1 /* 2 * Contains common pci routines for ALL ppc platform 3 * (based on pci_32.c and pci_64.c) 4 * 5 * Port for PPC64 David Engebretsen, IBM Corp. 6 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. 7 * 8 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM 9 * Rework, based on alpha PCI code. 10 * 11 * Common pmac/prep/chrp pci routines. -- Cort 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/pci.h> 21 #include <linux/string.h> 22 #include <linux/init.h> 23 #include <linux/delay.h> 24 #include <linux/export.h> 25 #include <linux/of_address.h> 26 #include <linux/of_pci.h> 27 #include <linux/mm.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/list.h> 30 #include <linux/syscalls.h> 31 #include <linux/irq.h> 32 #include <linux/vmalloc.h> 33 #include <linux/slab.h> 34 #include <linux/vgaarb.h> 35 36 #include <asm/processor.h> 37 #include <asm/io.h> 38 #include <asm/prom.h> 39 #include <asm/pci-bridge.h> 40 #include <asm/byteorder.h> 41 #include <asm/machdep.h> 42 #include <asm/ppc-pci.h> 43 #include <asm/eeh.h> 44 45 /* hose_spinlock protects accesses to the the phb_bitmap. */ 46 static DEFINE_SPINLOCK(hose_spinlock); 47 LIST_HEAD(hose_list); 48 49 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ 50 #define MAX_PHBS 0x10000 51 52 /* 53 * For dynamic PHB numbering: used/free PHBs tracking bitmap. 54 * Accesses to this bitmap should be protected by hose_spinlock. 55 */ 56 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); 57 58 /* ISA Memory physical address */ 59 resource_size_t isa_mem_base; 60 EXPORT_SYMBOL(isa_mem_base); 61 62 63 static const struct dma_map_ops *pci_dma_ops = &dma_direct_ops; 64 65 void set_pci_dma_ops(const struct dma_map_ops *dma_ops) 66 { 67 pci_dma_ops = dma_ops; 68 } 69 70 const struct dma_map_ops *get_pci_dma_ops(void) 71 { 72 return pci_dma_ops; 73 } 74 EXPORT_SYMBOL(get_pci_dma_ops); 75 76 /* 77 * This function should run under locking protection, specifically 78 * hose_spinlock. 79 */ 80 static int get_phb_number(struct device_node *dn) 81 { 82 int ret, phb_id = -1; 83 u32 prop_32; 84 u64 prop; 85 86 /* 87 * Try fixed PHB numbering first, by checking archs and reading 88 * the respective device-tree properties. Firstly, try powernv by 89 * reading "ibm,opal-phbid", only present in OPAL environment. 90 */ 91 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); 92 if (ret) { 93 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); 94 prop = prop_32; 95 } 96 97 if (!ret) 98 phb_id = (int)(prop & (MAX_PHBS - 1)); 99 100 /* We need to be sure to not use the same PHB number twice. */ 101 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) 102 return phb_id; 103 104 /* 105 * If not pseries nor powernv, or if fixed PHB numbering tried to add 106 * the same PHB number twice, then fallback to dynamic PHB numbering. 107 */ 108 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); 109 BUG_ON(phb_id >= MAX_PHBS); 110 set_bit(phb_id, phb_bitmap); 111 112 return phb_id; 113 } 114 115 struct pci_controller *pcibios_alloc_controller(struct device_node *dev) 116 { 117 struct pci_controller *phb; 118 119 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); 120 if (phb == NULL) 121 return NULL; 122 spin_lock(&hose_spinlock); 123 phb->global_number = get_phb_number(dev); 124 list_add_tail(&phb->list_node, &hose_list); 125 spin_unlock(&hose_spinlock); 126 phb->dn = dev; 127 phb->is_dynamic = slab_is_available(); 128 #ifdef CONFIG_PPC64 129 if (dev) { 130 int nid = of_node_to_nid(dev); 131 132 if (nid < 0 || !node_online(nid)) 133 nid = -1; 134 135 PHB_SET_NODE(phb, nid); 136 } 137 #endif 138 return phb; 139 } 140 EXPORT_SYMBOL_GPL(pcibios_alloc_controller); 141 142 void pcibios_free_controller(struct pci_controller *phb) 143 { 144 spin_lock(&hose_spinlock); 145 146 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ 147 if (phb->global_number < MAX_PHBS) 148 clear_bit(phb->global_number, phb_bitmap); 149 150 list_del(&phb->list_node); 151 spin_unlock(&hose_spinlock); 152 153 if (phb->is_dynamic) 154 kfree(phb); 155 } 156 EXPORT_SYMBOL_GPL(pcibios_free_controller); 157 158 /* 159 * This function is used to call pcibios_free_controller() 160 * in a deferred manner: a callback from the PCI subsystem. 161 * 162 * _*DO NOT*_ call pcibios_free_controller() explicitly if 163 * this is used (or it may access an invalid *phb pointer). 164 * 165 * The callback occurs when all references to the root bus 166 * are dropped (e.g., child buses/devices and their users). 167 * 168 * It's called as .release_fn() of 'struct pci_host_bridge' 169 * which is associated with the 'struct pci_controller.bus' 170 * (root bus) - it expects .release_data to hold a pointer 171 * to 'struct pci_controller'. 172 * 173 * In order to use it, register .release_fn()/release_data 174 * like this: 175 * 176 * pci_set_host_bridge_release(bridge, 177 * pcibios_free_controller_deferred 178 * (void *) phb); 179 * 180 * e.g. in the pcibios_root_bridge_prepare() callback from 181 * pci_create_root_bus(). 182 */ 183 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) 184 { 185 struct pci_controller *phb = (struct pci_controller *) 186 bridge->release_data; 187 188 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); 189 190 pcibios_free_controller(phb); 191 } 192 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); 193 194 /* 195 * The function is used to return the minimal alignment 196 * for memory or I/O windows of the associated P2P bridge. 197 * By default, 4KiB alignment for I/O windows and 1MiB for 198 * memory windows. 199 */ 200 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 201 unsigned long type) 202 { 203 struct pci_controller *phb = pci_bus_to_host(bus); 204 205 if (phb->controller_ops.window_alignment) 206 return phb->controller_ops.window_alignment(bus, type); 207 208 /* 209 * PCI core will figure out the default 210 * alignment: 4KiB for I/O and 1MiB for 211 * memory window. 