xref: /openbmc/linux/arch/powerpc/kernel/pci-common.c (revision 988fc3ba)
1 /*
2  * Contains common pci routines for ALL ppc platform
3  * (based on pci_32.c and pci_64.c)
4  *
5  * Port for PPC64 David Engebretsen, IBM Corp.
6  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7  *
8  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9  *   Rework, based on alpha PCI code.
10  *
11  * Common pmac/prep/chrp pci routines. -- Cort
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/list.h>
30 #include <linux/syscalls.h>
31 #include <linux/irq.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35 
36 #include <asm/processor.h>
37 #include <asm/io.h>
38 #include <asm/prom.h>
39 #include <asm/pci-bridge.h>
40 #include <asm/byteorder.h>
41 #include <asm/machdep.h>
42 #include <asm/ppc-pci.h>
43 #include <asm/eeh.h>
44 
45 /* hose_spinlock protects accesses to the the phb_bitmap. */
46 static DEFINE_SPINLOCK(hose_spinlock);
47 LIST_HEAD(hose_list);
48 
49 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
50 #define MAX_PHBS 0x10000
51 
52 /*
53  * For dynamic PHB numbering: used/free PHBs tracking bitmap.
54  * Accesses to this bitmap should be protected by hose_spinlock.
55  */
56 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
57 
58 /* ISA Memory physical address */
59 resource_size_t isa_mem_base;
60 EXPORT_SYMBOL(isa_mem_base);
61 
62 
63 static const struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
64 
65 void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
66 {
67 	pci_dma_ops = dma_ops;
68 }
69 
70 const struct dma_map_ops *get_pci_dma_ops(void)
71 {
72 	return pci_dma_ops;
73 }
74 EXPORT_SYMBOL(get_pci_dma_ops);
75 
76 /*
77  * This function should run under locking protection, specifically
78  * hose_spinlock.
79  */
80 static int get_phb_number(struct device_node *dn)
81 {
82 	int ret, phb_id = -1;
83 	u32 prop_32;
84 	u64 prop;
85 
86 	/*
87 	 * Try fixed PHB numbering first, by checking archs and reading
88 	 * the respective device-tree properties. Firstly, try powernv by
89 	 * reading "ibm,opal-phbid", only present in OPAL environment.
90 	 */
91 	ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
92 	if (ret) {
93 		ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
94 		prop = prop_32;
95 	}
96 
97 	if (!ret)
98 		phb_id = (int)(prop & (MAX_PHBS - 1));
99 
100 	/* We need to be sure to not use the same PHB number twice. */
101 	if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
102 		return phb_id;
103 
104 	/*
105 	 * If not pseries nor powernv, or if fixed PHB numbering tried to add
106 	 * the same PHB number twice, then fallback to dynamic PHB numbering.
107 	 */
108 	phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
109 	BUG_ON(phb_id >= MAX_PHBS);
110 	set_bit(phb_id, phb_bitmap);
111 
112 	return phb_id;
113 }
114 
115 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
116 {
117 	struct pci_controller *phb;
118 
119 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
120 	if (phb == NULL)
121 		return NULL;
122 	spin_lock(&hose_spinlock);
123 	phb->global_number = get_phb_number(dev);
124 	list_add_tail(&phb->list_node, &hose_list);
125 	spin_unlock(&hose_spinlock);
126 	phb->dn = dev;
127 	phb->is_dynamic = slab_is_available();
128 #ifdef CONFIG_PPC64
129 	if (dev) {
130 		int nid = of_node_to_nid(dev);
131 
132 		if (nid < 0 || !node_online(nid))
133 			nid = -1;
134 
135 		PHB_SET_NODE(phb, nid);
136 	}
137 #endif
138 	return phb;
139 }
140 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
141 
142 void pcibios_free_controller(struct pci_controller *phb)
143 {
144 	spin_lock(&hose_spinlock);
145 
146 	/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
147 	if (phb->global_number < MAX_PHBS)
148 		clear_bit(phb->global_number, phb_bitmap);
149 
150 	list_del(&phb->list_node);
151 	spin_unlock(&hose_spinlock);
152 
153 	if (phb->is_dynamic)
154 		kfree(phb);
155 }
156 EXPORT_SYMBOL_GPL(pcibios_free_controller);
157 
158 /*
159  * This function is used to call pcibios_free_controller()
160  * in a deferred manner: a callback from the PCI subsystem.
161  *
162  * _*DO NOT*_ call pcibios_free_controller() explicitly if
163  * this is used (or it may access an invalid *phb pointer).
164  *
165  * The callback occurs when all references to the root bus
166  * are dropped (e.g., child buses/devices and their users).
167  *
168  * It's called as .release_fn() of 'struct pci_host_bridge'
169  * which is associated with the 'struct pci_controller.bus'
170  * (root bus) - it expects .release_data to hold a pointer
171  * to 'struct pci_controller'.
172  *
173  * In order to use it, register .release_fn()/release_data
174  * like this:
175  *
176  * pci_set_host_bridge_release(bridge,
177  *                             pcibios_free_controller_deferred
178  *                             (void *) phb);
179  *
180  * e.g. in the pcibios_root_bridge_prepare() callback from
181  * pci_create_root_bus().
182  */
183 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
184 {
185 	struct pci_controller *phb = (struct pci_controller *)
186 					 bridge->release_data;
187 
188 	pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
189 
190 	pcibios_free_controller(phb);
191 }
192 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
193 
194 /*
195  * The function is used to return the minimal alignment
196  * for memory or I/O windows of the associated P2P bridge.
197  * By default, 4KiB alignment for I/O windows and 1MiB for
198  * memory windows.
199  */
200 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
201 					 unsigned long type)
202 {
203 	struct pci_controller *phb = pci_bus_to_host(bus);
204 
205 	if (phb->controller_ops.window_alignment)
206 		return phb->controller_ops.window_alignment(bus, type);
207 
208 	/*
209 	 * PCI core will figure out the default
210 	 * alignment: 4KiB for I/O and 1MiB for
211 	 * memory window.
