xref: /openbmc/linux/arch/powerpc/kernel/pci-common.c (revision a8fe58ce)
1 /*
2  * Contains common pci routines for ALL ppc platform
3  * (based on pci_32.c and pci_64.c)
4  *
5  * Port for PPC64 David Engebretsen, IBM Corp.
6  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7  *
8  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9  *   Rework, based on alpha PCI code.
10  *
11  * Common pmac/prep/chrp pci routines. -- Cort
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/list.h>
29 #include <linux/syscalls.h>
30 #include <linux/irq.h>
31 #include <linux/vmalloc.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 
35 #include <asm/processor.h>
36 #include <asm/io.h>
37 #include <asm/prom.h>
38 #include <asm/pci-bridge.h>
39 #include <asm/byteorder.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/eeh.h>
43 
44 static DEFINE_SPINLOCK(hose_spinlock);
45 LIST_HEAD(hose_list);
46 
47 /* XXX kill that some day ... */
48 static int global_phb_number;		/* Global phb counter */
49 
50 /* ISA Memory physical address */
51 resource_size_t isa_mem_base;
52 
53 
54 static struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
55 
56 void set_pci_dma_ops(struct dma_map_ops *dma_ops)
57 {
58 	pci_dma_ops = dma_ops;
59 }
60 
61 struct dma_map_ops *get_pci_dma_ops(void)
62 {
63 	return pci_dma_ops;
64 }
65 EXPORT_SYMBOL(get_pci_dma_ops);
66 
67 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
68 {
69 	struct pci_controller *phb;
70 
71 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
72 	if (phb == NULL)
73 		return NULL;
74 	spin_lock(&hose_spinlock);
75 	phb->global_number = global_phb_number++;
76 	list_add_tail(&phb->list_node, &hose_list);
77 	spin_unlock(&hose_spinlock);
78 	phb->dn = dev;
79 	phb->is_dynamic = slab_is_available();
80 #ifdef CONFIG_PPC64
81 	if (dev) {
82 		int nid = of_node_to_nid(dev);
83 
84 		if (nid < 0 || !node_online(nid))
85 			nid = -1;
86 
87 		PHB_SET_NODE(phb, nid);
88 	}
89 #endif
90 	return phb;
91 }
92 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
93 
94 void pcibios_free_controller(struct pci_controller *phb)
95 {
96 	spin_lock(&hose_spinlock);
97 	list_del(&phb->list_node);
98 	spin_unlock(&hose_spinlock);
99 
100 	if (phb->is_dynamic)
101 		kfree(phb);
102 }
103 EXPORT_SYMBOL_GPL(pcibios_free_controller);
104 
105 /*
106  * The function is used to return the minimal alignment
107  * for memory or I/O windows of the associated P2P bridge.
108  * By default, 4KiB alignment for I/O windows and 1MiB for
109  * memory windows.
110  */
111 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
112 					 unsigned long type)
113 {
114 	struct pci_controller *phb = pci_bus_to_host(bus);
115 
116 	if (phb->controller_ops.window_alignment)
117 		return phb->controller_ops.window_alignment(bus, type);
118 
119 	/*
120 	 * PCI core will figure out the default
121 	 * alignment: 4KiB for I/O and 1MiB for
122 	 * memory window.
123 	 */
124 	return 1;
125 }
126 
127 void pcibios_reset_secondary_bus(struct pci_dev *dev)
128 {
129 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
130 
131 	if (phb->controller_ops.reset_secondary_bus) {
132 		phb->controller_ops.reset_secondary_bus(dev);
133 		return;
134 	}
135 
136 	pci_reset_secondary_bus(dev);
137 }
138 
139 #ifdef CONFIG_PCI_IOV
140 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
141 {
142 	if (ppc_md.pcibios_iov_resource_alignment)
143 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
144 
145 	return pci_iov_resource_size(pdev, resno);
146 }
147 #endif /* CONFIG_PCI_IOV */
148 
149 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
150 {
151 #ifdef CONFIG_PPC64
152 	return hose->pci_io_size;
153 #else
154 	return resource_size(&hose->io_resource);
155 #endif
156 }
157 
158 int pcibios_vaddr_is_ioport(void __iomem *address)
159 {
160 	int ret = 0;
161 	struct pci_controller *hose;
162 	resource_size_t size;
163 
164 	spin_lock(&hose_spinlock);
165 	list_for_each_entry(hose, &hose_list, list_node) {
166 		size = pcibios_io_size(hose);
167 		if (address >= hose->io_base_virt &&
168 		    address < (hose->io_base_virt + size)) {
169 			ret = 1;
170 			break;
171 		}
172 	}
173 	spin_unlock(&hose_spinlock);
174 	return ret;
175 }
176 
177 unsigned long pci_address_to_pio(phys_addr_t address)
178 {
179 	struct pci_controller *hose;
180 	resource_size_t size;
181 	unsigned long ret = ~0;
182 
183 	spin_lock(&hose_spinlock);
184 	list_for_each_entry(hose, &hose_list, list_node) {
185 		size = pcibios_io_size(hose);
186 		if (address >= hose->io_base_phys &&
187 		    address < (hose->io_base_phys + size)) {
188 			unsigned long base =
189 				(unsigned long)hose->io_base_virt - _IO_BASE;
190 			ret = base + (address - hose->io_base_phys);
191 			break;
192 		}
193 	}
194 	spin_unlock(&hose_spinlock);
195 
196 	return ret;
197 }
198 EXPORT_SYMBOL_GPL(pci_address_to_pio);
199 
200 /*
201  * Return the domain number for this bus.
202  */
203 int pci_domain_nr(struct pci_bus *bus)
204 {
205 	struct pci_controller *hose = pci_bus_to_host(bus);
206 
207 	return hose->global_number;
208 }
209 EXPORT_SYMBOL(pci_domain_nr);
210 
211 /* This routine is meant to be used early during boot, when the
212  * PCI bus numbers have not yet been assigned, and you need to
213  * issue PCI config cycles to an OF device.
214  * It could also be used to "fix" RTAS config cycles if you want
215  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
216  * config cycles.
217  */
218 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
219 {
220 	while(node) {
221 		struct pci_controller *hose, *tmp;
222 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
223 			if (hose->dn == node)
224 				return hose;
225 		node = node->parent;
226 	}
227 	return NULL;
228 }
229 
230 /*
231  * Reads the interrupt pin to determine if interrupt is use by card.
232  * If the interrupt is used, then gets the interrupt line from the
233  * openfirmware and sets it in the pci_dev and pci_config line.
