xref: /openbmc/linux/arch/powerpc/kernel/pci-common.c (revision 82e6fdd6)
1 /*
2  * Contains common pci routines for ALL ppc platform
3  * (based on pci_32.c and pci_64.c)
4  *
5  * Port for PPC64 David Engebretsen, IBM Corp.
6  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7  *
8  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9  *   Rework, based on alpha PCI code.
10  *
11  * Common pmac/prep/chrp pci routines. -- Cort
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/list.h>
30 #include <linux/syscalls.h>
31 #include <linux/irq.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35 
36 #include <asm/processor.h>
37 #include <asm/io.h>
38 #include <asm/prom.h>
39 #include <asm/pci-bridge.h>
40 #include <asm/byteorder.h>
41 #include <asm/machdep.h>
42 #include <asm/ppc-pci.h>
43 #include <asm/eeh.h>
44 
45 /* hose_spinlock protects accesses to the the phb_bitmap. */
46 static DEFINE_SPINLOCK(hose_spinlock);
47 LIST_HEAD(hose_list);
48 
49 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
50 #define MAX_PHBS 0x10000
51 
52 /*
53  * For dynamic PHB numbering: used/free PHBs tracking bitmap.
54  * Accesses to this bitmap should be protected by hose_spinlock.
55  */
56 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
57 
58 /* ISA Memory physical address */
59 resource_size_t isa_mem_base;
60 EXPORT_SYMBOL(isa_mem_base);
61 
62 
63 static const struct dma_map_ops *pci_dma_ops = &dma_nommu_ops;
64 
65 void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
66 {
67 	pci_dma_ops = dma_ops;
68 }
69 
70 const struct dma_map_ops *get_pci_dma_ops(void)
71 {
72 	return pci_dma_ops;
73 }
74 EXPORT_SYMBOL(get_pci_dma_ops);
75 
76 /*
77  * This function should run under locking protection, specifically
78  * hose_spinlock.
79  */
80 static int get_phb_number(struct device_node *dn)
81 {
82 	int ret, phb_id = -1;
83 	u32 prop_32;
84 	u64 prop;
85 
86 	/*
87 	 * Try fixed PHB numbering first, by checking archs and reading
88 	 * the respective device-tree properties. Firstly, try powernv by
89 	 * reading "ibm,opal-phbid", only present in OPAL environment.
90 	 */
91 	ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
92 	if (ret) {
93 		ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
94 		prop = prop_32;
95 	}
96 
97 	if (!ret)
98 		phb_id = (int)(prop & (MAX_PHBS - 1));
99 
100 	/* We need to be sure to not use the same PHB number twice. */
101 	if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
102 		return phb_id;
103 
104 	/*
105 	 * If not pseries nor powernv, or if fixed PHB numbering tried to add
106 	 * the same PHB number twice, then fallback to dynamic PHB numbering.
107 	 */
108 	phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
109 	BUG_ON(phb_id >= MAX_PHBS);
110 	set_bit(phb_id, phb_bitmap);
111 
112 	return phb_id;
113 }
114 
115 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
116 {
117 	struct pci_controller *phb;
118 
119 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
120 	if (phb == NULL)
121 		return NULL;
122 	spin_lock(&hose_spinlock);
123 	phb->global_number = get_phb_number(dev);
124 	list_add_tail(&phb->list_node, &hose_list);
125 	spin_unlock(&hose_spinlock);
126 	phb->dn = dev;
127 	phb->is_dynamic = slab_is_available();
128 #ifdef CONFIG_PPC64
129 	if (dev) {
130 		int nid = of_node_to_nid(dev);
131 
132 		if (nid < 0 || !node_online(nid))
133 			nid = -1;
134 
135 		PHB_SET_NODE(phb, nid);
136 	}
137 #endif
138 	return phb;
139 }
140 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
141 
142 void pcibios_free_controller(struct pci_controller *phb)
143 {
144 	spin_lock(&hose_spinlock);
145 
146 	/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
147 	if (phb->global_number < MAX_PHBS)
148 		clear_bit(phb->global_number, phb_bitmap);
149 
150 	list_del(&phb->list_node);
151 	spin_unlock(&hose_spinlock);
152 
153 	if (phb->is_dynamic)
154 		kfree(phb);
155 }
156 EXPORT_SYMBOL_GPL(pcibios_free_controller);
157 
158 /*
159  * This function is used to call pcibios_free_controller()
160  * in a deferred manner: a callback from the PCI subsystem.
161  *
162  * _*DO NOT*_ call pcibios_free_controller() explicitly if
163  * this is used (or it may access an invalid *phb pointer).
164  *
165  * The callback occurs when all references to the root bus
166  * are dropped (e.g., child buses/devices and their users).
167  *
168  * It's called as .release_fn() of 'struct pci_host_bridge'
169  * which is associated with the 'struct pci_controller.bus'
170  * (root bus) - it expects .release_data to hold a pointer
171  * to 'struct pci_controller'.
172  *
173  * In order to use it, register .release_fn()/release_data
174  * like this:
175  *
176  * pci_set_host_bridge_release(bridge,
177  *                             pcibios_free_controller_deferred
178  *                             (void *) phb);
179  *
180  * e.g. in the pcibios_root_bridge_prepare() callback from
181  * pci_create_root_bus().
182  */
183 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
184 {
185 	struct pci_controller *phb = (struct pci_controller *)
186 					 bridge->release_data;
187 
188 	pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
189 
190 	pcibios_free_controller(phb);
191 }
192 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
193 
194 /*
195  * The function is used to return the minimal alignment
196  * for memory or I/O windows of the associated P2P bridge.
197  * By default, 4KiB alignment for I/O windows and 1MiB for
198  * memory windows.
199  */
200 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
201 					 unsigned long type)
202 {
203 	struct pci_controller *phb = pci_bus_to_host(bus);
204 
205 	if (phb->controller_ops.window_alignment)
206 		return phb->controller_ops.window_alignment(bus, type);
207 
208 	/*
209 	 * PCI core will figure out the default
210 	 * alignment: 4KiB for I/O and 1MiB for
211 	 * memory window.