212 	 */
213 	return 1;
214 }
215 
216 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
217 {
218 	struct pci_controller *hose = pci_bus_to_host(bus);
219 
220 	if (hose->controller_ops.setup_bridge)
221 		hose->controller_ops.setup_bridge(bus, type);
222 }
223 
224 void pcibios_reset_secondary_bus(struct pci_dev *dev)
225 {
226 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
227 
228 	if (phb->controller_ops.reset_secondary_bus) {
229 		phb->controller_ops.reset_secondary_bus(dev);
230 		return;
231 	}
232 
233 	pci_reset_secondary_bus(dev);
234 }
235 
236 resource_size_t pcibios_default_alignment(void)
237 {
238 	if (ppc_md.pcibios_default_alignment)
239 		return ppc_md.pcibios_default_alignment();
240 
241 	return 0;
242 }
243 
244 #ifdef CONFIG_PCI_IOV
245 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
246 {
247 	if (ppc_md.pcibios_iov_resource_alignment)
248 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
249 
250 	return pci_iov_resource_size(pdev, resno);
251 }
252 
253 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
254 {
255 	if (ppc_md.pcibios_sriov_enable)
256 		return ppc_md.pcibios_sriov_enable(pdev, num_vfs);
257 
258 	return 0;
259 }
260 
261 int pcibios_sriov_disable(struct pci_dev *pdev)
262 {
263 	if (ppc_md.pcibios_sriov_disable)
264 		return ppc_md.pcibios_sriov_disable(pdev);
265 
266 	return 0;
267 }
268 
269 #endif /* CONFIG_PCI_IOV */
270 
271 void pcibios_bus_add_device(struct pci_dev *pdev)
272 {
273 	if (ppc_md.pcibios_bus_add_device)
274 		ppc_md.pcibios_bus_add_device(pdev);
275 }
276 
277 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
278 {
279 #ifdef CONFIG_PPC64
280 	return hose->pci_io_size;
281 #else
282 	return resource_size(&hose->io_resource);
283 #endif
284 }
285 
286 int pcibios_vaddr_is_ioport(void __iomem *address)
287 {
288 	int ret = 0;
289 	struct pci_controller *hose;
290 	resource_size_t size;
291 
292 	spin_lock(&hose_spinlock);
293 	list_for_each_entry(hose, &hose_list, list_node) {
294 		size = pcibios_io_size(hose);
295 		if (address >= hose->io_base_virt &&
296 		    address < (hose->io_base_virt + size)) {
297 			ret = 1;
298 			break;
299 		}
300 	}
301 	spin_unlock(&hose_spinlock);
302 	return ret;
303 }
304 
305 unsigned long pci_address_to_pio(phys_addr_t address)
306 {
307 	struct pci_controller *hose;
308 	resource_size_t size;
309 	unsigned long ret = ~0;
310 
311 	spin_lock(&hose_spinlock);
312 	list_for_each_entry(hose, &hose_list, list_node) {
313 		size = pcibios_io_size(hose);
314 		if (address >= hose->io_base_phys &&
315 		    address < (hose->io_base_phys + size)) {
316 			unsigned long base =
317 				(unsigned long)hose->io_base_virt - _IO_BASE;
318 			ret = base + (address - hose->io_base_phys);
319 			break;
320 		}
321 	}
322 	spin_unlock(&hose_spinlock);
323 
324 	return ret;
325 }
326 EXPORT_SYMBOL_GPL(pci_address_to_pio);
327 
328 /*
329  * Return the domain number for this bus.
330  */
331 int pci_domain_nr(struct pci_bus *bus)
332 {
333 	struct pci_controller *hose = pci_bus_to_host(bus);
334 
335 	return hose->global_number;
336 }
337 EXPORT_SYMBOL(pci_domain_nr);
338 
339 /* This routine is meant to be used early during boot, when the
340  * PCI bus numbers have not yet been assigned, and you need to
341  * issue PCI config cycles to an OF device.
342  * It could also be used to "fix" RTAS config cycles if you want
343  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
344  * config cycles.
345  */
346 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
347 {
348 	while(node) {
349 		struct pci_controller *hose, *tmp;
350 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
351 			if (hose->dn == node)
352 				return hose;
353 		node = node->parent;
354 	}
355 	return NULL;
356 }
357 
358 /*
359  * Reads the interrupt pin to determine if interrupt is use by card.
360  * If the interrupt is used, then gets the interrupt line from the
361  * openfirmware and sets it in the pci_dev and pci_config line.
362  */
363 static int pci_read_irq_line(struct pci_dev *pci_dev)
364 {
365 	struct of_phandle_args oirq;
366 	unsigned int virq;
367 
368 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
369 
370 #ifdef DEBUG
371 	memset(&oirq, 0xff, sizeof(oirq));
372 #endif
373 	/* Try to get a mapping from the device-tree */
374 	if (of_irq_parse_pci(pci_dev, &oirq)) {
375 		u8 line, pin;
376 
377 		/* If that fails, lets fallback to what is in the config
378 		 * space and map that through the default controller. We
379 		 * also set the type to level low since that's what PCI
380 		 * interrupts are. If your platform does differently, then
381 		 * either provide a proper interrupt tree or don't use this
382 		 * function.
383 		 */
384 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
385 			return -1;
386 		if (pin == 0)
387 			return -1;
388 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
389 		    line == 0xff || line == 0) {
390 			return -1;
391 		}
392 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
393 			 line, pin);
394 
395 		virq = irq_create_mapping(NULL, line);
396 		if (virq)
397 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
398 	} else {
399 		pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %pOF\n",
400 			 oirq.args_count, oirq.args[0], oirq.args[1], oirq.np);
401 
402 		virq = irq_create_of_mapping(&oirq);
403 	}
404 
405 	if (!virq) {
406 		pr_debug(" Failed to map !\n");
407 		return -1;
408 	}
409 
410 	pr_debug(" Mapped to linux irq %d\n", virq);
411 
412 	pci_dev->irq = virq;
413 
414 	return 0;
415 }
416 
417 /*
418  * Platform support for /proc/bus/pci/X/Y mmap()s,
419  * modelled on the sparc64 implementation by Dave Miller.
420  *  -- paulus.
421  */
422 
423 /*
424  * Adjust vm_pgoff of VMA such that it is the physical page offset
425  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
426  *
427  * Basically, the user finds the base address for his device which he wishes
428  * to mmap.  They read the 32-bit value from the config space base register,
429  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
430  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
431  *
432  * Returns negative error code on failure, zero on success.
433  */
434 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
435 					       resource_size_t *offset,
436 					       enum pci_mmap_state mmap_state)
437 {
438 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
439 	unsigned long io_offset = 0;
440 	int i, res_bit;
441 
442 	if (hose == NULL)
443 		return NULL;		/* should never happen */
444 
445 	/* If memory, add on the PCI bridge address offset */
446 	if (mmap_state == pci_mmap_mem) {
447 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
448 		*offset += hose->pci_mem_offset;
449 #endif
450 		res_bit = IORESOURCE_MEM;
451 	} else {
452 		io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
453 		*offset += io_offset;
454 		res_bit = IORESOURCE_IO;
455 	}
456 
457 	/*
458 	 * Check that the offset requested corresponds to one of the
459 	 * resources of the device.