234  */
235 static int pci_read_irq_line(struct pci_dev *pci_dev)
236 {
237 	struct of_phandle_args oirq;
238 	unsigned int virq;
239 
240 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
241 
242 #ifdef DEBUG
243 	memset(&oirq, 0xff, sizeof(oirq));
244 #endif
245 	/* Try to get a mapping from the device-tree */
246 	if (of_irq_parse_pci(pci_dev, &oirq)) {
247 		u8 line, pin;
248 
249 		/* If that fails, lets fallback to what is in the config
250 		 * space and map that through the default controller. We
251 		 * also set the type to level low since that's what PCI
252 		 * interrupts are. If your platform does differently, then
253 		 * either provide a proper interrupt tree or don't use this
254 		 * function.
255 		 */
256 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
257 			return -1;
258 		if (pin == 0)
259 			return -1;
260 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
261 		    line == 0xff || line == 0) {
262 			return -1;
263 		}
264 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
265 			 line, pin);
266 
267 		virq = irq_create_mapping(NULL, line);
268 		if (virq != NO_IRQ)
269 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
270 	} else {
271 		pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n",
272 			 oirq.args_count, oirq.args[0], oirq.args[1],
273 			 of_node_full_name(oirq.np));
274 
275 		virq = irq_create_of_mapping(&oirq);
276 	}
277 	if(virq == NO_IRQ) {
278 		pr_debug(" Failed to map !\n");
279 		return -1;
280 	}
281 
282 	pr_debug(" Mapped to linux irq %d\n", virq);
283 
284 	pci_dev->irq = virq;
285 
286 	return 0;
287 }
288 
289 /*
290  * Platform support for /proc/bus/pci/X/Y mmap()s,
291  * modelled on the sparc64 implementation by Dave Miller.
292  *  -- paulus.
293  */
294 
295 /*
296  * Adjust vm_pgoff of VMA such that it is the physical page offset
297  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
298  *
299  * Basically, the user finds the base address for his device which he wishes
300  * to mmap.  They read the 32-bit value from the config space base register,
301  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
302  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
303  *
304  * Returns negative error code on failure, zero on success.
305  */
306 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
307 					       resource_size_t *offset,
308 					       enum pci_mmap_state mmap_state)
309 {
310 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
311 	unsigned long io_offset = 0;
312 	int i, res_bit;
313 
314 	if (hose == NULL)
315 		return NULL;		/* should never happen */
316 
317 	/* If memory, add on the PCI bridge address offset */
318 	if (mmap_state == pci_mmap_mem) {
319 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
320 		*offset += hose->pci_mem_offset;
321 #endif
322 		res_bit = IORESOURCE_MEM;
323 	} else {
324 		io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
325 		*offset += io_offset;
326 		res_bit = IORESOURCE_IO;
327 	}
328 
329 	/*
330 	 * Check that the offset requested corresponds to one of the
331 	 * resources of the device.
332 	 */
333 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
334 		struct resource *rp = &dev->resource[i];
335 		int flags = rp->flags;
336 
337 		/* treat ROM as memory (should be already) */
338 		if (i == PCI_ROM_RESOURCE)
339 			flags |= IORESOURCE_MEM;
340 
341 		/* Active and same type? */
342 		if ((flags & res_bit) == 0)
343 			continue;
344 
345 		/* In the range of this resource? */
346 		if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
347 			continue;
348 
349 		/* found it! construct the final physical address */
350 		if (mmap_state == pci_mmap_io)
351 			*offset += hose->io_base_phys - io_offset;
352 		return rp;
353 	}
354 
355 	return NULL;
356 }
357 
358 /*
359  * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
360  * device mapping.
361  */
362 static pgprot_t __pci_mmap_set_pgprot(struct pci_dev *dev, struct resource *rp,
363 				      pgprot_t protection,
364 				      enum pci_mmap_state mmap_state,
365 				      int write_combine)
366 {
367 
368 	/* Write combine is always 0 on non-memory space mappings. On
369 	 * memory space, if the user didn't pass 1, we check for a
370 	 * "prefetchable" resource. This is a bit hackish, but we use
371 	 * this to workaround the inability of /sysfs to provide a write
372 	 * combine bit
373 	 */
374 	if (mmap_state != pci_mmap_mem)
375 		write_combine = 0;
376 	else if (write_combine == 0) {
377 		if (rp->flags & IORESOURCE_PREFETCH)
378 			write_combine = 1;
379 	}
380 
381 	/* XXX would be nice to have a way to ask for write-through */
382 	if (write_combine)
383 		return pgprot_noncached_wc(protection);
384 	else
385 		return pgprot_noncached(protection);
386 }
387 
388 /*
389  * This one is used by /dev/mem and fbdev who have no clue about the
390  * PCI device, it tries to find the PCI device first and calls the
391  * above routine
392  */
393 pgprot_t pci_phys_mem_access_prot(struct file *file,
394 				  unsigned long pfn,
395 				  unsigned long size,
396 				  pgprot_t prot)
397 {
398 	struct pci_dev *pdev = NULL;
399 	struct resource *found = NULL;
400 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
401 	int i;
402 
403 	if (page_is_ram(pfn))
404 		return prot;
405 
406 	prot = pgprot_noncached(prot);
407 	for_each_pci_dev(pdev) {
408 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
409 			struct resource *rp = &pdev->resource[i];
410 			int flags = rp->flags;
411 
412 			/* Active and same type? */
413 			if ((flags & IORESOURCE_MEM) == 0)
414 				continue;
415 			/* In the range of this resource? */
416 			if (offset < (rp->start & PAGE_MASK) ||
417 			    offset > rp->end)
418 				continue;
419 			found = rp;
420 			break;
421 		}
422 		if (found)
423 			break;
424 	}
425 	if (found) {
426 		if (found->flags & IORESOURCE_PREFETCH)
427 			prot = pgprot_noncached_wc(prot);
428 		pci_dev_put(pdev);
429 	}
430 
431 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
432 		 (unsigned long long)offset, pgprot_val(prot));
433 
434 	return prot;
435 }
436 
437 
438 /*
439  * Perform the actual remap of the pages for a PCI device mapping, as
440  * appropriate for this architecture.  The region in the process to map
441  * is described by vm_start and vm_end members of VMA, the base physical
442  * address is found in vm_pgoff.
443  * The pci device structure is provided so that architectures may make mapping
444  * decisions on a per-device or per-bus basis.
445  *
446  * Returns a negative error code on failure, zero on success.
447  */
448 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
449 			enum pci_mmap_state mmap_state, int write_combine)
450 {
451 	resource_size_t offset =
452 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
453 	struct resource *rp;
454 	int ret;
455 
456 	rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
457 	if (rp == NULL)
458 		return -EINVAL;
459 
460 	vma->vm_pgoff = offset >> PAGE_SHIFT;
461 	vma->vm_page_prot = __pci_mmap_set_pgprot(dev, rp,
462 						  vma->vm_page_prot,
463 						  mmap_state, write_combine);
464 
465 	ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
466 			       vma->vm_end - vma->vm_start, vma->vm_page_prot);
467 
468 	return ret;
469 }
470 
471 /* This provides legacy IO read access on a bus */
472 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
473 {
474 	unsigned long offset;
475 	struct pci_controller *hose = pci_bus_to_host(bus);
476 	struct resource *rp = &hose->io_resource;
477 	void __iomem *addr;
478 
479 	/* Check if port can be supported by that bus. We only check
480 	 * the ranges of the PHB though, not the bus itself as the rules
481 	 * for forwarding legacy cycles down bridges are not our problem
482 	 * here. So if the host bridge supports it, we do it.