212 	 */
213 	return 1;
214 }
215 
216 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
217 {
218 	struct pci_controller *hose = pci_bus_to_host(bus);
219 
220 	if (hose->controller_ops.setup_bridge)
221 		hose->controller_ops.setup_bridge(bus, type);
222 }
223 
224 void pcibios_reset_secondary_bus(struct pci_dev *dev)
225 {
226 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
227 
228 	if (phb->controller_ops.reset_secondary_bus) {
229 		phb->controller_ops.reset_secondary_bus(dev);
230 		return;
231 	}
232 
233 	pci_reset_secondary_bus(dev);
234 }
235 
236 resource_size_t pcibios_default_alignment(void)
237 {
238 	if (ppc_md.pcibios_default_alignment)
239 		return ppc_md.pcibios_default_alignment();
240 
241 	return 0;
242 }
243 
244 #ifdef CONFIG_PCI_IOV
245 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
246 {
247 	if (ppc_md.pcibios_iov_resource_alignment)
248 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
249 
250 	return pci_iov_resource_size(pdev, resno);
251 }
252 
253 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
254 {
255 	if (ppc_md.pcibios_sriov_enable)
256 		return ppc_md.pcibios_sriov_enable(pdev, num_vfs);
257 
258 	return 0;
259 }
260 
261 int pcibios_sriov_disable(struct pci_dev *pdev)
262 {
263 	if (ppc_md.pcibios_sriov_disable)
264 		return ppc_md.pcibios_sriov_disable(pdev);
265 
266 	return 0;
267 }
268 
269 #endif /* CONFIG_PCI_IOV */
270 
271 void pcibios_bus_add_device(struct pci_dev *pdev)
272 {
273 	if (ppc_md.pcibios_bus_add_device)
274 		ppc_md.pcibios_bus_add_device(pdev);
275 }
276 
277 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
278 {
279 #ifdef CONFIG_PPC64
280 	return hose->pci_io_size;
281 #else
282 	return resource_size(&hose->io_resource);
283 #endif
284 }
285 
286 int pcibios_vaddr_is_ioport(void __iomem *address)
287 {
288 	int ret = 0;
289 	struct pci_controller *hose;
290 	resource_size_t size;
291 
292 	spin_lock(&hose_spinlock);
293 	list_for_each_entry(hose, &hose_list, list_node) {
294 		size = pcibios_io_size(hose);
295 		if (address >= hose->io_base_virt &&
296 		    address < (hose->io_base_virt + size)) {
297 			ret = 1;
298 			break;
299 		}
300 	}
301 	spin_unlock(&hose_spinlock);
302 	return ret;
303 }
304 
305 unsigned long pci_address_to_pio(phys_addr_t address)
306 {
307 	struct pci_controller *hose;
308 	resource_size_t size;
309 	unsigned long ret = ~0;
310 
311 	spin_lock(&hose_spinlock);
312 	list_for_each_entry(hose, &hose_list, list_node) {
313 		size = pcibios_io_size(hose);
314 		if (address >= hose->io_base_phys &&
315 		    address < (hose->io_base_phys + size)) {
316 			unsigned long base =
317 				(unsigned long)hose->io_base_virt - _IO_BASE;
318 			ret = base + (address - hose->io_base_phys);
319 			break;
320 		}
321 	}
322 	spin_unlock(&hose_spinlock);
323 
324 	return ret;
325 }
326 EXPORT_SYMBOL_GPL(pci_address_to_pio);
327 
328 /*
329  * Return the domain number for this bus.
330  */
331 int pci_domain_nr(struct pci_bus *bus)
332 {
333 	struct pci_controller *hose = pci_bus_to_host(bus);
334 
335 	return hose->global_number;
336 }
337 EXPORT_SYMBOL(pci_domain_nr);
338 
339 /* This routine is meant to be used early during boot, when the
340  * PCI bus numbers have not yet been assigned, and you need to
341  * issue PCI config cycles to an OF device.
342  * It could also be used to "fix" RTAS config cycles if you want
343  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
344  * config cycles.
345  */
346 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
347 {
348 	while(node) {
349 		struct pci_controller *hose, *tmp;
350 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
351 			if (hose->dn == node)
352 				return hose;
353 		node = node->parent;
354 	}
355 	return NULL;
356 }
357 
358 /*
359  * Reads the interrupt pin to determine if interrupt is use by card.
360  * If the interrupt is used, then gets the interrupt line from the
361  * openfirmware and sets it in the pci_dev and pci_config line.
362  */
363 static int pci_read_irq_line(struct pci_dev *pci_dev)
364 {
365 	int virq;
366 
367 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
368 
369 #ifdef DEBUG
370 	memset(&oirq, 0xff, sizeof(oirq));
371 #endif
372 	/* Try to get a mapping from the device-tree */
373 	virq = of_irq_parse_and_map_pci(pci_dev, 0, 0);
374 	if (virq <= 0) {
375 		u8 line, pin;
376 
377 		/* If that fails, lets fallback to what is in the config
378 		 * space and map that through the default controller. We
379 		 * also set the type to level low since that's what PCI
380 		 * interrupts are. If your platform does differently, then
381 		 * either provide a proper interrupt tree or don't use this
382 		 * function.
383 		 */
384 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
385 			return -1;
386 		if (pin == 0)
387 			return -1;
388 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
389 		    line == 0xff || line == 0) {
390 			return -1;
391 		}
392 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
393 			 line, pin);
394 
395 		virq = irq_create_mapping(NULL, line);
396 		if (virq)
397 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
398 	}
399 
400 	if (!virq) {
401 		pr_debug(" Failed to map !\n");
402 		return -1;
403 	}
404 
405 	pr_debug(" Mapped to linux irq %d\n", virq);
406 
407 	pci_dev->irq = virq;
408 
409 	return 0;
410 }
411 
412 /*
413  * Platform support for /proc/bus/pci/X/Y mmap()s,
414  * modelled on the sparc64 implementation by Dave Miller.
415  *  -- paulus.
416  */
417 
418 /*
419  * Adjust vm_pgoff of VMA such that it is the physical page offset
420  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
421  *
422  * Basically, the user finds the base address for his device which he wishes
423  * to mmap.  They read the 32-bit value from the config space base register,
424  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
425  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
426  *
427  * Returns negative error code on failure, zero on success.
428  */
429 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
430 					       resource_size_t *offset,
431 					       enum pci_mmap_state mmap_state)
432 {
433 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
434 	unsigned long io_offset = 0;
435 	int i, res_bit;
436 
437 	if (hose == NULL)
438 		return NULL;		/* should never happen */
439 
440 	/* If memory, add on the PCI bridge address offset */
441 	if (mmap_state == pci_mmap_mem) {
442 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
443 		*offset += hose->pci_mem_offset;
444 #endif
445 		res_bit = IORESOURCE_MEM;
446 	} else {
447 		io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
448 		*offset += io_offset;
449 		res_bit = IORESOURCE_IO;
450 	}
451 
452 	/*
453 	 * Check that the offset requested corresponds to one of the
454 	 * resources of the device.