212 */ 213 return 1; 214 } 215 216 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) 217 { 218 struct pci_controller *hose = pci_bus_to_host(bus); 219 220 if (hose->controller_ops.setup_bridge) 221 hose->controller_ops.setup_bridge(bus, type); 222 } 223 224 void pcibios_reset_secondary_bus(struct pci_dev *dev) 225 { 226 struct pci_controller *phb = pci_bus_to_host(dev->bus); 227 228 if (phb->controller_ops.reset_secondary_bus) { 229 phb->controller_ops.reset_secondary_bus(dev); 230 return; 231 } 232 233 pci_reset_secondary_bus(dev); 234 } 235 236 resource_size_t pcibios_default_alignment(void) 237 { 238 if (ppc_md.pcibios_default_alignment) 239 return ppc_md.pcibios_default_alignment(); 240 241 return 0; 242 } 243 244 #ifdef CONFIG_PCI_IOV 245 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) 246 { 247 if (ppc_md.pcibios_iov_resource_alignment) 248 return ppc_md.pcibios_iov_resource_alignment(pdev, resno); 249 250 return pci_iov_resource_size(pdev, resno); 251 } 252 #endif /* CONFIG_PCI_IOV */ 253 254 static resource_size_t pcibios_io_size(const struct pci_controller *hose) 255 { 256 #ifdef CONFIG_PPC64 257 return hose->pci_io_size; 258 #else 259 return resource_size(&hose->io_resource); 260 #endif 261 } 262 263 int pcibios_vaddr_is_ioport(void __iomem *address) 264 { 265 int ret = 0; 266 struct pci_controller *hose; 267 resource_size_t size; 268 269 spin_lock(&hose_spinlock); 270 list_for_each_entry(hose, &hose_list, list_node) { 271 size = pcibios_io_size(hose); 272 if (address >= hose->io_base_virt && 273 address < (hose->io_base_virt + size)) { 274 ret = 1; 275 break; 276 } 277 } 278 spin_unlock(&hose_spinlock); 279 return ret; 280 } 281 282 unsigned long pci_address_to_pio(phys_addr_t address) 283 { 284 struct pci_controller *hose; 285 resource_size_t size; 286 unsigned long ret = ~0; 287 288 spin_lock(&hose_spinlock); 289 list_for_each_entry(hose, &hose_list, list_node) { 290 size = pcibios_io_size(hose); 291 if (address >= hose->io_base_phys && 292 address < (hose->io_base_phys + size)) { 293 unsigned long base = 294 (unsigned long)hose->io_base_virt - _IO_BASE; 295 ret = base + (address - hose->io_base_phys); 296 break; 297 } 298 } 299 spin_unlock(&hose_spinlock); 300 301 return ret; 302 } 303 EXPORT_SYMBOL_GPL(pci_address_to_pio); 304 305 /* 306 * Return the domain number for this bus. 307 */ 308 int pci_domain_nr(struct pci_bus *bus) 309 { 310 struct pci_controller *hose = pci_bus_to_host(bus); 311 312 return hose->global_number; 313 } 314 EXPORT_SYMBOL(pci_domain_nr); 315 316 /* This routine is meant to be used early during boot, when the 317 * PCI bus numbers have not yet been assigned, and you need to 318 * issue PCI config cycles to an OF device. 319 * It could also be used to "fix" RTAS config cycles if you want 320 * to set pci_assign_all_buses to 1 and still use RTAS for PCI 321 * config cycles. 322 */ 323 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) 324 { 325 while(node) { 326 struct pci_controller *hose, *tmp; 327 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 328 if (hose->dn == node) 329 return hose; 330 node = node->parent; 331 } 332 return NULL; 333 } 334 335 /* 336 * Reads the interrupt pin to determine if interrupt is use by card. 337 * If the interrupt is used, then gets the interrupt line from the 338 * openfirmware and sets it in the pci_dev and pci_config line. 339 */ 340 static int pci_read_irq_line(struct pci_dev *pci_dev) 341 { 342 struct of_phandle_args oirq; 343 unsigned int virq; 344 345 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); 346 347 #ifdef DEBUG 348 memset(&oirq, 0xff, sizeof(oirq)); 349 #endif 350 /* Try to get a mapping from the device-tree */ 351 if (of_irq_parse_pci(pci_dev, &oirq)) { 352 u8 line, pin; 353 354 /* If that fails, lets fallback to what is in the config 355 * space and map that through the default controller. We 356 * also set the type to level low since that's what PCI 357 * interrupts are. If your platform does differently, then 358 * either provide a proper interrupt tree or don't use this 359 * function. 360 */ 361 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) 362 return -1; 363 if (pin == 0) 364 return -1; 365 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || 366 line == 0xff || line == 0) { 367 return -1; 368 } 369 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", 370 line, pin); 371 372 virq = irq_create_mapping(NULL, line); 373 if (virq) 374 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); 375 } else { 376 pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %pOF\n", 377 oirq.args_count, oirq.args[0], oirq.args[1], oirq.np); 378 379 virq = irq_create_of_mapping(&oirq); 380 } 381 382 if (!virq) { 383 pr_debug(" Failed to map !\n"); 384 return -1; 385 } 386 387 pr_debug(" Mapped to linux irq %d\n", virq); 388 389 pci_dev->irq = virq; 390 391 return 0; 392 } 393 394 /* 395 * Platform support for /proc/bus/pci/X/Y mmap()s, 396 * modelled on the sparc64 implementation by Dave Miller. 397 * -- paulus. 398 */ 399 400 /* 401 * Adjust vm_pgoff of VMA such that it is the physical page offset 402 * corresponding to the 32-bit pci bus offset for DEV requested by the user. 403 * 404 * Basically, the user finds the base address for his device which he wishes 405 * to mmap. They read the 32-bit value from the config space base register, 406 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the 407 * offset parameter of mmap on /proc/bus/pci/XXX for that device. 408 * 409 * Returns negative error code on failure, zero on success. 410 */ 411 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, 412 resource_size_t *offset, 413 enum pci_mmap_state mmap_state) 414 { 415 struct pci_controller *hose = pci_bus_to_host(dev->bus); 416 unsigned long io_offset = 0; 417 int i, res_bit; 418 419 if (hose == NULL) 420 return NULL; /* should never happen */ 421 422 /* If memory, add on the PCI bridge address offset */ 423 if (mmap_state == pci_mmap_mem) { 424 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ 425 *offset += hose->pci_mem_offset; 426 #endif 427 res_bit = IORESOURCE_MEM; 428 } else { 429 io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 430 *offset += io_offset; 431 res_bit = IORESOURCE_IO; 432 } 433 434 /* 435 * Check that the offset requested corresponds to one of the 436 * resources of the device. 437 */ 438 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 439 struct resource *rp = &dev->resource[i]; 440 int flags = rp->flags; 441 442 /* treat ROM as memory (should be already) */ 443 if (i == PCI_ROM_RESOURCE) 444 flags |= IORESOURCE_MEM; 445 446 /* Active and same type? */ 447 if ((flags & res_bit) == 0) 448 continue; 449 450 /* In the range of this resource? */ 451 if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) 452 continue; 453 454 /* found it! construct the final physical address */ 455 if (mmap_state == pci_mmap_io) 456 *offset += hose->io_base_phys - io_offset; 457 return rp; 458 } 459 460 return NULL; 461 } 462 463 /* 464 * This one is used by /dev/mem and fbdev who have no clue about the 465 * PCI device, it tries to find the PCI device first and calls the 466 * above routine 467 */ 468 pgprot_t pci_phys_mem_access_prot(struct file *file, 469 unsigned long pfn, 470 unsigned long size, 471 pgprot_t prot) 472 { 473 struct pci_dev *pdev = NULL; 474 struct resource *found = NULL; 