483 	 */
484 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
485 	offset += port;
486 
487 	if (!(rp->flags & IORESOURCE_IO))
488 		return -ENXIO;
489 	if (offset < rp->start || (offset + size) > rp->end)
490 		return -ENXIO;
491 	addr = hose->io_base_virt + port;
492 
493 	switch(size) {
494 	case 1:
495 		*((u8 *)val) = in_8(addr);
496 		return 1;
497 	case 2:
498 		if (port & 1)
499 			return -EINVAL;
500 		*((u16 *)val) = in_le16(addr);
501 		return 2;
502 	case 4:
503 		if (port & 3)
504 			return -EINVAL;
505 		*((u32 *)val) = in_le32(addr);
506 		return 4;
507 	}
508 	return -EINVAL;
509 }
510 
511 /* This provides legacy IO write access on a bus */
512 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
513 {
514 	unsigned long offset;
515 	struct pci_controller *hose = pci_bus_to_host(bus);
516 	struct resource *rp = &hose->io_resource;
517 	void __iomem *addr;
518 
519 	/* Check if port can be supported by that bus. We only check
520 	 * the ranges of the PHB though, not the bus itself as the rules
521 	 * for forwarding legacy cycles down bridges are not our problem
522 	 * here. So if the host bridge supports it, we do it.
523 	 */
524 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
525 	offset += port;
526 
527 	if (!(rp->flags & IORESOURCE_IO))
528 		return -ENXIO;
529 	if (offset < rp->start || (offset + size) > rp->end)
530 		return -ENXIO;
531 	addr = hose->io_base_virt + port;
532 
533 	/* WARNING: The generic code is idiotic. It gets passed a pointer
534 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
535 	 * as a u32, which means that we have to correct the location of
536 	 * the data read within those 32 bits for size 1 and 2
537 	 */
538 	switch(size) {
539 	case 1:
540 		out_8(addr, val >> 24);
541 		return 1;
542 	case 2:
543 		if (port & 1)
544 			return -EINVAL;
545 		out_le16(addr, val >> 16);
546 		return 2;
547 	case 4:
548 		if (port & 3)
549 			return -EINVAL;
550 		out_le32(addr, val);
551 		return 4;
552 	}
553 	return -EINVAL;
554 }
555 
556 /* This provides legacy IO or memory mmap access on a bus */
557 int pci_mmap_legacy_page_range(struct pci_bus *bus,
558 			       struct vm_area_struct *vma,
559 			       enum pci_mmap_state mmap_state)
560 {
561 	struct pci_controller *hose = pci_bus_to_host(bus);
562 	resource_size_t offset =
563 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
564 	resource_size_t size = vma->vm_end - vma->vm_start;
565 	struct resource *rp;
566 
567 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
568 		 pci_domain_nr(bus), bus->number,
569 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
570 		 (unsigned long long)offset,
571 		 (unsigned long long)(offset + size - 1));
572 
573 	if (mmap_state == pci_mmap_mem) {
574 		/* Hack alert !
575 		 *
576 		 * Because X is lame and can fail starting if it gets an error trying
577 		 * to mmap legacy_mem (instead of just moving on without legacy memory
578 		 * access) we fake it here by giving it anonymous memory, effectively
579 		 * behaving just like /dev/zero
580 		 */
581 		if ((offset + size) > hose->isa_mem_size) {
582 			printk(KERN_DEBUG
583 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
584 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
585 			if (vma->vm_flags & VM_SHARED)
586 				return shmem_zero_setup(vma);
587 			return 0;
588 		}
589 		offset += hose->isa_mem_phys;
590 	} else {
591 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
592 		unsigned long roffset = offset + io_offset;
593 		rp = &hose->io_resource;
594 		if (!(rp->flags & IORESOURCE_IO))
595 			return -ENXIO;
596 		if (roffset < rp->start || (roffset + size) > rp->end)
597 			return -ENXIO;
598 		offset += hose->io_base_phys;
599 	}
600 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
601 
602 	vma->vm_pgoff = offset >> PAGE_SHIFT;
603 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
604 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
605 			       vma->vm_end - vma->vm_start,
606 			       vma->vm_page_prot);
607 }
608 
609 void pci_resource_to_user(const struct pci_dev *dev, int bar,
610 			  const struct resource *rsrc,
611 			  resource_size_t *start, resource_size_t *end)
612 {
613 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
614 	resource_size_t offset = 0;
615 
616 	if (hose == NULL)
617 		return;
618 
619 	if (rsrc->flags & IORESOURCE_IO)
620 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
621 
622 	/* We pass a fully fixed up address to userland for MMIO instead of
623 	 * a BAR value because X is lame and expects to be able to use that
624 	 * to pass to /dev/mem !
625 	 *
626 	 * That means that we'll have potentially 64 bits values where some
627 	 * userland apps only expect 32 (like X itself since it thinks only
628 	 * Sparc has 64 bits MMIO) but if we don't do that, we break it on
629 	 * 32 bits CHRPs :-(
630 	 *
631 	 * Hopefully, the sysfs insterface is immune to that gunk. Once X
632 	 * has been fixed (and the fix spread enough), we can re-enable the
633 	 * 2 lines below and pass down a BAR value to userland. In that case
634 	 * we'll also have to re-enable the matching code in
635 	 * __pci_mmap_make_offset().
636 	 *
637 	 * BenH.
638 	 */
639 #if 0
640 	else if (rsrc->flags & IORESOURCE_MEM)
641 		offset = hose->pci_mem_offset;
642 #endif
643 
644 	*start = rsrc->start - offset;
645 	*end = rsrc->end - offset;
646 }
647 
648 /**
649  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
650  * @hose: newly allocated pci_controller to be setup
651  * @dev: device node of the host bridge
652  * @primary: set if primary bus (32 bits only, soon to be deprecated)
653  *
654  * This function will parse the "ranges" property of a PCI host bridge device
655  * node and setup the resource mapping of a pci controller based on its
656  * content.
657  *
658  * Life would be boring if it wasn't for a few issues that we have to deal
659  * with here:
660  *
661  *   - We can only cope with one IO space range and up to 3 Memory space
662  *     ranges. However, some machines (thanks Apple !) tend to split their
663  *     space into lots of small contiguous ranges. So we have to coalesce.
664  *
665  *   - Some busses have IO space not starting at 0, which causes trouble with
666  *     the way we do our IO resource renumbering. The code somewhat deals with
667  *     it for 64 bits but I would expect problems on 32 bits.
