xref: /openbmc/linux/arch/powerpc/kernel/pci-common.c (revision 8ffdff6a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Contains common pci routines for ALL ppc platform
4  * (based on pci_32.c and pci_64.c)
5  *
6  * Port for PPC64 David Engebretsen, IBM Corp.
7  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
8  *
9  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
10  *   Rework, based on alpha PCI code.
11  *
12  * Common pmac/prep/chrp pci routines. -- Cort
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/string.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/of_address.h>
22 #include <linux/of_pci.h>
23 #include <linux/mm.h>
24 #include <linux/shmem_fs.h>
25 #include <linux/list.h>
26 #include <linux/syscalls.h>
27 #include <linux/irq.h>
28 #include <linux/vmalloc.h>
29 #include <linux/slab.h>
30 #include <linux/vgaarb.h>
31 #include <linux/numa.h>
32 
33 #include <asm/processor.h>
34 #include <asm/io.h>
35 #include <asm/prom.h>
36 #include <asm/pci-bridge.h>
37 #include <asm/byteorder.h>
38 #include <asm/machdep.h>
39 #include <asm/ppc-pci.h>
40 #include <asm/eeh.h>
41 
42 #include "../../../drivers/pci/pci.h"
43 
44 /* hose_spinlock protects accesses to the the phb_bitmap. */
45 static DEFINE_SPINLOCK(hose_spinlock);
46 LIST_HEAD(hose_list);
47 
48 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
49 #define MAX_PHBS 0x10000
50 
51 /*
52  * For dynamic PHB numbering: used/free PHBs tracking bitmap.
53  * Accesses to this bitmap should be protected by hose_spinlock.
54  */
55 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
56 
57 /* ISA Memory physical address */
58 resource_size_t isa_mem_base;
59 EXPORT_SYMBOL(isa_mem_base);
60 
61 
62 static const struct dma_map_ops *pci_dma_ops;
63 
64 void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
65 {
66 	pci_dma_ops = dma_ops;
67 }
68 
69 /*
70  * This function should run under locking protection, specifically
71  * hose_spinlock.
72  */
73 static int get_phb_number(struct device_node *dn)
74 {
75 	int ret, phb_id = -1;
76 	u32 prop_32;
77 	u64 prop;
78 
79 	/*
80 	 * Try fixed PHB numbering first, by checking archs and reading
81 	 * the respective device-tree properties. Firstly, try powernv by
82 	 * reading "ibm,opal-phbid", only present in OPAL environment.
83 	 */
84 	ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
85 	if (ret) {
86 		ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
87 		prop = prop_32;
88 	}
89 
90 	if (!ret)
91 		phb_id = (int)(prop & (MAX_PHBS - 1));
92 
93 	/* We need to be sure to not use the same PHB number twice. */
94 	if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
95 		return phb_id;
96 
97 	/*
98 	 * If not pseries nor powernv, or if fixed PHB numbering tried to add
99 	 * the same PHB number twice, then fallback to dynamic PHB numbering.
100 	 */
101 	phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
102 	BUG_ON(phb_id >= MAX_PHBS);
103 	set_bit(phb_id, phb_bitmap);
104 
105 	return phb_id;
106 }
107 
108 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
109 {
110 	struct pci_controller *phb;
111 
112 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
113 	if (phb == NULL)
114 		return NULL;
115 	spin_lock(&hose_spinlock);
116 	phb->global_number = get_phb_number(dev);
117 	list_add_tail(&phb->list_node, &hose_list);
118 	spin_unlock(&hose_spinlock);
119 	phb->dn = dev;
120 	phb->is_dynamic = slab_is_available();
121 #ifdef CONFIG_PPC64
122 	if (dev) {
123 		int nid = of_node_to_nid(dev);
124 
125 		if (nid < 0 || !node_online(nid))
126 			nid = NUMA_NO_NODE;
127 
128 		PHB_SET_NODE(phb, nid);
129 	}
130 #endif
131 	return phb;
132 }
133 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
134 
135 void pcibios_free_controller(struct pci_controller *phb)
136 {
137 	spin_lock(&hose_spinlock);
138 
139 	/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
140 	if (phb->global_number < MAX_PHBS)
141 		clear_bit(phb->global_number, phb_bitmap);
142 
143 	list_del(&phb->list_node);
144 	spin_unlock(&hose_spinlock);
145 
146 	if (phb->is_dynamic)
147 		kfree(phb);
148 }
149 EXPORT_SYMBOL_GPL(pcibios_free_controller);
150 
151 /*
152  * This function is used to call pcibios_free_controller()
153  * in a deferred manner: a callback from the PCI subsystem.
154  *
155  * _*DO NOT*_ call pcibios_free_controller() explicitly if
156  * this is used (or it may access an invalid *phb pointer).
157  *
158  * The callback occurs when all references to the root bus
159  * are dropped (e.g., child buses/devices and their users).
160  *
161  * It's called as .release_fn() of 'struct pci_host_bridge'
162  * which is associated with the 'struct pci_controller.bus'
163  * (root bus) - it expects .release_data to hold a pointer
164  * to 'struct pci_controller'.
165  *
166  * In order to use it, register .release_fn()/release_data
167  * like this:
168  *
169  * pci_set_host_bridge_release(bridge,
170  *                             pcibios_free_controller_deferred
171  *                             (void *) phb);
172  *
173  * e.g. in the pcibios_root_bridge_prepare() callback from
174  * pci_create_root_bus().
175  */
176 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
177 {
178 	struct pci_controller *phb = (struct pci_controller *)
179 					 bridge->release_data;
180 
181 	pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
182 
183 	pcibios_free_controller(phb);
184 }
185 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
186 
187 /*
188  * The function is used to return the minimal alignment
189  * for memory or I/O windows of the associated P2P bridge.
190  * By default, 4KiB alignment for I/O windows and 1MiB for
191  * memory windows.
192  */
193 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
194 					 unsigned long type)
195 {
196 	struct pci_controller *phb = pci_bus_to_host(bus);
197 
198 	if (phb->controller_ops.window_alignment)
199 		return phb->controller_ops.window_alignment(bus, type);
200 
201 	/*
202 	 * PCI core will figure out the default
203 	 * alignment: 4KiB for I/O and 1MiB for
204 	 * memory window.