475 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; 476 int i; 477 478 if (page_is_ram(pfn)) 479 return prot; 480 481 prot = pgprot_noncached(prot); 482 for_each_pci_dev(pdev) { 483 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 484 struct resource *rp = &pdev->resource[i]; 485 int flags = rp->flags; 486 487 /* Active and same type? */ 488 if ((flags & IORESOURCE_MEM) == 0) 489 continue; 490 /* In the range of this resource? */ 491 if (offset < (rp->start & PAGE_MASK) || 492 offset > rp->end) 493 continue; 494 found = rp; 495 break; 496 } 497 if (found) 498 break; 499 } 500 if (found) { 501 if (found->flags & IORESOURCE_PREFETCH) 502 prot = pgprot_noncached_wc(prot); 503 pci_dev_put(pdev); 504 } 505 506 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", 507 (unsigned long long)offset, pgprot_val(prot)); 508 509 return prot; 510 } 511 512 513 /* 514 * Perform the actual remap of the pages for a PCI device mapping, as 515 * appropriate for this architecture. The region in the process to map 516 * is described by vm_start and vm_end members of VMA, the base physical 517 * address is found in vm_pgoff. 518 * The pci device structure is provided so that architectures may make mapping 519 * decisions on a per-device or per-bus basis. 520 * 521 * Returns a negative error code on failure, zero on success. 522 */ 523 int pci_mmap_page_range(struct pci_dev *dev, int bar, 524 struct vm_area_struct *vma, 525 enum pci_mmap_state mmap_state, int write_combine) 526 { 527 resource_size_t offset = 528 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 529 struct resource *rp; 530 int ret; 531 532 rp = __pci_mmap_make_offset(dev, &offset, mmap_state); 533 if (rp == NULL) 534 return -EINVAL; 535 536 vma->vm_pgoff = offset >> PAGE_SHIFT; 537 if (write_combine) 538 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 539 else 540 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 541 542 ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 543 vma->vm_end - vma->vm_start, vma->vm_page_prot); 544 545 return ret; 546 } 547 548 /* This provides legacy IO read access on a bus */ 549 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) 550 { 551 unsigned long offset; 552 struct pci_controller *hose = pci_bus_to_host(bus); 553 struct resource *rp = &hose->io_resource; 554 void __iomem *addr; 555 556 /* Check if port can be supported by that bus. We only check 557 * the ranges of the PHB though, not the bus itself as the rules 558 * for forwarding legacy cycles down bridges are not our problem 559 * here. So if the host bridge supports it, we do it. 560 */ 561 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 562 offset += port; 563 564 if (!(rp->flags & IORESOURCE_IO)) 565 return -ENXIO; 566 if (offset < rp->start || (offset + size) > rp->end) 567 return -ENXIO; 568 addr = hose->io_base_virt + port; 569 570 switch(size) { 571 case 1: 572 *((u8 *)val) = in_8(addr); 573 return 1; 574 case 2: 575 if (port & 1) 576 return -EINVAL; 577 *((u16 *)val) = in_le16(addr); 578 return 2; 579 case 4: 580 if (port & 3) 581 return -EINVAL; 582 *((u32 *)val) = in_le32(addr); 583 return 4; 584 } 585 return -EINVAL; 586 } 587 588 /* This provides legacy IO write access on a bus */ 589 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) 590 { 591 unsigned long offset; 592 struct pci_controller *hose = pci_bus_to_host(bus); 593 struct resource *rp = &hose->io_resource; 594 void __iomem *addr; 595 596 /* Check if port can be supported by that bus. We only check 597 * the ranges of the PHB though, not the bus itself as the rules 598 * for forwarding legacy cycles down bridges are not our problem 599 * here. So if the host bridge supports it, we do it. 600 */ 601 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 602 offset += port; 603 604 if (!(rp->flags & IORESOURCE_IO)) 605 return -ENXIO; 606 if (offset < rp->start || (offset + size) > rp->end) 607 return -ENXIO; 608 addr = hose->io_base_virt + port; 609 610 /* WARNING: The generic code is idiotic. It gets passed a pointer 611 * to what can be a 1, 2 or 4 byte quantity and always reads that 612 * as a u32, which means that we have to correct the location of 613 * the data read within those 32 bits for size 1 and 2 614 */ 615 switch(size) { 616 case 1: 617 out_8(addr, val >> 24); 618 return 1; 619 case 2: 620 if (port & 1) 621 return -EINVAL; 622 out_le16(addr, val >> 16); 623 return 2; 624 case 4: 625 if (port & 3) 626 return -EINVAL; 627 out_le32(addr, val); 628 return 4; 629 } 630 return -EINVAL; 631 } 632 633 /* This provides legacy IO or memory mmap access on a bus */ 634 int pci_mmap_legacy_page_range(struct pci_bus *bus, 635 struct vm_area_struct *vma, 636 enum pci_mmap_state mmap_state) 637 { 638 struct pci_controller *hose = pci_bus_to_host(bus); 639 resource_size_t offset = 640 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 641 resource_size_t size = vma->vm_end - vma->vm_start; 642 struct resource *rp; 643 644 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", 645 pci_domain_nr(bus), bus->number, 646 mmap_state == pci_mmap_mem ? "MEM" : "IO", 647 (unsigned long long)offset, 648 (unsigned long long)(offset + size - 1)); 649 650 if (mmap_state == pci_mmap_mem) { 651 /* Hack alert ! 652 * 653 * Because X is lame and can fail starting if it gets an error trying 654 * to mmap legacy_mem (instead of just moving on without legacy memory 655 * access) we fake it here by giving it anonymous memory, effectively 656 * behaving just like /dev/zero 657 */ 658 if ((offset + size) > hose->isa_mem_size) { 659 printk(KERN_DEBUG 660 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", 661 current->comm, current->pid, pci_domain_nr(bus), bus->number); 662 if (vma->vm_flags & VM_SHARED) 663 return shmem_zero_setup(vma); 664 return 0; 665 } 666 offset += hose->isa_mem_phys; 667 } else { 668 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 669 unsigned long roffset = offset + io_offset; 670 rp = &hose->io_resource; 671 if (!(rp->flags & IORESOURCE_IO)) 672 return -ENXIO; 673 if (roffset < rp->start || (roffset + size) > rp->end) 674 return -ENXIO; 675 offset += hose->io_base_phys; 676 } 677 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); 678 679 vma->vm_pgoff = offset >> PAGE_SHIFT; 680 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 681 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 682 vma->vm_end - vma->vm_start, 683 vma->vm_page_prot); 684 } 685 686 void pci_resource_to_user(const struct pci_dev *dev, int bar, 687 const struct resource *rsrc, 688 resource_size_t *start, resource_size_t *end) 689 { 690 struct pci_bus_region region; 691 692 if (rsrc->flags & IORESOURCE_IO) { 693 pcibios_resource_to_bus(dev->bus, ®ion, 694 (struct resource *) rsrc); 695 *start = region.start; 696 *end = region.end; 697 return; 698 } 699 700 /* We pass a CPU physical address to userland for MMIO instead of a 701 * BAR value because X is lame and expects to be able to use that 702 * to pass to /dev/mem! 703 * 704 * That means we may have 64-bit values where some apps only expect 705 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). 