668  *
669  *   - Some 32 bits platforms such as 4xx can have physical space larger than
670  *     32 bits so we need to use 64 bits values for the parsing
671  */
672 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
673 				  struct device_node *dev, int primary)
674 {
675 	int memno = 0;
676 	struct resource *res;
677 	struct of_pci_range range;
678 	struct of_pci_range_parser parser;
679 
680 	printk(KERN_INFO "PCI host bridge %s %s ranges:\n",
681 	       dev->full_name, primary ? "(primary)" : "");
682 
683 	/* Check for ranges property */
684 	if (of_pci_range_parser_init(&parser, dev))
685 		return;
686 
687 	/* Parse it */
688 	for_each_of_pci_range(&parser, &range) {
689 		/* If we failed translation or got a zero-sized region
690 		 * (some FW try to feed us with non sensical zero sized regions
691 		 * such as power3 which look like some kind of attempt at exposing
692 		 * the VGA memory hole)
693 		 */
694 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
695 			continue;
696 
697 		/* Act based on address space type */
698 		res = NULL;
699 		switch (range.flags & IORESOURCE_TYPE_BITS) {
700 		case IORESOURCE_IO:
701 			printk(KERN_INFO
702 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
703 			       range.cpu_addr, range.cpu_addr + range.size - 1,
704 			       range.pci_addr);
705 
706 			/* We support only one IO range */
707 			if (hose->pci_io_size) {
708 				printk(KERN_INFO
709 				       " \\--> Skipped (too many) !\n");
710 				continue;
711 			}
712 #ifdef CONFIG_PPC32
713 			/* On 32 bits, limit I/O space to 16MB */
714 			if (range.size > 0x01000000)
715 				range.size = 0x01000000;
716 
717 			/* 32 bits needs to map IOs here */
718 			hose->io_base_virt = ioremap(range.cpu_addr,
719 						range.size);
720 
721 			/* Expect trouble if pci_addr is not 0 */
722 			if (primary)
723 				isa_io_base =
724 					(unsigned long)hose->io_base_virt;
725 #endif /* CONFIG_PPC32 */
726 			/* pci_io_size and io_base_phys always represent IO
727 			 * space starting at 0 so we factor in pci_addr
728 			 */
729 			hose->pci_io_size = range.pci_addr + range.size;
730 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
731 
732 			/* Build resource */
733 			res = &hose->io_resource;
734 			range.cpu_addr = range.pci_addr;
735 			break;
736 		case IORESOURCE_MEM:
737 			printk(KERN_INFO
738 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
739 			       range.cpu_addr, range.cpu_addr + range.size - 1,
740 			       range.pci_addr,
741 			       (range.pci_space & 0x40000000) ?
742 			       "Prefetch" : "");
743 
744 			/* We support only 3 memory ranges */
745 			if (memno >= 3) {
746 				printk(KERN_INFO
747 				       " \\--> Skipped (too many) !\n");
748 				continue;
749 			}
750 			/* Handles ISA memory hole space here */
751 			if (range.pci_addr == 0) {
752 				if (primary || isa_mem_base == 0)
753 					isa_mem_base = range.cpu_addr;
754 				hose->isa_mem_phys = range.cpu_addr;
755 				hose->isa_mem_size = range.size;
756 			}
757 
758 			/* Build resource */
759 			hose->mem_offset[memno] = range.cpu_addr -
760 							range.pci_addr;
761 			res = &hose->mem_resources[memno++];
762 			break;
763 		}
764 		if (res != NULL) {
765 			res->name = dev->full_name;
766 			res->flags = range.flags;
767 			res->start = range.cpu_addr;
768 			res->end = range.cpu_addr + range.size - 1;
769 			res->parent = res->child = res->sibling = NULL;
770 		}
771 	}
772 }
773 
774 /* Decide whether to display the domain number in /proc */
775 int pci_proc_domain(struct pci_bus *bus)
776 {
777 	struct pci_controller *hose = pci_bus_to_host(bus);
778 
779 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
780 		return 0;
781 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
782 		return hose->global_number != 0;
783 	return 1;
784 }
785 
786 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
787 {
788 	if (ppc_md.pcibios_root_bridge_prepare)
789 		return ppc_md.pcibios_root_bridge_prepare(bridge);
790 
791 	return 0;
792 }
793 
794 /* This header fixup will do the resource fixup for all devices as they are
795  * probed, but not for bridge ranges
796  */
797 static void pcibios_fixup_resources(struct pci_dev *dev)
798 {
799 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
800 	int i;
801 
802 	if (!hose) {
803 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
804 		       pci_name(dev));
805 		return;
806 	}
807 
808 	if (dev->is_virtfn)
809 		return;
810 
811 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
812 		struct resource *res = dev->resource + i;
813 		struct pci_bus_region reg;
814 		if (!res->flags)
815 			continue;
816 
817 		/* If we're going to re-assign everything, we mark all resources
818 		 * as unset (and 0-base them). In addition, we mark BARs starting
819 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
820 		 * since in that case, we don't want to re-assign anything
821 		 */
822 		pcibios_resource_to_bus(dev->bus, &reg, res);
823 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
824 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
825 			/* Only print message if not re-assigning */
826 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
827 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
828 					 pci_name(dev), i, res);
829 			res->end -= res->start;
830 			res->start = 0;
831 			res->flags |= IORESOURCE_UNSET;
832 			continue;
833 		}
834 
835 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
836 	}
837 
838 	/* Call machine specific resource fixup */
839 	if (ppc_md.pcibios_fixup_resources)
840 		ppc_md.pcibios_fixup_resources(dev);
841 }
842 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
843 
844 /* This function tries to figure out if a bridge resource has been initialized
845  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
846  * things go more smoothly when it gets it right. It should covers cases such
847  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
848  */
849 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
850 						 struct resource *res)
851 {
852 	struct pci_controller *hose = pci_bus_to_host(bus);
853 	struct pci_dev *dev = bus->self;
854 	resource_size_t offset;
855 	struct pci_bus_region region;
856 	u16 command;
857 	int i;
858 
859 	/* We don't do anything if PCI_PROBE_ONLY is set */
860 	if (pci_has_flag(PCI_PROBE_ONLY))
861 		return 0;
862 
863 	/* Job is a bit different between memory and IO */
864 	if (res->flags & IORESOURCE_MEM) {
865 		pcibios_resource_to_bus(dev->bus, &region, res);
866 
867 		/* If the BAR is non-0 then it's probably been initialized */
868 		if (region.start != 0)
869 			return 0;
870 
871 		/* The BAR is 0, let's check if memory decoding is enabled on
872 		 * the bridge. If not, we consider it unassigned
873 		 */
874 		pci_read_config_word(dev, PCI_COMMAND, &command);
875 		if ((command & PCI_COMMAND_MEMORY) == 0)
876 			return 1;
877 
878 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
879 		 * resources covers that starting address (0 then it's good enough for
880 		 * us for memory space)
881 		 */
882 		for (i = 0; i < 3; i++) {
883 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
884 			    hose->mem_resources[i].start == hose->mem_offset[i])
885 				return 0;
886 		}
887 
888 		/* Well, it starts at 0 and we know it will collide so we may as
889 		 * well consider it as unassigned. That covers the Apple case.