460 	 */
461 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
462 		struct resource *rp = &dev->resource[i];
463 		int flags = rp->flags;
464 
465 		/* treat ROM as memory (should be already) */
466 		if (i == PCI_ROM_RESOURCE)
467 			flags |= IORESOURCE_MEM;
468 
469 		/* Active and same type? */
470 		if ((flags & res_bit) == 0)
471 			continue;
472 
473 		/* In the range of this resource? */
474 		if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
475 			continue;
476 
477 		/* found it! construct the final physical address */
478 		if (mmap_state == pci_mmap_io)
479 			*offset += hose->io_base_phys - io_offset;
480 		return rp;
481 	}
482 
483 	return NULL;
484 }
485 
486 /*
487  * This one is used by /dev/mem and fbdev who have no clue about the
488  * PCI device, it tries to find the PCI device first and calls the
489  * above routine
490  */
491 pgprot_t pci_phys_mem_access_prot(struct file *file,
492 				  unsigned long pfn,
493 				  unsigned long size,
494 				  pgprot_t prot)
495 {
496 	struct pci_dev *pdev = NULL;
497 	struct resource *found = NULL;
498 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
499 	int i;
500 
501 	if (page_is_ram(pfn))
502 		return prot;
503 
504 	prot = pgprot_noncached(prot);
505 	for_each_pci_dev(pdev) {
506 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
507 			struct resource *rp = &pdev->resource[i];
508 			int flags = rp->flags;
509 
510 			/* Active and same type? */
511 			if ((flags & IORESOURCE_MEM) == 0)
512 				continue;
513 			/* In the range of this resource? */
514 			if (offset < (rp->start & PAGE_MASK) ||
515 			    offset > rp->end)
516 				continue;
517 			found = rp;
518 			break;
519 		}
520 		if (found)
521 			break;
522 	}
523 	if (found) {
524 		if (found->flags & IORESOURCE_PREFETCH)
525 			prot = pgprot_noncached_wc(prot);
526 		pci_dev_put(pdev);
527 	}
528 
529 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
530 		 (unsigned long long)offset, pgprot_val(prot));
531 
532 	return prot;
533 }
534 
535 
536 /*
537  * Perform the actual remap of the pages for a PCI device mapping, as
538  * appropriate for this architecture.  The region in the process to map
539  * is described by vm_start and vm_end members of VMA, the base physical
540  * address is found in vm_pgoff.
541  * The pci device structure is provided so that architectures may make mapping
542  * decisions on a per-device or per-bus basis.
543  *
544  * Returns a negative error code on failure, zero on success.
545  */
546 int pci_mmap_page_range(struct pci_dev *dev, int bar,
547 			struct vm_area_struct *vma,
548 			enum pci_mmap_state mmap_state, int write_combine)
549 {
550 	resource_size_t offset =
551 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
552 	struct resource *rp;
553 	int ret;
554 
555 	rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
556 	if (rp == NULL)
557 		return -EINVAL;
558 
559 	vma->vm_pgoff = offset >> PAGE_SHIFT;
560 	if (write_combine)
561 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
562 	else
563 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
564 
565 	ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
566 			       vma->vm_end - vma->vm_start, vma->vm_page_prot);
567 
568 	return ret;
569 }
570 
571 /* This provides legacy IO read access on a bus */
572 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
573 {
574 	unsigned long offset;
575 	struct pci_controller *hose = pci_bus_to_host(bus);
576 	struct resource *rp = &hose->io_resource;
577 	void __iomem *addr;
578 
579 	/* Check if port can be supported by that bus. We only check
580 	 * the ranges of the PHB though, not the bus itself as the rules
581 	 * for forwarding legacy cycles down bridges are not our problem
582 	 * here. So if the host bridge supports it, we do it.
583 	 */
584 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
585 	offset += port;
586 
587 	if (!(rp->flags & IORESOURCE_IO))
588 		return -ENXIO;
589 	if (offset < rp->start || (offset + size) > rp->end)
590 		return -ENXIO;
591 	addr = hose->io_base_virt + port;
592 
593 	switch(size) {
594 	case 1:
595 		*((u8 *)val) = in_8(addr);
596 		return 1;
597 	case 2:
598 		if (port & 1)
599 			return -EINVAL;
600 		*((u16 *)val) = in_le16(addr);
601 		return 2;
602 	case 4:
603 		if (port & 3)
604 			return -EINVAL;
605 		*((u32 *)val) = in_le32(addr);
606 		return 4;
607 	}
608 	return -EINVAL;
609 }
610 
611 /* This provides legacy IO write access on a bus */
612 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
613 {
614 	unsigned long offset;
615 	struct pci_controller *hose = pci_bus_to_host(bus);
616 	struct resource *rp = &hose->io_resource;
617 	void __iomem *addr;
618 
619 	/* Check if port can be supported by that bus. We only check
620 	 * the ranges of the PHB though, not the bus itself as the rules
621 	 * for forwarding legacy cycles down bridges are not our problem
622 	 * here. So if the host bridge supports it, we do it.
623 	 */
624 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
625 	offset += port;
626 
627 	if (!(rp->flags & IORESOURCE_IO))
628 		return -ENXIO;
629 	if (offset < rp->start || (offset + size) > rp->end)
630 		return -ENXIO;
631 	addr = hose->io_base_virt + port;
632 
633 	/* WARNING: The generic code is idiotic. It gets passed a pointer
634 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
635 	 * as a u32, which means that we have to correct the location of
636 	 * the data read within those 32 bits for size 1 and 2
637 	 */
638 	switch(size) {
639 	case 1:
640 		out_8(addr, val >> 24);
641 		return 1;
642 	case 2:
643 		if (port & 1)
644 			return -EINVAL;
645 		out_le16(addr, val >> 16);
646 		return 2;
647 	case 4:
648 		if (port & 3)
649 			return -EINVAL;
650 		out_le32(addr, val);
651 		return 4;
652 	}
653 	return -EINVAL;
654 }
655 
656 /* This provides legacy IO or memory mmap access on a bus */
657 int pci_mmap_legacy_page_range(struct pci_bus *bus,
658 			       struct vm_area_struct *vma,
659 			       enum pci_mmap_state mmap_state)
660 {
661 	struct pci_controller *hose = pci_bus_to_host(bus);
662 	resource_size_t offset =
663 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
664 	resource_size_t size = vma->vm_end - vma->vm_start;
665 	struct resource *rp;
666 
667 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
668 		 pci_domain_nr(bus), bus->number,
669 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
670 		 (unsigned long long)offset,
671 		 (unsigned long long)(offset + size - 1));
672 
673 	if (mmap_state == pci_mmap_mem) {
674 		/* Hack alert !
675 		 *
676 		 * Because X is lame and can fail starting if it gets an error trying
677 		 * to mmap legacy_mem (instead of just moving on without legacy memory
678 		 * access) we fake it here by giving it anonymous memory, effectively
679 		 * behaving just like /dev/zero
680 		 */
681 		if ((offset + size) > hose->isa_mem_size) {
682 			printk(KERN_DEBUG
683 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
684 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
685 			if (vma->vm_flags & VM_SHARED)
686 				return shmem_zero_setup(vma);
687 			return 0;
688 		}
689 		offset += hose->isa_mem_phys;
690 	} else {
691 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
692 		unsigned long roffset = offset + io_offset;
693 		rp = &hose->io_resource;
694 		if (!(rp->flags & IORESOURCE_IO))
695 			return -ENXIO;
696 		if (roffset < rp->start || (roffset + size) > rp->end)
697 			return -ENXIO;
698 		offset += hose->io_base_phys;
699 	}
700 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
701 
702 	vma->vm_pgoff = offset >> PAGE_SHIFT;
703 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
704 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
705 			       vma->vm_end - vma->vm_start,
706 			       vma->vm_page_prot);
707 }
708 
709 void pci_resource_to_user(const struct pci_dev *dev, int bar,
710 			  const struct resource *rsrc,
711 			  resource_size_t *start, resource_size_t *end)
712 {
713 	struct pci_bus_region region;
714 
715 	if (rsrc->flags & IORESOURCE_IO) {
716 		pcibios_resource_to_bus(dev->bus, &region,
717 					(struct resource *) rsrc);
718 		*start = region.start;
719 		*end = region.end;
720 		return;
721 	}
722 
723 	/* We pass a CPU physical address to userland for MMIO instead of a
724 	 * BAR value because X is lame and expects to be able to use that
725 	 * to pass to /dev/mem!