455 	 */
456 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
457 		struct resource *rp = &dev->resource[i];
458 		int flags = rp->flags;
459 
460 		/* treat ROM as memory (should be already) */
461 		if (i == PCI_ROM_RESOURCE)
462 			flags |= IORESOURCE_MEM;
463 
464 		/* Active and same type? */
465 		if ((flags & res_bit) == 0)
466 			continue;
467 
468 		/* In the range of this resource? */
469 		if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
470 			continue;
471 
472 		/* found it! construct the final physical address */
473 		if (mmap_state == pci_mmap_io)
474 			*offset += hose->io_base_phys - io_offset;
475 		return rp;
476 	}
477 
478 	return NULL;
479 }
480 
481 /*
482  * This one is used by /dev/mem and fbdev who have no clue about the
483  * PCI device, it tries to find the PCI device first and calls the
484  * above routine
485  */
486 pgprot_t pci_phys_mem_access_prot(struct file *file,
487 				  unsigned long pfn,
488 				  unsigned long size,
489 				  pgprot_t prot)
490 {
491 	struct pci_dev *pdev = NULL;
492 	struct resource *found = NULL;
493 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
494 	int i;
495 
496 	if (page_is_ram(pfn))
497 		return prot;
498 
499 	prot = pgprot_noncached(prot);
500 	for_each_pci_dev(pdev) {
501 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
502 			struct resource *rp = &pdev->resource[i];
503 			int flags = rp->flags;
504 
505 			/* Active and same type? */
506 			if ((flags & IORESOURCE_MEM) == 0)
507 				continue;
508 			/* In the range of this resource? */
509 			if (offset < (rp->start & PAGE_MASK) ||
510 			    offset > rp->end)
511 				continue;
512 			found = rp;
513 			break;
514 		}
515 		if (found)
516 			break;
517 	}
518 	if (found) {
519 		if (found->flags & IORESOURCE_PREFETCH)
520 			prot = pgprot_noncached_wc(prot);
521 		pci_dev_put(pdev);
522 	}
523 
524 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
525 		 (unsigned long long)offset, pgprot_val(prot));
526 
527 	return prot;
528 }
529 
530 
531 /*
532  * Perform the actual remap of the pages for a PCI device mapping, as
533  * appropriate for this architecture.  The region in the process to map
534  * is described by vm_start and vm_end members of VMA, the base physical
535  * address is found in vm_pgoff.
536  * The pci device structure is provided so that architectures may make mapping
537  * decisions on a per-device or per-bus basis.
538  *
539  * Returns a negative error code on failure, zero on success.
540  */
541 int pci_mmap_page_range(struct pci_dev *dev, int bar,
542 			struct vm_area_struct *vma,
543 			enum pci_mmap_state mmap_state, int write_combine)
544 {
545 	resource_size_t offset =
546 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
547 	struct resource *rp;
548 	int ret;
549 
550 	rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
551 	if (rp == NULL)
552 		return -EINVAL;
553 
554 	vma->vm_pgoff = offset >> PAGE_SHIFT;
555 	if (write_combine)
556 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
557 	else
558 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
559 
560 	ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
561 			       vma->vm_end - vma->vm_start, vma->vm_page_prot);
562 
563 	return ret;
564 }
565 
566 /* This provides legacy IO read access on a bus */
567 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
568 {
569 	unsigned long offset;
570 	struct pci_controller *hose = pci_bus_to_host(bus);
571 	struct resource *rp = &hose->io_resource;
572 	void __iomem *addr;
573 
574 	/* Check if port can be supported by that bus. We only check
575 	 * the ranges of the PHB though, not the bus itself as the rules
576 	 * for forwarding legacy cycles down bridges are not our problem
577 	 * here. So if the host bridge supports it, we do it.
578 	 */
579 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
580 	offset += port;
581 
582 	if (!(rp->flags & IORESOURCE_IO))
583 		return -ENXIO;
584 	if (offset < rp->start || (offset + size) > rp->end)
585 		return -ENXIO;
586 	addr = hose->io_base_virt + port;
587 
588 	switch(size) {
589 	case 1:
590 		*((u8 *)val) = in_8(addr);
591 		return 1;
592 	case 2:
593 		if (port & 1)
594 			return -EINVAL;
595 		*((u16 *)val) = in_le16(addr);
596 		return 2;
597 	case 4:
598 		if (port & 3)
599 			return -EINVAL;
600 		*((u32 *)val) = in_le32(addr);
601 		return 4;
602 	}
603 	return -EINVAL;
604 }
605 
606 /* This provides legacy IO write access on a bus */
607 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
608 {
609 	unsigned long offset;
610 	struct pci_controller *hose = pci_bus_to_host(bus);
611 	struct resource *rp = &hose->io_resource;
612 	void __iomem *addr;
613 
614 	/* Check if port can be supported by that bus. We only check
615 	 * the ranges of the PHB though, not the bus itself as the rules
616 	 * for forwarding legacy cycles down bridges are not our problem
617 	 * here. So if the host bridge supports it, we do it.
618 	 */
619 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
620 	offset += port;
621 
622 	if (!(rp->flags & IORESOURCE_IO))
623 		return -ENXIO;
624 	if (offset < rp->start || (offset + size) > rp->end)
625 		return -ENXIO;
626 	addr = hose->io_base_virt + port;
627 
628 	/* WARNING: The generic code is idiotic. It gets passed a pointer
629 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
630 	 * as a u32, which means that we have to correct the location of
631 	 * the data read within those 32 bits for size 1 and 2
632 	 */
633 	switch(size) {
634 	case 1:
635 		out_8(addr, val >> 24);
636 		return 1;
637 	case 2:
638 		if (port & 1)
639 			return -EINVAL;
640 		out_le16(addr, val >> 16);
641 		return 2;
642 	case 4:
643 		if (port & 3)
644 			return -EINVAL;
645 		out_le32(addr, val);
646 		return 4;
647 	}
648 	return -EINVAL;
649 }
650 
651 /* This provides legacy IO or memory mmap access on a bus */
652 int pci_mmap_legacy_page_range(struct pci_bus *bus,
653 			       struct vm_area_struct *vma,
654 			       enum pci_mmap_state mmap_state)
655 {
656 	struct pci_controller *hose = pci_bus_to_host(bus);
657 	resource_size_t offset =
658 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
659 	resource_size_t size = vma->vm_end - vma->vm_start;
660 	struct resource *rp;
661 
662 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
663 		 pci_domain_nr(bus), bus->number,
664 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
665 		 (unsigned long long)offset,
666 		 (unsigned long long)(offset + size - 1));
667 
668 	if (mmap_state == pci_mmap_mem) {
669 		/* Hack alert !
670 		 *
671 		 * Because X is lame and can fail starting if it gets an error trying
672 		 * to mmap legacy_mem (instead of just moving on without legacy memory
673 		 * access) we fake it here by giving it anonymous memory, effectively
674 		 * behaving just like /dev/zero
675 		 */
676 		if ((offset + size) > hose->isa_mem_size) {
677 			printk(KERN_DEBUG
678 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
679 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
680 			if (vma->vm_flags & VM_SHARED)
681 				return shmem_zero_setup(vma);
682 			return 0;
683 		}
684 		offset += hose->isa_mem_phys;
685 	} else {
686 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
687 		unsigned long roffset = offset + io_offset;
688 		rp = &hose->io_resource;
689 		if (!(rp->flags & IORESOURCE_IO))
690 			return -ENXIO;
691 		if (roffset < rp->start || (roffset + size) > rp->end)
692 			return -ENXIO;
693 		offset += hose->io_base_phys;
694 	}
695 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
696 
697 	vma->vm_pgoff = offset >> PAGE_SHIFT;
698 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
699 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
700 			       vma->vm_end - vma->vm_start,
701 			       vma->vm_page_prot);
702 }
703 
704 void pci_resource_to_user(const struct pci_dev *dev, int bar,
705 			  const struct resource *rsrc,
706 			  resource_size_t *start, resource_size_t *end)
707 {
708 	struct pci_bus_region region;
709 
710 	if (rsrc->flags & IORESOURCE_IO) {
711 		pcibios_resource_to_bus(dev->bus, &region,
712 					(struct resource *) rsrc);
713 		*start = region.start;
714 		*end = region.end;
715 		return;
716 	}
717 
718 	/* We pass a CPU physical address to userland for MMIO instead of a
719 	 * BAR value because X is lame and expects to be able to use that
720 	 * to pass to /dev/mem!
