 991 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); 992 993 /* Try to detect uninitialized P2P bridge resources, 994 * and clear them out so they get re-assigned later 995 */ 996 if (pcibios_uninitialized_bridge_resource(bus, res)) { 997 res->flags = 0; 998 pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); 999 } 1000 } 1001 } 1002 1003 void pcibios_setup_bus_self(struct pci_bus *bus) 1004 { 1005 struct pci_controller *phb; 1006 1007 /* Fix up the bus resources for P2P bridges */ 1008 if (bus->self != NULL) 1009 pcibios_fixup_bridge(bus); 1010 1011 /* Platform specific bus fixups. This is currently only used 1012 * by fsl_pci and I'm hoping to get rid of it at some point 1013 */ 1014 if (ppc_md.pcibios_fixup_bus) 1015 ppc_md.pcibios_fixup_bus(bus); 1016 1017 /* Setup bus DMA mappings */ 1018 phb = pci_bus_to_host(bus); 1019 if (phb->controller_ops.dma_bus_setup) 1020 phb->controller_ops.dma_bus_setup(bus); 1021 } 1022 1023 static void pcibios_setup_device(struct pci_dev *dev) 1024 { 1025 struct pci_controller *phb; 1026 /* Fixup NUMA node as it may not be setup yet by the generic 1027 * code and is needed by the DMA init 1028 */ 1029 set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); 1030 1031 /* Hook up default DMA ops */ 1032 set_dma_ops(&dev->dev, pci_dma_ops); 1033 set_dma_offset(&dev->dev, PCI_DRAM_OFFSET); 1034 1035 /* Additional platform DMA/iommu setup */ 1036 phb = pci_bus_to_host(dev->bus); 1037 if (phb->controller_ops.dma_dev_setup) 1038 phb->controller_ops.dma_dev_setup(dev); 1039 1040 /* Read default IRQs and fixup if necessary */ 1041 pci_read_irq_line(dev); 1042 if (ppc_md.pci_irq_fixup) 1043 ppc_md.pci_irq_fixup(dev); 1044 } 1045 1046 int pcibios_add_device(struct pci_dev *dev) 1047 { 1048 /* 1049 * We can only call pcibios_setup_device() after bus setup is complete, 1050 * since some of the platform specific DMA setup code depends on it. 1051 */ 1052 if (dev->bus->is_added) 1053 pcibios_setup_device(dev); 1054 1055 #ifdef CONFIG_PCI_IOV 1056 if (ppc_md.pcibios_fixup_sriov) 1057 ppc_md.pcibios_fixup_sriov(dev); 1058 #endif /* CONFIG_PCI_IOV */ 1059 1060 return 0; 1061 } 1062 1063 void pcibios_setup_bus_devices(struct pci_bus *bus) 1064 { 1065 struct pci_dev *dev; 1066 1067 pr_debug("PCI: Fixup bus devices %d (%s)\n", 1068 bus->number, bus->self ? pci_name(bus->self) : "PHB"); 1069 1070 list_for_each_entry(dev, &bus->devices, bus_list) { 1071 /* Cardbus can call us to add new devices to a bus, so ignore 1072 * those who are already fully discovered 1073 */ 1074 if (dev->is_added) 1075 continue; 1076 1077 pcibios_setup_device(dev); 1078 } 1079 } 1080 1081 void pcibios_set_master(struct pci_dev *dev) 1082 { 1083 /* No special bus mastering setup handling */ 1084 } 1085 1086 void pcibios_fixup_bus(struct pci_bus *bus) 1087 { 1088 /* When called from the generic PCI probe, read PCI<->PCI bridge 1089 * bases. This is -not- called when generating the PCI tree from 1090 * the OF device-tree. 1091 */ 1092 pci_read_bridge_bases(bus); 1093 1094 /* Now fixup the bus bus */ 1095 pcibios_setup_bus_self(bus); 1096 1097 /* Now fixup devices on that bus */ 1098 pcibios_setup_bus_devices(bus); 1099 } 1100 EXPORT_SYMBOL(pcibios_fixup_bus); 1101 1102 void pci_fixup_cardbus(struct pci_bus *bus) 1103 { 1104 /* Now fixup devices on that bus */ 1105 pcibios_setup_bus_devices(bus); 1106 } 1107 1108 1109 static int skip_isa_ioresource_align(struct pci_dev *dev) 1110 { 1111 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && 1112 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) 1113 return 1; 1114 return 0; 1115 } 1116 1117 /* 1118 * We need to avoid collisions with `mirrored' VGA ports 1119 * and other strange ISA hardware, so we always want the 1120 * addresses to be allocated in the 0x000-0x0ff region 1121 * modulo 0x400. 