726 	 *
727 	 * That means we may have 64-bit values where some apps only expect
728 	 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
729 	 */
730 	*start = rsrc->start;
731 	*end = rsrc->end;
732 }
733 
734 /**
735  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
736  * @hose: newly allocated pci_controller to be setup
737  * @dev: device node of the host bridge
738  * @primary: set if primary bus (32 bits only, soon to be deprecated)
739  *
740  * This function will parse the "ranges" property of a PCI host bridge device
741  * node and setup the resource mapping of a pci controller based on its
742  * content.
743  *
744  * Life would be boring if it wasn't for a few issues that we have to deal
745  * with here:
746  *
747  *   - We can only cope with one IO space range and up to 3 Memory space
748  *     ranges. However, some machines (thanks Apple !) tend to split their
749  *     space into lots of small contiguous ranges. So we have to coalesce.
750  *
751  *   - Some busses have IO space not starting at 0, which causes trouble with
752  *     the way we do our IO resource renumbering. The code somewhat deals with
753  *     it for 64 bits but I would expect problems on 32 bits.
754  *
755  *   - Some 32 bits platforms such as 4xx can have physical space larger than
756  *     32 bits so we need to use 64 bits values for the parsing
757  */
758 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
759 				  struct device_node *dev, int primary)
760 {
761 	int memno = 0;
762 	struct resource *res;
763 	struct of_pci_range range;
764 	struct of_pci_range_parser parser;
765 
766 	printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
767 	       dev, primary ? "(primary)" : "");
768 
769 	/* Check for ranges property */
770 	if (of_pci_range_parser_init(&parser, dev))
771 		return;
772 
773 	/* Parse it */
774 	for_each_of_pci_range(&parser, &range) {
775 		/* If we failed translation or got a zero-sized region
776 		 * (some FW try to feed us with non sensical zero sized regions
777 		 * such as power3 which look like some kind of attempt at exposing
778 		 * the VGA memory hole)
779 		 */
780 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
781 			continue;
782 
783 		/* Act based on address space type */
784 		res = NULL;
785 		switch (range.flags & IORESOURCE_TYPE_BITS) {
786 		case IORESOURCE_IO:
787 			printk(KERN_INFO
788 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
789 			       range.cpu_addr, range.cpu_addr + range.size - 1,
790 			       range.pci_addr);
791 
792 			/* We support only one IO range */
793 			if (hose->pci_io_size) {
794 				printk(KERN_INFO
795 				       " \\--> Skipped (too many) !\n");
796 				continue;
797 			}
798 #ifdef CONFIG_PPC32
799 			/* On 32 bits, limit I/O space to 16MB */
800 			if (range.size > 0x01000000)
801 				range.size = 0x01000000;
802 
803 			/* 32 bits needs to map IOs here */
804 			hose->io_base_virt = ioremap(range.cpu_addr,
805 						range.size);
806 
807 			/* Expect trouble if pci_addr is not 0 */
808 			if (primary)
809 				isa_io_base =
810 					(unsigned long)hose->io_base_virt;
811 #endif /* CONFIG_PPC32 */
812 			/* pci_io_size and io_base_phys always represent IO
813 			 * space starting at 0 so we factor in pci_addr
814 			 */
815 			hose->pci_io_size = range.pci_addr + range.size;
816 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
817 
818 			/* Build resource */
819 			res = &hose->io_resource;
820 			range.cpu_addr = range.pci_addr;
821 			break;
822 		case IORESOURCE_MEM:
823 			printk(KERN_INFO
824 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
825 			       range.cpu_addr, range.cpu_addr + range.size - 1,
826 			       range.pci_addr,
827 			       (range.pci_space & 0x40000000) ?
828 			       "Prefetch" : "");
829 
830 			/* We support only 3 memory ranges */
831 			if (memno >= 3) {
832 				printk(KERN_INFO
833 				       " \\--> Skipped (too many) !\n");
834 				continue;
835 			}
836 			/* Handles ISA memory hole space here */
837 			if (range.pci_addr == 0) {
838 				if (primary || isa_mem_base == 0)
839 					isa_mem_base = range.cpu_addr;
840 				hose->isa_mem_phys = range.cpu_addr;
841 				hose->isa_mem_size = range.size;
842 			}
843 
844 			/* Build resource */
845 			hose->mem_offset[memno] = range.cpu_addr -
846 							range.pci_addr;
847 			res = &hose->mem_resources[memno++];
848 			break;
849 		}
850 		if (res != NULL) {
851 			res->name = dev->full_name;
852 			res->flags = range.flags;
853 			res->start = range.cpu_addr;
854 			res->end = range.cpu_addr + range.size - 1;
855 			res->parent = res->child = res->sibling = NULL;
856 		}
857 	}
858 }
859 
860 /* Decide whether to display the domain number in /proc */
861 int pci_proc_domain(struct pci_bus *bus)
862 {
863 	struct pci_controller *hose = pci_bus_to_host(bus);
864 
865 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
866 		return 0;
867 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
868 		return hose->global_number != 0;
869 	return 1;
870 }
871 
872 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
873 {
874 	if (ppc_md.pcibios_root_bridge_prepare)
875 		return ppc_md.pcibios_root_bridge_prepare(bridge);
876 
877 	return 0;
878 }
879 
880 /* This header fixup will do the resource fixup for all devices as they are
881  * probed, but not for bridge ranges
882  */
883 static void pcibios_fixup_resources(struct pci_dev *dev)
884 {
885 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
886 	int i;
887 
888 	if (!hose) {
889 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
890 		       pci_name(dev));
891 		return;
892 	}
893 
894 	if (dev->is_virtfn)
895 		return;
896 
897 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
898 		struct resource *res = dev->resource + i;
899 		struct pci_bus_region reg;
900 		if (!res->flags)
901 			continue;
902 
903 		/* If we're going to re-assign everything, we mark all resources
904 		 * as unset (and 0-base them). In addition, we mark BARs starting
905 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
906 		 * since in that case, we don't want to re-assign anything
907 		 */
908 		pcibios_resource_to_bus(dev->bus, &reg, res);
909 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
910 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
911 			/* Only print message if not re-assigning */
912 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
913 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
914 					 pci_name(dev), i, res);
915 			res->end -= res->start;
916 			res->start = 0;
917 			res->flags |= IORESOURCE_UNSET;
918 			continue;
919 		}
920 
921 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
922 	}
923 
924 	/* Call machine specific resource fixup */
925 	if (ppc_md.pcibios_fixup_resources)
926 		ppc_md.pcibios_fixup_resources(dev);
927 }
928 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
929 
930 /* This function tries to figure out if a bridge resource has been initialized
931  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
932  * things go more smoothly when it gets it right. It should covers cases such
933  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
934  */
935 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
936 						 struct resource *res)
937 {
938 	struct pci_controller *hose = pci_bus_to_host(bus);
939 	struct pci_dev *dev = bus->self;
940 	resource_size_t offset;
941 	struct pci_bus_region region;
942 	u16 command;
943 	int i;
944 
945 	/* We don't do anything if PCI_PROBE_ONLY is set */
946 	if (pci_has_flag(PCI_PROBE_ONLY))
947 		return 0;
948 
949 	/* Job is a bit different between memory and IO */
950 	if (res->flags & IORESOURCE_MEM) {
951 		pcibios_resource_to_bus(dev->bus, &region, res);
952 
953 		/* If the BAR is non-0 then it's probably been initialized */
954 		if (region.start != 0)
955 			return 0;
956 
957 		/* The BAR is 0, let's check if memory decoding is enabled on
958 		 * the bridge. If not, we consider it unassigned
959 		 */
960 		pci_read_config_word(dev, PCI_COMMAND, &command);
961 		if ((command & PCI_COMMAND_MEMORY) == 0)
962 			return 1;
963 
964 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
965 		 * resources covers that starting address (0 then it's good enough for
966 		 * us for memory space)
967 		 */
968 		for (i = 0; i < 3; i++) {
969 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
970 			    hose->mem_resources[i].start == hose->mem_offset[i])
971 				return 0;
972 		}
973 
974 		/* Well, it starts at 0 and we know it will collide so we may as
975 		 * well consider it as unassigned. That covers the Apple case.