721 	 *
722 	 * That means we may have 64-bit values where some apps only expect
723 	 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
724 	 */
725 	*start = rsrc->start;
726 	*end = rsrc->end;
727 }
728 
729 /**
730  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
731  * @hose: newly allocated pci_controller to be setup
732  * @dev: device node of the host bridge
733  * @primary: set if primary bus (32 bits only, soon to be deprecated)
734  *
735  * This function will parse the "ranges" property of a PCI host bridge device
736  * node and setup the resource mapping of a pci controller based on its
737  * content.
738  *
739  * Life would be boring if it wasn't for a few issues that we have to deal
740  * with here:
741  *
742  *   - We can only cope with one IO space range and up to 3 Memory space
743  *     ranges. However, some machines (thanks Apple !) tend to split their
744  *     space into lots of small contiguous ranges. So we have to coalesce.
745  *
746  *   - Some busses have IO space not starting at 0, which causes trouble with
747  *     the way we do our IO resource renumbering. The code somewhat deals with
748  *     it for 64 bits but I would expect problems on 32 bits.
749  *
750  *   - Some 32 bits platforms such as 4xx can have physical space larger than
751  *     32 bits so we need to use 64 bits values for the parsing
752  */
753 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
754 				  struct device_node *dev, int primary)
755 {
756 	int memno = 0;
757 	struct resource *res;
758 	struct of_pci_range range;
759 	struct of_pci_range_parser parser;
760 
761 	printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
762 	       dev, primary ? "(primary)" : "");
763 
764 	/* Check for ranges property */
765 	if (of_pci_range_parser_init(&parser, dev))
766 		return;
767 
768 	/* Parse it */
769 	for_each_of_pci_range(&parser, &range) {
770 		/* If we failed translation or got a zero-sized region
771 		 * (some FW try to feed us with non sensical zero sized regions
772 		 * such as power3 which look like some kind of attempt at exposing
773 		 * the VGA memory hole)
774 		 */
775 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
776 			continue;
777 
778 		/* Act based on address space type */
779 		res = NULL;
780 		switch (range.flags & IORESOURCE_TYPE_BITS) {
781 		case IORESOURCE_IO:
782 			printk(KERN_INFO
783 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
784 			       range.cpu_addr, range.cpu_addr + range.size - 1,
785 			       range.pci_addr);
786 
787 			/* We support only one IO range */
788 			if (hose->pci_io_size) {
789 				printk(KERN_INFO
790 				       " \\--> Skipped (too many) !\n");
791 				continue;
792 			}
793 #ifdef CONFIG_PPC32
794 			/* On 32 bits, limit I/O space to 16MB */
795 			if (range.size > 0x01000000)
796 				range.size = 0x01000000;
797 
798 			/* 32 bits needs to map IOs here */
799 			hose->io_base_virt = ioremap(range.cpu_addr,
800 						range.size);
801 
802 			/* Expect trouble if pci_addr is not 0 */
803 			if (primary)
804 				isa_io_base =
805 					(unsigned long)hose->io_base_virt;
806 #endif /* CONFIG_PPC32 */
807 			/* pci_io_size and io_base_phys always represent IO
808 			 * space starting at 0 so we factor in pci_addr
809 			 */
810 			hose->pci_io_size = range.pci_addr + range.size;
811 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
812 
813 			/* Build resource */
814 			res = &hose->io_resource;
815 			range.cpu_addr = range.pci_addr;
816 			break;
817 		case IORESOURCE_MEM:
818 			printk(KERN_INFO
819 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
820 			       range.cpu_addr, range.cpu_addr + range.size - 1,
821 			       range.pci_addr,
822 			       (range.pci_space & 0x40000000) ?
823 			       "Prefetch" : "");
824 
825 			/* We support only 3 memory ranges */
826 			if (memno >= 3) {
827 				printk(KERN_INFO
828 				       " \\--> Skipped (too many) !\n");
829 				continue;
830 			}
831 			/* Handles ISA memory hole space here */
832 			if (range.pci_addr == 0) {
833 				if (primary || isa_mem_base == 0)
834 					isa_mem_base = range.cpu_addr;
835 				hose->isa_mem_phys = range.cpu_addr;
836 				hose->isa_mem_size = range.size;
837 			}
838 
839 			/* Build resource */
840 			hose->mem_offset[memno] = range.cpu_addr -
841 							range.pci_addr;
842 			res = &hose->mem_resources[memno++];
843 			break;
844 		}
845 		if (res != NULL) {
846 			res->name = dev->full_name;
847 			res->flags = range.flags;
848 			res->start = range.cpu_addr;
849 			res->end = range.cpu_addr + range.size - 1;
850 			res->parent = res->child = res->sibling = NULL;
851 		}
852 	}
853 }
854 
855 /* Decide whether to display the domain number in /proc */
856 int pci_proc_domain(struct pci_bus *bus)
857 {
858 	struct pci_controller *hose = pci_bus_to_host(bus);
859 
860 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
861 		return 0;
862 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
863 		return hose->global_number != 0;
864 	return 1;
865 }
866 
867 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
868 {
869 	if (ppc_md.pcibios_root_bridge_prepare)
870 		return ppc_md.pcibios_root_bridge_prepare(bridge);
871 
872 	return 0;
873 }
874 
875 /* This header fixup will do the resource fixup for all devices as they are
876  * probed, but not for bridge ranges
877  */
878 static void pcibios_fixup_resources(struct pci_dev *dev)
879 {
880 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
881 	int i;
882 
883 	if (!hose) {
884 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
885 		       pci_name(dev));
886 		return;
887 	}
888 
889 	if (dev->is_virtfn)
890 		return;
891 
892 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
893 		struct resource *res = dev->resource + i;
894 		struct pci_bus_region reg;
895 		if (!res->flags)
896 			continue;
897 
898 		/* If we're going to re-assign everything, we mark all resources
899 		 * as unset (and 0-base them). In addition, we mark BARs starting
900 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
901 		 * since in that case, we don't want to re-assign anything
902 		 */
903 		pcibios_resource_to_bus(dev->bus, &reg, res);
904 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
905 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
906 			/* Only print message if not re-assigning */
907 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
908 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
909 					 pci_name(dev), i, res);
910 			res->end -= res->start;
911 			res->start = 0;
912 			res->flags |= IORESOURCE_UNSET;
913 			continue;
914 		}
915 
916 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
917 	}
918 
919 	/* Call machine specific resource fixup */
920 	if (ppc_md.pcibios_fixup_resources)
921 		ppc_md.pcibios_fixup_resources(dev);
922 }
923 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
924 
925 /* This function tries to figure out if a bridge resource has been initialized
926  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
927  * things go more smoothly when it gets it right. It should covers cases such
928  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
929  */
930 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
931 						 struct resource *res)
932 {
933 	struct pci_controller *hose = pci_bus_to_host(bus);
934 	struct pci_dev *dev = bus->self;
935 	resource_size_t offset;
936 	struct pci_bus_region region;
937 	u16 command;
938 	int i;
939 
940 	/* We don't do anything if PCI_PROBE_ONLY is set */
941 	if (pci_has_flag(PCI_PROBE_ONLY))
942 		return 0;
943 
944 	/* Job is a bit different between memory and IO */
945 	if (res->flags & IORESOURCE_MEM) {
946 		pcibios_resource_to_bus(dev->bus, &region, res);
947 
948 		/* If the BAR is non-0 then it's probably been initialized */
949 		if (region.start != 0)
950 			return 0;
951 
952 		/* The BAR is 0, let's check if memory decoding is enabled on
953 		 * the bridge. If not, we consider it unassigned
954 		 */
955 		pci_read_config_word(dev, PCI_COMMAND, &command);
956 		if ((command & PCI_COMMAND_MEMORY) == 0)
957 			return 1;
958 
959 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
960 		 * resources covers that starting address (0 then it's good enough for
961 		 * us for memory space)
962 		 */
963 		for (i = 0; i < 3; i++) {
964 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
965 			    hose->mem_resources[i].start == hose->mem_offset[i])
966 				return 0;
967 		}
968 
969 		/* Well, it starts at 0 and we know it will collide so we may as
970 		 * well consider it as unassigned. That covers the Apple case.