890 		 */
891 		return 1;
892 	} else {
893 		/* If the BAR is non-0, then we consider it assigned */
894 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
895 		if (((res->start - offset) & 0xfffffffful) != 0)
896 			return 0;
897 
898 		/* Here, we are a bit different than memory as typically IO space
899 		 * starting at low addresses -is- valid. What we do instead if that
900 		 * we consider as unassigned anything that doesn't have IO enabled
901 		 * in the PCI command register, and that's it.
902 		 */
903 		pci_read_config_word(dev, PCI_COMMAND, &command);
904 		if (command & PCI_COMMAND_IO)
905 			return 0;
906 
907 		/* It's starting at 0 and IO is disabled in the bridge, consider
908 		 * it unassigned
909 		 */
910 		return 1;
911 	}
912 }
913 
914 /* Fixup resources of a PCI<->PCI bridge */
915 static void pcibios_fixup_bridge(struct pci_bus *bus)
916 {
917 	struct resource *res;
918 	int i;
919 
920 	struct pci_dev *dev = bus->self;
921 
922 	pci_bus_for_each_resource(bus, res, i) {
923 		if (!res || !res->flags)
924 			continue;
925 		if (i >= 3 && bus->self->transparent)
926 			continue;
927 
928 		/* If we're going to reassign everything, we can
929 		 * shrink the P2P resource to have size as being
930 		 * of 0 in order to save space.
931 		 */
932 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
933 			res->flags |= IORESOURCE_UNSET;
934 			res->start = 0;
935 			res->end = -1;
936 			continue;
937 		}
938 
939 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
940 
941 		/* Try to detect uninitialized P2P bridge resources,
942 		 * and clear them out so they get re-assigned later
943 		 */
944 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
945 			res->flags = 0;
946 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
947 		}
948 	}
949 }
950 
951 void pcibios_setup_bus_self(struct pci_bus *bus)
952 {
953 	struct pci_controller *phb;
954 
955 	/* Fix up the bus resources for P2P bridges */
956 	if (bus->self != NULL)
957 		pcibios_fixup_bridge(bus);
958 
959 	/* Platform specific bus fixups. This is currently only used
960 	 * by fsl_pci and I'm hoping to get rid of it at some point
961 	 */
962 	if (ppc_md.pcibios_fixup_bus)
963 		ppc_md.pcibios_fixup_bus(bus);
964 
965 	/* Setup bus DMA mappings */
966 	phb = pci_bus_to_host(bus);
967 	if (phb->controller_ops.dma_bus_setup)
968 		phb->controller_ops.dma_bus_setup(bus);
969 }
970 
971 static void pcibios_setup_device(struct pci_dev *dev)
972 {
973 	struct pci_controller *phb;
974 	/* Fixup NUMA node as it may not be setup yet by the generic
975 	 * code and is needed by the DMA init
976 	 */
977 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
978 
979 	/* Hook up default DMA ops */
980 	set_dma_ops(&dev->dev, pci_dma_ops);
981 	set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
982 
983 	/* Additional platform DMA/iommu setup */
984 	phb = pci_bus_to_host(dev->bus);
985 	if (phb->controller_ops.dma_dev_setup)
986 		phb->controller_ops.dma_dev_setup(dev);
987 
988 	/* Read default IRQs and fixup if necessary */
989 	pci_read_irq_line(dev);
990 	if (ppc_md.pci_irq_fixup)
991 		ppc_md.pci_irq_fixup(dev);
992 }
993 
994 int pcibios_add_device(struct pci_dev *dev)
995 {
996 	/*
997 	 * We can only call pcibios_setup_device() after bus setup is complete,
998 	 * since some of the platform specific DMA setup code depends on it.
999 	 */
1000 	if (dev->bus->is_added)
1001 		pcibios_setup_device(dev);
1002 
1003 #ifdef CONFIG_PCI_IOV
1004 	if (ppc_md.pcibios_fixup_sriov)
1005 		ppc_md.pcibios_fixup_sriov(dev);
1006 #endif /* CONFIG_PCI_IOV */
1007 
1008 	return 0;
1009 }
1010 
1011 void pcibios_setup_bus_devices(struct pci_bus *bus)
1012 {
1013 	struct pci_dev *dev;
1014 
1015 	pr_debug("PCI: Fixup bus devices %d (%s)\n",
1016 		 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1017 
1018 	list_for_each_entry(dev, &bus->devices, bus_list) {
1019 		/* Cardbus can call us to add new devices to a bus, so ignore
1020 		 * those who are already fully discovered
1021 		 */
1022 		if (dev->is_added)
1023 			continue;
1024 
1025 		pcibios_setup_device(dev);
1026 	}
1027 }
1028 
1029 void pcibios_set_master(struct pci_dev *dev)
1030 {
1031 	/* No special bus mastering setup handling */
1032 }
1033 
1034 void pcibios_fixup_bus(struct pci_bus *bus)
1035 {
1036 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1037 	 * bases. This is -not- called when generating the PCI tree from
1038 	 * the OF device-tree.
1039 	 */
1040 	pci_read_bridge_bases(bus);
1041 
1042 	/* Now fixup the bus bus */
1043 	pcibios_setup_bus_self(bus);
1044 
1045 	/* Now fixup devices on that bus */
1046 	pcibios_setup_bus_devices(bus);
1047 }
1048 EXPORT_SYMBOL(pcibios_fixup_bus);
1049 
1050 void pci_fixup_cardbus(struct pci_bus *bus)
1051 {
1052 	/* Now fixup devices on that bus */
1053 	pcibios_setup_bus_devices(bus);
1054 }
1055 
1056 
1057 static int skip_isa_ioresource_align(struct pci_dev *dev)
1058 {
1059 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1060 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1061 		return 1;
1062 	return 0;
1063 }
1064 
1065 /*
1066  * We need to avoid collisions with `mirrored' VGA ports
1067  * and other strange ISA hardware, so we always want the
1068  * addresses to be allocated in the 0x000-0x0ff region
1069  * modulo 0x400.
1070  *
1071  * Why? Because some silly external IO cards only decode
1072  * the low 10 bits of the IO address. The 0x00-0xff region
1073  * is reserved for motherboard devices that decode all 16
1074  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1075  * but we want to try to avoid allocating at 0x2900-0x2bff
1076  * which might have be mirrored at 0x0100-0x03ff..