205 	 */
206 	return 1;
207 }
208 
209 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
210 {
211 	struct pci_controller *hose = pci_bus_to_host(bus);
212 
213 	if (hose->controller_ops.setup_bridge)
214 		hose->controller_ops.setup_bridge(bus, type);
215 }
216 
217 void pcibios_reset_secondary_bus(struct pci_dev *dev)
218 {
219 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
220 
221 	if (phb->controller_ops.reset_secondary_bus) {
222 		phb->controller_ops.reset_secondary_bus(dev);
223 		return;
224 	}
225 
226 	pci_reset_secondary_bus(dev);
227 }
228 
229 resource_size_t pcibios_default_alignment(void)
230 {
231 	if (ppc_md.pcibios_default_alignment)
232 		return ppc_md.pcibios_default_alignment();
233 
234 	return 0;
235 }
236 
237 #ifdef CONFIG_PCI_IOV
238 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
239 {
240 	if (ppc_md.pcibios_iov_resource_alignment)
241 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
242 
243 	return pci_iov_resource_size(pdev, resno);
244 }
245 
246 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
247 {
248 	if (ppc_md.pcibios_sriov_enable)
249 		return ppc_md.pcibios_sriov_enable(pdev, num_vfs);
250 
251 	return 0;
252 }
253 
254 int pcibios_sriov_disable(struct pci_dev *pdev)
255 {
256 	if (ppc_md.pcibios_sriov_disable)
257 		return ppc_md.pcibios_sriov_disable(pdev);
258 
259 	return 0;
260 }
261 
262 #endif /* CONFIG_PCI_IOV */
263 
264 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
265 {
266 #ifdef CONFIG_PPC64
267 	return hose->pci_io_size;
268 #else
269 	return resource_size(&hose->io_resource);
270 #endif
271 }
272 
273 int pcibios_vaddr_is_ioport(void __iomem *address)
274 {
275 	int ret = 0;
276 	struct pci_controller *hose;
277 	resource_size_t size;
278 
279 	spin_lock(&hose_spinlock);
280 	list_for_each_entry(hose, &hose_list, list_node) {
281 		size = pcibios_io_size(hose);
282 		if (address >= hose->io_base_virt &&
283 		    address < (hose->io_base_virt + size)) {
284 			ret = 1;
285 			break;
286 		}
287 	}
288 	spin_unlock(&hose_spinlock);
289 	return ret;
290 }
291 
292 unsigned long pci_address_to_pio(phys_addr_t address)
293 {
294 	struct pci_controller *hose;
295 	resource_size_t size;
296 	unsigned long ret = ~0;
297 
298 	spin_lock(&hose_spinlock);
299 	list_for_each_entry(hose, &hose_list, list_node) {
300 		size = pcibios_io_size(hose);
301 		if (address >= hose->io_base_phys &&
302 		    address < (hose->io_base_phys + size)) {
303 			unsigned long base =
304 				(unsigned long)hose->io_base_virt - _IO_BASE;
305 			ret = base + (address - hose->io_base_phys);
306 			break;
307 		}
308 	}
309 	spin_unlock(&hose_spinlock);
310 
311 	return ret;
312 }
313 EXPORT_SYMBOL_GPL(pci_address_to_pio);
314 
315 /*
316  * Return the domain number for this bus.
317  */
318 int pci_domain_nr(struct pci_bus *bus)
319 {
320 	struct pci_controller *hose = pci_bus_to_host(bus);
321 
322 	return hose->global_number;
323 }
324 EXPORT_SYMBOL(pci_domain_nr);
325 
326 /* This routine is meant to be used early during boot, when the
327  * PCI bus numbers have not yet been assigned, and you need to
328  * issue PCI config cycles to an OF device.
329  * It could also be used to "fix" RTAS config cycles if you want
330  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
331  * config cycles.
332  */
333 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
334 {
335 	while(node) {
336 		struct pci_controller *hose, *tmp;
337 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
338 			if (hose->dn == node)
339 				return hose;
340 		node = node->parent;
341 	}
342 	return NULL;
343 }
344 
345 struct pci_controller *pci_find_controller_for_domain(int domain_nr)
346 {
347 	struct pci_controller *hose;
348 
349 	list_for_each_entry(hose, &hose_list, list_node)
350 		if (hose->global_number == domain_nr)
351 			return hose;
352 
353 	return NULL;
354 }
355 
356 struct pci_intx_virq {
357 	int virq;
358 	struct kref kref;
359 	struct list_head list_node;
360 };
361 
362 static LIST_HEAD(intx_list);
363 static DEFINE_MUTEX(intx_mutex);
364 
365 static void ppc_pci_intx_release(struct kref *kref)
366 {
367 	struct pci_intx_virq *vi = container_of(kref, struct pci_intx_virq, kref);
368 
369 	list_del(&vi->list_node);
370 	irq_dispose_mapping(vi->virq);
371 	kfree(vi);
372 }
373 
374 static int ppc_pci_unmap_irq_line(struct notifier_block *nb,
375 			       unsigned long action, void *data)
376 {
377 	struct pci_dev *pdev = to_pci_dev(data);
378 
379 	if (action == BUS_NOTIFY_DEL_DEVICE) {
380 		struct pci_intx_virq *vi;
381 
382 		mutex_lock(&intx_mutex);
383 		list_for_each_entry(vi, &intx_list, list_node) {
384 			if (vi->virq == pdev->irq) {
385 				kref_put(&vi->kref, ppc_pci_intx_release);
386 				break;
387 			}
388 		}
389 		mutex_unlock(&intx_mutex);
390 	}
391 
392 	return NOTIFY_DONE;
393 }
394 
395 static struct notifier_block ppc_pci_unmap_irq_notifier = {
396 	.notifier_call = ppc_pci_unmap_irq_line,
397 };
398 
399 static int ppc_pci_register_irq_notifier(void)
400 {
401 	return bus_register_notifier(&pci_bus_type, &ppc_pci_unmap_irq_notifier);
402 }
403 arch_initcall(ppc_pci_register_irq_notifier);
404 
405 /*
406  * Reads the interrupt pin to determine if interrupt is use by card.
407  * If the interrupt is used, then gets the interrupt line from the
408  * openfirmware and sets it in the pci_dev and pci_config line.
409  */
410 static int pci_read_irq_line(struct pci_dev *pci_dev)
411 {
412 	int virq;
413 	struct pci_intx_virq *vi, *vitmp;
414 
415 	/* Preallocate vi as rewind is complex if this fails after mapping */
416 	vi = kzalloc(sizeof(struct pci_intx_virq), GFP_KERNEL);
417 	if (!vi)
418 		return -1;
419 
420 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
421 
422 	/* Try to get a mapping from the device-tree */
423 	virq = of_irq_parse_and_map_pci(pci_dev, 0, 0);
424 	if (virq <= 0) {
425 		u8 line, pin;
426 
427 		/* If that fails, lets fallback to what is in the config
428 		 * space and map that through the default controller. We
429 		 * also set the type to level low since that's what PCI
430 		 * interrupts are. If your platform does differently, then
431 		 * either provide a proper interrupt tree or don't use this
432 		 * function.