1122 * 1123 * Why? Because some silly external IO cards only decode 1124 * the low 10 bits of the IO address. The 0x00-0xff region 1125 * is reserved for motherboard devices that decode all 16 1126 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, 1127 * but we want to try to avoid allocating at 0x2900-0x2bff 1128 * which might have be mirrored at 0x0100-0x03ff.. 1129 */ 1130 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 1131 resource_size_t size, resource_size_t align) 1132 { 1133 struct pci_dev *dev = data; 1134 resource_size_t start = res->start; 1135 1136 if (res->flags & IORESOURCE_IO) { 1137 if (skip_isa_ioresource_align(dev)) 1138 return start; 1139 if (start & 0x300) 1140 start = (start + 0x3ff) & ~0x3ff; 1141 } 1142 1143 return start; 1144 } 1145 EXPORT_SYMBOL(pcibios_align_resource); 1146 1147 /* 1148 * Reparent resource children of pr that conflict with res 1149 * under res, and make res replace those children. 1150 */ 1151 static int reparent_resources(struct resource *parent, 1152 struct resource *res) 1153 { 1154 struct resource *p, **pp; 1155 struct resource **firstpp = NULL; 1156 1157 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { 1158 if (p->end < res->start) 1159 continue; 1160 if (res->end < p->start) 1161 break; 1162 if (p->start < res->start || p->end > res->end) 1163 return -1; /* not completely contained */ 1164 if (firstpp == NULL) 1165 firstpp = pp; 1166 } 1167 if (firstpp == NULL) 1168 return -1; /* didn't find any conflicting entries? */ 1169 res->parent = parent; 1170 res->child = *firstpp; 1171 res->sibling = *pp; 1172 *firstpp = res; 1173 *pp = NULL; 1174 for (p = res->child; p != NULL; p = p->sibling) { 1175 p->parent = res; 1176 pr_debug("PCI: Reparented %s %pR under %s\n", 1177 p->name, p, res->name); 1178 } 1179 return 0; 1180 } 1181 1182 /* 1183 * Handle resources of PCI devices. If the world were perfect, we could 1184 * just allocate all the resource regions and do nothing more. It isn't. 1185 * On the other hand, we cannot just re-allocate all devices, as it would 1186 * require us to know lots of host bridge internals. So we attempt to 1187 * keep as much of the original configuration as possible, but tweak it 1188 * when it's found to be wrong. 1189 * 1190 * Known BIOS problems we have to work around: 1191 * - I/O or memory regions not configured 1192 * - regions configured, but not enabled in the command register 1193 * - bogus I/O addresses above 64K used 1194 * - expansion ROMs left enabled (this may sound harmless, but given 1195 * the fact the PCI specs explicitly allow address decoders to be 1196 * shared between expansion ROMs and other resource regions, it's 1197 * at least dangerous) 1198 * 1199 * Our solution: 1200 * (1) Allocate resources for all buses behind PCI-to-PCI bridges. 1201 * This gives us fixed barriers on where we can allocate. 1202 * (2) Allocate resources for all enabled devices. If there is 1203 * a collision, just mark the resource as unallocated. Also 1204 * disable expansion ROMs during this step. 1205 * (3) Try to allocate resources for disabled devices. If the 1206 * resources were assigned correctly, everything goes well, 1207 * if they weren't, they won't disturb allocation of other 1208 * resources. 1209 * (4) Assign new addresses to resources which were either 1210 * not configured at all or misconfigured. If explicitly 1211 * requested by the user, configure expansion ROM address 1212 * as well. 1213 */ 1214 1215 static void pcibios_allocate_bus_resources(struct pci_bus *bus) 1216 { 1217 struct pci_bus *b; 1218 int i; 1219 struct resource *res, *pr; 1220 1221 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", 1222 pci_domain_nr(bus), bus->number); 1223 1224 pci_bus_for_each_resource(bus, res, i) { 1225 if (!res || !res->flags || res->start > res->end || res->parent) 1226 continue; 1227 1228 /* If the resource was left unset at this point, we clear it */ 1229 if (res->flags & IORESOURCE_UNSET) 1230 goto clear_resource; 1231 1232 if (bus->parent == NULL) 1233 pr = (res->flags & IORESOURCE_IO) ? 