706 */ 707 *start = rsrc->start; 708 *end = rsrc->end; 709 } 710 711 /** 712 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree 713 * @hose: newly allocated pci_controller to be setup 714 * @dev: device node of the host bridge 715 * @primary: set if primary bus (32 bits only, soon to be deprecated) 716 * 717 * This function will parse the "ranges" property of a PCI host bridge device 718 * node and setup the resource mapping of a pci controller based on its 719 * content. 720 * 721 * Life would be boring if it wasn't for a few issues that we have to deal 722 * with here: 723 * 724 * - We can only cope with one IO space range and up to 3 Memory space 725 * ranges. However, some machines (thanks Apple !) tend to split their 726 * space into lots of small contiguous ranges. So we have to coalesce. 727 * 728 * - Some busses have IO space not starting at 0, which causes trouble with 729 * the way we do our IO resource renumbering. The code somewhat deals with 730 * it for 64 bits but I would expect problems on 32 bits. 731 * 732 * - Some 32 bits platforms such as 4xx can have physical space larger than 733 * 32 bits so we need to use 64 bits values for the parsing 734 */ 735 void pci_process_bridge_OF_ranges(struct pci_controller *hose, 736 struct device_node *dev, int primary) 737 { 738 int memno = 0; 739 struct resource *res; 740 struct of_pci_range range; 741 struct of_pci_range_parser parser; 742 743 printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n", 744 dev, primary ? "(primary)" : ""); 745 746 /* Check for ranges property */ 747 if (of_pci_range_parser_init(&parser, dev)) 748 return; 749 750 /* Parse it */ 751 for_each_of_pci_range(&parser, &range) { 752 /* If we failed translation or got a zero-sized region 753 * (some FW try to feed us with non sensical zero sized regions 754 * such as power3 which look like some kind of attempt at exposing 755 * the VGA memory hole) 756 */ 757 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 758 continue; 759 760 /* Act based on address space type */ 761 res = NULL; 762 switch (range.flags & IORESOURCE_TYPE_BITS) { 763 case IORESOURCE_IO: 764 printk(KERN_INFO 765 " IO 0x%016llx..0x%016llx -> 0x%016llx\n", 766 range.cpu_addr, range.cpu_addr + range.size - 1, 767 range.pci_addr); 768 769 /* We support only one IO range */ 770 if (hose->pci_io_size) { 771 printk(KERN_INFO 772 " \\--> Skipped (too many) !\n"); 773 continue; 774 } 775 #ifdef CONFIG_PPC32 776 /* On 32 bits, limit I/O space to 16MB */ 777 if (range.size > 0x01000000) 778 range.size = 0x01000000; 779 780 /* 32 bits needs to map IOs here */ 781 hose->io_base_virt = ioremap(range.cpu_addr, 782 range.size); 783 784 /* Expect trouble if pci_addr is not 0 */ 785 if (primary) 786 isa_io_base = 787 (unsigned long)hose->io_base_virt; 788 #endif /* CONFIG_PPC32 */ 789 /* pci_io_size and io_base_phys always represent IO 790 * space starting at 0 so we factor in pci_addr 791 */ 792 hose->pci_io_size = range.pci_addr + range.size; 793 hose->io_base_phys = range.cpu_addr - range.pci_addr; 794 795 /* Build resource */ 796 res = &hose->io_resource; 797 range.cpu_addr = range.pci_addr; 798 break; 799 case IORESOURCE_MEM: 800 printk(KERN_INFO 801 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", 802 range.cpu_addr, range.cpu_addr + range.size - 1, 803 range.pci_addr, 804 (range.pci_space & 0x40000000) ? 805 "Prefetch" : ""); 806 807 /* We support only 3 memory ranges */ 808 if (memno >= 3) { 809 printk(KERN_INFO 810 " \\--> Skipped (too many) !\n"); 811 continue; 812 } 813 /* Handles ISA memory hole space here */ 814 if (range.pci_addr == 0) { 815 if (primary || isa_mem_base == 0) 816 isa_mem_base = range.cpu_addr; 817 hose->isa_mem_phys = range.cpu_addr; 818 hose->isa_mem_size = range.size; 819 } 820 821 /* Build resource */ 822 hose->mem_offset[memno] = range.cpu_addr - 823 range.pci_addr; 824 res = &hose->mem_resources[memno++]; 825 break; 826 } 827 if (res != NULL) { 828 res->name = dev->full_name; 829 res->flags = range.flags; 830 res->start = range.cpu_addr; 831 res->end = range.cpu_addr + range.size - 1; 832 res->parent = res->child = res->sibling = NULL; 833 } 834 } 835 } 836 837 /* Decide whether to display the domain number in /proc */ 838 int pci_proc_domain(struct pci_bus *bus) 839 { 840 struct pci_controller *hose = pci_bus_to_host(bus); 841 842 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) 843 return 0; 844 if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) 845 return hose->global_number != 0; 846 return 1; 847 } 848 849 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 850 { 851 if (ppc_md.pcibios_root_bridge_prepare) 852 return ppc_md.pcibios_root_bridge_prepare(bridge); 853 854 return 0; 855 } 856 857 /* This header fixup will do the resource fixup for all devices as they are 858 * probed, but not for bridge ranges 859 */ 860 static void pcibios_fixup_resources(struct pci_dev *dev) 861 { 862 struct pci_controller *hose = pci_bus_to_host(dev->bus); 863 int i; 864 865 if (!hose) { 866 printk(KERN_ERR "No host bridge for PCI dev %s !\n", 867 pci_name(dev)); 868 return; 869 } 870 871 if (dev->is_virtfn) 872 return; 873 874 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 875 struct resource *res = dev->resource + i; 876 struct pci_bus_region reg; 877 if (!res->flags) 878 continue; 879 880 /* If we're going to re-assign everything, we mark all resources 881 * as unset (and 0-base them). In addition, we mark BARs starting 882 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set 883 * since in that case, we don't want to re-assign anything 884 */ 885 pcibios_resource_to_bus(dev->bus, ®, res); 886 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || 887 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { 888 /* Only print message if not re-assigning */ 889 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) 890 pr_debug("PCI:%s Resource %d %pR is unassigned\n", 891 pci_name(dev), i, res); 892 res->end -= res->start; 893 res->start = 0; 894 res->flags |= IORESOURCE_UNSET; 895 continue; 896 } 897 898 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); 899 } 900 901 /* Call machine specific resource