433 		 */
434 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
435 			goto error_exit;
436 		if (pin == 0)
437 			goto error_exit;
438 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
439 		    line == 0xff || line == 0) {
440 			goto error_exit;
441 		}
442 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
443 			 line, pin);
444 
445 		virq = irq_create_mapping(NULL, line);
446 		if (virq)
447 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
448 	}
449 
450 	if (!virq) {
451 		pr_debug(" Failed to map !\n");
452 		goto error_exit;
453 	}
454 
455 	pr_debug(" Mapped to linux irq %d\n", virq);
456 
457 	pci_dev->irq = virq;
458 
459 	mutex_lock(&intx_mutex);
460 	list_for_each_entry(vitmp, &intx_list, list_node) {
461 		if (vitmp->virq == virq) {
462 			kref_get(&vitmp->kref);
463 			kfree(vi);
464 			vi = NULL;
465 			break;
466 		}
467 	}
468 	if (vi) {
469 		vi->virq = virq;
470 		kref_init(&vi->kref);
471 		list_add_tail(&vi->list_node, &intx_list);
472 	}
473 	mutex_unlock(&intx_mutex);
474 
475 	return 0;
476 error_exit:
477 	kfree(vi);
478 	return -1;
479 }
480 
481 /*
482  * Platform support for /proc/bus/pci/X/Y mmap()s.
483  *  -- paulus.
484  */
485 int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma)
486 {
487 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
488 	resource_size_t ioaddr = pci_resource_start(pdev, bar);
489 
490 	if (!hose)
491 		return -EINVAL;
492 
493 	/* Convert to an offset within this PCI controller */
494 	ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE;
495 
496 	vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT;
497 	return 0;
498 }
499 
500 /*
501  * This one is used by /dev/mem and fbdev who have no clue about the
502  * PCI device, it tries to find the PCI device first and calls the
503  * above routine
504  */
505 pgprot_t pci_phys_mem_access_prot(struct file *file,
506 				  unsigned long pfn,
507 				  unsigned long size,
508 				  pgprot_t prot)
509 {
510 	struct pci_dev *pdev = NULL;
511 	struct resource *found = NULL;
512 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
513 	int i;
514 
515 	if (page_is_ram(pfn))
516 		return prot;
517 
518 	prot = pgprot_noncached(prot);
519 	for_each_pci_dev(pdev) {
520 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
521 			struct resource *rp = &pdev->resource[i];
522 			int flags = rp->flags;
523 
524 			/* Active and same type? */
525 			if ((flags & IORESOURCE_MEM) == 0)
526 				continue;
527 			/* In the range of this resource? */
528 			if (offset < (rp->start & PAGE_MASK) ||
529 			    offset > rp->end)
530 				continue;
531 			found = rp;
532 			break;
533 		}
534 		if (found)
535 			break;
536 	}
537 	if (found) {
538 		if (found->flags & IORESOURCE_PREFETCH)
539 			prot = pgprot_noncached_wc(prot);
540 		pci_dev_put(pdev);
541 	}
542 
543 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
544 		 (unsigned long long)offset, pgprot_val(prot));
545 
546 	return prot;
547 }
548 
549 /* This provides legacy IO read access on a bus */
550 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
551 {
552 	unsigned long offset;
553 	struct pci_controller *hose = pci_bus_to_host(bus);
554 	struct resource *rp = &hose->io_resource;
555 	void __iomem *addr;
556 
557 	/* Check if port can be supported by that bus. We only check
558 	 * the ranges of the PHB though, not the bus itself as the rules
559 	 * for forwarding legacy cycles down bridges are not our problem
560 	 * here. So if the host bridge supports it, we do it.
561 	 */
562 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
563 	offset += port;
564 
565 	if (!(rp->flags & IORESOURCE_IO))
566 		return -ENXIO;
567 	if (offset < rp->start || (offset + size) > rp->end)
568 		return -ENXIO;
569 	addr = hose->io_base_virt + port;
570 
571 	switch(size) {
572 	case 1:
573 		*((u8 *)val) = in_8(addr);
574 		return 1;
575 	case 2:
576 		if (port & 1)
577 			return -EINVAL;
578 		*((u16 *)val) = in_le16(addr);
579 		return 2;
580 	case 4:
581 		if (port & 3)
582 			return -EINVAL;
583 		*((u32 *)val) = in_le32(addr);
584 		return 4;
585 	}
586 	return -EINVAL;
587 }
588 
589 /* This provides legacy IO write access on a bus */
590 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
591 {
592 	unsigned long offset;
593 	struct pci_controller *hose = pci_bus_to_host(bus);
594 	struct resource *rp = &hose->io_resource;
595 	void __iomem *addr;
596 
597 	/* Check if port can be supported by that bus. We only check
598 	 * the ranges of the PHB though, not the bus itself as the rules
599 	 * for forwarding legacy cycles down bridges are not our problem
600 	 * here. So if the host bridge supports it, we do it.
601 	 */
602 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
603 	offset += port;
604 
605 	if (!(rp->flags & IORESOURCE_IO))
606 		return -ENXIO;
607 	if (offset < rp->start || (offset + size) > rp->end)
608 		return -ENXIO;
609 	addr = hose->io_base_virt + port;
610 
611 	/* WARNING: The generic code is idiotic. It gets passed a pointer
612 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
613 	 * as a u32, which means that we have to correct the location of
614 	 * the data read within those 32 bits for size 1 and 2
615 	 */
616 	switch(size) {
617 	case 1:
618 		out_8(addr, val >> 24);
619 		return 1;
620 	case 2:
621 		if (port & 1)
622 			return -EINVAL;
623 		out_le16(addr, val >> 16);
624 		return 2;
625 	case 4:
626 		if (port & 3)
627 			return -EINVAL;
628 		out_le32(addr, val);
629 		return 4;
630 	}
631 	return -EINVAL;
632 }
633 
634 /* This provides legacy IO or memory mmap access on a bus */
635 int pci_mmap_legacy_page_range(struct pci_bus *bus,
636 			       struct vm_area_struct *vma,
637 			       enum pci_mmap_state mmap_state)
638 {
639 	struct pci_controller *hose = pci_bus_to_host(bus);
640 	resource_size_t offset =
641 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
642 	resource_size_t size = vma->vm_end - vma->vm_start;
643 	struct resource *rp;
644 
645 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
646 		 pci_domain_nr(bus), bus->number,
647 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
648 		 (unsigned long long)offset,
649 		 (unsigned long long)(offset + size - 1));
650 
651 	if (mmap_state == pci_mmap_mem) {
652 		/* Hack alert !