1077  */
1078 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1079 				resource_size_t size, resource_size_t align)
1080 {
1081 	struct pci_dev *dev = data;
1082 	resource_size_t start = res->start;
1083 
1084 	if (res->flags & IORESOURCE_IO) {
1085 		if (skip_isa_ioresource_align(dev))
1086 			return start;
1087 		if (start & 0x300)
1088 			start = (start + 0x3ff) & ~0x3ff;
1089 	}
1090 
1091 	return start;
1092 }
1093 EXPORT_SYMBOL(pcibios_align_resource);
1094 
1095 /*
1096  * Reparent resource children of pr that conflict with res
1097  * under res, and make res replace those children.
1098  */
1099 static int reparent_resources(struct resource *parent,
1100 				     struct resource *res)
1101 {
1102 	struct resource *p, **pp;
1103 	struct resource **firstpp = NULL;
1104 
1105 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1106 		if (p->end < res->start)
1107 			continue;
1108 		if (res->end < p->start)
1109 			break;
1110 		if (p->start < res->start || p->end > res->end)
1111 			return -1;	/* not completely contained */
1112 		if (firstpp == NULL)
1113 			firstpp = pp;
1114 	}
1115 	if (firstpp == NULL)
1116 		return -1;	/* didn't find any conflicting entries? */
1117 	res->parent = parent;
1118 	res->child = *firstpp;
1119 	res->sibling = *pp;
1120 	*firstpp = res;
1121 	*pp = NULL;
1122 	for (p = res->child; p != NULL; p = p->sibling) {
1123 		p->parent = res;
1124 		pr_debug("PCI: Reparented %s %pR under %s\n",
1125 			 p->name, p, res->name);
1126 	}
1127 	return 0;
1128 }
1129 
1130 /*
1131  *  Handle resources of PCI devices.  If the world were perfect, we could
1132  *  just allocate all the resource regions and do nothing more.  It isn't.
1133  *  On the other hand, we cannot just re-allocate all devices, as it would
1134  *  require us to know lots of host bridge internals.  So we attempt to
1135  *  keep as much of the original configuration as possible, but tweak it
1136  *  when it's found to be wrong.
1137  *
1138  *  Known BIOS problems we have to work around:
1139  *	- I/O or memory regions not configured
1140  *	- regions configured, but not enabled in the command register
1141  *	- bogus I/O addresses above 64K used
1142  *	- expansion ROMs left enabled (this may sound harmless, but given
1143  *	  the fact the PCI specs explicitly allow address decoders to be
1144  *	  shared between expansion ROMs and other resource regions, it's
1145  *	  at least dangerous)
1146  *
1147  *  Our solution:
1148  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1149  *	    This gives us fixed barriers on where we can allocate.
1150  *	(2) Allocate resources for all enabled devices.  If there is
1151  *	    a collision, just mark the resource as unallocated. Also
1152  *	    disable expansion ROMs during this step.
1153  *	(3) Try to allocate resources for disabled devices.  If the
1154  *	    resources were assigned correctly, everything goes well,
1155  *	    if they weren't, they won't disturb allocation of other
1156  *	    resources.
1157  *	(4) Assign new addresses to resources which were either
1158  *	    not configured at all or misconfigured.  If explicitly
1159  *	    requested by the user, configure expansion ROM address
1160  *	    as well.
1161  */
1162 
1163 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1164 {
1165 	struct pci_bus *b;
1166 	int i;
1167 	struct resource *res, *pr;
1168 
1169 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1170 		 pci_domain_nr(bus), bus->number);
1171 
1172 	pci_bus_for_each_resource(bus, res, i) {
1173 		if (!res || !res->flags || res->start > res->end || res->parent)
1174 			continue;
1175 
1176 		/* If the resource was left unset at this point, we clear it */
1177 		if (res->flags & IORESOURCE_UNSET)
1178 			goto clear_resource;
1179 
1180 		if (bus->parent == NULL)
1181 			pr = (res->flags & IORESOURCE_IO) ?
1182 				&ioport_resource : &iomem_resource;
1183 		else {
1184 			pr = pci_find_parent_resource(bus->self, res);
1185 			if (pr == res) {
1186 				/* this happens when the generic PCI
1187 				 * code (wrongly) decides that this
1188 				 * bridge is transparent  -- paulus
1189 				 */
1190 				continue;
1191 			}
1192 		}
1193 
1194 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1195 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1196 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1197 
1198 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1199 			struct pci_dev *dev = bus->self;
1200 
1201 			if (request_resource(pr, res) == 0)
1202 				continue;
1203 			/*
1204 			 * Must be a conflict with an existing entry.
1205 			 * Move that entry (or entries) under the
1206 			 * bridge resource and try again.
1207 			 */
1208 			if (reparent_resources(pr, res) == 0)
1209 				continue;
1210 
1211 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1212 			    pci_claim_bridge_resource(dev,
1213 						i + PCI_BRIDGE_RESOURCES) == 0)
1214 				continue;
1215 		}
1216 		pr_warning("PCI: Cannot allocate resource region "
1217 			   "%d of PCI bridge %d, will remap\n", i, bus->number);
1218 	clear_resource:
1219 		/* The resource might be figured out when doing
1220 		 * reassignment based on the resources required
1221 		 * by the downstream PCI devices. Here we set
1222 		 * the size of the resource to be 0 in order to
1223 		 * save more space.
1224 		 */
1225 		res->start = 0;
1226 		res->end = -1;
1227 		res->flags = 0;
1228 	}
1229 
1230 	list_for_each_entry(b, &bus->children, node)
1231 		pcibios_allocate_bus_resources(b);
1232 }
1233 
1234 static inline void alloc_resource(struct pci_dev *dev, int idx)
1235 {
1236 	struct resource *pr, *r = &dev->resource[idx];
1237 
1238 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1239 		 pci_name(dev), idx, r);
1240 
1241 	pr = pci_find_parent_resource(dev, r);
1242 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1243 	    request_resource(pr, r) < 0) {
1244 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1245 		       " of device %s, will remap\n", idx, pci_name(dev));
1246 		if (pr)
1247 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1248 		/* We'll assign a new address later */
1249 		r->flags |= IORESOURCE_UNSET;
1250 		r->end -= r->start;
1251 		r->start = 0;
1252 	}
1253 }
1254 
1255 static void __init pcibios_allocate_resources(int pass)
1256 {
1257 	struct pci_dev *dev = NULL;
1258 	int idx, disabled;
1259 	u16 command;
1260 	struct resource *r;
1261 
1262 	for_each_pci_dev(dev) {
1263 		pci_read_config_word(dev, PCI_COMMAND, &command);
1264 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1265 			r = &dev->resource[idx];
1266 			if (r->parent)		/* Already allocated */
1267 				continue;
1268 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1269 				continue;	/* Not assigned at all */
1270 			/* We only allocate ROMs on pass 1 just in case they
1271 			 * have been screwed up by firmware
1272 			 */
1273 			if (idx == PCI_ROM_RESOURCE )
1274 				disabled = 1;
1275 			if (r->flags & IORESOURCE_IO)
1276 				disabled = !(command & PCI_COMMAND_IO);
1277 			else
1278 				disabled = !(command & PCI_COMMAND_MEMORY);
1279 			if (pass == disabled)
1280 				alloc_resource(dev, idx);
1281 		}
1282 		if (pass)
1283 			continue;
1284 		r = &dev->resource[PCI_ROM_RESOURCE];
1285 		if (r->flags) {
1286 			/* Turn the ROM off, leave the resource region,
1287 			 * but keep it unregistered.