fixup */ 902 if (ppc_md.pcibios_fixup_resources) 903 ppc_md.pcibios_fixup_resources(dev); 904 } 905 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); 906 907 /* This function tries to figure out if a bridge resource has been initialized 908 * by the firmware or not. It doesn't have to be absolutely bullet proof, but 909 * things go more smoothly when it gets it right. It should covers cases such 910 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges 911 */ 912 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, 913 struct resource *res) 914 { 915 struct pci_controller *hose = pci_bus_to_host(bus); 916 struct pci_dev *dev = bus->self; 917 resource_size_t offset; 918 struct pci_bus_region region; 919 u16 command; 920 int i; 921 922 /* We don't do anything if PCI_PROBE_ONLY is set */ 923 if (pci_has_flag(PCI_PROBE_ONLY)) 924 return 0; 925 926 /* Job is a bit different between memory and IO */ 927 if (res->flags & IORESOURCE_MEM) { 928 pcibios_resource_to_bus(dev->bus, ®ion, res); 929 930 /* If the BAR is non-0 then it's probably been initialized */ 931 if (region.start != 0) 932 return 0; 933 934 /* The BAR is 0, let's check if memory decoding is enabled on 935 * the bridge. If not, we consider it unassigned 936 */ 937 pci_read_config_word(dev, PCI_COMMAND, &command); 938 if ((command & PCI_COMMAND_MEMORY) == 0) 939 return 1; 940 941 /* Memory decoding is enabled and the BAR is 0. If any of the bridge 942 * resources covers that starting address (0 then it's good enough for 943 * us for memory space) 944 */ 945 for (i = 0; i < 3; i++) { 946 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && 947 hose->mem_resources[i].start == hose->mem_offset[i]) 948 return 0; 949 } 950 951 /* Well, it starts at 0 and we know it will collide so we may as 952 * well consider it as unassigned. That covers the Apple case. 953 */ 954 return 1; 955 } else { 956 /* If the BAR is non-0, then we consider it assigned */ 957 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 958 if (((res->start - offset) & 0xfffffffful) != 0) 959 return 0; 960 961 /* Here, we are a bit different than memory as typically IO space 962 * starting at low addresses -is- valid. What we do instead if that 963 * we consider as unassigned anything that doesn't have IO enabled 964 * in the PCI command register, and that's it. 965 */ 966 pci_read_config_word(dev, PCI_COMMAND, &command); 967 if (command & PCI_COMMAND_IO) 968 return 0; 969 970 /* It's starting at 0 and IO is disabled in the bridge, consider 971 * it unassigned 972 */ 973 return 1; 974 } 975 } 976 977 /* Fixup resources of a PCI<->PCI bridge */ 978 static void pcibios_fixup_bridge(struct pci_bus *bus) 979 { 980 struct resource *res; 981 int i; 982 983 struct pci_dev *dev = bus->self; 984 985 pci_bus_for_each_resource(bus, res, i) { 986 if (!res || !res->flags) 987 continue; 988 if (i >= 3 && bus->self->transparent) 989 continue; 990 991 /* If we're going to reassign everything, we can 992 * shrink the P2P resource to have size as being 993 * of 0 in order to save space. 994 */ 995 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 996 res->flags |= IORESOURCE_UNSET; 997 res->start = 0; 998 res->end = -1; 999 continue; 1000 } 1001 1002 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); 1003 1004 /* Try to detect uninitialized P2P bridge resources, 1005 * and clear them out so they get re-assigned later 1006 */ 1007 if (pcibios_uninitialized_bridge_resource(bus, res)) { 1008 res->flags = 0; 1009 pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); 1010 } 1011 } 1012 } 1013 1014 void pcibios_setup_bus_self(struct pci_bus *bus) 1015 { 1016 struct pci_controller *phb; 1017 1018 /* Fix up the bus resources for P2P bridges */ 1019 if (bus->self != NULL) 1020 pcibios_fixup_bridge(bus); 1021 1022 /* Platform specific bus fixups. This is currently only used 1023 * by fsl_pci and I'm hoping to get rid of it at some point 1024 */ 1025 if (ppc_md.pcibios_fixup_bus) 1026 ppc_md.pcibios_fixup_bus(bus); 1027 1028 /* Setup bus DMA mappings */ 1029 phb = pci_bus_to_host(bus); 1030 if (phb->controller_ops.dma_bus_setup) 1031 phb->controller_ops.dma_bus_setup(bus); 1032 } 1033 1034 static void pcibios_setup_device(struct pci_dev *dev) 1035 { 1036 struct pci_controller *phb; 1037 /* Fixup NUMA node as it may not be setup yet by the generic 1038 * code and is needed by the DMA init 1039 */ 1040 set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); 1041 1042 /* Hook up default DMA ops */ 1043 set_dma_ops(&dev->dev, pci_dma_ops); 1044 set_dma_offset(&dev->dev, PCI_DRAM_OFFSET); 1045 1046 /* Additional platform DMA/iommu setup */ 1047 phb = pci_bus_to_host(dev->bus); 1048 if (phb->controller_ops.dma_dev_setup) 1049 phb->controller_ops.dma_dev_setup(dev); 1050 1051 /* Read default IRQs and fixup if necessary */ 1052 pci_read_irq_line(dev); 1053 if (ppc_md.pci_irq_fixup) 1054 ppc_md.pci_irq_fixup(dev); 1055 } 1056 1057 int pcibios_add_device(struct pci_dev *dev) 1058 { 1059 /* 1060 * We can only call pcibios_setup_device() after bus setup is complete, 1061 * since some of the platform specific DMA setup code depends on it. 1062 */ 1063 if (dev->bus->is_added) 1064 pcibios_setup_device(dev); 1065 1066 #ifdef CONFIG_PCI_IOV 1067 if (ppc_md.pcibios_fixup_sriov) 1068 ppc_md.pcibios_fixup_sriov(dev); 1069 #endif /* CONFIG_PCI_IOV */ 1070 1071 return 0; 1072 } 1073 1074 void pcibios_setup_bus_devices(struct pci_bus *bus) 1075 { 1076 struct pci_dev *dev; 1077 1078 pr_debug("PCI: Fixup bus devices %d (%s)\n", 1079 bus->number, bus->self ? pci_name(bus->self) : "PHB"); 1080 1081 list_for_each_entry(dev, &bus->devices, bus_list) { 1082 /* Cardbus can call us to add new devices to a bus, so ignore 1083 * those who are already fully discovered 1084 */ 1085 if (dev->is_added) 1086 continue; 1087 1088 pcibios_setup_device(dev); 1089 } 1090 } 1091 1092 void pcibios_set_master(struct pci_dev *dev) 1093 { 1094 /* No special bus mastering setup handling */ 1095 } 1096 1097 void pcibios_fixup_bus(struct pci_bus *bus) 1098 { 1099 /* When called from the generic PCI probe, read PCI<->PCI bridge 1100 * bases. This is -not- called when generating the PCI tree from 1101 * the OF device-tree. 1102 */ 1103 pci_read_bridge_bases(bus); 1104 1105 /* Now fixup the bus bus */ 1106 pcibios_setup_bus_self(bus); 1107 1108 /* Now fixup devices on that bus */ 1109 pcibios_setup_bus_devices(bus); 1110 } 1111 EXPORT_SYMBOL(pcibios_fixup_bus); 1112 1113 void pci_fixup_cardbus(struct pci_bus *bus) 1114 { 1115 /* Now fixup devices on that bus */ 1116 pcibios_setup_bus_devices(bus); 1117 } 1118 1119 1120 static int skip_isa_ioresource_align(struct pci_dev *dev) 1121 { 1122 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && 1123 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) 1124 return 1; 1125 return 0; 1126 } 1127 1128 /* 1129 * We need to avoid collisions with `mirrored' VGA ports 1130 * and other strange ISA hardware, so we always want the 1131 * addresses to be allocated in the 0x000-0x0ff region 1132 * modulo 0x400. 