976 		 */
977 		return 1;
978 	} else {
979 		/* If the BAR is non-0, then we consider it assigned */
980 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
981 		if (((res->start - offset) & 0xfffffffful) != 0)
982 			return 0;
983 
984 		/* Here, we are a bit different than memory as typically IO space
985 		 * starting at low addresses -is- valid. What we do instead if that
986 		 * we consider as unassigned anything that doesn't have IO enabled
987 		 * in the PCI command register, and that's it.
988 		 */
989 		pci_read_config_word(dev, PCI_COMMAND, &command);
990 		if (command & PCI_COMMAND_IO)
991 			return 0;
992 
993 		/* It's starting at 0 and IO is disabled in the bridge, consider
994 		 * it unassigned
995 		 */
996 		return 1;
997 	}
998 }
999 
1000 /* Fixup resources of a PCI<->PCI bridge */
1001 static void pcibios_fixup_bridge(struct pci_bus *bus)
1002 {
1003 	struct resource *res;
1004 	int i;
1005 
1006 	struct pci_dev *dev = bus->self;
1007 
1008 	pci_bus_for_each_resource(bus, res, i) {
1009 		if (!res || !res->flags)
1010 			continue;
1011 		if (i >= 3 && bus->self->transparent)
1012 			continue;
1013 
1014 		/* If we're going to reassign everything, we can
1015 		 * shrink the P2P resource to have size as being
1016 		 * of 0 in order to save space.
1017 		 */
1018 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1019 			res->flags |= IORESOURCE_UNSET;
1020 			res->start = 0;
1021 			res->end = -1;
1022 			continue;
1023 		}
1024 
1025 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
1026 
1027 		/* Try to detect uninitialized P2P bridge resources,
1028 		 * and clear them out so they get re-assigned later
1029 		 */
1030 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
1031 			res->flags = 0;
1032 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
1033 		}
1034 	}
1035 }
1036 
1037 void pcibios_setup_bus_self(struct pci_bus *bus)
1038 {
1039 	struct pci_controller *phb;
1040 
1041 	/* Fix up the bus resources for P2P bridges */
1042 	if (bus->self != NULL)
1043 		pcibios_fixup_bridge(bus);
1044 
1045 	/* Platform specific bus fixups. This is currently only used
1046 	 * by fsl_pci and I'm hoping to get rid of it at some point
1047 	 */
1048 	if (ppc_md.pcibios_fixup_bus)
1049 		ppc_md.pcibios_fixup_bus(bus);
1050 
1051 	/* Setup bus DMA mappings */
1052 	phb = pci_bus_to_host(bus);
1053 	if (phb->controller_ops.dma_bus_setup)
1054 		phb->controller_ops.dma_bus_setup(bus);
1055 }
1056 
1057 static void pcibios_setup_device(struct pci_dev *dev)
1058 {
1059 	struct pci_controller *phb;
1060 	/* Fixup NUMA node as it may not be setup yet by the generic
1061 	 * code and is needed by the DMA init
1062 	 */
1063 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1064 
1065 	/* Hook up default DMA ops */
1066 	set_dma_ops(&dev->dev, pci_dma_ops);
1067 	set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
1068 
1069 	/* Additional platform DMA/iommu setup */
1070 	phb = pci_bus_to_host(dev->bus);
1071 	if (phb->controller_ops.dma_dev_setup)
1072 		phb->controller_ops.dma_dev_setup(dev);
1073 
1074 	/* Read default IRQs and fixup if necessary */
1075 	pci_read_irq_line(dev);
1076 	if (ppc_md.pci_irq_fixup)
1077 		ppc_md.pci_irq_fixup(dev);
1078 }
1079 
1080 int pcibios_add_device(struct pci_dev *dev)
1081 {
1082 	/*
1083 	 * We can only call pcibios_setup_device() after bus setup is complete,
1084 	 * since some of the platform specific DMA setup code depends on it.
1085 	 */
1086 	if (dev->bus->is_added)
1087 		pcibios_setup_device(dev);
1088 
1089 #ifdef CONFIG_PCI_IOV
1090 	if (ppc_md.pcibios_fixup_sriov)
1091 		ppc_md.pcibios_fixup_sriov(dev);
1092 #endif /* CONFIG_PCI_IOV */
1093 
1094 	return 0;
1095 }
1096 
1097 void pcibios_setup_bus_devices(struct pci_bus *bus)
1098 {
1099 	struct pci_dev *dev;
1100 
1101 	pr_debug("PCI: Fixup bus devices %d (%s)\n",
1102 		 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1103 
1104 	list_for_each_entry(dev, &bus->devices, bus_list) {
1105 		/* Cardbus can call us to add new devices to a bus, so ignore
1106 		 * those who are already fully discovered
1107 		 */
1108 		if (dev->is_added)
1109 			continue;
1110 
1111 		pcibios_setup_device(dev);
1112 	}
1113 }
1114 
1115 void pcibios_set_master(struct pci_dev *dev)
1116 {
1117 	/* No special bus mastering setup handling */
1118 }
1119 
1120 void pcibios_fixup_bus(struct pci_bus *bus)
1121 {
1122 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1123 	 * bases. This is -not- called when generating the PCI tree from
1124 	 * the OF device-tree.