971 		 */
972 		return 1;
973 	} else {
974 		/* If the BAR is non-0, then we consider it assigned */
975 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
976 		if (((res->start - offset) & 0xfffffffful) != 0)
977 			return 0;
978 
979 		/* Here, we are a bit different than memory as typically IO space
980 		 * starting at low addresses -is- valid. What we do instead if that
981 		 * we consider as unassigned anything that doesn't have IO enabled
982 		 * in the PCI command register, and that's it.
983 		 */
984 		pci_read_config_word(dev, PCI_COMMAND, &command);
985 		if (command & PCI_COMMAND_IO)
986 			return 0;
987 
988 		/* It's starting at 0 and IO is disabled in the bridge, consider
989 		 * it unassigned
990 		 */
991 		return 1;
992 	}
993 }
994 
995 /* Fixup resources of a PCI<->PCI bridge */
996 static void pcibios_fixup_bridge(struct pci_bus *bus)
997 {
998 	struct resource *res;
999 	int i;
1000 
1001 	struct pci_dev *dev = bus->self;
1002 
1003 	pci_bus_for_each_resource(bus, res, i) {
1004 		if (!res || !res->flags)
1005 			continue;
1006 		if (i >= 3 && bus->self->transparent)
1007 			continue;
1008 
1009 		/* If we're going to reassign everything, we can
1010 		 * shrink the P2P resource to have size as being
1011 		 * of 0 in order to save space.
1012 		 */
1013 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1014 			res->flags |= IORESOURCE_UNSET;
1015 			res->start = 0;
1016 			res->end = -1;
1017 			continue;
1018 		}
1019 
1020 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
1021 
1022 		/* Try to detect uninitialized P2P bridge resources,
1023 		 * and clear them out so they get re-assigned later
1024 		 */
1025 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
1026 			res->flags = 0;
1027 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
1028 		}
1029 	}
1030 }
1031 
1032 void pcibios_setup_bus_self(struct pci_bus *bus)
1033 {
1034 	struct pci_controller *phb;
1035 
1036 	/* Fix up the bus resources for P2P bridges */
1037 	if (bus->self != NULL)
1038 		pcibios_fixup_bridge(bus);
1039 
1040 	/* Platform specific bus fixups. This is currently only used
1041 	 * by fsl_pci and I'm hoping to get rid of it at some point
1042 	 */
1043 	if (ppc_md.pcibios_fixup_bus)
1044 		ppc_md.pcibios_fixup_bus(bus);
1045 
1046 	/* Setup bus DMA mappings */
1047 	phb = pci_bus_to_host(bus);
1048 	if (phb->controller_ops.dma_bus_setup)
1049 		phb->controller_ops.dma_bus_setup(bus);
1050 }
1051 
1052 static void pcibios_setup_device(struct pci_dev *dev)
1053 {
1054 	struct pci_controller *phb;
1055 	/* Fixup NUMA node as it may not be setup yet by the generic
1056 	 * code and is needed by the DMA init
1057 	 */
1058 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1059 
1060 	/* Hook up default DMA ops */
1061 	set_dma_ops(&dev->dev, pci_dma_ops);
1062 	set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
1063 
1064 	/* Additional platform DMA/iommu setup */
1065 	phb = pci_bus_to_host(dev->bus);
1066 	if (phb->controller_ops.dma_dev_setup)
1067 		phb->controller_ops.dma_dev_setup(dev);
1068 
1069 	/* Read default IRQs and fixup if necessary */
1070 	pci_read_irq_line(dev);
1071 	if (ppc_md.pci_irq_fixup)
1072 		ppc_md.pci_irq_fixup(dev);
1073 }
1074 
1075 int pcibios_add_device(struct pci_dev *dev)
1076 {
1077 	/*
1078 	 * We can only call pcibios_setup_device() after bus setup is complete,
1079 	 * since some of the platform specific DMA setup code depends on it.
1080 	 */
1081 	if (dev->bus->is_added)
1082 		pcibios_setup_device(dev);
1083 
1084 #ifdef CONFIG_PCI_IOV
1085 	if (ppc_md.pcibios_fixup_sriov)
1086 		ppc_md.pcibios_fixup_sriov(dev);
1087 #endif /* CONFIG_PCI_IOV */
1088 
1089 	return 0;
1090 }
1091 
1092 void pcibios_setup_bus_devices(struct pci_bus *bus)
1093 {
1094 	struct pci_dev *dev;
1095 
1096 	pr_debug("PCI: Fixup bus devices %d (%s)\n",
1097 		 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1098 
1099 	list_for_each_entry(dev, &bus->devices, bus_list) {
1100 		/* Cardbus can call us to add new devices to a bus, so ignore
1101 		 * those who are already fully discovered
1102 		 */
1103 		if (dev->is_added)
1104 			continue;
1105 
1106 		pcibios_setup_device(dev);
1107 	}
1108 }
1109 
1110 void pcibios_set_master(struct pci_dev *dev)
1111 {
1112 	/* No special bus mastering setup handling */
1113 }
1114 
1115 void pcibios_fixup_bus(struct pci_bus *bus)
1116 {
1117 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1118 	 * bases. This is -not- called when generating the PCI tree from
1119 	 * the OF device-tree.