1133 * 1134 * Why? Because some silly external IO cards only decode 1135 * the low 10 bits of the IO address. The 0x00-0xff region 1136 * is reserved for motherboard devices that decode all 16 1137 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, 1138 * but we want to try to avoid allocating at 0x2900-0x2bff 1139 * which might have be mirrored at 0x0100-0x03ff.. 1140 */ 1141 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 1142 resource_size_t size, resource_size_t align) 1143 { 1144 struct pci_dev *dev = data; 1145 resource_size_t start = res->start; 1146 1147 if (res->flags & IORESOURCE_IO) { 1148 if (skip_isa_ioresource_align(dev)) 1149 return start; 1150 if (start & 0x300) 1151 start = (start + 0x3ff) & ~0x3ff; 1152 } 1153 1154 return start; 1155 } 1156 EXPORT_SYMBOL(pcibios_align_resource); 1157 1158 /* 1159 * Reparent resource children of pr that conflict with res 1160 * under res, and make res replace those children. 1161 */ 1162 static int reparent_resources(struct resource *parent, 1163 struct resource *res) 1164 { 1165 struct resource *p, **pp; 1166 struct resource **firstpp = NULL; 1167 1168 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { 1169 if (p->end < res->start) 1170 continue; 1171 if (res->end < p->start) 1172 break; 1173 if (p->start < res->start || p->end > res->end) 1174 return -1; /* not completely contained */ 1175 if (firstpp == NULL) 1176 firstpp = pp; 1177 } 1178 if (firstpp == NULL) 1179 return -1; /* didn't find any conflicting entries? */ 1180 res->parent = parent; 1181 res->child = *firstpp; 1182 res->sibling = *pp; 1183 *firstpp = res; 1184 *pp = NULL; 1185 for (p = res->child; p != NULL; p = p->sibling) { 1186 p->parent = res; 1187 pr_debug("PCI: Reparented %s %pR under %s\n", 1188 p->name, p, res->name); 1189 } 1190 return 0; 1191 } 1192 1193 /* 1194 * Handle resources of PCI devices. If the world were perfect, we could 1195 * just allocate all the resource regions and do nothing more. It isn't. 1196 * On the other hand, we cannot just re-allocate all devices, as it would 1197 * require us to know lots of host bridge internals. So we attempt to 1198 * keep as much of the original configuration as possible, but tweak it 1199 * when it's found to be wrong. 1200 * 1201 * Known BIOS problems we have to work around: 1202 * - I/O or memory regions not configured 1203 * - regions configured, but not enabled in the command register 1204 * - bogus I/O addresses above 64K used 1205 * - expansion ROMs left enabled (this may sound harmless, but given 1206 * the fact the PCI specs explicitly allow address decoders to be 1207 * shared between expansion ROMs and other resource regions, it's 1208 * at least dangerous) 1209 * 1210 * Our solution: 1211 * (1) Allocate resources for all buses behind PCI-to-PCI bridges. 1212 * This gives us fixed barriers on where we can allocate. 1213 * (2) Allocate resources for all enabled devices. If there is 1214 * a collision, just mark the resource as unallocated. Also 1215 * disable expansion ROMs during this step. 1216 * (3) Try to allocate resources for disabled devices. If the 1217 * resources were assigned correctly, everything goes well, 1218 * if they weren't, they won't disturb allocation of other 1219 * resources. 1220 * (4) Assign new addresses to resources which were either 1221 * not configured at all or misconfigured. If explicitly 1222 * requested by the user, configure expansion ROM address 1223 * as well. 1224 */ 1225 1226 static void pcibios_allocate_bus_resources(struct pci_bus *bus) 1227 { 1228 struct pci_bus *b; 1229 int i; 1230 struct resource *res, *pr; 1231 1232 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", 1233 pci_domain_nr(bus), bus->number); 1234 1235 pci_bus_for_each_resource(bus, res, i) { 1236 if (!res || !res->flags || res->start > res->end || res->parent) 1237 continue; 1238 1239 /* If the resource was left unset at this point, we clear it */ 1240 if (res->flags & IORESOURCE_UNSET) 1241 goto clear_resource; 1242 1243 if (bus->parent == NULL) 1244 pr = (res->flags & IORESOURCE_IO) ? 1245 &ioport_resource : &iomem_resource; 1246 else { 1247 pr = pci_find_parent_resource(bus->self, res); 1248 if (pr == res) { 1249 /* this happens when the generic PCI 1250 * code (wrongly) decides that this 1251 * bridge is transparent -- paulus 1252 */ 1253 continue; 1254 } 1255 } 1256 1257 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", 1258 bus->self ? pci_name(bus->self) : "PHB", bus->number, 1259 i, res, pr, (pr && pr->name) ? pr->name : "nil"); 1260 1261 if (pr && !(pr->flags & IORESOURCE_UNSET)) { 1262 struct pci_dev *dev = bus->self; 1263 1264 if (request_resource(pr, res) == 0) 1265 continue; 1266 /* 1267 * Must be a conflict with an existing entry. 1268 * Move that entry (or entries) under the 1269 * bridge resource and try again. 1270 */ 1271 if (reparent_resources(pr, res) == 0) 1272 continue; 1273 1274 if (dev && i < PCI_BRIDGE_RESOURCE_NUM && 1275 pci_claim_bridge_resource(dev, 1276 i + PCI_BRIDGE_RESOURCES) == 0) 1277 continue; 1278 } 1279 pr_warning("PCI: Cannot allocate resource region " 1280 "%d of PCI bridge %d, will remap\n", i, bus->number); 1281 clear_resource: 1282 /* The resource might be figured out when doing 1283 * reassignment based on the resources required 1284 * by the downstream PCI devices. Here we set 1285 * the size of the resource to be 0 in order to 1286 * save more space. 1287 */ 1288 res->start = 0; 1289 res->end = -1; 1290 res->flags = 0; 1291 } 1292 1293 list_for_each_entry(b, &bus->children, node) 1294 pcibios_allocate_bus_resources(b); 1295 } 1296 1297 static inline void alloc_resource(struct pci_dev *dev, int idx) 1298 { 1299 struct resource *pr, *r = &dev->resource[idx]; 1300 1301 pr_debug("PCI: Allocating %s: Resource %d: %pR\n", 1302 pci_name(dev), idx, r); 1303 1304 pr = pci_find_parent_resource(dev, r); 1305 if (!pr || (pr->flags & IORESOURCE_UNSET) || 1306 request_resource(pr, r) < 0) { 1307 printk(KERN_WARNING "PCI: Cannot allocate resource region %d" 1308 " of device %s, will remap\n", idx, pci_name(dev)); 1309 if (pr) 1310 pr_debug("PCI: parent is %p: %pR\n", pr, pr); 1311 /* We'll assign a new address later */ 1312 r->flags |= IORESOURCE_UNSET; 1313 r->end -= r->start; 1314 r->start = 0; 1315 } 1316 } 1317 1318 static void __init pcibios_allocate_resources(int pass) 1319 { 1320 struct pci_dev *dev = NULL; 1321 int idx, disabled; 1322 u16 command; 1323 struct resource *r; 1324 1325 for_each_pci_dev(dev) { 1326 pci_read_config_word(dev, PCI_COMMAND, &command); 1327 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { 1328 r = &dev->resource[idx]; 1329 if (r->parent) /* Already allocated */ 1330 continue; 1331 if (!r->flags || (r->flags & IORESOURCE_UNSET)) 1332 continue; /* Not assigned at all */ 1333 /* We only allocate ROMs on pass 1 just in case they 1334 * have been screwed up by firmware 1335 */ 1336 if (idx == PCI_ROM_RESOURCE ) 1337 disabled = 1; 1338 if (r->flags & IORESOURCE_IO) 1339 disabled = !