1125 	 */
1126 	pci_read_bridge_bases(bus);
1127 
1128 	/* Now fixup the bus bus */
1129 	pcibios_setup_bus_self(bus);
1130 
1131 	/* Now fixup devices on that bus */
1132 	pcibios_setup_bus_devices(bus);
1133 }
1134 EXPORT_SYMBOL(pcibios_fixup_bus);
1135 
1136 void pci_fixup_cardbus(struct pci_bus *bus)
1137 {
1138 	/* Now fixup devices on that bus */
1139 	pcibios_setup_bus_devices(bus);
1140 }
1141 
1142 
1143 static int skip_isa_ioresource_align(struct pci_dev *dev)
1144 {
1145 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1146 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1147 		return 1;
1148 	return 0;
1149 }
1150 
1151 /*
1152  * We need to avoid collisions with `mirrored' VGA ports
1153  * and other strange ISA hardware, so we always want the
1154  * addresses to be allocated in the 0x000-0x0ff region
1155  * modulo 0x400.
1156  *
1157  * Why? Because some silly external IO cards only decode
1158  * the low 10 bits of the IO address. The 0x00-0xff region
1159  * is reserved for motherboard devices that decode all 16
1160  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1161  * but we want to try to avoid allocating at 0x2900-0x2bff
1162  * which might have be mirrored at 0x0100-0x03ff..
1163  */
1164 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1165 				resource_size_t size, resource_size_t align)
1166 {
1167 	struct pci_dev *dev = data;
1168 	resource_size_t start = res->start;
1169 
1170 	if (res->flags & IORESOURCE_IO) {
1171 		if (skip_isa_ioresource_align(dev))
1172 			return start;
1173 		if (start & 0x300)
1174 			start = (start + 0x3ff) & ~0x3ff;
1175 	}
1176 
1177 	return start;
1178 }
1179 EXPORT_SYMBOL(pcibios_align_resource);
1180 
1181 /*
1182  * Reparent resource children of pr that conflict with res
1183  * under res, and make res replace those children.
1184  */
1185 static int reparent_resources(struct resource *parent,
1186 				     struct resource *res)
1187 {
1188 	struct resource *p, **pp;
1189 	struct resource **firstpp = NULL;
1190 
1191 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1192 		if (p->end < res->start)
1193 			continue;
1194 		if (res->end < p->start)
1195 			break;
1196 		if (p->start < res->start || p->end > res->end)
1197 			return -1;	/* not completely contained */
1198 		if (firstpp == NULL)
1199 			firstpp = pp;
1200 	}
1201 	if (firstpp == NULL)
1202 		return -1;	/* didn't find any conflicting entries? */
1203 	res->parent = parent;
1204 	res->child = *firstpp;
1205 	res->sibling = *pp;
1206 	*firstpp = res;
1207 	*pp = NULL;
1208 	for (p = res->child; p != NULL; p = p->sibling) {
1209 		p->parent = res;
1210 		pr_debug("PCI: Reparented %s %pR under %s\n",
1211 			 p->name, p, res->name);
1212 	}
1213 	return 0;
1214 }
1215 
1216 /*
1217  *  Handle resources of PCI devices.  If the world were perfect, we could
1218  *  just allocate all the resource regions and do nothing more.  It isn't.
1219  *  On the other hand, we cannot just re-allocate all devices, as it would
1220  *  require us to know lots of host bridge internals.  So we attempt to
1221  *  keep as much of the original configuration as possible, but tweak it
1222  *  when it's found to be wrong.
1223  *
1224  *  Known BIOS problems we have to work around:
1225  *	- I/O or memory regions not configured
1226  *	- regions configured, but not enabled in the command register
1227  *	- bogus I/O addresses above 64K used
1228  *	- expansion ROMs left enabled (this may sound harmless, but given
1229  *	  the fact the PCI specs explicitly allow address decoders to be
1230  *	  shared between expansion ROMs and other resource regions, it's
1231  *	  at least dangerous)
1232  *
1233  *  Our solution:
1234  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1235  *	    This gives us fixed barriers on where we can allocate.
1236  *	(2) Allocate resources for all enabled devices.  If there is
1237  *	    a collision, just mark the resource as unallocated. Also
1238  *	    disable expansion ROMs during this step.
1239  *	(3) Try to allocate resources for disabled devices.  If the
1240  *	    resources were assigned correctly, everything goes well,
1241  *	    if they weren't, they won't disturb allocation of other
1242  *	    resources.
1243  *	(4) Assign new addresses to resources which were either
1244  *	    not configured at all or misconfigured.  If explicitly
1245  *	    requested by the user, configure expansion ROM address
1246  *	    as well.
1247  */
1248 
1249 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1250 {
1251 	struct pci_bus *b;
1252 	int i;
1253 	struct resource *res, *pr;
1254 
1255 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1256 		 pci_domain_nr(bus), bus->number);
1257 
1258 	pci_bus_for_each_resource(bus, res, i) {
1259 		if (!res || !res->flags || res->start > res->end || res->parent)
1260 			continue;
1261 
1262 		/* If the resource was left unset at this point, we clear it */
1263 		if (res->flags & IORESOURCE_UNSET)
1264 			goto clear_resource;
1265 
1266 		if (bus->parent == NULL)
1267 			pr = (res->flags & IORESOURCE_IO) ?
1268 				&ioport_resource : &iomem_resource;
1269 		else {
1270 			pr = pci_find_parent_resource(bus->self, res);
1271 			if (pr == res) {
1272 				/* this happens when the generic PCI
1273 				 * code (wrongly) decides that this
1274 				 * bridge is transparent  -- paulus
1275 				 */
1276 				continue;
1277 			}
1278 		}
1279 
1280 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1281 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1282 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1283 
1284 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1285 			struct pci_dev *dev = bus->self;
1286 
1287 			if (request_resource(pr, res) == 0)
1288 				continue;
1289 			/*
1290 			 * Must be a conflict with an existing entry.
1291 			 * Move that entry (or entries) under the
1292 			 * bridge resource and try again.
1293 			 */
1294 			if (reparent_resources(pr, res) == 0)
1295 				continue;
1296 
1297 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1298 			    pci_claim_bridge_resource(dev,
1299 						i + PCI_BRIDGE_RESOURCES) == 0)
1300 				continue;
1301 		}
1302 		pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n",
1303 			i, bus->number);
1304 	clear_resource:
1305 		/* The resource might be figured out when doing
1306 		 * reassignment based on the resources required
1307 		 * by the downstream PCI devices. Here we set
1308 		 * the size of the resource to be 0 in order to
1309 		 * save more space.