1120 	 */
1121 	pci_read_bridge_bases(bus);
1122 
1123 	/* Now fixup the bus bus */
1124 	pcibios_setup_bus_self(bus);
1125 
1126 	/* Now fixup devices on that bus */
1127 	pcibios_setup_bus_devices(bus);
1128 }
1129 EXPORT_SYMBOL(pcibios_fixup_bus);
1130 
1131 void pci_fixup_cardbus(struct pci_bus *bus)
1132 {
1133 	/* Now fixup devices on that bus */
1134 	pcibios_setup_bus_devices(bus);
1135 }
1136 
1137 
1138 static int skip_isa_ioresource_align(struct pci_dev *dev)
1139 {
1140 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1141 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1142 		return 1;
1143 	return 0;
1144 }
1145 
1146 /*
1147  * We need to avoid collisions with `mirrored' VGA ports
1148  * and other strange ISA hardware, so we always want the
1149  * addresses to be allocated in the 0x000-0x0ff region
1150  * modulo 0x400.
1151  *
1152  * Why? Because some silly external IO cards only decode
1153  * the low 10 bits of the IO address. The 0x00-0xff region
1154  * is reserved for motherboard devices that decode all 16
1155  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1156  * but we want to try to avoid allocating at 0x2900-0x2bff
1157  * which might have be mirrored at 0x0100-0x03ff..
1158  */
1159 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1160 				resource_size_t size, resource_size_t align)
1161 {
1162 	struct pci_dev *dev = data;
1163 	resource_size_t start = res->start;
1164 
1165 	if (res->flags & IORESOURCE_IO) {
1166 		if (skip_isa_ioresource_align(dev))
1167 			return start;
1168 		if (start & 0x300)
1169 			start = (start + 0x3ff) & ~0x3ff;
1170 	}
1171 
1172 	return start;
1173 }
1174 EXPORT_SYMBOL(pcibios_align_resource);
1175 
1176 /*
1177  * Reparent resource children of pr that conflict with res
1178  * under res, and make res replace those children.
1179  */
1180 static int reparent_resources(struct resource *parent,
1181 				     struct resource *res)
1182 {
1183 	struct resource *p, **pp;
1184 	struct resource **firstpp = NULL;
1185 
1186 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1187 		if (p->end < res->start)
1188 			continue;
1189 		if (res->end < p->start)
1190 			break;
1191 		if (p->start < res->start || p->end > res->end)
1192 			return -1;	/* not completely contained */
1193 		if (firstpp == NULL)
1194 			firstpp = pp;
1195 	}
1196 	if (firstpp == NULL)
1197 		return -1;	/* didn't find any conflicting entries? */
1198 	res->parent = parent;
1199 	res->child = *firstpp;
1200 	res->sibling = *pp;
1201 	*firstpp = res;
1202 	*pp = NULL;
1203 	for (p = res->child; p != NULL; p = p->sibling) {
1204 		p->parent = res;
1205 		pr_debug("PCI: Reparented %s %pR under %s\n",
1206 			 p->name, p, res->name);
1207 	}
1208 	return 0;
1209 }
1210 
1211 /*
1212  *  Handle resources of PCI devices.  If the world were perfect, we could
1213  *  just allocate all the resource regions and do nothing more.  It isn't.
1214  *  On the other hand, we cannot just re-allocate all devices, as it would
1215  *  require us to know lots of host bridge internals.  So we attempt to
1216  *  keep as much of the original configuration as possible, but tweak it
1217  *  when it's found to be wrong.
1218  *
1219  *  Known BIOS problems we have to work around:
1220  *	- I/O or memory regions not configured
1221  *	- regions configured, but not enabled in the command register
1222  *	- bogus I/O addresses above 64K used
1223  *	- expansion ROMs left enabled (this may sound harmless, but given
1224  *	  the fact the PCI specs explicitly allow address decoders to be
1225  *	  shared between expansion ROMs and other resource regions, it's
1226  *	  at least dangerous)
1227  *
1228  *  Our solution:
1229  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1230  *	    This gives us fixed barriers on where we can allocate.
1231  *	(2) Allocate resources for all enabled devices.  If there is
1232  *	    a collision, just mark the resource as unallocated. Also
1233  *	    disable expansion ROMs during this step.
1234  *	(3) Try to allocate resources for disabled devices.  If the
1235  *	    resources were assigned correctly, everything goes well,
1236  *	    if they weren't, they won't disturb allocation of other
1237  *	    resources.
1238  *	(4) Assign new addresses to resources which were either
1239  *	    not configured at all or misconfigured.  If explicitly
1240  *	    requested by the user, configure expansion ROM address
1241  *	    as well.
1242  */
1243 
1244 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1245 {
1246 	struct pci_bus *b;
1247 	int i;
1248 	struct resource *res, *pr;
1249 
1250 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1251 		 pci_domain_nr(bus), bus->number);
1252 
1253 	pci_bus_for_each_resource(bus, res, i) {
1254 		if (!res || !res->flags || res->start > res->end || res->parent)
1255 			continue;
1256 
1257 		/* If the resource was left unset at this point, we clear it */
1258 		if (res->flags & IORESOURCE_UNSET)
1259 			goto clear_resource;
1260 
1261 		if (bus->parent == NULL)
1262 			pr = (res->flags & IORESOURCE_IO) ?
1263 				&ioport_resource : &iomem_resource;
1264 		else {
1265 			pr = pci_find_parent_resource(bus->self, res);
1266 			if (pr == res) {
1267 				/* this happens when the generic PCI
1268 				 * code (wrongly) decides that this
1269 				 * bridge is transparent  -- paulus
1270 				 */
1271 				continue;
1272 			}
1273 		}
1274 
1275 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1276 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1277 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1278 
1279 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1280 			struct pci_dev *dev = bus->self;
1281 
1282 			if (request_resource(pr, res) == 0)
1283 				continue;
1284 			/*
1285 			 * Must be a conflict with an existing entry.
1286 			 * Move that entry (or entries) under the
1287 			 * bridge resource and try again.
1288 			 */
1289 			if (reparent_resources(pr, res) == 0)
1290 				continue;
1291 
1292 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1293 			    pci_claim_bridge_resource(dev,
1294 						i + PCI_BRIDGE_RESOURCES) == 0)
1295 				continue;
1296 		}
1297 		pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n",
1298 			i, bus->number);
1299 	clear_resource:
1300 		/* The resource might be figured out when doing
1301 		 * reassignment based on the resources required
1302 		 * by the downstream PCI devices. Here we set
1303 		 * the size of the resource to be 0 in order to
1304 		 * save more space.