(command & PCI_COMMAND_IO); 1340 else 1341 disabled = !(command & PCI_COMMAND_MEMORY); 1342 if (pass == disabled) 1343 alloc_resource(dev, idx); 1344 } 1345 if (pass) 1346 continue; 1347 r = &dev->resource[PCI_ROM_RESOURCE]; 1348 if (r->flags) { 1349 /* Turn the ROM off, leave the resource region, 1350 * but keep it unregistered. 1351 */ 1352 u32 reg; 1353 pci_read_config_dword(dev, dev->rom_base_reg, ®); 1354 if (reg & PCI_ROM_ADDRESS_ENABLE) { 1355 pr_debug("PCI: Switching off ROM of %s\n", 1356 pci_name(dev)); 1357 r->flags &= ~IORESOURCE_ROM_ENABLE; 1358 pci_write_config_dword(dev, dev->rom_base_reg, 1359 reg & ~PCI_ROM_ADDRESS_ENABLE); 1360 } 1361 } 1362 } 1363 } 1364 1365 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) 1366 { 1367 struct pci_controller *hose = pci_bus_to_host(bus); 1368 resource_size_t offset; 1369 struct resource *res, *pres; 1370 int i; 1371 1372 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); 1373 1374 /* Check for IO */ 1375 if (!(hose->io_resource.flags & IORESOURCE_IO)) 1376 goto no_io; 1377 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 1378 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1379 BUG_ON(res == NULL); 1380 res->name = "Legacy IO"; 1381 res->flags = IORESOURCE_IO; 1382 res->start = offset; 1383 res->end = (offset + 0xfff) & 0xfffffffful; 1384 pr_debug("Candidate legacy IO: %pR\n", res); 1385 if (request_resource(&hose->io_resource, res)) { 1386 printk(KERN_DEBUG 1387 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", 1388 pci_domain_nr(bus), bus->number, res); 1389 kfree(res); 1390 } 1391 1392 no_io: 1393 /* Check for memory */ 1394 for (i = 0; i < 3; i++) { 1395 pres = &hose->mem_resources[i]; 1396 offset = hose->mem_offset[i]; 1397 if (!(pres->flags & IORESOURCE_MEM)) 1398 continue; 1399 pr_debug("hose mem res: %pR\n", pres); 1400 if ((pres->start - offset) <= 0xa0000 && 1401 (pres->end - offset) >= 0xbffff) 1402 break; 1403 } 1404 if (i >= 3) 1405 return; 1406 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1407 BUG_ON(res == NULL); 1408 res->name = "Legacy VGA memory"; 1409 res->flags = IORESOURCE_MEM; 1410 res->start = 0xa0000 + offset; 1411 res->end = 0xbffff + offset; 1412 pr_debug("Candidate VGA memory: %pR\n", res); 1413 if (request_resource(pres, res)) { 1414 printk(KERN_DEBUG 1415 "PCI %04x:%02x Cannot reserve VGA memory %pR\n", 1416 pci_domain_nr(bus), bus->number, res); 1417 kfree(res); 1418 } 1419 } 1420 1421 void __init pcibios_resource_survey(void) 1422 { 1423 struct pci_bus *b; 1424 1425 /* Allocate and assign resources */ 1426 list_for_each_entry(b, &pci_root_buses, node) 1427 pcibios_allocate_bus_resources(b); 1428 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1429 pcibios_allocate_resources(0); 1430 pcibios_allocate_resources(1); 1431 } 1432 1433 /* Before we start assigning unassigned resource, we try to reserve 1434 * the low IO area and the VGA memory area if they intersect the 1435 * bus available resources to avoid allocating things on top of them 1436 */ 1437 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1438 list_for_each_entry(b, &pci_root_buses, node) 1439 pcibios_reserve_legacy_regions(b); 1440 } 1441 1442 /* Now, if the platform didn't decide to blindly trust the firmware, 1443 * we proceed to assigning things that were left unassigned 1444 */ 1445 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1446 pr_debug("PCI: Assigning unassigned resources...\n"); 1447 pci_assign_unassigned_resources(); 1448 } 1449 1450 /* Call machine dependent fixup */ 1451 if (ppc_md.pcibios_fixup) 1452 ppc_md.pcibios_fixup(); 1453 } 1454 1455 /* This is used by the PCI hotplug driver to allocate resource 1456 * of newly plugged busses. We can try to consolidate with the 1457 * rest of the code later, for now, keep it as-is as our main 1458 * resource allocation function doesn't deal with sub-trees yet. 1459 */ 1460 void pcibios_claim_one_bus(struct pci_bus *bus) 1461 { 1462 struct pci_dev *dev; 1463 struct pci_bus *child_bus; 1464 1465 list_for_each_entry(dev, &bus->devices, bus_list) { 1466 int i; 1467 1468 for (i = 0; i < PCI_NUM_RESOURCES; i++) { 1469 struct resource *r = &dev->resource[i]; 1470 1471 if (r->parent || !r->start || !r->flags) 1472 continue; 1473 1474 pr_debug("PCI: Claiming %s: Resource %d: %pR\n", 1475 pci_name(dev), i, r); 1476 1477 if (pci_claim_resource(dev, i) == 0) 1478 continue; 1479 1480 pci_claim_bridge_resource(dev, i); 1481 } 1482 } 1483 1484 list_for_each_entry(child_bus, &bus->children, node) 1485 pcibios_claim_one_bus(child_bus); 1486 } 1487 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); 1488 1489 1490 /* pcibios_finish_adding_to_bus 1491 * 1492 * This is to be called by the hotplug code after devices have been 1493 * added to a bus, this include calling it for a PHB that is just 1494 * being added 1495 */ 1496 void pcibios_finish_adding_to_bus(struct pci_bus *bus) 1497 { 1498 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", 1499 pci_domain_nr(bus), bus->number); 1500 1501 /* Allocate bus and devices resources */ 1502 pcibios_allocate_bus_resources(bus); 1503 pcibios_claim_one_bus(bus); 1504 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1505 if (bus->self) 1506 pci_assign_unassigned_bridge_resources(bus->self); 1507 else 1508 pci_assign_unassigned_bus_resources(bus); 1509 } 1510 1511 /* Fixup EEH */ 1512 eeh_add_device_tree_late(bus); 1513 1514 /* Add new devices to global lists. Register in proc, sysfs. */ 1515 pci_bus_add_devices(bus); 1516 1517 /* sysfs files should only be added after devices are added */ 1518 eeh_add_sysfs_files(bus); 1519 } 1520 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); 1521 1522 int pcibios_enable_device(struct pci_dev *dev, int mask) 1523 { 1524 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1525 1526 if (phb->controller_ops.enable_device_hook) 1527 if (!phb->controller_ops.enable_device_hook(dev)) 