1234 &ioport_resource : &iomem_resource; 1235 else { 1236 pr = pci_find_parent_resource(bus->self, res); 1237 if (pr == res) { 1238 /* this happens when the generic PCI 1239 * code (wrongly) decides that this 1240 * bridge is transparent -- paulus 1241 */ 1242 continue; 1243 } 1244 } 1245 1246 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", 1247 bus->self ? pci_name(bus->self) : "PHB", bus->number, 1248 i, res, pr, (pr && pr->name) ? pr->name : "nil"); 1249 1250 if (pr && !(pr->flags & IORESOURCE_UNSET)) { 1251 struct pci_dev *dev = bus->self; 1252 1253 if (request_resource(pr, res) == 0) 1254 continue; 1255 /* 1256 * Must be a conflict with an existing entry. 1257 * Move that entry (or entries) under the 1258 * bridge resource and try again. 1259 */ 1260 if (reparent_resources(pr, res) == 0) 1261 continue; 1262 1263 if (dev && i < PCI_BRIDGE_RESOURCE_NUM && 1264 pci_claim_bridge_resource(dev, 1265 i + PCI_BRIDGE_RESOURCES) == 0) 1266 continue; 1267 } 1268 pr_warning("PCI: Cannot allocate resource region " 1269 "%d of PCI bridge %d, will remap\n", i, bus->number); 1270 clear_resource: 1271 /* The resource might be figured out when doing 1272 * reassignment based on the resources required 1273 * by the downstream PCI devices. Here we set 1274 * the size of the resource to be 0 in order to 1275 * save more space. 1276 */ 1277 res->start = 0; 1278 res->end = -1; 1279 res->flags = 0; 1280 } 1281 1282 list_for_each_entry(b, &bus->children, node) 1283 pcibios_allocate_bus_resources(b); 1284 } 1285 1286 static inline void alloc_resource(struct pci_dev *dev, int idx) 1287 { 1288 struct resource *pr, *r = &dev->resource[idx]; 1289 1290 pr_debug("PCI: Allocating %s: Resource %d: %pR\n", 1291 pci_name(dev), idx, r); 1292 1293 pr = pci_find_parent_resource(dev, r); 1294 if (!pr || (pr->flags & IORESOURCE_UNSET) || 1295 request_resource(pr, r) < 0) { 1296 printk(KERN_WARNING "PCI: Cannot allocate resource region %d" 1297 " of device %s, will remap\n", idx, pci_name(dev)); 1298 if (pr) 1299 pr_debug("PCI: parent is %p: %pR\n", pr, pr); 1300 /* We'll assign a new address later */ 1301 r->flags |= IORESOURCE_UNSET; 1302 r->end -= r->start; 1303 r->start = 0; 1304 } 1305 } 1306 1307 static void __init pcibios_allocate_resources(int pass) 1308 { 1309 struct pci_dev *dev = NULL; 1310 int idx, disabled; 1311 u16 command; 1312 struct resource *r; 1313 1314 for_each_pci_dev(dev) { 1315 pci_read_config_word(dev, PCI_COMMAND, &command); 1316 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { 1317 r = &dev->resource[idx]; 1318 if (r->parent) /* Already allocated */ 1319 continue; 1320 if (!r->flags || (r->flags & IORESOURCE_UNSET)) 1321 continue; /* Not assigned at all */ 1322 /* We only allocate ROMs on pass 1 just in case they 1323 * have been screwed up by firmware 1324 */ 1325 if (idx == PCI_ROM_RESOURCE ) 1326 disabled = 1; 1327 if (r->flags & IORESOURCE_IO) 1328 disabled = !(command & PCI_COMMAND_IO); 1329 else 1330 disabled = !(command & PCI_COMMAND_MEMORY); 1331 if (pass == disabled) 1332 alloc_resource(dev, idx); 1333 } 1334 if (pass) 1335 continue; 1336 r = &dev->resource[PCI_ROM_RESOURCE]; 1337 if (r->flags) { 1338 /* Turn the ROM off, leave the resource region, 1339 * but keep it unregistered. 1340 */ 1341 u32 reg; 1342 pci_read_config_dword(dev, dev->rom_base_reg, ®); 1343 if (reg & PCI_ROM_ADDRESS_ENABLE) { 1344 pr_debug("PCI: Switching off ROM of %s\n", 1345 pci_name(dev)); 1346 r->flags &= ~IORESOURCE_ROM_ENABLE; 1347 pci_write_config_dword(dev, dev->rom_base_reg, 1348 reg & ~PCI_ROM_ADDRESS_ENABLE); 1349 } 1350 } 1351 } 1352 } 1353 1354 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) 1355 { 1356 struct pci_controller *hose = pci_bus_to_host(bus); 1357 resource_size_t offset; 1358 struct resource *res, *pres; 1359 int i; 1360 1361 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); 1362 1363 /* Check for IO */ 1364 if (!