1305 		 */
1306 		res->start = 0;
1307 		res->end = -1;
1308 		res->flags = 0;
1309 	}
1310 
1311 	list_for_each_entry(b, &bus->children, node)
1312 		pcibios_allocate_bus_resources(b);
1313 }
1314 
1315 static inline void alloc_resource(struct pci_dev *dev, int idx)
1316 {
1317 	struct resource *pr, *r = &dev->resource[idx];
1318 
1319 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1320 		 pci_name(dev), idx, r);
1321 
1322 	pr = pci_find_parent_resource(dev, r);
1323 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1324 	    request_resource(pr, r) < 0) {
1325 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1326 		       " of device %s, will remap\n", idx, pci_name(dev));
1327 		if (pr)
1328 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1329 		/* We'll assign a new address later */
1330 		r->flags |= IORESOURCE_UNSET;
1331 		r->end -= r->start;
1332 		r->start = 0;
1333 	}
1334 }
1335 
1336 static void __init pcibios_allocate_resources(int pass)
1337 {
1338 	struct pci_dev *dev = NULL;
1339 	int idx, disabled;
1340 	u16 command;
1341 	struct resource *r;
1342 
1343 	for_each_pci_dev(dev) {
1344 		pci_read_config_word(dev, PCI_COMMAND, &command);
1345 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1346 			r = &dev->resource[idx];
1347 			if (r->parent)		/* Already allocated */
1348 				continue;
1349 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1350 				continue;	/* Not assigned at all */
1351 			/* We only allocate ROMs on pass 1 just in case they
1352 			 * have been screwed up by firmware
1353 			 */
1354 			if (idx == PCI_ROM_RESOURCE )
1355 				disabled = 1;
1356 			if (r->flags & IORESOURCE_IO)
1357 				disabled = !(command & PCI_COMMAND_IO);
1358 			else
1359 				disabled = !(command & PCI_COMMAND_MEMORY);
1360 			if (pass == disabled)
1361 				alloc_resource(dev, idx);
1362 		}
1363 		if (pass)
1364 			continue;
1365 		r = &dev->resource[PCI_ROM_RESOURCE];
1366 		if (r->flags) {
1367 			/* Turn the ROM off, leave the resource region,
1368 			 * but keep it unregistered.
1369 			 */
1370 			u32 reg;
1371 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1372 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1373 				pr_debug("PCI: Switching off ROM of %s\n",
1374 					 pci_name(dev));
1375 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1376 				pci_write_config_dword(dev, dev->rom_base_reg,
1377 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1378 			}
1379 		}
1380 	}
1381 }
1382 
1383 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1384 {
1385 	struct pci_controller *hose = pci_bus_to_host(bus);
1386 	resource_size_t	offset;
1387 	struct resource *res, *pres;
1388 	int i;
1389 
1390 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1391 
1392 	/* Check for IO */
1393 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1394 		goto no_io;
1395 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1396 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1397 	BUG_ON(res == NULL);
1398 	res->name = "Legacy IO";
1399 	res->flags = IORESOURCE_IO;
1400 	res->start = offset;
1401 	res->end = (offset + 0xfff) & 0xfffffffful;
1402 	pr_debug("Candidate legacy IO: %pR\n", res);
1403 	if (request_resource(&hose->io_resource, res)) {
1404 		printk(KERN_DEBUG
1405 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1406 		       pci_domain_nr(bus), bus->number, res);
1407 		kfree(res);
1408 	}
1409 
1410  no_io:
1411 	/* Check for memory */
1412 	for (i = 0; i < 3; i++) {
1413 		pres = &hose->mem_resources[i];
1414 		offset = hose->mem_offset[i];
1415 		if (!(pres->flags & IORESOURCE_MEM))
1416 			continue;
1417 		pr_debug("hose mem res: %pR\n", pres);
1418 		if ((pres->start - offset) <= 0xa0000 &&
1419 		    (pres->end - offset) >= 0xbffff)
1420 			break;
1421 	}
1422 	if (i >= 3)
1423 		return;
1424 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1425 	BUG_ON(res == NULL);
1426 	res->name = "Legacy VGA memory";
1427 	res->flags = IORESOURCE_MEM;
1428 	res->start = 0xa0000 + offset;
1429 	res->end = 0xbffff + offset;
1430 	pr_debug("Candidate VGA memory: %pR\n", res);
1431 	if (request_resource(pres, res)) {
1432 		printk(KERN_DEBUG
1433 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1434 		       pci_domain_nr(bus), bus->number, res);
1435 		kfree(res);
1436 	}
1437 }
1438 
1439 void __init pcibios_resource_survey(void)
1440 {
1441 	struct pci_bus *b;
1442 
1443 	/* Allocate and assign resources */
1444 	list_for_each_entry(b, &pci_root_buses, node)
1445 		pcibios_allocate_bus_resources(b);
1446 	if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1447 		pcibios_allocate_resources(0);
1448 		pcibios_allocate_resources(1);
1449 	}
1450 
1451 	/* Before we start assigning unassigned resource, we try to reserve
1452 	 * the low IO area and the VGA memory area if they intersect the
1453 	 * bus available resources to avoid allocating things on top of them
1454 	 */
1455 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1456 		list_for_each_entry(b, &pci_root_buses, node)
1457 			pcibios_reserve_legacy_regions(b);
1458 	}
1459 
1460 	/* Now, if the platform didn't decide to blindly trust the firmware,
1461 	 * we proceed to assigning things that were left unassigned
1462 	 */
1463 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1464 		pr_debug("PCI: Assigning unassigned resources...\n");
1465 		pci_assign_unassigned_resources();
1466 	}
1467 
1468 	/* Call machine dependent fixup */
1469 	if (ppc_md.pcibios_fixup)
1470 		ppc_md.pcibios_fixup();
1471 }
1472 
1473 /* This is used by the PCI hotplug driver to allocate resource
1474  * of newly plugged busses. We can try to consolidate with the
1475  * rest of the code later, for now, keep it as-is as our main
1476  * resource allocation function doesn't deal with sub-trees yet.