653 		 *
654 		 * Because X is lame and can fail starting if it gets an error trying
655 		 * to mmap legacy_mem (instead of just moving on without legacy memory
656 		 * access) we fake it here by giving it anonymous memory, effectively
657 		 * behaving just like /dev/zero
658 		 */
659 		if ((offset + size) > hose->isa_mem_size) {
660 			printk(KERN_DEBUG
661 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
662 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
663 			if (vma->vm_flags & VM_SHARED)
664 				return shmem_zero_setup(vma);
665 			return 0;
666 		}
667 		offset += hose->isa_mem_phys;
668 	} else {
669 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
670 		unsigned long roffset = offset + io_offset;
671 		rp = &hose->io_resource;
672 		if (!(rp->flags & IORESOURCE_IO))
673 			return -ENXIO;
674 		if (roffset < rp->start || (roffset + size) > rp->end)
675 			return -ENXIO;
676 		offset += hose->io_base_phys;
677 	}
678 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
679 
680 	vma->vm_pgoff = offset >> PAGE_SHIFT;
681 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
682 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
683 			       vma->vm_end - vma->vm_start,
684 			       vma->vm_page_prot);
685 }
686 
687 void pci_resource_to_user(const struct pci_dev *dev, int bar,
688 			  const struct resource *rsrc,
689 			  resource_size_t *start, resource_size_t *end)
690 {
691 	struct pci_bus_region region;
692 
693 	if (rsrc->flags & IORESOURCE_IO) {
694 		pcibios_resource_to_bus(dev->bus, &region,
695 					(struct resource *) rsrc);
696 		*start = region.start;
697 		*end = region.end;
698 		return;
699 	}
700 
701 	/* We pass a CPU physical address to userland for MMIO instead of a
702 	 * BAR value because X is lame and expects to be able to use that
703 	 * to pass to /dev/mem!
704 	 *
705 	 * That means we may have 64-bit values where some apps only expect
706 	 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
707 	 */
708 	*start = rsrc->start;
709 	*end = rsrc->end;
710 }
711 
712 /**
713  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
714  * @hose: newly allocated pci_controller to be setup
715  * @dev: device node of the host bridge
716  * @primary: set if primary bus (32 bits only, soon to be deprecated)
717  *
718  * This function will parse the "ranges" property of a PCI host bridge device
719  * node and setup the resource mapping of a pci controller based on its
720  * content.
721  *
722  * Life would be boring if it wasn't for a few issues that we have to deal
723  * with here:
724  *
725  *   - We can only cope with one IO space range and up to 3 Memory space
726  *     ranges. However, some machines (thanks Apple !) tend to split their
727  *     space into lots of small contiguous ranges. So we have to coalesce.
728  *
729  *   - Some busses have IO space not starting at 0, which causes trouble with
730  *     the way we do our IO resource renumbering. The code somewhat deals with
731  *     it for 64 bits but I would expect problems on 32 bits.
732  *
733  *   - Some 32 bits platforms such as 4xx can have physical space larger than
734  *     32 bits so we need to use 64 bits values for the parsing
735  */
736 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
737 				  struct device_node *dev, int primary)
738 {
739 	int memno = 0;
740 	struct resource *res;
741 	struct of_pci_range range;
742 	struct of_pci_range_parser parser;
743 
744 	printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
745 	       dev, primary ? "(primary)" : "");
746 
747 	/* Check for ranges property */
748 	if (of_pci_range_parser_init(&parser, dev))
749 		return;
750 
751 	/* Parse it */
752 	for_each_of_pci_range(&parser, &range) {
753 		/* If we failed translation or got a zero-sized region
754 		 * (some FW try to feed us with non sensical zero sized regions
755 		 * such as power3 which look like some kind of attempt at exposing
756 		 * the VGA memory hole)
757 		 */
758 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
759 			continue;
760 
761 		/* Act based on address space type */
762 		res = NULL;
763 		switch (range.flags & IORESOURCE_TYPE_BITS) {
764 		case IORESOURCE_IO:
765 			printk(KERN_INFO
766 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
767 			       range.cpu_addr, range.cpu_addr + range.size - 1,
768 			       range.pci_addr);
769 
770 			/* We support only one IO range */
771 			if (hose->pci_io_size) {
772 				printk(KERN_INFO
773 				       " \\--> Skipped (too many) !\n");
774 				continue;
775 			}
776 #ifdef CONFIG_PPC32
777 			/* On 32 bits, limit I/O space to 16MB */
778 			if (range.size > 0x01000000)
779 				range.size = 0x01000000;
780 
781 			/* 32 bits needs to map IOs here */
782 			hose->io_base_virt = ioremap(range.cpu_addr,
783 						range.size);
784 
785 			/* Expect trouble if pci_addr is not 0 */
786 			if (primary)
787 				isa_io_base =
788 					(unsigned long)hose->io_base_virt;
789 #endif /* CONFIG_PPC32 */
790 			/* pci_io_size and io_base_phys always represent IO
791 			 * space starting at 0 so we factor in pci_addr
792 			 */
793 			hose->pci_io_size = range.pci_addr + range.size;
794 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
795 
796 			/* Build resource */
797 			res = &hose->io_resource;
798 			range.cpu_addr = range.pci_addr;
799 			break;
800 		case IORESOURCE_MEM:
801 			printk(KERN_INFO
802 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
803 			       range.cpu_addr, range.cpu_addr + range.size - 1,
804 			       range.pci_addr,
805 			       (range.flags & IORESOURCE_PREFETCH) ?
806 			       "Prefetch" : "");
807 
808 			/* We support only 3 memory ranges */
809 			if (memno >= 3) {
810 				printk(KERN_INFO
811 				       " \\--> Skipped (too many) !\n");
812 				continue;
813 			}
814 			/* Handles ISA memory hole space here */
815 			if (range.pci_addr == 0) {
816 				if (primary || isa_mem_base == 0)
817 					isa_mem_base = range.cpu_addr;
818 				hose->isa_mem_phys = range.cpu_addr;
819 				hose->isa_mem_size = range.size;
820 			}
821 
822 			/* Build resource */
823 			hose->mem_offset[memno] = range.cpu_addr -
824 							range.pci_addr;
825 			res = &hose->mem_resources[memno++];
826 			break;
827 		}
828 		if (res != NULL) {
829 			res->name = dev->full_name;
830 			res->flags = range.flags;
831 			res->start = range.cpu_addr;
832 			res->end = range.cpu_addr + range.size - 1;
833 			res->parent = res->child = res->sibling = NULL;
834 		}
835 	}
836 }
837 
838 /* Decide whether to display the domain number in /proc */
839 int pci_proc_domain(struct pci_bus *bus)
840 {
841 	struct pci_controller *hose = pci_bus_to_host(bus);
842 
843 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
844 		return 0;
845 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
846 		return hose->global_number != 0;
847 	return 1;
848 }
849 
850 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
851 {
852 	if (ppc_md.pcibios_root_bridge_prepare)
853 		return ppc_md.pcibios_root_bridge_prepare(bridge);
854 
855 	return 0;
856 }
857 
858 /* This header fixup will do the resource fixup for all devices as they are