(hose->io_resource.flags & IORESOURCE_IO)) 1365 goto no_io; 1366 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 1367 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1368 BUG_ON(res == NULL); 1369 res->name = "Legacy IO"; 1370 res->flags = IORESOURCE_IO; 1371 res->start = offset; 1372 res->end = (offset + 0xfff) & 0xfffffffful; 1373 pr_debug("Candidate legacy IO: %pR\n", res); 1374 if (request_resource(&hose->io_resource, res)) { 1375 printk(KERN_DEBUG 1376 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", 1377 pci_domain_nr(bus), bus->number, res); 1378 kfree(res); 1379 } 1380 1381 no_io: 1382 /* Check for memory */ 1383 for (i = 0; i < 3; i++) { 1384 pres = &hose->mem_resources[i]; 1385 offset = hose->mem_offset[i]; 1386 if (!(pres->flags & IORESOURCE_MEM)) 1387 continue; 1388 pr_debug("hose mem res: %pR\n", pres); 1389 if ((pres->start - offset) <= 0xa0000 && 1390 (pres->end - offset) >= 0xbffff) 1391 break; 1392 } 1393 if (i >= 3) 1394 return; 1395 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1396 BUG_ON(res == NULL); 1397 res->name = "Legacy VGA memory"; 1398 res->flags = IORESOURCE_MEM; 1399 res->start = 0xa0000 + offset; 1400 res->end = 0xbffff + offset; 1401 pr_debug("Candidate VGA memory: %pR\n", res); 1402 if (request_resource(pres, res)) { 1403 printk(KERN_DEBUG 1404 "PCI %04x:%02x Cannot reserve VGA memory %pR\n", 1405 pci_domain_nr(bus), bus->number, res); 1406 kfree(res); 1407 } 1408 } 1409 1410 void __init pcibios_resource_survey(void) 1411 { 1412 struct pci_bus *b; 1413 1414 /* Allocate and assign resources */ 1415 list_for_each_entry(b, &pci_root_buses, node) 1416 pcibios_allocate_bus_resources(b); 1417 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1418 pcibios_allocate_resources(0); 1419 pcibios_allocate_resources(1); 1420 } 1421 1422 /* Before we start assigning unassigned resource, we try to reserve 1423 * the low IO area and the VGA memory area if they intersect the 1424 * bus available resources to avoid allocating things on top of them 1425 */ 1426 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1427 list_for_each_entry(b, &pci_root_buses, node) 1428 pcibios_reserve_legacy_regions(b); 1429 } 1430 1431 /* Now, if the platform didn't decide to blindly trust the firmware, 1432 * we proceed to assigning things that were left unassigned 1433 */ 1434 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1435 pr_debug("PCI: Assigning unassigned resources...\n"); 1436 pci_assign_unassigned_resources(); 1437 } 1438 1439 /* Call machine dependent fixup */ 1440 if (ppc_md.pcibios_fixup) 1441 ppc_md.pcibios_fixup(); 1442 } 1443 1444 /* This is used by the PCI hotplug driver to allocate resource 1445 * of newly plugged busses. We can try to consolidate with the 1446 * rest of the code later, for now, keep it as-is as our main 1447 * resource allocation function doesn't deal with sub-trees yet. 1448 */ 1449 void pcibios_claim_one_bus(struct pci_bus *bus) 1450 { 1451 struct pci_dev *dev; 1452 struct pci_bus *child_bus; 1453 1454 list_for_each_entry(dev, &bus->devices, bus_list) { 1455 int i; 1456 1457 for (i = 0; i < PCI_NUM_RESOURCES; i++) { 1458 struct resource *r = &dev->resource[i]; 1459 1460 if (r->parent || !r->start || !r->flags) 1461 continue; 1462 1463 pr_debug("PCI: Claiming %s: Resource %d: %pR\n", 1464 pci_name(dev), i, r); 1465 1466 if (pci_claim_resource(dev, i) == 0) 1467 continue; 1468 1469 pci_claim_bridge_resource(dev, i); 1470 } 1471 } 1472 1473 list_for_each_entry(child_bus, &bus->children, node) 1474 pcibios_claim_one_bus(child_bus); 1475 } 1476 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); 1477 1478 1479 /* pcibios_finish_adding_to_bus 1480 * 1481 * This is to be called by the hotplug code after devices have been 1482 * added to a bus, this include calling it for a PHB that is just 1483 * being added 1484 */ 1485 void pcibios_finish_adding_to_bus(struct pci_bus *bus) 1486 { 1487 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", 1488 pci_domain_nr(bus), bus->number); 1489 1490 /* Allocate bus and devices resources */ 1491 pcibios_allocate_bus_resources(bus); 1492 pcibios_claim_one_bus(bus); 1493 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1494 if (bus->self) 1495 pci_assign_unassigned_bridge_resources(bus->self); 1496 else 1497 pci_assign_unassigned_bus_resources(bus); 1498 } 1499 1500 /* Fixup EEH */ 1501 eeh_add_device_tree_late(bus); 1502 1503 /* Add new devices to global lists. Register in proc, sysfs. */ 1504 pci_bus_add_devices(bus); 1505 1506 /* sysfs files should only be added after devices are added */ 1507 eeh_add_sysfs_files(bus); 1508 } 1509 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); 1510 1511 int pcibios_enable_device(struct pci_dev *dev, int mask) 1512 { 1513 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1514 1515 if (phb->controller_ops.enable_device_hook) 1516 if (!phb->controller_ops.enable_device_hook(dev)) 1517 return -EINVAL; 1518 1519 return pci_enable_resources(dev, mask); 1520 } 1521 1522 void pcibios_disable_device(struct pci_dev *dev) 1523 { 1524 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1525 1526 if (phb->controller_ops.disable_device) 1527 phb->controller_ops.disable_device(dev); 1528 } 1529 1530 resource_size_t pcibios_io_space_offset(struct pci_controller *hose) 1531 { 1532 return (unsigned long) hose->io_base_virt - _IO_BASE; 1533 } 1534 1535 static void pcibios_setup_phb_resources(struct pci_controller *hose, 1536 struct list_head *resources) 1537 { 1538 struct resource *res; 1539 resource_size_t offset; 1540 int i; 1541 1542 /* Hookup PHB IO resource */ 1543 res = &hose->io_resource; 1544 1545 if (!res->flags) { 1546 pr_debug("PCI: I/O resource not set for host" 1547 " bridge %s (domain %d)\n", 1548 hose->dn->full_name, hose->global_number); 1549 } else { 1550 offset = pcibios_io_space_offset(hose); 1551 1552 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", 1553 res, (unsigned long long)offset); 1554 pci_add_resource_offset(resources, res, offset); 1555 } 1556 1557 /* Hookup PHB Memory resources */ 1558 for (i = 0; i < 3; ++i) { 1559 res = &hose->mem_resources[i]; 1560 if (!res->flags) { 1561 if (i == 0) 1562 printk(KERN_ERR "PCI: Memory resource 0 not set for " 1563 "host bridge %s (domain %d)\n", 1564 hose->dn->full_name, hose->global_number); 1565 continue; 1566 } 1567 offset = hose->mem_offset[i]; 1568 1569 1570 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, 1571 res, (unsigned long long)offset); 1572 1573 pci_add_resource_offset(resources, res, offset); 1574 } 1575 } 1576 1577 /* 1578 * Null PCI config access functions, for the case when we can't 1579 * find a hose. 1580 */ 1581 #define NULL_PCI_OP(rw, size, type) \ 1582 static int \ 1583 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ 1584 { \ 1585 return PCIBIOS_DEVICE_NOT_FOUND; \ 1586 } 1587 1588 static int 1589 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, 1590 int len, u32 *val) 1591 { 1592 return PCIBIOS_DEVICE_NOT_FOUND; 1593 } 1594 1595 static int 1596 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, 1597 int len, u32 val) 1598 { 1599 return PCIBIOS_DEVICE_NOT_FOUND; 1600 } 1601 1602 static struct pci_ops null_pci_ops = 1603 { 1604 .read = null_read_config, 1605 .write = null_write_config, 1606 }; 1607 1608 /* 1609 * These functions are used early on before PCI scanning is done 1610 * and all of the pci_dev and pci_bus structures have been created. 