1477  */
1478 void pcibios_claim_one_bus(struct pci_bus *bus)
1479 {
1480 	struct pci_dev *dev;
1481 	struct pci_bus *child_bus;
1482 
1483 	list_for_each_entry(dev, &bus->devices, bus_list) {
1484 		int i;
1485 
1486 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1487 			struct resource *r = &dev->resource[i];
1488 
1489 			if (r->parent || !r->start || !r->flags)
1490 				continue;
1491 
1492 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1493 				 pci_name(dev), i, r);
1494 
1495 			if (pci_claim_resource(dev, i) == 0)
1496 				continue;
1497 
1498 			pci_claim_bridge_resource(dev, i);
1499 		}
1500 	}
1501 
1502 	list_for_each_entry(child_bus, &bus->children, node)
1503 		pcibios_claim_one_bus(child_bus);
1504 }
1505 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1506 
1507 
1508 /* pcibios_finish_adding_to_bus
1509  *
1510  * This is to be called by the hotplug code after devices have been
1511  * added to a bus, this include calling it for a PHB that is just
1512  * being added
1513  */
1514 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1515 {
1516 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1517 		 pci_domain_nr(bus), bus->number);
1518 
1519 	/* Allocate bus and devices resources */
1520 	pcibios_allocate_bus_resources(bus);
1521 	pcibios_claim_one_bus(bus);
1522 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1523 		if (bus->self)
1524 			pci_assign_unassigned_bridge_resources(bus->self);
1525 		else
1526 			pci_assign_unassigned_bus_resources(bus);
1527 	}
1528 
1529 	/* Fixup EEH */
1530 	eeh_add_device_tree_late(bus);
1531 
1532 	/* Add new devices to global lists.  Register in proc, sysfs. */
1533 	pci_bus_add_devices(bus);
1534 
1535 	/* sysfs files should only be added after devices are added */
1536 	eeh_add_sysfs_files(bus);
1537 }
1538 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1539 
1540 int pcibios_enable_device(struct pci_dev *dev, int mask)
1541 {
1542 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1543 
1544 	if (phb->controller_ops.enable_device_hook)
1545 		if (!phb->controller_ops.enable_device_hook(dev))
1546 			return -EINVAL;
1547 
1548 	return pci_enable_resources(dev, mask);
1549 }
1550 
1551 void pcibios_disable_device(struct pci_dev *dev)
1552 {
1553 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1554 
1555 	if (phb->controller_ops.disable_device)
1556 		phb->controller_ops.disable_device(dev);
1557 }
1558 
1559 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1560 {
1561 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1562 }
1563 
1564 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1565 					struct list_head *resources)
1566 {
1567 	struct resource *res;
1568 	resource_size_t offset;
1569 	int i;
1570 
1571 	/* Hookup PHB IO resource */
1572 	res = &hose->io_resource;
1573 
1574 	if (!res->flags) {
1575 		pr_debug("PCI: I/O resource not set for host"
1576 			 " bridge %pOF (domain %d)\n",
1577 			 hose->dn, hose->global_number);
1578 	} else {
1579 		offset = pcibios_io_space_offset(hose);
1580 
1581 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1582 			 res, (unsigned long long)offset);
1583 		pci_add_resource_offset(resources, res, offset);
1584 	}
1585 
1586 	/* Hookup PHB Memory resources */
1587 	for (i = 0; i < 3; ++i) {
1588 		res = &hose->mem_resources[i];
1589 		if (!res->flags)
1590 			continue;
1591 
1592 		offset = hose->mem_offset[i];
1593 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1594 			 res, (unsigned long long)offset);
1595 
1596 		pci_add_resource_offset(resources, res, offset);
1597 	}
1598 }
1599 
1600 /*
1601  * Null PCI config access functions, for the case when we can't
1602  * find a hose.
1603  */
1604 #define NULL_PCI_OP(rw, size, type)					\
1605 static int								\
1606 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1607 {									\
1608 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1609 }
1610 
1611 static int
1612 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1613 		 int len, u32 *val)
1614 {
1615 	return PCIBIOS_DEVICE_NOT_FOUND;
1616 }
1617 
1618 static int
1619 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1620 		  int len, u32 val)
1621 {
1622 	return PCIBIOS_DEVICE_NOT_FOUND;
1623 }
1624 
1625 static struct pci_ops null_pci_ops =
1626 {
1627 	.read = null_read_config,
1628 	.write = null_write_config,
1629 };
1630 
1631 /*
1632  * These functions are used early on before PCI scanning is done
1633  * and all of the pci_dev and pci_bus structures have been created.
1634  */
1635 static struct pci_bus *
1636 fake_pci_bus(struct pci_controller *hose, int busnr)
1637 {
1638 	static struct pci_bus bus;
1639 
1640 	if (hose == NULL) {
1641 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1642 	}
1643 	bus.number = busnr;
1644 	bus.sysdata = hose;
1645 	bus.ops = hose? hose->ops: &null_pci_ops;
1646 	return &bus;
1647 }
1648 
1649 #define EARLY_PCI_OP(rw, size, type)					\
1650 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1651 			       int devfn, int offset, type value)	\
1652 {									\
1653 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1654 					    devfn, offset, value);	\
1655 }
1656 
1657 EARLY_PCI_OP(read, byte, u8 *)
1658 EARLY_PCI_OP(read, word, u16 *)
1659 EARLY_PCI_OP(read, dword, u32 *)
1660 EARLY_PCI_OP(write, byte, u8)
1661 EARLY_PCI_OP(write, word, u16)
1662 EARLY_PCI_OP(write, dword, u32)
1663 
1664 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1665 			  int cap)
1666 {
1667 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1668 }
1669 
1670 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1671 {
1672 	struct pci_controller *hose = bus->sysdata;
1673 
1674 	return of_node_get(hose->dn);
1675 }
1676 
1677 /**
1678  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1679  * @hose: Pointer to the PCI host controller instance structure
1680  */
1681 void pcibios_scan_phb(struct pci_controller *hose)
1682 {
1683 	LIST_HEAD(resources);
1684 	struct pci_bus *bus;
1685 	struct device_node *node = hose->dn;
1686 	int mode;
1687 
1688 	pr_debug("PCI: Scanning PHB %pOF\n", node);
1689 
1690 	/* Get some IO space for the new PHB */
1691 	pcibios_setup_phb_io_space(hose);
1692 
1693 	/* Wire up PHB bus resources */
1694 	pcibios_setup_phb_resources(hose, &resources);
1695 
1696 	hose->busn.start = hose->first_busno;
1697 	hose->busn.end	 = hose->last_busno;
1698 	hose->busn.flags = IORESOURCE_BUS;
1699 	pci_add_resource(&resources, &hose->busn);
1700 
1701 	/* Create an empty bus for the toplevel */
1702 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1703 				  hose->ops, hose, &resources);
1704 	if (bus == NULL) {
1705 		pr_err("Failed to create bus for PCI domain %04x\n",
1706 			hose->global_number);
1707 		pci_free_resource_list(&resources);
1708 		return;
1709 	}
1710 	hose->bus = bus;
1711 
1712 	/* Get probe mode and perform scan */
1713 	mode = PCI_PROBE_NORMAL;
1714 	if (node && hose->controller_ops.probe_mode)
1715 		mode = hose->controller_ops.probe_mode(bus);
1716 	pr_debug("    probe mode: %d\n", mode);
1717 	if (mode == PCI_PROBE_DEVTREE)
1718 		of_scan_bus(node, bus);
1719 
1720 	if (mode == PCI_PROBE_NORMAL) {
1721 		pci_bus_update_busn_res_end(bus, 255);
1722 		hose->last_busno = pci_scan_child_bus(bus);
1723 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1724 	}
1725 
1726 	/* Platform gets a chance to do some global fixups before
1727 	 * we proceed to resource allocation
1728 	 */
1729 	if (ppc_md.pcibios_fixup_phb)
1730 		ppc_md.pcibios_fixup_phb(hose);
1731 
1732 	/* Configure PCI Express settings */
1733 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1734 		struct pci_bus *child;
1735 		list_for_each_entry(child, &bus->children, node)
1736 			pcie_bus_configure_settings(child);
1737 	}
1738 }
1739 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1740 
1741 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1742 {
1743 	int i, class = dev->class >> 8;
1744 	/* When configured as agent, programing interface = 1 */
1745 	int prog_if = dev->class & 0xf;
1746 
1747 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1748 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1749 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1750 		(prog_if == 0) &&
1751 		(dev->bus->parent == NULL)) {
1752 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1753 			dev->resource[i].start = 0;
1754 			dev->resource[i].end = 0;
1755 			dev->resource[i].flags = 0;
1756 		}
1757 	}
1758 }
1759 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1760 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1761