1310 		 */
1311 		res->start = 0;
1312 		res->end = -1;
1313 		res->flags = 0;
1314 	}
1315 
1316 	list_for_each_entry(b, &bus->children, node)
1317 		pcibios_allocate_bus_resources(b);
1318 }
1319 
1320 static inline void alloc_resource(struct pci_dev *dev, int idx)
1321 {
1322 	struct resource *pr, *r = &dev->resource[idx];
1323 
1324 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1325 		 pci_name(dev), idx, r);
1326 
1327 	pr = pci_find_parent_resource(dev, r);
1328 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1329 	    request_resource(pr, r) < 0) {
1330 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1331 		       " of device %s, will remap\n", idx, pci_name(dev));
1332 		if (pr)
1333 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1334 		/* We'll assign a new address later */
1335 		r->flags |= IORESOURCE_UNSET;
1336 		r->end -= r->start;
1337 		r->start = 0;
1338 	}
1339 }
1340 
1341 static void __init pcibios_allocate_resources(int pass)
1342 {
1343 	struct pci_dev *dev = NULL;
1344 	int idx, disabled;
1345 	u16 command;
1346 	struct resource *r;
1347 
1348 	for_each_pci_dev(dev) {
1349 		pci_read_config_word(dev, PCI_COMMAND, &command);
1350 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1351 			r = &dev->resource[idx];
1352 			if (r->parent)		/* Already allocated */
1353 				continue;
1354 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1355 				continue;	/* Not assigned at all */
1356 			/* We only allocate ROMs on pass 1 just in case they
1357 			 * have been screwed up by firmware
1358 			 */
1359 			if (idx == PCI_ROM_RESOURCE )
1360 				disabled = 1;
1361 			if (r->flags & IORESOURCE_IO)
1362 				disabled = !(command & PCI_COMMAND_IO);
1363 			else
1364 				disabled = !(command & PCI_COMMAND_MEMORY);
1365 			if (pass == disabled)
1366 				alloc_resource(dev, idx);
1367 		}
1368 		if (pass)
1369 			continue;
1370 		r = &dev->resource[PCI_ROM_RESOURCE];
1371 		if (r->flags) {
1372 			/* Turn the ROM off, leave the resource region,
1373 			 * but keep it unregistered.
1374 			 */
1375 			u32 reg;
1376 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1377 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1378 				pr_debug("PCI: Switching off ROM of %s\n",
1379 					 pci_name(dev));
1380 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1381 				pci_write_config_dword(dev, dev->rom_base_reg,
1382 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1383 			}
1384 		}
1385 	}
1386 }
1387 
1388 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1389 {
1390 	struct pci_controller *hose = pci_bus_to_host(bus);
1391 	resource_size_t	offset;
1392 	struct resource *res, *pres;
1393 	int i;
1394 
1395 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1396 
1397 	/* Check for IO */
1398 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1399 		goto no_io;
1400 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1401 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1402 	BUG_ON(res == NULL);
1403 	res->name = "Legacy IO";
1404 	res->flags = IORESOURCE_IO;
1405 	res->start = offset;
1406 	res->end = (offset + 0xfff) & 0xfffffffful;
1407 	pr_debug("Candidate legacy IO: %pR\n", res);
1408 	if (request_resource(&hose->io_resource, res)) {
1409 		printk(KERN_DEBUG
1410 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1411 		       pci_domain_nr(bus), bus->number, res);
1412 		kfree(res);
1413 	}
1414 
1415  no_io:
1416 	/* Check for memory */
1417 	for (i = 0; i < 3; i++) {
1418 		pres = &hose->mem_resources[i];
1419 		offset = hose->mem_offset[i];
1420 		if (!(pres->flags & IORESOURCE_MEM))
1421 			continue;
1422 		pr_debug("hose mem res: %pR\n", pres);
1423 		if ((pres->start - offset) <= 0xa0000 &&
1424 		    (pres->end - offset) >= 0xbffff)
1425 			break;
1426 	}
1427 	if (i >= 3)
1428 		return;
1429 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1430 	BUG_ON(res == NULL);
1431 	res->name = "Legacy VGA memory";
1432 	res->flags = IORESOURCE_MEM;
1433 	res->start = 0xa0000 + offset;
1434 	res->end = 0xbffff + offset;
1435 	pr_debug("Candidate VGA memory: %pR\n", res);
1436 	if (request_resource(pres, res)) {
1437 		printk(KERN_DEBUG
1438 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1439 		       pci_domain_nr(bus), bus->number, res);
1440 		kfree(res);
1441 	}
1442 }
1443 
1444 void __init pcibios_resource_survey(void)
1445 {
1446 	struct pci_bus *b;
1447 
1448 	/* Allocate and assign resources */
1449 	list_for_each_entry(b, &pci_root_buses, node)
1450 		pcibios_allocate_bus_resources(b);
1451 	if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1452 		pcibios_allocate_resources(0);
1453 		pcibios_allocate_resources(1);
1454 	}
1455 
1456 	/* Before we start assigning unassigned resource, we try to reserve
1457 	 * the low IO area and the VGA memory area if they intersect the
1458 	 * bus available resources to avoid allocating things on top of them
1459 	 */
1460 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1461 		list_for_each_entry(b, &pci_root_buses, node)
1462 			pcibios_reserve_legacy_regions(b);
1463 	}
1464 
1465 	/* Now, if the platform didn't decide to blindly trust the firmware,
1466 	 * we proceed to assigning things that were left unassigned
1467 	 */
1468 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1469 		pr_debug("PCI: Assigning unassigned resources...\n");
1470 		pci_assign_unassigned_resources();
1471 	}
1472 
1473 	/* Call machine dependent fixup */
1474 	if (ppc_md.pcibios_fixup)
1475 		ppc_md.pcibios_fixup();
1476 }
1477 
1478 /* This is used by the PCI hotplug driver to allocate resource
1479  * of newly plugged busses. We can try to consolidate with the
1480  * rest of the code later, for now, keep it as-is as our main
1481  * resource allocation function doesn't deal with sub-trees yet.