859  * probed, but not for bridge ranges
860  */
861 static void pcibios_fixup_resources(struct pci_dev *dev)
862 {
863 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
864 	int i;
865 
866 	if (!hose) {
867 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
868 		       pci_name(dev));
869 		return;
870 	}
871 
872 	if (dev->is_virtfn)
873 		return;
874 
875 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
876 		struct resource *res = dev->resource + i;
877 		struct pci_bus_region reg;
878 		if (!res->flags)
879 			continue;
880 
881 		/* If we're going to re-assign everything, we mark all resources
882 		 * as unset (and 0-base them). In addition, we mark BARs starting
883 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
884 		 * since in that case, we don't want to re-assign anything
885 		 */
886 		pcibios_resource_to_bus(dev->bus, &reg, res);
887 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
888 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
889 			/* Only print message if not re-assigning */
890 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
891 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
892 					 pci_name(dev), i, res);
893 			res->end -= res->start;
894 			res->start = 0;
895 			res->flags |= IORESOURCE_UNSET;
896 			continue;
897 		}
898 
899 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
900 	}
901 
902 	/* Call machine specific resource fixup */
903 	if (ppc_md.pcibios_fixup_resources)
904 		ppc_md.pcibios_fixup_resources(dev);
905 }
906 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
907 
908 /* This function tries to figure out if a bridge resource has been initialized
909  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
910  * things go more smoothly when it gets it right. It should covers cases such
911  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
912  */
913 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
914 						 struct resource *res)
915 {
916 	struct pci_controller *hose = pci_bus_to_host(bus);
917 	struct pci_dev *dev = bus->self;
918 	resource_size_t offset;
919 	struct pci_bus_region region;
920 	u16 command;
921 	int i;
922 
923 	/* We don't do anything if PCI_PROBE_ONLY is set */
924 	if (pci_has_flag(PCI_PROBE_ONLY))
925 		return 0;
926 
927 	/* Job is a bit different between memory and IO */
928 	if (res->flags & IORESOURCE_MEM) {
929 		pcibios_resource_to_bus(dev->bus, &region, res);
930 
931 		/* If the BAR is non-0 then it's probably been initialized */
932 		if (region.start != 0)
933 			return 0;
934 
935 		/* The BAR is 0, let's check if memory decoding is enabled on
936 		 * the bridge. If not, we consider it unassigned
937 		 */
938 		pci_read_config_word(dev, PCI_COMMAND, &command);
939 		if ((command & PCI_COMMAND_MEMORY) == 0)
940 			return 1;
941 
942 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
943 		 * resources covers that starting address (0 then it's good enough for
944 		 * us for memory space)
945 		 */
946 		for (i = 0; i < 3; i++) {
947 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
948 			    hose->mem_resources[i].start == hose->mem_offset[i])
949 				return 0;
950 		}
951 
952 		/* Well, it starts at 0 and we know it will collide so we may as
953 		 * well consider it as unassigned. That covers the Apple case.
954 		 */
955 		return 1;
956 	} else {
957 		/* If the BAR is non-0, then we consider it assigned */
958 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
959 		if (((res->start - offset) & 0xfffffffful) != 0)
960 			return 0;
961 
962 		/* Here, we are a bit different than memory as typically IO space
963 		 * starting at low addresses -is- valid. What we do instead if that
964 		 * we consider as unassigned anything that doesn't have IO enabled
965 		 * in the PCI command register, and that's it.
966 		 */
967 		pci_read_config_word(dev, PCI_COMMAND, &command);
968 		if (command & PCI_COMMAND_IO)
969 			return 0;
970 
971 		/* It's starting at 0 and IO is disabled in the bridge, consider
972 		 * it unassigned
973 		 */
974 		return 1;
975 	}
976 }
977 
978 /* Fixup resources of a PCI<->PCI bridge */
979 static void pcibios_fixup_bridge(struct pci_bus *bus)
980 {
981 	struct resource *res;
982 	int i;
983 
984 	struct pci_dev *dev = bus->self;
985 
986 	pci_bus_for_each_resource(bus, res, i) {
987 		if (!res || !res->flags)
988 			continue;
989 		if (i >= 3 && bus->self->transparent)
990 			continue;
991 
992 		/* If we're going to reassign everything, we can
993 		 * shrink the P2P resource to have size as being
994 		 * of 0 in order to save space.
995 		 */
996 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
997 			res->flags |= IORESOURCE_UNSET;
998 			res->start = 0;
999 			res->end = -1;
1000 			continue;
1001 		}
1002 
1003 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
1004 
1005 		/* Try to detect uninitialized P2P bridge resources,
1006 		 * and clear them out so they get re-assigned later
1007 		 */
1008 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
1009 			res->flags = 0;
1010 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
1011 		}
1012 	}
1013 }
1014 
1015 void pcibios_setup_bus_self(struct pci_bus *bus)
1016 {
1017 	struct pci_controller *phb;
1018 
1019 	/* Fix up the bus resources for P2P bridges */
1020 	if (bus->self != NULL)
1021 		pcibios_fixup_bridge(bus);
1022 
1023 	/* Platform specific bus fixups. This is currently only used
1024 	 * by fsl_pci and I'm hoping to get rid of it at some point
1025 	 */
1026 	if (ppc_md.pcibios_fixup_bus)
1027 		ppc_md.pcibios_fixup_bus(bus);
1028 
1029 	/* Setup bus DMA mappings */
1030 	phb = pci_bus_to_host(bus);
1031 	if (phb->controller_ops.dma_bus_setup)
1032 		phb->controller_ops.dma_bus_setup(bus);
1033 }
1034 
1035 void pcibios_bus_add_device(struct pci_dev *dev)
1036 {
1037 	struct pci_controller *phb;
1038 	/* Fixup NUMA node as it may not be setup yet by the generic
1039 	 * code and is needed by the DMA init
1040 	 */
1041 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1042 
1043 	/* Hook up default DMA ops */
1044 	set_dma_ops(&dev->dev, pci_dma_ops);
1045 	dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET;
1046 
1047 	/* Additional platform DMA/iommu setup */
1048 	phb = pci_bus_to_host(dev->bus);
1049 	if (phb->controller_ops.dma_dev_setup)
1050 		phb->controller_ops.dma_dev_setup(dev);
1051 
1052 	/* Read default IRQs and fixup if necessary */
1053 	pci_read_irq_line(dev);
1054 	if (ppc_md.pci_irq_fixup)
1055 		ppc_md.pci_irq_fixup(dev);
1056 
1057 	if (ppc_md.pcibios_bus_add_device)
1058 		ppc_md.pcibios_bus_add_device(dev);
1059 }
1060 
1061 int pcibios_add_device(struct pci_dev *dev)
1062 {
1063 #ifdef CONFIG_PCI_IOV
1064 	if (ppc_md.pcibios_fixup_sriov)
1065 		ppc_md.pcibios_fixup_sriov(dev);
1066 #endif /* CONFIG_PCI_IOV */
1067 
1068 	return 0;
1069 }
1070 
1071 void pcibios_set_master(struct pci_dev *dev)
1072 {
1073 	/* No special bus mastering setup handling */
1074 }
1075 
1076 void pcibios_fixup_bus(struct pci_bus *bus)
1077 {
1078 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1079 	 * bases. This is -not- called when generating the PCI tree from
1080 	 * the OF device-tree.