1288 			 */
1289 			u32 reg;
1290 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1291 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1292 				pr_debug("PCI: Switching off ROM of %s\n",
1293 					 pci_name(dev));
1294 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1295 				pci_write_config_dword(dev, dev->rom_base_reg,
1296 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1297 			}
1298 		}
1299 	}
1300 }
1301 
1302 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1303 {
1304 	struct pci_controller *hose = pci_bus_to_host(bus);
1305 	resource_size_t	offset;
1306 	struct resource *res, *pres;
1307 	int i;
1308 
1309 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1310 
1311 	/* Check for IO */
1312 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1313 		goto no_io;
1314 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1315 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1316 	BUG_ON(res == NULL);
1317 	res->name = "Legacy IO";
1318 	res->flags = IORESOURCE_IO;
1319 	res->start = offset;
1320 	res->end = (offset + 0xfff) & 0xfffffffful;
1321 	pr_debug("Candidate legacy IO: %pR\n", res);
1322 	if (request_resource(&hose->io_resource, res)) {
1323 		printk(KERN_DEBUG
1324 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1325 		       pci_domain_nr(bus), bus->number, res);
1326 		kfree(res);
1327 	}
1328 
1329  no_io:
1330 	/* Check for memory */
1331 	for (i = 0; i < 3; i++) {
1332 		pres = &hose->mem_resources[i];
1333 		offset = hose->mem_offset[i];
1334 		if (!(pres->flags & IORESOURCE_MEM))
1335 			continue;
1336 		pr_debug("hose mem res: %pR\n", pres);
1337 		if ((pres->start - offset) <= 0xa0000 &&
1338 		    (pres->end - offset) >= 0xbffff)
1339 			break;
1340 	}
1341 	if (i >= 3)
1342 		return;
1343 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1344 	BUG_ON(res == NULL);
1345 	res->name = "Legacy VGA memory";
1346 	res->flags = IORESOURCE_MEM;
1347 	res->start = 0xa0000 + offset;
1348 	res->end = 0xbffff + offset;
1349 	pr_debug("Candidate VGA memory: %pR\n", res);
1350 	if (request_resource(pres, res)) {
1351 		printk(KERN_DEBUG
1352 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1353 		       pci_domain_nr(bus), bus->number, res);
1354 		kfree(res);
1355 	}
1356 }
1357 
1358 void __init pcibios_resource_survey(void)
1359 {
1360 	struct pci_bus *b;
1361 
1362 	/* Allocate and assign resources */
1363 	list_for_each_entry(b, &pci_root_buses, node)
1364 		pcibios_allocate_bus_resources(b);
1365 	pcibios_allocate_resources(0);
1366 	pcibios_allocate_resources(1);
1367 
1368 	/* Before we start assigning unassigned resource, we try to reserve
1369 	 * the low IO area and the VGA memory area if they intersect the
1370 	 * bus available resources to avoid allocating things on top of them
1371 	 */
1372 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1373 		list_for_each_entry(b, &pci_root_buses, node)
1374 			pcibios_reserve_legacy_regions(b);
1375 	}
1376 
1377 	/* Now, if the platform didn't decide to blindly trust the firmware,
1378 	 * we proceed to assigning things that were left unassigned
1379 	 */
1380 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1381 		pr_debug("PCI: Assigning unassigned resources...\n");
1382 		pci_assign_unassigned_resources();
1383 	}
1384 
1385 	/* Call machine dependent fixup */
1386 	if (ppc_md.pcibios_fixup)
1387 		ppc_md.pcibios_fixup();
1388 }
1389 
1390 /* This is used by the PCI hotplug driver to allocate resource
1391  * of newly plugged busses. We can try to consolidate with the
1392  * rest of the code later, for now, keep it as-is as our main
1393  * resource allocation function doesn't deal with sub-trees yet.
1394  */
1395 void pcibios_claim_one_bus(struct pci_bus *bus)
1396 {
1397 	struct pci_dev *dev;
1398 	struct pci_bus *child_bus;
1399 
1400 	list_for_each_entry(dev, &bus->devices, bus_list) {
1401 		int i;
1402 
1403 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1404 			struct resource *r = &dev->resource[i];
1405 
1406 			if (r->parent || !r->start || !r->flags)
1407 				continue;
1408 
1409 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1410 				 pci_name(dev), i, r);
1411 
1412 			if (pci_claim_resource(dev, i) == 0)
1413 				continue;
1414 
1415 			pci_claim_bridge_resource(dev, i);
1416 		}
1417 	}
1418 
1419 	list_for_each_entry(child_bus, &bus->children, node)
1420 		pcibios_claim_one_bus(child_bus);
1421 }
1422 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1423 
1424 
1425 /* pcibios_finish_adding_to_bus
1426  *
1427  * This is to be called by the hotplug code after devices have been
1428  * added to a bus, this include calling it for a PHB that is just
1429  * being added
1430  */
1431 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1432 {
1433 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1434 		 pci_domain_nr(bus), bus->number);
1435 
1436 	/* Allocate bus and devices resources */
1437 	pcibios_allocate_bus_resources(bus);
1438 	pcibios_claim_one_bus(bus);
1439 	if (!pci_has_flag(PCI_PROBE_ONLY))
1440 		pci_assign_unassigned_bus_resources(bus);
1441 
1442 	/* Fixup EEH */
1443 	eeh_add_device_tree_late(bus);
1444 
1445 	/* Add new devices to global lists.  Register in proc, sysfs. */
1446 	pci_bus_add_devices(bus);
1447 
1448 	/* sysfs files should only be added after devices are added */
1449 	eeh_add_sysfs_files(bus);
1450 }
1451 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1452 
1453 int pcibios_enable_device(struct pci_dev *dev, int mask)
1454 {
1455 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1456 
1457 	if (phb->controller_ops.enable_device_hook)
1458 		if (!phb->controller_ops.enable_device_hook(dev))
1459 			return -EINVAL;
1460 
1461 	return pci_enable_resources(dev, mask);
1462 }
1463 
1464 void pcibios_disable_device(struct pci_dev *dev)
1465 {
1466 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1467 
1468 	if (phb->controller_ops.disable_device)
1469 		phb->controller_ops.disable_device(dev);
1470 }
1471 
1472 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1473 {
1474 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1475 }
1476 
1477 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1478 					struct list_head *resources)
1479 {
1480 	struct resource *res;
1481 	resource_size_t offset;
1482 	int i;
1483 
1484 	/* Hookup PHB IO resource */
1485 	res = &hose->io_resource;
1486 
1487 	if (!res->flags) {
1488 		pr_info("PCI: I/O resource not set for host"
1489 		       " bridge %s (domain %d)\n",
1490 		       hose->dn->full_name, hose->global_number);
1491 	} else {
1492 		offset = pcibios_io_space_offset(hose);
1493 
1494 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1495 			 res, (unsigned long long)offset);
1496 		pci_add_resource_offset(resources, res, offset);
1497 	}
1498 
1499 	/* Hookup PHB Memory resources */
1500 	for (i = 0; i < 3; ++i) {
1501 		res = &hose->mem_resources[i];
1502 		if (!res->flags) {
1503 			if (i == 0)
1504 				printk(KERN_ERR "PCI: Memory resource 0 not set for "
1505 				       "host bridge %s (domain %d)\n",
1506 				       hose->dn->full_name, hose->global_number);
1507 			continue;
1508 		}
1509 		offset = hose->mem_offset[i];
1510 
1511 
1512 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1513 			 res, (unsigned long long)offset);
1514 
1515 		pci_add_resource_offset(resources, res, offset);
1516 	}
1517 }
1518 
1519 /*
1520  * Null PCI config access functions, for the case when we can't
1521  * find a hose.