1611 */ 1612 static struct pci_bus * 1613 fake_pci_bus(struct pci_controller *hose, int busnr) 1614 { 1615 static struct pci_bus bus; 1616 1617 if (hose == NULL) { 1618 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); 1619 } 1620 bus.number = busnr; 1621 bus.sysdata = hose; 1622 bus.ops = hose? hose->ops: &null_pci_ops; 1623 return &bus; 1624 } 1625 1626 #define EARLY_PCI_OP(rw, size, type) \ 1627 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ 1628 int devfn, int offset, type value) \ 1629 { \ 1630 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ 1631 devfn, offset, value); \ 1632 } 1633 1634 EARLY_PCI_OP(read, byte, u8 *) 1635 EARLY_PCI_OP(read, word, u16 *) 1636 EARLY_PCI_OP(read, dword, u32 *) 1637 EARLY_PCI_OP(write, byte, u8) 1638 EARLY_PCI_OP(write, word, u16) 1639 EARLY_PCI_OP(write, dword, u32) 1640 1641 int early_find_capability(struct pci_controller *hose, int bus, int devfn, 1642 int cap) 1643 { 1644 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); 1645 } 1646 1647 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) 1648 { 1649 struct pci_controller *hose = bus->sysdata; 1650 1651 return of_node_get(hose->dn); 1652 } 1653 1654 /** 1655 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus 1656 * @hose: Pointer to the PCI host controller instance structure 1657 */ 1658 void pcibios_scan_phb(struct pci_controller *hose) 1659 { 1660 LIST_HEAD(resources); 1661 struct pci_bus *bus; 1662 struct device_node *node = hose->dn; 1663 int mode; 1664 1665 pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node)); 1666 1667 /* Get some IO space for the new PHB */ 1668 pcibios_setup_phb_io_space(hose); 1669 1670 /* Wire up PHB bus resources */ 1671 pcibios_setup_phb_resources(hose, &resources); 1672 1673 hose->busn.start = hose->first_busno; 1674 hose->busn.end = hose->last_busno; 1675 hose->busn.flags = IORESOURCE_BUS; 1676 pci_add_resource(&resources, &hose->busn); 1677 1678 /* Create an empty bus for the toplevel */ 1679 bus = pci_create_root_bus(hose->parent, hose->first_busno, 1680 hose->ops, hose, &resources); 1681 if (bus == NULL) { 1682 pr_err("Failed to create bus for PCI domain %04x\n", 1683 hose->global_number); 1684 pci_free_resource_list(&resources); 1685 return; 1686 } 1687 hose->bus = bus; 1688 1689 /* Get probe mode and perform scan */ 1690 mode = PCI_PROBE_NORMAL; 1691 if (node && hose->controller_ops.probe_mode) 1692 mode = hose->controller_ops.probe_mode(bus); 1693 pr_debug(" probe mode: %d\n", mode); 1694 if (mode == PCI_PROBE_DEVTREE) 1695 of_scan_bus(node, bus); 1696 1697 if (mode == PCI_PROBE_NORMAL) { 1698 pci_bus_update_busn_res_end(bus, 255); 1699 hose->last_busno = pci_scan_child_bus(bus); 1700 pci_bus_update_busn_res_end(bus, hose->last_busno); 1701 } 1702 1703 /* Platform gets a chance to do some global fixups before 1704 * we proceed to resource allocation 1705 */ 1706 if (ppc_md.pcibios_fixup_phb) 1707 ppc_md.pcibios_fixup_phb(hose); 1708 1709 /* Configure PCI Express settings */ 1710 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { 1711 struct pci_bus *child; 1712 list_for_each_entry(child, &bus->children, node) 1713 pcie_bus_configure_settings(child); 1714 } 1715 } 1716 EXPORT_SYMBOL_GPL(pcibios_scan_phb); 1717 1718 static void fixup_hide_host_resource_fsl(struct pci_dev *dev) 1719 { 1720 int i, class = dev->class >> 8; 1721 /* When configured as agent, programing interface = 1 */ 1722 int prog_if = dev->class & 0xf; 1723 1724 if ((class == PCI_CLASS_PROCESSOR_POWERPC || 1725 class == PCI_CLASS_BRIDGE_OTHER) && 1726 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && 1727 (prog_if == 0) && 1728 (dev->bus->parent == NULL)) { 1729 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1730 dev->resource[i].start = 0; 1731 dev->resource[i].end = 0; 1732 dev->resource[i].flags = 0; 1733 } 1734 } 1735 } 1736 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1737 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1738 1739 static void fixup_vga(struct pci_dev *pdev) 1740 { 1741 u16 cmd; 1742 1743 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 1744 if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device()) 1745 vga_set_default_device(pdev); 1746 1747 } 1748 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID, 1749 PCI_CLASS_DISPLAY_VGA, 8, fixup_vga); 1750