1081 	 */
1082 	pci_read_bridge_bases(bus);
1083 
1084 	/* Now fixup the bus bus */
1085 	pcibios_setup_bus_self(bus);
1086 }
1087 EXPORT_SYMBOL(pcibios_fixup_bus);
1088 
1089 static int skip_isa_ioresource_align(struct pci_dev *dev)
1090 {
1091 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1092 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1093 		return 1;
1094 	return 0;
1095 }
1096 
1097 /*
1098  * We need to avoid collisions with `mirrored' VGA ports
1099  * and other strange ISA hardware, so we always want the
1100  * addresses to be allocated in the 0x000-0x0ff region
1101  * modulo 0x400.
1102  *
1103  * Why? Because some silly external IO cards only decode
1104  * the low 10 bits of the IO address. The 0x00-0xff region
1105  * is reserved for motherboard devices that decode all 16
1106  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1107  * but we want to try to avoid allocating at 0x2900-0x2bff
1108  * which might have be mirrored at 0x0100-0x03ff..
1109  */
1110 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1111 				resource_size_t size, resource_size_t align)
1112 {
1113 	struct pci_dev *dev = data;
1114 	resource_size_t start = res->start;
1115 
1116 	if (res->flags & IORESOURCE_IO) {
1117 		if (skip_isa_ioresource_align(dev))
1118 			return start;
1119 		if (start & 0x300)
1120 			start = (start + 0x3ff) & ~0x3ff;
1121 	}
1122 
1123 	return start;
1124 }
1125 EXPORT_SYMBOL(pcibios_align_resource);
1126 
1127 /*
1128  * Reparent resource children of pr that conflict with res
1129  * under res, and make res replace those children.
1130  */
1131 static int reparent_resources(struct resource *parent,
1132 				     struct resource *res)
1133 {
1134 	struct resource *p, **pp;
1135 	struct resource **firstpp = NULL;
1136 
1137 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1138 		if (p->end < res->start)
1139 			continue;
1140 		if (res->end < p->start)
1141 			break;
1142 		if (p->start < res->start || p->end > res->end)
1143 			return -1;	/* not completely contained */
1144 		if (firstpp == NULL)
1145 			firstpp = pp;
1146 	}
1147 	if (firstpp == NULL)
1148 		return -1;	/* didn't find any conflicting entries? */
1149 	res->parent = parent;
1150 	res->child = *firstpp;
1151 	res->sibling = *pp;
1152 	*firstpp = res;
1153 	*pp = NULL;
1154 	for (p = res->child; p != NULL; p = p->sibling) {
1155 		p->parent = res;
1156 		pr_debug("PCI: Reparented %s %pR under %s\n",
1157 			 p->name, p, res->name);
1158 	}
1159 	return 0;
1160 }
1161 
1162 /*
1163  *  Handle resources of PCI devices.  If the world were perfect, we could
1164  *  just allocate all the resource regions and do nothing more.  It isn't.
1165  *  On the other hand, we cannot just re-allocate all devices, as it would
1166  *  require us to know lots of host bridge internals.  So we attempt to
1167  *  keep as much of the original configuration as possible, but tweak it
1168  *  when it's found to be wrong.
1169  *
1170  *  Known BIOS problems we have to work around:
1171  *	- I/O or memory regions not configured
1172  *	- regions configured, but not enabled in the command register
1173  *	- bogus I/O addresses above 64K used
1174  *	- expansion ROMs left enabled (this may sound harmless, but given
1175  *	  the fact the PCI specs explicitly allow address decoders to be
1176  *	  shared between expansion ROMs and other resource regions, it's
1177  *	  at least dangerous)
1178  *
1179  *  Our solution:
1180  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1181  *	    This gives us fixed barriers on where we can allocate.
1182  *	(2) Allocate resources for all enabled devices.  If there is
1183  *	    a collision, just mark the resource as unallocated. Also
1184  *	    disable expansion ROMs during this step.
1185  *	(3) Try to allocate resources for disabled devices.  If the
1186  *	    resources were assigned correctly, everything goes well,
1187  *	    if they weren't, they won't disturb allocation of other
1188  *	    resources.
1189  *	(4) Assign new addresses to resources which were either
1190  *	    not configured at all or misconfigured.  If explicitly
1191  *	    requested by the user, configure expansion ROM address
1192  *	    as well.
1193  */
1194 
1195 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1196 {
1197 	struct pci_bus *b;
1198 	int i;
1199 	struct resource *res, *pr;
1200 
1201 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1202 		 pci_domain_nr(bus), bus->number);
1203 
1204 	pci_bus_for_each_resource(bus, res, i) {
1205 		if (!res || !res->flags || res->start > res->end || res->parent)
1206 			continue;
1207 
1208 		/* If the resource was left unset at this point, we clear it */
1209 		if (res->flags & IORESOURCE_UNSET)
1210 			goto clear_resource;
1211 
1212 		if (bus->parent == NULL)
1213 			pr = (res->flags & IORESOURCE_IO) ?
1214 				&ioport_resource : &iomem_resource;
1215 		else {
1216 			pr = pci_find_parent_resource(bus->self, res);
1217 			if (pr == res) {
1218 				/* this happens when the generic PCI
1219 				 * code (wrongly) decides that this
1220 				 * bridge is transparent  -- paulus
1221 				 */
1222 				continue;
1223 			}
1224 		}
1225 
1226 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1227 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1228 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1229 
1230 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1231 			struct pci_dev *dev = bus->self;
1232 
1233 			if (request_resource(pr, res) == 0)
1234 				continue;
1235 			/*
1236 			 * Must be a conflict with an existing entry.
1237 			 * Move that entry (or entries) under the
1238 			 * bridge resource and try again.
1239 			 */
1240 			if (reparent_resources(pr, res) == 0)
1241 				continue;
1242 
1243 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1244 			    pci_claim_bridge_resource(dev,
1245 						i + PCI_BRIDGE_RESOURCES) == 0)
1246 				continue;
1247 		}
1248 		pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n",
1249 			i, bus->number);
1250 	clear_resource:
1251 		/* The resource might be figured out when doing
1252 		 * reassignment based on the resources required
1253 		 * by the downstream PCI devices. Here we set
1254 		 * the size of the resource to be 0 in order to
1255 		 * save more space.