1522  */
1523 #define NULL_PCI_OP(rw, size, type)					\
1524 static int								\
1525 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1526 {									\
1527 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1528 }
1529 
1530 static int
1531 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1532 		 int len, u32 *val)
1533 {
1534 	return PCIBIOS_DEVICE_NOT_FOUND;
1535 }
1536 
1537 static int
1538 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1539 		  int len, u32 val)
1540 {
1541 	return PCIBIOS_DEVICE_NOT_FOUND;
1542 }
1543 
1544 static struct pci_ops null_pci_ops =
1545 {
1546 	.read = null_read_config,
1547 	.write = null_write_config,
1548 };
1549 
1550 /*
1551  * These functions are used early on before PCI scanning is done
1552  * and all of the pci_dev and pci_bus structures have been created.
1553  */
1554 static struct pci_bus *
1555 fake_pci_bus(struct pci_controller *hose, int busnr)
1556 {
1557 	static struct pci_bus bus;
1558 
1559 	if (hose == NULL) {
1560 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1561 	}
1562 	bus.number = busnr;
1563 	bus.sysdata = hose;
1564 	bus.ops = hose? hose->ops: &null_pci_ops;
1565 	return &bus;
1566 }
1567 
1568 #define EARLY_PCI_OP(rw, size, type)					\
1569 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1570 			       int devfn, int offset, type value)	\
1571 {									\
1572 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1573 					    devfn, offset, value);	\
1574 }
1575 
1576 EARLY_PCI_OP(read, byte, u8 *)
1577 EARLY_PCI_OP(read, word, u16 *)
1578 EARLY_PCI_OP(read, dword, u32 *)
1579 EARLY_PCI_OP(write, byte, u8)
1580 EARLY_PCI_OP(write, word, u16)
1581 EARLY_PCI_OP(write, dword, u32)
1582 
1583 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1584 			  int cap)
1585 {
1586 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1587 }
1588 
1589 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1590 {
1591 	struct pci_controller *hose = bus->sysdata;
1592 
1593 	return of_node_get(hose->dn);
1594 }
1595 
1596 /**
1597  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1598  * @hose: Pointer to the PCI host controller instance structure
1599  */
1600 void pcibios_scan_phb(struct pci_controller *hose)
1601 {
1602 	LIST_HEAD(resources);
1603 	struct pci_bus *bus;
1604 	struct device_node *node = hose->dn;
1605 	int mode;
1606 
1607 	pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node));
1608 
1609 	/* Get some IO space for the new PHB */
1610 	pcibios_setup_phb_io_space(hose);
1611 
1612 	/* Wire up PHB bus resources */
1613 	pcibios_setup_phb_resources(hose, &resources);
1614 
1615 	hose->busn.start = hose->first_busno;
1616 	hose->busn.end	 = hose->last_busno;
1617 	hose->busn.flags = IORESOURCE_BUS;
1618 	pci_add_resource(&resources, &hose->busn);
1619 
1620 	/* Create an empty bus for the toplevel */
1621 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1622 				  hose->ops, hose, &resources);
1623 	if (bus == NULL) {
1624 		pr_err("Failed to create bus for PCI domain %04x\n",
1625 			hose->global_number);
1626 		pci_free_resource_list(&resources);
1627 		return;
1628 	}
1629 	hose->bus = bus;
1630 
1631 	/* Get probe mode and perform scan */
1632 	mode = PCI_PROBE_NORMAL;
1633 	if (node && hose->controller_ops.probe_mode)
1634 		mode = hose->controller_ops.probe_mode(bus);
1635 	pr_debug("    probe mode: %d\n", mode);
1636 	if (mode == PCI_PROBE_DEVTREE)
1637 		of_scan_bus(node, bus);
1638 
1639 	if (mode == PCI_PROBE_NORMAL) {
1640 		pci_bus_update_busn_res_end(bus, 255);
1641 		hose->last_busno = pci_scan_child_bus(bus);
1642 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1643 	}
1644 
1645 	/* Platform gets a chance to do some global fixups before
1646 	 * we proceed to resource allocation
1647 	 */
1648 	if (ppc_md.pcibios_fixup_phb)
1649 		ppc_md.pcibios_fixup_phb(hose);
1650 
1651 	/* Configure PCI Express settings */
1652 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1653 		struct pci_bus *child;
1654 		list_for_each_entry(child, &bus->children, node)
1655 			pcie_bus_configure_settings(child);
1656 	}
1657 }
1658 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1659 
1660 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1661 {
1662 	int i, class = dev->class >> 8;
1663 	/* When configured as agent, programing interface = 1 */
1664 	int prog_if = dev->class & 0xf;
1665 
1666 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1667 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1668 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1669 		(prog_if == 0) &&
1670 		(dev->bus->parent == NULL)) {
1671 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1672 			dev->resource[i].start = 0;
1673 			dev->resource[i].end = 0;
1674 			dev->resource[i].flags = 0;
1675 		}
1676 	}
1677 }
1678 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1679 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1680 
1681 static void fixup_vga(struct pci_dev *pdev)
1682 {
1683 	u16 cmd;
1684 
1685 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1686 	if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device())
1687 		vga_set_default_device(pdev);
1688 
1689 }
1690 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID,
1691 			      PCI_CLASS_DISPLAY_VGA, 8, fixup_vga);
1692