1482  */
1483 void pcibios_claim_one_bus(struct pci_bus *bus)
1484 {
1485 	struct pci_dev *dev;
1486 	struct pci_bus *child_bus;
1487 
1488 	list_for_each_entry(dev, &bus->devices, bus_list) {
1489 		int i;
1490 
1491 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1492 			struct resource *r = &dev->resource[i];
1493 
1494 			if (r->parent || !r->start || !r->flags)
1495 				continue;
1496 
1497 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1498 				 pci_name(dev), i, r);
1499 
1500 			if (pci_claim_resource(dev, i) == 0)
1501 				continue;
1502 
1503 			pci_claim_bridge_resource(dev, i);
1504 		}
1505 	}
1506 
1507 	list_for_each_entry(child_bus, &bus->children, node)
1508 		pcibios_claim_one_bus(child_bus);
1509 }
1510 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1511 
1512 
1513 /* pcibios_finish_adding_to_bus
1514  *
1515  * This is to be called by the hotplug code after devices have been
1516  * added to a bus, this include calling it for a PHB that is just
1517  * being added
1518  */
1519 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1520 {
1521 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1522 		 pci_domain_nr(bus), bus->number);
1523 
1524 	/* Allocate bus and devices resources */
1525 	pcibios_allocate_bus_resources(bus);
1526 	pcibios_claim_one_bus(bus);
1527 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1528 		if (bus->self)
1529 			pci_assign_unassigned_bridge_resources(bus->self);
1530 		else
1531 			pci_assign_unassigned_bus_resources(bus);
1532 	}
1533 
1534 	/* Fixup EEH */
1535 	eeh_add_device_tree_late(bus);
1536 
1537 	/* Add new devices to global lists.  Register in proc, sysfs. */
1538 	pci_bus_add_devices(bus);
1539 
1540 	/* sysfs files should only be added after devices are added */
1541 	eeh_add_sysfs_files(bus);
1542 }
1543 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1544 
1545 int pcibios_enable_device(struct pci_dev *dev, int mask)
1546 {
1547 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1548 
1549 	if (phb->controller_ops.enable_device_hook)
1550 		if (!phb->controller_ops.enable_device_hook(dev))
1551 			return -EINVAL;
1552 
1553 	return pci_enable_resources(dev, mask);
1554 }
1555 
1556 void pcibios_disable_device(struct pci_dev *dev)
1557 {
1558 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1559 
1560 	if (phb->controller_ops.disable_device)
1561 		phb->controller_ops.disable_device(dev);
1562 }
1563 
1564 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1565 {
1566 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1567 }
1568 
1569 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1570 					struct list_head *resources)
1571 {
1572 	struct resource *res;
1573 	resource_size_t offset;
1574 	int i;
1575 
1576 	/* Hookup PHB IO resource */
1577 	res = &hose->io_resource;
1578 
1579 	if (!res->flags) {
1580 		pr_debug("PCI: I/O resource not set for host"
1581 			 " bridge %pOF (domain %d)\n",
1582 			 hose->dn, hose->global_number);
1583 	} else {
1584 		offset = pcibios_io_space_offset(hose);
1585 
1586 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1587 			 res, (unsigned long long)offset);
1588 		pci_add_resource_offset(resources, res, offset);
1589 	}
1590 
1591 	/* Hookup PHB Memory resources */
1592 	for (i = 0; i < 3; ++i) {
1593 		res = &hose->mem_resources[i];
1594 		if (!res->flags)
1595 			continue;
1596 
1597 		offset = hose->mem_offset[i];
1598 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1599 			 res, (unsigned long long)offset);
1600 
1601 		pci_add_resource_offset(resources, res, offset);
1602 	}
1603 }
1604 
1605 /*
1606  * Null PCI config access functions, for the case when we can't
1607  * find a hose.
1608  */
1609 #define NULL_PCI_OP(rw, size, type)					\
1610 static int								\
1611 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1612 {									\
1613 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1614 }
1615 
1616 static int
1617 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1618 		 int len, u32 *val)
1619 {
1620 	return PCIBIOS_DEVICE_NOT_FOUND;
1621 }
1622 
1623 static int
1624 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1625 		  int len, u32 val)
1626 {
1627 	return PCIBIOS_DEVICE_NOT_FOUND;
1628 }
1629 
1630 static struct pci_ops null_pci_ops =
1631 {
1632 	.read = null_read_config,
1633 	.write = null_write_config,
1634 };
1635 
1636 /*
1637  * These functions are used early on before PCI scanning is done
1638  * and all of the pci_dev and pci_bus structures have been created.
1639  */
1640 static struct pci_bus *
1641 fake_pci_bus(struct pci_controller *hose, int busnr)
1642 {
1643 	static struct pci_bus bus;
1644 
1645 	if (hose == NULL) {
1646 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1647 	}
1648 	bus.number = busnr;
1649 	bus.sysdata = hose;
1650 	bus.ops = hose? hose->ops: &null_pci_ops;
1651 	return &bus;
1652 }
1653 
1654 #define EARLY_PCI_OP(rw, size, type)					\
1655 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1656 			       int devfn, int offset, type value)	\
1657 {									\
1658 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1659 					    devfn, offset, value);	\
1660 }
1661 
1662 EARLY_PCI_OP(read, byte, u8 *)
1663 EARLY_PCI_OP(read, word, u16 *)
1664 EARLY_PCI_OP(read, dword, u32 *)
1665 EARLY_PCI_OP(write, byte, u8)
1666 EARLY_PCI_OP(write, word, u16)
1667 EARLY_PCI_OP(write, dword, u32)
1668 
1669 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1670 			  int cap)
1671 {
1672 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1673 }
1674 
1675 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1676 {
1677 	struct pci_controller *hose = bus->sysdata;
1678 
1679 	return of_node_get(hose->dn);
1680 }
1681 
1682 /**
1683  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1684  * @hose: Pointer to the PCI host controller instance structure
1685  */
1686 void pcibios_scan_phb(struct pci_controller *hose)
1687 {
1688 	LIST_HEAD(resources);
1689 	struct pci_bus *bus;
1690 	struct device_node *node = hose->dn;
1691 	int mode;
1692 
1693 	pr_debug("PCI: Scanning PHB %pOF\n", node);
1694 
1695 	/* Get some IO space for the new PHB */
1696 	pcibios_setup_phb_io_space(hose);
1697 
1698 	/* Wire up PHB bus resources */
1699 	pcibios_setup_phb_resources(hose, &resources);
1700 
1701 	hose->busn.start = hose->first_busno;
1702 	hose->busn.end	 = hose->last_busno;
1703 	hose->busn.flags = IORESOURCE_BUS;
1704 	pci_add_resource(&resources, &hose->busn);
1705 
1706 	/* Create an empty bus for the toplevel */
1707 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1708 				  hose->ops, hose, &resources);
1709 	if (bus == NULL) {
1710 		pr_err("Failed to create bus for PCI domain %04x\n",
1711 			hose->global_number);
1712 		pci_free_resource_list(&resources);
1713 		return;
1714 	}
1715 	hose->bus = bus;
1716 
1717 	/* Get probe mode and perform scan */
1718 	mode = PCI_PROBE_NORMAL;
1719 	if (node && hose->controller_ops.probe_mode)
1720 		mode = hose->controller_ops.probe_mode(bus);
1721 	pr_debug("    probe mode: %d\n", mode);
1722 	if (mode == PCI_PROBE_DEVTREE)
1723 		of_scan_bus(node, bus);
1724 
1725 	if (mode == PCI_PROBE_NORMAL) {
1726 		pci_bus_update_busn_res_end(bus, 255);
1727 		hose->last_busno = pci_scan_child_bus(bus);
1728 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1729 	}
1730 
1731 	/* Platform gets a chance to do some global fixups before
1732 	 * we proceed to resource allocation
1733 	 */
1734 	if (ppc_md.pcibios_fixup_phb)
1735 		ppc_md.pcibios_fixup_phb(hose);
1736 
1737 	/* Configure PCI Express settings */
1738 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1739 		struct pci_bus *child;
1740 		list_for_each_entry(child, &bus->children, node)
1741 			pcie_bus_configure_settings(child);
1742 	}
1743 }
1744 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1745 
1746 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1747 {
1748 	int i, class = dev->class >> 8;
1749 	/* When configured as agent, programing interface = 1 */
1750 	int prog_if = dev->class & 0xf;
1751 
1752 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1753 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1754 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1755 		(prog_if == 0) &&
1756 		(dev->bus->parent == NULL)) {
1757 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1758 			dev->resource[i].start = 0;
1759 			dev->resource[i].end = 0;
1760 			dev->resource[i].flags = 0;
1761 		}
1762 	}
1763 }
1764 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1765 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1766