1256 		 */
1257 		res->start = 0;
1258 		res->end = -1;
1259 		res->flags = 0;
1260 	}
1261 
1262 	list_for_each_entry(b, &bus->children, node)
1263 		pcibios_allocate_bus_resources(b);
1264 }
1265 
1266 static inline void alloc_resource(struct pci_dev *dev, int idx)
1267 {
1268 	struct resource *pr, *r = &dev->resource[idx];
1269 
1270 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1271 		 pci_name(dev), idx, r);
1272 
1273 	pr = pci_find_parent_resource(dev, r);
1274 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1275 	    request_resource(pr, r) < 0) {
1276 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1277 		       " of device %s, will remap\n", idx, pci_name(dev));
1278 		if (pr)
1279 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1280 		/* We'll assign a new address later */
1281 		r->flags |= IORESOURCE_UNSET;
1282 		r->end -= r->start;
1283 		r->start = 0;
1284 	}
1285 }
1286 
1287 static void __init pcibios_allocate_resources(int pass)
1288 {
1289 	struct pci_dev *dev = NULL;
1290 	int idx, disabled;
1291 	u16 command;
1292 	struct resource *r;
1293 
1294 	for_each_pci_dev(dev) {
1295 		pci_read_config_word(dev, PCI_COMMAND, &command);
1296 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1297 			r = &dev->resource[idx];
1298 			if (r->parent)		/* Already allocated */
1299 				continue;
1300 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1301 				continue;	/* Not assigned at all */
1302 			/* We only allocate ROMs on pass 1 just in case they
1303 			 * have been screwed up by firmware
1304 			 */
1305 			if (idx == PCI_ROM_RESOURCE )
1306 				disabled = 1;
1307 			if (r->flags & IORESOURCE_IO)
1308 				disabled = !(command & PCI_COMMAND_IO);
1309 			else
1310 				disabled = !(command & PCI_COMMAND_MEMORY);
1311 			if (pass == disabled)
1312 				alloc_resource(dev, idx);
1313 		}
1314 		if (pass)
1315 			continue;
1316 		r = &dev->resource[PCI_ROM_RESOURCE];
1317 		if (r->flags) {
1318 			/* Turn the ROM off, leave the resource region,
1319 			 * but keep it unregistered.
1320 			 */
1321 			u32 reg;
1322 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1323 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1324 				pr_debug("PCI: Switching off ROM of %s\n",
1325 					 pci_name(dev));
1326 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1327 				pci_write_config_dword(dev, dev->rom_base_reg,
1328 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1329 			}
1330 		}
1331 	}
1332 }
1333 
1334 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1335 {
1336 	struct pci_controller *hose = pci_bus_to_host(bus);
1337 	resource_size_t	offset;
1338 	struct resource *res, *pres;
1339 	int i;
1340 
1341 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1342 
1343 	/* Check for IO */
1344 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1345 		goto no_io;
1346 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1347 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1348 	BUG_ON(res == NULL);
1349 	res->name = "Legacy IO";
1350 	res->flags = IORESOURCE_IO;
1351 	res->start = offset;
1352 	res->end = (offset + 0xfff) & 0xfffffffful;
1353 	pr_debug("Candidate legacy IO: %pR\n", res);
1354 	if (request_resource(&hose->io_resource, res)) {
1355 		printk(KERN_DEBUG
1356 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1357 		       pci_domain_nr(bus), bus->number, res);
1358 		kfree(res);
1359 	}
1360 
1361  no_io:
1362 	/* Check for memory */
1363 	for (i = 0; i < 3; i++) {
1364 		pres = &hose->mem_resources[i];
1365 		offset = hose->mem_offset[i];
1366 		if (!(pres->flags & IORESOURCE_MEM))
1367 			continue;
1368 		pr_debug("hose mem res: %pR\n", pres);
1369 		if ((pres->start - offset) <= 0xa0000 &&
1370 		    (pres->end - offset) >= 0xbffff)
1371 			break;
1372 	}
1373 	if (i >= 3)
1374 		return;
1375 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1376 	BUG_ON(res == NULL);
1377 	res->name = "Legacy VGA memory";
1378 	res->flags = IORESOURCE_MEM;
1379 	res->start = 0xa0000 + offset;
1380 	res->end = 0xbffff + offset;
1381 	pr_debug("Candidate VGA memory: %pR\n", res);
1382 	if (request_resource(pres, res)) {
1383 		printk(KERN_DEBUG
1384 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1385 		       pci_domain_nr(bus), bus->number, res);
1386 		kfree(res);
1387 	}
1388 }
1389 
1390 void __init pcibios_resource_survey(void)
1391 {
1392 	struct pci_bus *b;
1393 
1394 	/* Allocate and assign resources */
1395 	list_for_each_entry(b, &pci_root_buses, node)
1396 		pcibios_allocate_bus_resources(b);
1397 	if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1398 		pcibios_allocate_resources(0);
1399 		pcibios_allocate_resources(1);
1400 	}
1401 
1402 	/* Before we start assigning unassigned resource, we try to reserve
1403 	 * the low IO area and the VGA memory area if they intersect the
1404 	 * bus available resources to avoid allocating things on top of them
1405 	 */
1406 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1407 		list_for_each_entry(b, &pci_root_buses, node)
1408 			pcibios_reserve_legacy_regions(b);
1409 	}
1410 
1411 	/* Now, if the platform didn't decide to blindly trust the firmware,
1412 	 * we proceed to assigning things that were left unassigned
1413 	 */
1414 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1415 		pr_debug("PCI: Assigning unassigned resources...\n");
1416 		pci_assign_unassigned_resources();
1417 	}
1418 }
1419 
1420 /* This is used by the PCI hotplug driver to allocate resource
1421  * of newly plugged busses. We can try to consolidate with the
1422  * rest of the code later, for now, keep it as-is as our main
1423  * resource allocation function doesn't deal with sub-trees yet.
1424  */
1425 void pcibios_claim_one_bus(struct pci_bus *bus)
1426 {
1427 	struct pci_dev *dev;
1428 	struct pci_bus *child_bus;
1429 
1430 	list_for_each_entry(dev, &bus->devices, bus_list) {
1431 		int i;
1432 
1433 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1434 			struct resource *r = &dev->resource[i];
1435 
1436 			if (r->parent || !r->start || !r->flags)
1437 				continue;
1438 
1439 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1440 				 pci_name(dev), i, r);
1441 
1442 			if (pci_claim_resource(dev, i) == 0)
1443 				continue;
1444 
1445 			pci_claim_bridge_resource(dev, i);
1446 		}
1447 	}
1448 
1449 	list_for_each_entry(child_bus, &bus->children, node)
1450 		pcibios_claim_one_bus(child_bus);
1451 }
1452 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1453 
1454 
1455 /* pcibios_finish_adding_to_bus
1456  *
1457  * This is to be called by the hotplug code after devices have been
1458  * added to a bus, this include calling it for a PHB that is just
1459  * being added
1460  */
1461 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1462 {
1463 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1464 		 pci_domain_nr(bus), bus->number);
1465 
1466 	/* Allocate bus and devices resources */
1467 	pcibios_allocate_bus_resources(bus);
1468 	pcibios_claim_one_bus(bus);
1469 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1470 		if (bus->self)
1471 			pci_assign_unassigned_bridge_resources(bus->self);
1472 		else
1473 			pci_assign_unassigned_bus_resources(bus);
1474 	}
1475 
1476 	/* Add new devices to global lists.  Register in proc, sysfs. */
1477 	pci_bus_add_devices(bus);
1478 }
1479 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1480 
1481 int pcibios_enable_device(struct pci_dev *dev, int mask)
1482 {
1483 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1484 
1485 	if (phb->controller_ops.enable_device_hook)
1486 		if (!phb->controller_ops.enable_device_hook(dev))
1487 			return -EINVAL;
1488 
1489 	return pci_enable_resources(dev, mask);
1490 }
1491 
1492 void pcibios_disable_device(struct pci_dev *dev)
1493 {
1494 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1495 
1496 	if (phb->controller_ops.disable_device)
1497 		phb->controller_ops.disable_device(dev);
1498 }
1499 
1500 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1501 {
1502 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1503 }
1504 
1505 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1506 					struct list_head *resources)
1507 {
1508 	struct resource *res;
1509 	resource_size_t offset;
1510 	int i;
1511 
1512 	/* Hookup PHB IO resource */
1513 	res = &hose->io_resource;
1514 
1515 	if (!res->flags) {
1516 		pr_debug("PCI: I/O resource not set for host"
1517 			 " bridge %pOF (domain %d)\n",
1518 			 hose->dn, hose->global_number);
1519 	} else {
1520 		offset = pcibios_io_space_offset(hose);
1521 
1522 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1523 			 res, (unsigned long long)offset);
1524 		pci_add_resource_offset(resources, res, offset);
1525 	}
1526 
1527 	/* Hookup PHB Memory resources */
1528 	for (i = 0; i < 3; ++i) {
1529 		res = &hose->mem_resources[i];
1530 		if (!res->flags)
1531 			continue;
1532 
1533 		offset = hose->mem_offset[i];
1534 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1535 			 res, (unsigned long long)offset);
1536 
1537 		pci_add_resource_offset(resources, res, offset);
1538 	}
1539 }
1540 
1541 /*
1542  * Null PCI config access functions, for the case when we can't
1543  * find a hose.