1528 return -EINVAL; 1529 1530 return pci_enable_resources(dev, mask); 1531 } 1532 1533 void pcibios_disable_device(struct pci_dev *dev) 1534 { 1535 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1536 1537 if (phb->controller_ops.disable_device) 1538 phb->controller_ops.disable_device(dev); 1539 } 1540 1541 resource_size_t pcibios_io_space_offset(struct pci_controller *hose) 1542 { 1543 return (unsigned long) hose->io_base_virt - _IO_BASE; 1544 } 1545 1546 static void pcibios_setup_phb_resources(struct pci_controller *hose, 1547 struct list_head *resources) 1548 { 1549 struct resource *res; 1550 resource_size_t offset; 1551 int i; 1552 1553 /* Hookup PHB IO resource */ 1554 res = &hose->io_resource; 1555 1556 if (!res->flags) { 1557 pr_debug("PCI: I/O resource not set for host" 1558 " bridge %pOF (domain %d)\n", 1559 hose->dn, hose->global_number); 1560 } else { 1561 offset = pcibios_io_space_offset(hose); 1562 1563 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", 1564 res, (unsigned long long)offset); 1565 pci_add_resource_offset(resources, res, offset); 1566 } 1567 1568 /* Hookup PHB Memory resources */ 1569 for (i = 0; i < 3; ++i) { 1570 res = &hose->mem_resources[i]; 1571 if (!res->flags) 1572 continue; 1573 1574 offset = hose->mem_offset[i]; 1575 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, 1576 res, (unsigned long long)offset); 1577 1578 pci_add_resource_offset(resources, res, offset); 1579 } 1580 } 1581 1582 /* 1583 * Null PCI config access functions, for the case when we can't 1584 * find a hose. 1585 */ 1586 #define NULL_PCI_OP(rw, size, type) \ 1587 static int \ 1588 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ 1589 { \ 1590 return PCIBIOS_DEVICE_NOT_FOUND; \ 1591 } 1592 1593 static int 1594 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, 1595 int len, u32 *val) 1596 { 1597 return PCIBIOS_DEVICE_NOT_FOUND; 1598 } 1599 1600 static int 1601 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, 1602 int len, u32 val) 1603 { 1604 return PCIBIOS_DEVICE_NOT_FOUND; 1605 } 1606 1607 static struct pci_ops null_pci_ops = 1608 { 1609 .read = null_read_config, 1610 .write = null_write_config, 1611 }; 1612 1613 /* 1614 * These functions are used early on before PCI scanning is done 1615 * and all of the pci_dev and pci_bus structures have been created. 1616 */ 1617 static struct pci_bus * 1618 fake_pci_bus(struct pci_controller *hose, int busnr) 1619 { 1620 static struct pci_bus bus; 1621 1622 if (hose == NULL) { 1623 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); 1624 } 1625 bus.number = busnr; 1626 bus.sysdata = hose; 1627 bus.ops = hose? hose->ops: &null_pci_ops; 1628 return &bus; 1629 } 1630 1631 #define EARLY_PCI_OP(rw, size, type) \ 1632 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ 1633 int devfn, int offset, type value) \ 1634 { \ 1635 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ 1636 devfn, offset, value); \ 1637 } 1638 1639 EARLY_PCI_OP(read, byte, u8 *) 1640 EARLY_PCI_OP(read, word, u16 *) 1641 EARLY_PCI_OP(read, dword, u32 *) 1642 EARLY_PCI_OP(write, byte, u8) 1643 EARLY_PCI_OP(write, word, u16) 1644 EARLY_PCI_OP(write, dword, u32) 1645 1646 int early_find_capability(struct pci_controller *hose, int bus, int devfn, 1647 int cap) 1648 { 1649 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); 1650 } 1651 1652 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) 1653 { 1654 struct pci_controller *hose = bus->sysdata; 1655 1656 return of_node_get(hose->dn); 1657 } 1658 1659 /** 1660 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus 1661 * @hose: Pointer to the PCI host controller instance structure 1662 */ 1663 void pcibios_scan_phb(struct pci_controller *hose) 1664 { 1665 LIST_HEAD(resources); 1666 struct pci_bus *bus; 1667 struct device_node *node = hose->dn; 1668 int mode; 1669 1670 pr_debug("PCI: Scanning PHB %pOF\n", node); 1671 1672 /* Get some IO space for the new PHB */ 1673 pcibios_setup_phb_io_space(hose); 1674 1675 /* Wire up PHB bus resources */ 1676 pcibios_setup_phb_resources(hose, &resources); 1677 1678 hose->busn.start = hose->first_busno; 1679 hose->busn.end = hose->last_busno; 1680 hose->busn.flags = IORESOURCE_BUS; 1681 pci_add_resource(&resources, &hose->busn); 1682 1683 /* Create an empty bus for the toplevel */ 1684 bus = pci_create_root_bus(hose->parent, hose->first_busno, 1685 hose->ops, hose, &resources); 1686 if (bus == NULL) { 1687 pr_err("Failed to create bus for PCI domain %04x\n", 1688 hose->global_number); 1689 pci_free_resource_list(&resources); 1690 return; 1691 } 1692 hose->bus = bus; 1693 1694 /* Get probe mode and perform scan */ 1695 mode = PCI_PROBE_NORMAL; 1696 if (node && hose->controller_ops.probe_mode) 1697 mode = hose->controller_ops.probe_mode(bus); 1698 pr_debug(" probe mode: %d\n", mode); 1699 if (mode == PCI_PROBE_DEVTREE) 1700 of_scan_bus(node, bus); 1701 1702 if (mode == PCI_PROBE_NORMAL) { 1703 pci_bus_update_busn_res_end(bus, 255); 1704 hose->last_busno = pci_scan_child_bus(bus); 1705 pci_bus_update_busn_res_end(bus, hose->last_busno); 1706 } 1707 1708 /* Platform gets a chance to do some global fixups before 1709 * we proceed to resource allocation 1710 */ 1711 if (ppc_md.pcibios_fixup_phb) 1712 ppc_md.pcibios_fixup_phb(hose); 1713 1714 /* Configure PCI Express settings */ 1715 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { 1716 struct pci_bus *child; 1717 list_for_each_entry(child, &bus->children, node) 1718 pcie_bus_configure_settings(child); 1719 } 1720 } 1721 EXPORT_SYMBOL_GPL(pcibios_scan_phb); 1722 1723 static void fixup_hide_host_resource_fsl(struct pci_dev *dev) 1724 { 1725 int i, class = dev->class >> 8; 1726 /* When configured as agent, programing interface = 1 */ 1727 int prog_if = dev->class & 0xf; 1728 1729 if ((class == PCI_CLASS_PROCESSOR_POWERPC || 1730 class == PCI_CLASS_BRIDGE_OTHER) && 1731 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && 1732 (prog_if == 0) && 1733 (dev->bus->parent == NULL)) { 1734 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1735 dev->resource[i].start = 0; 1736 dev->resource[i].end = 0; 1737 dev->resource[i].flags = 0; 1738 } 1739 } 1740 } 1741 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1742 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1743 1744 static void fixup_vga(struct pci_dev *pdev) 1745 { 1746 u16 cmd; 1747 1748 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 1749 if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device()) 1750 vga_set_default_device(pdev); 1751 1752 } 1753 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID, 1754 PCI_CLASS_DISPLAY_VGA, 8, fixup_vga); 1755