1544  */
1545 #define NULL_PCI_OP(rw, size, type)					\
1546 static int								\
1547 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1548 {									\
1549 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1550 }
1551 
1552 static int
1553 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1554 		 int len, u32 *val)
1555 {
1556 	return PCIBIOS_DEVICE_NOT_FOUND;
1557 }
1558 
1559 static int
1560 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1561 		  int len, u32 val)
1562 {
1563 	return PCIBIOS_DEVICE_NOT_FOUND;
1564 }
1565 
1566 static struct pci_ops null_pci_ops =
1567 {
1568 	.read = null_read_config,
1569 	.write = null_write_config,
1570 };
1571 
1572 /*
1573  * These functions are used early on before PCI scanning is done
1574  * and all of the pci_dev and pci_bus structures have been created.
1575  */
1576 static struct pci_bus *
1577 fake_pci_bus(struct pci_controller *hose, int busnr)
1578 {
1579 	static struct pci_bus bus;
1580 
1581 	if (hose == NULL) {
1582 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1583 	}
1584 	bus.number = busnr;
1585 	bus.sysdata = hose;
1586 	bus.ops = hose? hose->ops: &null_pci_ops;
1587 	return &bus;
1588 }
1589 
1590 #define EARLY_PCI_OP(rw, size, type)					\
1591 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1592 			       int devfn, int offset, type value)	\
1593 {									\
1594 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1595 					    devfn, offset, value);	\
1596 }
1597 
1598 EARLY_PCI_OP(read, byte, u8 *)
1599 EARLY_PCI_OP(read, word, u16 *)
1600 EARLY_PCI_OP(read, dword, u32 *)
1601 EARLY_PCI_OP(write, byte, u8)
1602 EARLY_PCI_OP(write, word, u16)
1603 EARLY_PCI_OP(write, dword, u32)
1604 
1605 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1606 			  int cap)
1607 {
1608 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1609 }
1610 
1611 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1612 {
1613 	struct pci_controller *hose = bus->sysdata;
1614 
1615 	return of_node_get(hose->dn);
1616 }
1617 
1618 /**
1619  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1620  * @hose: Pointer to the PCI host controller instance structure
1621  */
1622 void pcibios_scan_phb(struct pci_controller *hose)
1623 {
1624 	LIST_HEAD(resources);
1625 	struct pci_bus *bus;
1626 	struct device_node *node = hose->dn;
1627 	int mode;
1628 
1629 	pr_debug("PCI: Scanning PHB %pOF\n", node);
1630 
1631 	/* Get some IO space for the new PHB */
1632 	pcibios_setup_phb_io_space(hose);
1633 
1634 	/* Wire up PHB bus resources */
1635 	pcibios_setup_phb_resources(hose, &resources);
1636 
1637 	hose->busn.start = hose->first_busno;
1638 	hose->busn.end	 = hose->last_busno;
1639 	hose->busn.flags = IORESOURCE_BUS;
1640 	pci_add_resource(&resources, &hose->busn);
1641 
1642 	/* Create an empty bus for the toplevel */
1643 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1644 				  hose->ops, hose, &resources);
1645 	if (bus == NULL) {
1646 		pr_err("Failed to create bus for PCI domain %04x\n",
1647 			hose->global_number);
1648 		pci_free_resource_list(&resources);
1649 		return;
1650 	}
1651 	hose->bus = bus;
1652 
1653 	/* Get probe mode and perform scan */
1654 	mode = PCI_PROBE_NORMAL;
1655 	if (node && hose->controller_ops.probe_mode)
1656 		mode = hose->controller_ops.probe_mode(bus);
1657 	pr_debug("    probe mode: %d\n", mode);
1658 	if (mode == PCI_PROBE_DEVTREE)
1659 		of_scan_bus(node, bus);
1660 
1661 	if (mode == PCI_PROBE_NORMAL) {
1662 		pci_bus_update_busn_res_end(bus, 255);
1663 		hose->last_busno = pci_scan_child_bus(bus);
1664 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1665 	}
1666 
1667 	/* Platform gets a chance to do some global fixups before
1668 	 * we proceed to resource allocation
1669 	 */
1670 	if (ppc_md.pcibios_fixup_phb)
1671 		ppc_md.pcibios_fixup_phb(hose);
1672 
1673 	/* Configure PCI Express settings */
1674 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1675 		struct pci_bus *child;
1676 		list_for_each_entry(child, &bus->children, node)
1677 			pcie_bus_configure_settings(child);
1678 	}
1679 }
1680 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1681 
1682 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1683 {
1684 	int i, class = dev->class >> 8;
1685 	/* When configured as agent, programing interface = 1 */
1686 	int prog_if = dev->class & 0xf;
1687 
1688 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1689 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1690 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1691 		(prog_if == 0) &&
1692 		(dev->bus->parent == NULL)) {
1693 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1694 			dev->resource[i].start = 0;
1695 			dev->resource[i].end = 0;
1696 			dev->resource[i].flags = 0;
1697 		}
1698 	}
1699 }
1700 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1701 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1702 
1703 
1704 static int __init discover_phbs(void)
1705 {
1706 	if (ppc_md.discover_phbs)
1707 		ppc_md.discover_phbs();
1708 
1709 	return 0;
1710 }
1711 core_initcall(discover_phbs);
1712